Science.gov

Sample records for high accuracy measurements

  1. High accuracy radiation efficiency measurement techniques

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.

    1981-01-01

    The relatively large antenna subarrays (tens of meters) to be used in the Solar Power Satellite, and the desire to accurately quantify antenna performance, dictate the requirement for specialized measurement techniques. The error contributors associated with both far-field and near-field antenna measurement concepts were quantified. As a result, instrumentation configurations with measurement accuracy potential were identified. In every case, advances in the state of the art of associated electronics were found to be required. Relative cost trade-offs between a candidate far-field elevated antenna range and near-field facility were also performed.

  2. Methodology for high accuracy contact angle measurement.

    PubMed

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  3. OLED emission zone measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.

    2013-09-01

    Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.

  4. High speed high dynamic range high accuracy measurement system

    SciTech Connect

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  5. High Accuracy Dual Lens Transmittance Measurements

    DTIC Science & Technology

    2007-08-01

    measurement of lens transmission,” Metrologia 37, 603–605 (2000). 3. B. Munro, “Quantum information processing with light and its requirement for detectors...5. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991). 5402 APPLIED OPTICS Vol. 46, No. 22 1 August 2007 6. S. L

  6. High accuracy length measuring set up for optical encoder calibration

    NASA Astrophysics Data System (ADS)

    Iordache, Iuliana; Iancu, O.; Schiopu, P.; Apostol, D.

    2009-01-01

    Regarding nano-sciences and nano-technologies there is a permanent confusion between resolution and accuracy. Many sophisticated devices (APM, AFM, SNOM, confocal microscopes) characterized by their resolution, are used to observe at the nano-scale but they are far from being metrological devices, i.e. they do not measure. A metrological instrument must be traceable to the internationally accepted unit: meter in our case. We present an optical setup able to measure in micrometer range with nanometer resolution and ten nanometers accuracy. Its utility for MEMS geometrical parameter is obvious. The setup is working on a passive vibration-isolated table and contains a SIOS laser interferometer which assures the traceability of the measurement, a high resolution translation table, and a long working distance microscope. Few hundred measurements were done to a linear grating to measure the micrometric range pitch with nanometer accuracy. A 2 10-4 relative error was obtained.

  7. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    PubMed Central

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-01-01

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs. PMID:27338408

  8. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  9. High-accuracy measurements of the normal specular reflectance

    SciTech Connect

    Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

    2008-05-01

    The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 {mu}m. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity.

  10. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  11. Novel method for high accuracy figure measurement of optical flat

    NASA Astrophysics Data System (ADS)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  12. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  13. Research on high accuracy diameter measurement system with CCD

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng

    2011-08-01

    Non-touch measurement is an important technology in many domains such as the monitoring of tool breakage and tool wear, et al. Based on the method of curve fitting and demanding inflection point, we present a high accuracy non-touch diameter measurement system. The measurement system comprise linear array CCD, CCD driving circuit, power supply, workseat, light source, data acquisition card and so on. The picture element of the linear array CCD is 2048, and the size of every pixel and the spacing of adjacent pixels have the same size of 14μmx14μm. The stabilized voltage supply has a constant voltage output of 3V. The light is generated by a halogen tungsten lamp, which does not represent any risk to the health of the whole system. The data acquisition card converts the analog signal to digital signal with the accuracy of 12 bit. The error of non-uniform of the CCD pixels in sensitivity and the electrical noise error are indicated in detail. The measurement system has a simple structure, high measuring precision, and can be carried out automatically. Experiment proves that the diameter measurement of the system is within the range of Φ0.5~Φ10mm, and the total measuring unstability of the system is within the range of +/- 1.4μm.

  14. Researching the technology of high-accuracy camshaft measurement

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  15. A High-accuracy Micro-deformation Measurement Method

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    2016-07-01

    The requirement for ever-increasing-resolution space cameras drives focal length and diameter of optical lenses be increasing. High-frequency vibration in the process of launching and complex environmental conditions of the outer space generate micro deformation in components of space cameras. As a result, images from the space cameras are blurred. Therefore, it is necessary to measure the micro deformations in components of space cameras in various experiment conditions. This paper presents a high-accuracy micro deformation measurement method. The method is implemented as follows: (1) fix Tungsten-steel balls onto a space camera being measured and measure the coordinate for each ball under the standard condition; (2) simulate high-frequency vibrations and environmental conditions like the outer space to measure coordinates for each ball under each combination of test conditions; and (3) compute the deviation of a coordinate of a ball under a test condition combination from the coordinate of the ball under the standard condition and the deviation is the micro deformation of the space camera component associated with the ball. This method was applied to micro deformation measurement for space cameras of different models. Measurement data for these space cameras validated the proposed method.

  16. Modified sine bar device measures small angles with high accuracy

    NASA Technical Reports Server (NTRS)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  17. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  18. Results on fibre scrambling for high accuracy radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Avila, Gerardo; Singh, Paul; Chazelas, Bruno

    2010-07-01

    We present in this paper experimental data on fibres and scramblers to increase the photometrical stability of the spectrograph PSF. We have used round, square, octagonal fibres and beam homogenizers. This study is aimed to enhance the accuracy measurements of the radial velocities for ESO ESPRESSO (VLT) and CODEX (E-ELT) instruments.

  19. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  20. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  1. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  2. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  3. Micro-vision-based displacement measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Lu, Qinghua; Zhang, Xianmin; Fan, Yanbin

    2011-12-01

    The micro-motion stages are widely used in micro/nano manufacturing technology. In this paper, an integrated approach for measuring micro-displacement of micro-motion stage that incorporates motion estimation algorithm into the computer microvision is proposed. At first, the basic principle of the computer microvision measurement is analyzed. Then, a robust multiscale motion estimation algorithm for micro-motion measurement is proposed. Finally, the microdisplacement of the micro-motion stage based on the piezoelectric ceramic actuators and the compliant mechanisms is measured using the integrated approach. The maximal bias of the proposed approach reached 13 nm. Experimental results show that the new integrated method can measure micro-displacement with nanometer accuracy.

  4. High accuracy diffuse horizontal irradiance measurements without a shadowband

    SciTech Connect

    Schlemmer, J.A; Michalsky, J.J.

    1995-12-31

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. We compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.

  5. High accuracy diffuse horizontal irradiance measurements without a shadowband

    SciTech Connect

    Schlemmer, J.A.; Michalsky, J.J.

    1995-10-01

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from the total horizontal and direct normal irradiance. This method is in error because of the angular (often referred to as cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. The authors compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. The results indicate significant improvement in most cases. The remaining disagreement most likely arises from undetected tracking errors and instrument leveling.

  6. Ultrasensitive, High Accuracy Measurements of Trace Gas Species

    NASA Astrophysics Data System (ADS)

    Long, David A.; Fleisher, Adam J.; Plusquellic, David F.; Hodges, Joseph

    2015-06-01

    Our laboratory seeks to apply novel cavity-enhanced spectroscopic techniques to present problems in atmospheric and physical chemistry. Primarily we use cavity ring-down spectroscopy in which the passive decay of optical power within a Fabry-Pérot resonator is utilized to extract an absorption signal. With this technique we have demonstrated quantum (shot) noise limited sensitivities in both the near-infrared and mid-infrared spectral regions. Both commercial and home-built optical frequency combs are employed either to serve as absolute frequency references for molecular spectra or in a multiheterodyne approach for multiplexed sensing. I will discuss this novel instrumentation as well as measurements we have made of atmospherically relevant species such as CO2, H2O, O2, CH4, and CO with implications for in situ and remote (i.e. satellite-based) sensing. I will conclude by discussing future directions and plans for challenging measurements in the mid-infrared.

  7. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    PubMed

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  8. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  9. High-speed, high-accuracy large range 3D measurement

    NASA Astrophysics Data System (ADS)

    An, Yatong; Zhang, Song

    2017-05-01

    This paper presents such a high-speed, high-accuracy structured light technique that could achieve large range 3D shape measurement. The enabling method is our recently proposed system calibration that splits the calibration process into two stages. Specifically, we calibrate the intrinsic parameters at a near position with a regular size yet precisely fabricated calibration target, and then calibrate the extrinsic parameters with the assistance of an additional large range yet low accuracy low cost 3D scanner (i.e., Kinect). We developed a system that achieved 500 Hz with a resolution 2304 × 1400. The field of view (FOV) of our structured light system is 0.9 m(W) × 1.4 m(H) × 0.8 m(D). Our experimental data demonstrated that such a large range structured light system can achieve an mean error of 0.13 mm with a standard deviation of 1.18 mm by measuring a 304.8 mm diameter sphere. We further experimentally demonstrated that proposed method can simultaneously measure multiple objects or large dynamically changing objects.

  10. Self-mixing digital closed-loop vibrometer for high accuracy vibration measurements

    NASA Astrophysics Data System (ADS)

    Magnani, Alessandro; Melchionni, Dario; Pesatori, Alessandro; Norgia, Michele

    2016-04-01

    The novelty of Self-mixing interferometry is represented by the combination of high accuracy and contactless operation with compact, very-low-cost and user-friendly setup. This paper introduces state of the art techniques to monitor vibrations focusing on a novel digital feedback vibrometer. It exploits a control loop to delete interferometric signal distortion and improve measurement accuracy. A digital implementation is proposed to enhance system performances through a real-time elaboration.

  11. A high-accuracy and convenient figure measurement system for large convex lens.

    PubMed

    Tian, Zhihui; Yang, Wang; Sui, Yongxin; Kang, Yusi; Liu, Weiqi; Yang, Huaijiang

    2012-05-07

    We present a novel optical configuration of a phase-shifting interferometer for high-accuracy figure metrology of large dioptric convex spherical surfaces. The conformation and design considerations according to measurement accuracy, practicability, and system errors analysis are described. More in detail, we show the design principle and methods for the crucial parts. Some are expounded upon with examples for thorough understanding. The measurement procedures and the alignment approaches are also described. Finally, a verification experiment is further presented to verify our theoretical design. This system gives full-aperture and high-precision surface testing while maintaining relatively low cost and convenient operation.

  12. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  13. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  14. Consideration for high accuracy radiation efficiency measurements for the Solar Power Satellite (SPS) subarrays

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.; Ryan, C. E.

    1980-01-01

    The transmit beam and radiation efficiency for 10 metersquare subarray panels were quantified. Measurement performance potential of far field elevated and ground reflection ranges and near field technique were evaluated. The state-of-the-art of critical components and/or unique facilities required was identified. Relative cost, complexity and performance tradeoffs were performed for techniques capable of achieving accuracy objectives. It is considered that because of the large electrical size of the SPS subarray panels and the requirement for high accuracy measurements, specialized measurement facilities are required. Most critical measurement error sources have been identified for both conventional far field and near field techniques. Although the adopted error budget requires advances in state-of-the-art of microwave instrumentation, the requirements appear feasible based on extrapolation from today's technology. Additional performance and cost tradeoffs need to be completed before the choice of the preferred measurement technique is finalized.

  15. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement

    PubMed Central

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-01-01

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target’s 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects’ flight behaviors and 3-D coordinates’ variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects. PMID:27999317

  16. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement.

    PubMed

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-12-17

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target's 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects' flight behaviors and 3-D coordinates' variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects.

  17. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%.

  18. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    SciTech Connect

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  19. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique.

    PubMed

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  20. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    NASA Astrophysics Data System (ADS)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-01

    In a modified Twyman--Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  1. Making high-accuracy null depth measurements for the LBTI exozodi survey

    NASA Astrophysics Data System (ADS)

    Mennesson, Bertrand; Defrère, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; Marion, Lindsay; Roberge, Aki; Serabyn, Eugene; Skemer, Andy J.; Stapelfeldt, Karl; Weinberger, Alycia J.; Wyatt, Mark

    2016-08-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  2. Making High Accuracy Null Depth Measurements for the LBTI ExoZodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthew; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of approximately 12 zodis per star, for a representative ensemble of approximately 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  3. Making High Accuracy Null Depth Measurements for the LBTI Exozodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Oliver; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William C.; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  4. Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc

    2006-01-15

    With highly conformal radiation therapy techniques such as intensity-modulated radiation therapy, radiosurgery, and tomotherapy becoming more common in clinical practice, the use of these narrow beams requires a higher level of precision in quality assurance and dosimetry. Plastic scintillators with their water equivalence, energy independence, and dose rate linearity have been shown to possess excellent qualities that suit the most complex and demanding radiation therapy treatment plans. The primary disadvantage of plastic scintillators is the presence of Cerenkov radiation generated in the light guide, which results in an undesired stem effect. Several techniques have been proposed to minimize this effect. In this study, we compared three such techniques--background subtraction, simple filtering, and chromatic removal--in terms of reproducibility and dose accuracy as gauges of their ability to remove the Cerenkov stem effect from the dose signal. The dosimeter used in this study comprised a 6-mm{sup 3} plastic scintillating fiber probe, an optical fiber, and a color charge-coupled device camera. The whole system was shown to be linear and the total light collected by the camera was reproducible to within 0.31% for 5-s integration time. Background subtraction and chromatic removal were both found to be suitable for precise dose evaluation, with average absolute dose discrepancies of 0.52% and 0.67%, respectively, from ion chamber values. Background subtraction required two optical fibers, but chromatic removal used only one, thereby preventing possible measurement artifacts when a strong dose gradient was perpendicular to the optical fiber. Our findings showed that a plastic scintillation dosimeter could be made free of the effect of Cerenkov radiation.

  5. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  6. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  7. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  8. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    SciTech Connect

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R.; National Inst. of Standards and Technology, Gaithersburg, MD )

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  9. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method.

    PubMed

    Deline, C; Gilchrist, B E; Dobson, C; Jones, J E; Chavers, D G

    2007-11-01

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  10. Real-time, high-accuracy 3D imaging and shape measurement.

    PubMed

    Nguyen, Hieu; Nguyen, Dung; Wang, Zhaoyang; Kieu, Hien; Le, Minh

    2015-01-01

    In spite of the recent advances in 3D shape measurement and geometry reconstruction, simultaneously achieving fast-speed and high-accuracy performance remains a big challenge in practice. In this paper, a 3D imaging and shape measurement system is presented to tackle such a challenge. The fringe-projection-profilometry-based system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display. Experiments have shown that the proposed system can acquire and display high-quality 3D reconstructed images and/or video stream at a speed of 45 frames per second with relative accuracy of 0.04% or at a reduced speed of 22.5 frames per second with enhanced accuracy of 0.01%. The 3D imaging and shape measurement system shows great promise of satisfying the ever-increasing demands of scientific and engineering applications.

  11. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    NASA Astrophysics Data System (ADS)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  12. High-Accuracy Measure of Atomic Polarizability in an Optical Lattice Clock

    DTIC Science & Technology

    2011-12-11

    AND SUBTITLE Sa. CONTRACT NUMBER High-Accuracy Measurement of Atomic Polarizability in an VV911~-11 - 1 -0202 Optical Lattice Clock Sb. GRANT NUMBER...modem optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we...1,U~ (1,’T, TI~ \\ 1\\ ( ,., ) Tl-.~ ~1 ~~1,1~ +.-~~+: ~~~ 1 ··~~~··+~:~+. • ...1 • • ~ +~ ··~~-~ 1S. SUBJECT TERMS atomic frequency standards

  13. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  14. High accuracy measurements of the intrapixel sensitivity of VIS to LWIR astronomical detectors: experimental demonstration

    NASA Astrophysics Data System (ADS)

    Viale, T.; Ketchazo, C.; Guérineau, N.; Boulade, O.; de la Barrière, F.; Moreau, V.; Mugnier, L.; Dubreuil, D.; Bonnefois, A.; Delisle, C.; Druart, G.; Mulet, P.

    2016-08-01

    The reduction of systematic effects is necessary to improve the accuracy in imaging and astrometry. For example, in Euclid Mission which aims at carrying out accurate measurements of dark energy and quantifying precisely its role in the evolution of the Universe, systematic effects need at be controlled to a level better than 10-7 (Euclid, Science Book). To achieve this goal, a high-level of knowledge of the system point spread function (PSF) is required. This paper follows the concept-paper presented at the last SPIE conference1 and gives the recent developments achieved in the design of the test bench for the intrapixel sensitivity measurements. The measurement technique we use is based on the projection of a high spatial resolution periodic pattern on the detector using the self-imaging property of a new class of diffractive objects named continuously self-imaging gratings (CSIG) and developed at ONERA. The principle combines the potential of global techniques, which make measurements at once on the whole FPA, and the accuracy of spot-scan-based techniques, which provide high local precision.

  15. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  16. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    PubMed

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power.

  17. High-accuracy surface profile measuring system using a BSO phase conjugating mirror.

    PubMed

    Ikeda, O; Suzuki, T; Sato, T

    1982-12-15

    A highly accurate real-time surface profile measuring system has been constructed by combining a Bi(12)SiO(20) (BSO) phase conjugating mirror (PCM) with a Twyman-Green interferometer. In this new interferometer the convex lens collects and focuses the scattering object waves in the BSO crystal, and the PCM reconstructs the object field through the same lens. The method of deriving surface profile is similar to conventional ones but differs in that it does not require exact phase modulation of the interferograms. This system features a quite high measurement accuracy free of aberrations of the lens and of hysteresis or aging of the piston actuator used to change the phase of the reference field. The principle and basic experimental results are presented.

  18. High-accuracy measurements of total column water vapor from the Orbiting Carbon Observatory-2

    NASA Astrophysics Data System (ADS)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-12-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution (1.3 × 2.3 km2) and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  19. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  20. High accuracy measurement of unsteady flows using digital particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Funes-Gallanzi, M.

    1998-09-01

    The analysis of digital PIV data, either derived from CCD technology or through film and then scanned, typically involves two quantization steps: spatial and intensity quantization. The all-optical systems do not introduce these sources of error. For systems which make use of digital technology however, it is of crucial importance to have reliable error bounds and a sufficiently accurate estimate of particle position, taking into consideration both types of quantization. The accuracy demanded by aerodynamicists from PIV has been a major barrier to its practical application in the past. The more recent approach of using the Gaussian profile of the particle images to yield sub-pixel accurate position estimates has resulted in robust measurements being taken to an accuracy of 1/10th pixel and 1% in velocity for the in-plane velocity, in hostile industrial environments. A major problem for 3D PIV estimation has historically been that the out-of-plane velocity error was of the order of 3-4 times larger than in-plane. The out-of-plane velocity estimate can be derived from the change in the ratio of amplitude to variance—known as the depth factor—of the Gaussian form, as a particle traverses the beam profile. However, such measurements are crucially dependent not only on an accurate position estimate but also on an equally accurate estimate of the amplitude and variance. The accuracy of the Gaussian profile fit using a Nelder-Meade optimisation method as developed until now however, is not capable of providing the required accuracies. Therefore, this paper presents a development of the "locales" approach to position estimation to achieve the desired objective of high accuracy PIV measurements. This approach makes use of the fact that by considering all the possible digital representations of the Gaussian particle profile, regions of indistinguishable position can be derived. These positions are referred to as "locales". By considering the density, distribution, and

  1. Detailed high-accuracy megavoltage transmission measurements: A sensitive experimental benchmark of EGSnrc

    SciTech Connect

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-10-15

    Purpose: There are three goals for this study: (a) to perform detailed megavoltage transmission measurements in order to identify the factors that affect the measurement accuracy, (b) to use the measured data as a benchmark for the EGSnrc system in order to identify the computational limiting factors, and (c) to provide data for others to benchmark Monte Carlo codes. Methods: Transmission measurements are performed at the National Research Council Canada on a research linac whose incident electron parameters are independently known. Automated transmission measurements are made on-axis, down to a transmission value of {approx}1.7%, for eight beams between 10 MV (the lowest stable MV beam on the linac) and 30 MV, using fully stopping Be, Al, and Pb bremsstrahlung targets and no fattening filters. To diversify energy differentiation, data are acquired for each beam using low-Z and high-Z attenuators (C and Pb) and Farmer chambers with low-Z and high-Z buildup caps. Experimental corrections are applied for beam drifts (2%), polarity (2.5% typical maximum, 6% extreme), ion recombination (0.2%), leakage (0.3%), and room scatter (0.8%)-the values in parentheses are the largest corrections applied. The experimental setup and the detectors are modeled using EGSnrc, with the newly added photonuclear attenuation included (up to a 5.6% effect). A detailed sensitivity analysis is carried out for the measured and calculated transmission data. Results: The developed experimental protocol allows for transmission measurements with 0.4% uncertainty on the smallest signals. Suggestions for accurate transmission measurements are provided. Measurements and EGSnrc calculations agree typically within 0.2% for the sensitivity of the transmission values to the detector details, to the bremsstrahlung target material, and to the incident electron energy. Direct comparison of the measured and calculated transmission data shows agreement better than 2% for C (3.4% for the 10 MV beam) and

  2. Detailed high-accuracy megavoltage transmission measurements: a sensitive experimental benchmark of EGSnrc.

    PubMed

    Ali, E S M; McEwen, M R; Rogers, D W O

    2012-10-01

    There are three goals for this study: (a) to perform detailed megavoltage transmission measurements in order to identify the factors that affect the measurement accuracy, (b) to use the measured data as a benchmark for the EGSnrc system in order to identify the computational limiting factors, and (c) to provide data for others to benchmark Monte Carlo codes. Transmission measurements are performed at the National Research Council Canada on a research linac whose incident electron parameters are independently known. Automated transmission measurements are made on-axis, down to a transmission value of ∼1.7%, for eight beams between 10 MV (the lowest stable MV beam on the linac) and 30 MV, using fully stopping Be, Al, and Pb bremsstrahlung targets and no fattening filters. To diversify energy differentiation, data are acquired for each beam using low-Z and high-Z attenuators (C and Pb) and Farmer chambers with low-Z and high-Z buildup caps. Experimental corrections are applied for beam drifts (2%), polarity (2.5% typical maximum, 6% extreme), ion recombination (0.2%), leakage (0.3%), and room scatter (0.8%)-the values in parentheses are the largest corrections applied. The experimental setup and the detectors are modeled using EGSnrc, with the newly added photonuclear attenuation included (up to a 5.6% effect). A detailed sensitivity analysis is carried out for the measured and calculated transmission data. The developed experimental protocol allows for transmission measurements with 0.4% uncertainty on the smallest signals. Suggestions for accurate transmission measurements are provided. Measurements and EGSnrc calculations agree typically within 0.2% for the sensitivity of the transmission values to the detector details, to the bremsstrahlung target material, and to the incident electron energy. Direct comparison of the measured and calculated transmission data shows agreement better than 2% for C (3.4% for the 10 MV beam) and typically better than 1% for Pb. The

  3. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  4. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  5. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  6. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality.

    PubMed

    MacNeil, Joshua A; Boyd, Steven K

    2007-12-01

    The introduction of three-dimensional high-resolution peripheral in vivo quantitative computed tomography (HR-pQCT) (XtremeCT, Scanco Medical, Switzerland; voxel size 82 microm) provides a new approach to monitor micro-architectural bone changes longitudinally. The accuracy of HR-pQCT for three important determinants of bone quality, including bone mineral density (BMD), architectural measurements and bone mechanics, was determined through a comparison with micro-computed tomography (microCT) and dual energy X-ray absorptiometry (DXA). Forty measurements from 10 cadaver radii with low bone mass were scanned using the three modalities, and image registration was used for 3D data to ensure identical regions were analyzed. The areal BMD of DXA correlated well with volumetric BMD by HR-pQCT despite differences in dimensionality (R(2) = 0.69), and the correlation improved when non-dimensional bone mineral content was assessed (R(2) = 0.80). Morphological parameters measured by HR-pQCT in a standard patient analysis, including bone volume ratio, trabecular number, derived trabecular thickness, derived trabecular separation, and cortical thickness correlated well with muCT measures (R(2) = 0.59-0.96). Additionally, some non-metric parameters such as connectivity density (R(2) = 0.90) performed well. The mechanical stiffness assessed by finite element analysis of HR-pQCT images was generally higher than for microCT data due to resolution differences, and correlated well at the continuum level (R(2) = 0.73). The validation here of HR-pQCT against gold-standards microCT and DXA provides insight into the accuracy of the system, and suggests that in addition to the standard patient protocol, additional indices of bone quality including connectivity density and mechanical stiffness may be appropriate to include as part of a standard patient analysis for clinical monitoring of bone quality.

  7. On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras.

    PubMed

    Conneely, Michael; Rolfsnes, Hans O; Main, Charles; McGloin, David; Campbell, Paul A

    2011-08-15

    Rotating mirror systems based on the Miller Principle are a mainstay modality for ultra-high speed imaging within the range 1-25 million frames per second. Importantly, the true temporal accuracy of observations recorded in such cameras is sensitive to the framing rate that the system directly associates with each individual data acquisition. The purpose for the present investigation was to examine the validity of such system-reported frame rates in a widely used commercial system (a Cordin 550-62 model) by independently measuring the framing rate at the instant of triggering. Here, we found a small but significant difference between such measurements: the average discrepancy (over the entire spectrum of frame rates used) was found to be 0.66 ± 0.48%, with a maximum difference of 2.33%. The principal reason for this discrepancy was traced to non-optimized sampling of the mirror rotation rate within the system protocol. This paper thus serves three purposes: (i) we highlight a straightforward diagnostic approach to facilitate scrutiny of rotating-mirror system integrity; (ii) we raise awareness of the intrinsic errors associated with data previously acquired with this particular system and model; and (iii), we recommend that future control routines address the sampling issue by implementing real-time measurement at the instant of triggering.

  8. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator.

    PubMed

    Zhao, Ying; Pang, Xiaodan; Deng, Lei; Yu, Xianbin; Zheng, Xiaoping; Zhou, Bingkun; Monroy, Idelfonso Tafur

    2011-12-12

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10 GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4 MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented 10(-3) relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.

  9. Considerations for high accuracy radiation efficiency measurements for the Solar Power Satellite (SPS) subarrays

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.; Ryan, C. E.

    1980-01-01

    The relatively large apertures to be used in SPS, small half-power beamwidths, and the desire to accurately quantify antenna performance dictate the requirement for specialized measurements techniques. Objectives include the following: (1) For 10-meter square subarray panels, quantify considerations for measuring power in the transmit beam and radiation efficiency to + or - 1 percent (+ or - 0.04 dB) accuracy. (2) Evaluate measurement performance potential of far-field elevated and ground reflection ranges and near-field techniques. (3) Identify the state-of-the-art of critical components and/or unique facilities required. (4) Perform relative cost, complexity and performance tradeoffs for techniques capable of achieving accuracy objectives. the precision required by the techniques discussed below are not obtained by current methods which are capable of + or - 10 percent (+ or - dB) performance. In virtually every area associated with these planned measurements, advances in state-of-the-art are required.

  10. High-Accuracy, High-Dynamic-Range Phase-Measurement System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Halverson, Peter; Spero, Robert

    2007-01-01

    A digital phase meter has been designed to satisfy stringent requirements for measuring differences between phases of radio-frequency (RF) subcarrier signals modulated onto laser beams involved in the operation of a planned space-borne gravitational-wave-detecting heterodyne laser interferometer. The capabilities of this system could also be used in diverse terrestrial applications that involve measurement of signal phases, including metrology, navigation, and communications.

  11. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurments

    SciTech Connect

    Shen, Yufeng; Strittmatter, Eric F.; Zhang, Rui; Metz, Thomas O.; Moore, Ronald J.; Li, Fumin; Udseth, Harold R.; Smith, Richard D.; Unger, Klaus K.; Kumar, Dhirendra; Lubda, Dieter

    2005-12-01

    The throughput for proteomics measurements that provide broad protein coverage is limited by the quality and speed of both the separations and the subsequent mass analysis; present analysis times can range anywhere from hours to days (or longer). We have explored the basis for ultrahigh-throughput proteomics measurements using high-speed reversed-phase liquid chromatography (RPLC) combined with high accuracy mass spectrometric measurements. Time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers were evaluated in conjunction with 0.8-µm porous C18 particle-packed RPLC using 50 µm i.d. capillary columns for identifying peptides using the Accurate Mass and Time (AMT) tag approach. Peptide RPLC relative retention (elution) times could be correlated to within 5% to elution times that differed by at least 25-fold in speed, which allowed peptides to be identified using AMT tags identified from much slower RPLC-MS/MS analyses. When coupled with RPLC, the mass spectrometers operated at fast spectrum acquisition speeds (e.g., 0.2 sec for TOF and either 0.3 or 0.6 sec for FTICR), and peptide mass measurement accuracies of better than ±15 ppm were obtained. Ion population control during fast separations limited the mass accuracies obtained with FTICR, but the use of fast regulation of ion populations using automated gain control improved the mass accuracies. The detection of low abundance species was somewhat suppressed for fast analyses. The proteome coverage obtained using AMT tags was limited by the separation peak capacity, the sensitivity of the MS, and the accuracy of both the mass measurements and the relative RPLC peptide elution times. Experimental results demonstrated that accuracies of 5% for the RPLC relative elution times and better than ±15 ppm for mass measurements were sufficient for confident identification of >2800 peptides and >760 proteins from >13,000 different detected species from a Shewanella oneidensis tryptic

  12. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  13. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    PubMed

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  14. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser.

    PubMed

    Minoshima, K; Matsumoto, H

    2000-10-20

    A high-accuracy optical distance meter with a mode-locked femtosecond laser is proposed for distance measurements in a 310-m-long optical tunnel. We measured the phase shift of the optical beat component between longitudinal modes of a mode-locked laser. A high resolution of 50 microm at 240-m distance was obtained without cyclic error correction. The group refractive index of air is automatically extracted to an accuracy of 6 parts per million (ppm) by two-color measurement with the pulses of fundamental and second-harmonic wavelengths. Finally, an absolute mechanical distance of 240 m was obtained to within 8-ppm accuracy by use of a series of beat frequencies with the advantage of a wide range of intermode frequency, together with the results of the two-color measurement.

  15. A low-cost antenna reflector shape and distortion measuring system with high accuracy

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Jiang, Hongzhi; Zhou, Jie; Li, Dong; Zhao, Huijie

    2008-09-01

    The antenna which is used in space for satellite control command communication and data transmission is a key unit for a satellite to work properly and accomplish the task successfully. Accurately measuring the antenna reflector shape and the reflector distortion shortly after the antenna manufacturing or assembling on the satellite is very important to ensure that the antenna functions well. Considering the constraints during the measurement, an antenna reflector shape and distortion measuring system, which is based on the close-range photogrammetry, is proposed. The system configuration, measuring principles, calibration and measuring procedures, data processing, experiment configuration and results as well as error analysis are discussed in the paper. The system was constructed and tested in the laboratory environment. The experiment results show that the system has the ability of accurately measuring the shape of the reflector. The distortion of the reflector surface can then be gained from the shape data. The average accuracy of measurement about 240 points on a 600mm antenna reflector is less than 0.015 mm (1σ).

  16. A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements

    NASA Astrophysics Data System (ADS)

    Sabatino, D. R.; Praisner, T. J.; Smith, C. R.

    There are a variety of phenomena which may impact the accuracy of wide-band thermochromic liquid crystal temperature measurements, including: irregularities in liquid crystal and black paint layers, reflective components from light sources, and variations in the lighting/viewing angle across the surface. A wide-band calibration technique has been developed which inherently accounts for these and other sources of uncertainty by employing a point-wise calibration of the entire test surface. Both on and off-axis lighting arrangements are assessed for ease of implementation and accuracy of color displayed under uniform temperature conditions. The technique employs a series of uniform-temperature images to construct calibration curves relating the local hue component to temperature in a point-wise manner for the entire test surface. An off-axis lighting/viewing arrangement is found to be most practical for typical experimental setups. Hysteresis effects are quantified for excursions beyond both the lower and upper clearing point of the liquid crystals. Finally, the total uncertainty of the measured temperature is determined to vary from +/-1.2% to +/-7.2% across the bandwidth of the liquid crystals.

  17. Three-dimensional surface figure measurement of high-accuracy spherical mirror with nanoprofiler using normal vector tracing method.

    PubMed

    Kudo, R; Okuda, K; Usuki, K; Nakano, M; Yamamura, K; Endo, K

    2014-04-01

    Processing technology using an extreme ultraviolet light source, e.g., next-generation lithography, requires next-generation high-accuracy mirrors. As it will be difficult to attain the degree of precision required by next-generation high-accuracy mirrors such as aspherical mirrors through conventional processing methods, rapid progress in nanomeasurement technologies will be needed to produce such mirrors. Because the measuring methods used for the surface figure measurement of next-generation mirrors will require high precision, we have developed a novel nanoprofiler that can measure the figures of high-accuracy mirrors without the use of a reference surface. Because the accuracy of the proposed method is not limited by the accuracy of a reference surface, the measurement of free-form mirrors is expected to be realized. By using an algorithm to process normal vectors and their coordinate values at the measurement point obtained by a nanoprofiler, our measurement method can reconstruct three-dimensional shapes. First, we measured the surface of a concave spherical mirror with a 1000-mm radius of curvature using the proposed method, and the measurement repeatability is evaluated as 0.6 nm. Sub-nanometer repeatability is realized, and an increase in the repeatability would be expected by improving the dynamic stiffness of the nanoprofiler. The uncertainty of the measurement using the present apparatus is estimated to be approximately 10 nm by numerical simulation. Further, the uncertainty of a Fizeau interferometer is also approximately 10 nm. The results obtained using the proposed method are compared with those obtained using a Fizeau interferometer. The resulting profiles are consistent within the range of each uncertainty over the middle portions of the mirror.

  18. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  19. High-accuracy time- and space-resolved Stark shift measurements

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1996-07-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.

  20. High-accuracy time- and space-resolved Stark shift measurements (invited)

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1997-01-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. We use simultaneous two-dimensional space- and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion, and sensitivity. A semiautomated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {plus_minus}2{percent}{endash}4{percent}. Detailed tests of the procedure confirm that the uncertainty in the wavelength-shift error bars is less than {plus_minus}20{percent}. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain three-dimensional space- and time-resolved measurements of the electric and magnetic fields is in progress. {copyright} {ital 1997 American Institute of Physics.}

  1. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    SciTech Connect

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-04-15

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  2. First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Preis, O.; Henault, F.; Kern, P.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Delboulbé, A.; Behar, E.; Saint-Pe, M.; Dupont, J.; Potin, S.; Cara, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Léger, A.; LeDuigou, J. M.; Shao, M.; Goullioud, R.

    2013-09-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.

  3. Developing passive MEMS DC/AC current sensor applicable to two-wire appliances with high measurement accuracy

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Li, Xiaodong; Xian, Weikang; Liu, Huan; Liu, Xin

    2016-10-01

    A passive MEMS DC/AC current sensor with high measurement accuracy, accomplished by the methodology combining both the "stress-equilibrium" solution and the "position-free" solution, was proposed for measuring electricity consumption of household equipment and Information and Communication Technology devices. For the "stress-equilibrium" solution, slots between two adjacent piezoelectric plates are implemented to minimize the distribution difference of the uneven stress close to the fixed end. The measurement error caused by the uneven stress distribution is decreased from 9% to 4% for ten-piezoelectric-plates and from 8% to 0.5% for three-piezoelectric-plates, respectively. For the "position-free" consideration, an array comprised of four piezoelectric cantilevers is proposed to eliminate the positional error resulted by the uneven magnetic field distribution generated by the test object of electric currents. And the solution is proofed to be an effective method to eliminate the positional error by theoretical and simulation analysis. In light of the above preliminary results, the passive MEMS DC/AC current sensor is believed to be useful to achieve high measurement accuracy via integrating the "stress-equilibrium" and the "position-free" designs. The newly proposed current sensor with high measurement accuracy is applicable to two-wire appliance cord without using any cord separator like that used in Hall-effect based sensor.

  4. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption.

    PubMed

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (∼100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ∼0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  5. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  6. Multi-wavelength interferometer for high accuracy measurement of long gauge blocks

    NASA Astrophysics Data System (ADS)

    Wengierow, Michal; Salbut, Leszek; Pakula, Anna; Lukaszewski, Dariusz

    2008-08-01

    In the paper the multiwavelength interferometer with automatic data analysis based on phase fraction method is described. It is used to extend measurement range without losing sensitivity, especially to calibrate long gauge blocks. Numerical simulations and experimental work results have been shown to confirm proper functioning of this method. However, stabilization of environmental conditions and light sources has significant influence on correctness of measurement results. To match those requirements measurement system, which will be built for Polish Central Office of Measures, has been designed. This design is based on Twyman-Green interferometer and assumes usage of two highly stabilized laser sources. Optical and mechanical design of this system has been shown. Moreover, system for monitoring and stabilization of environmental conditions is required.

  7. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  8. Algorithms for Low-Cost High Accuracy Geomagnetic Measurements in LEO

    NASA Astrophysics Data System (ADS)

    Beach, T. L.; Zesta, E.; Allen, L.; Chepko, A.; Bonalsky, T.; Wendel, D. E.; Clavier, O.

    2013-12-01

    Geomagnetic field measurements are a fundamental, key parameter measurement for any space weather application, particularly for tracking the electromagnetic energy input in the Ionosphere-Thermosphere system and for high latitude dynamics governed by the large-scale field-aligned currents. The full characterization of the Magnetosphere-Ionosphere-Thermosphere coupled system necessitates measurements with higher spatial/temporal resolution and from multiple locations simultaneously. This becomes extremely challenging in the current state of shrinking budgets. Traditionally, including a science-grade magnetometer in a mission necessitates very costly integration and design (sensor on long boom) and imposes magnetic cleanliness restrictions on all components of the bus and payload. This work presents an innovative algorithm approach that enables high quality magnetic field measurements by one or more high-quality magnetometers mounted on the spacecraft without booms. The algorithm estimates the background field using multiple magnetometers and current telemetry on board a spacecraft. Results of a hardware-in-the-loop simulation showed an order of magnitude reduction in the magnetic effects of spacecraft onboard time-varying currents--from 300 nT to an average residual of 15 nT.

  9. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  10. High-Accuracy Measurement of the Blackbody Radiation Frequency Shift of the Ground-State Hyperfine Transition in Cs133

    NASA Astrophysics Data System (ADS)

    Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Shirley, J. H.; Donley, E. A.; Ashby, N.; Levi, F.; Calonico, D.; Costanzo, G. A.

    2014-02-01

    We report a high-accuracy direct measurement of the blackbody radiation shift of the Cs133 ground-state hyperfine transition. This frequency shift is one of the largest systematic frequency biases encountered in realizing the current definition of the International System of Units (SI) second. Uncertainty in the blackbody radiation frequency shift correction has led to its being the focus of intense theoretical effort by a variety of research groups. Our experimental measurement of the shift used three primary frequency standards operating at different temperatures. We achieved an uncertainty a factor of five smaller than the previous best direct measurement. These results tend to validate the claimed accuracy of the recently calculated values.

  11. High-accuracy absolute distance measurement with a mode-resolved optical frequency comb

    NASA Astrophysics Data System (ADS)

    Voigt, Dirk; van den Berg, Steven A.; Lešundák, Adam; van Eldik, Sjoerd; Bhattacharya, Nandini

    2016-04-01

    Optical interferometry enables highly accurate non-contact displacement measurement. The optical phase ambiguity needs to be resolved for absolute distance ranging. In controlled laboratory conditions and for short distances it is possible to track a non-interrupted displacement from a reference position to a remote target. With large distances covered in field applications this may not be feasible, e.g. in structure monitoring, large scale industrial manufacturing or aerospace navigation and attitude control. We use an optical frequency comb source to explore absolute distance measurement by means of a combined spectral and multi-wavelength homodyne interferometry. This relaxes the absolute distance ambiguity to a few tens of centimeters, covered by simpler electronic distance meters, while maintaining highly accurate optical phase measuring capability. A virtually imaged phased array spectrometer records a spatially dispersed interferogram in a single exposure and allows for resolving the modes of our near infrared comb source with 1 GHz mode separation. This enables measurements with direct traceability of the atomic clock referenced comb source. We observed agreement within 500 nm in comparison with a commercial displacement interferometer for target distances up to 50 m. Furthermore, we report on current work toward applicability in less controlled conditions. A filter cavity decimates the comb source to an increased mode separation larger than 20 GHz. A simple grating spectrometer then allows to record mode-resolved interferograms.

  12. A high accuracy sun sensor

    NASA Astrophysics Data System (ADS)

    Bokhove, H.

    The High Accuracy Sun Sensor (HASS) is described, concentrating on measurement principle, the CCD detector used, the construction of the sensorhead and the operation of the sensor electronics. Tests on a development model show that the main aim of a 0.01-arcsec rms stability over a 10-minute period is closely approached. Remaining problem areas are associated with the sensor sensitivity to illumination level variations, the shielding of the detector, and the test and calibration equipment.

  13. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement.

    PubMed

    van den Berg, Steven A; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-09-30

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10(-8) for a distance of 50 m.

  14. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  15. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    NASA Astrophysics Data System (ADS)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  16. A new, highly precise measurement technology for the in vitro evaluation of the accuracy of digital imaging data.

    PubMed

    von Wilmowsky, Cornelius; Bergauer, Bastian; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Neuhuber, Winfried; Lell, Michael; Keller, Andrea; Eitner, Stephan; Matta, Ragai-Edward

    2015-10-01

    Three-dimensional radiological imaging data play an increasingly role in planning, simulation, and navigation in oral and maxillofacial surgery. The aim of this study was to establish a new, highly precise, in vitro measurement technology for the evaluation of the geometric accuracy down to the micrometric range of digital imaging data. A macerated human mandible was scanned optically with an industrial, non-contact, white light scanner, and a three-dimensional (3D) model was obtained, which served as a master model. The mandible was then scanned 10 times by cone beam computed tomography (CBCT), and the generated 3D surface bone model was virtually compared with the master model. To evaluate the accuracy of the CBCT scans, the standard deviation and the intraclass coefficient were determined. A total of 19 measurement points in 10 CBCT scans were investigated, and showed an average value of 0.2676 mm with a standard deviation of 0.0593 mm. The standard error of the mean was 0.0043 mm. The intraclass correlation coefficient (ICC) within the 10 CBCT scans was 0.9416. This highly precise measuring technology was demonstrated to be appropriate for the evaluation of the accuracy of digital imaging data, down to the micrometric scale. This method is able to exclude human measurement errors, as the software calculates the superimposition and deviation. Thus inaccuracies caused by measurement errors can be avoided. This method provides a highly precise determination of deviations of different CBCT parameters and 3D models for surgical, navigational, and diagnostic purposes. Thus, surgical procedures and the post-operative outcomes can be precisely simulated to benefit the patient. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  18. High-accuracy long-distance measurements in air with a frequency comb laser.

    PubMed

    Cui, M; Zeitouny, M G; Bhattacharya, N; van den Berg, S A; Urbach, H P; Braat, J J M

    2009-07-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for long-distance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, distances of up to 50 m have been measured. We have compared this measurement to a counting laser interferometer, showing an agreement with the measured distance within 2 microm (4x10(-8) at 50 m).

  19. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.

    PubMed

    Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G

    2015-04-15

    In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art.

  20. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  1. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  2. Eccentricity error identification and compensation for high-accuracy 3D optical measurement.

    PubMed

    He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z

    2013-07-01

    The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation.

  3. Coaxial cable Bragg grating sensors for large strain measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Wei, Tao; Lan, Xinwei; Fan, Jun; Xiao, Hai

    2012-04-01

    In this paper, a new coaxial cable Bragg grating (CCBG) is developed as a strain sensor and the sensor's capacity for large range strain measurement in structural health monitoring (SHM) is demonstrated for the first time. The sensor device is comprised of regularly spaced periodic discontinuities along a coaxial cable. The discontinuities are fabricated using a computer numerical controlled (CNC) machine to drill holes in the cable. Each discontinuity generates a weak reflection to the electromagnetic wave propagating inside the cable. Superposition of these weak reflections produces a strong reflection at discrete frequencies that can be explained by Bragg grating theory. By monitoring the resonant frequency shift of the sensor's reflection or transmission spectra, strain measurement sensitivity of 20μɛ and a dynamic range of 50000μɛ (5%) were demonstrated for axial strain measurements. The experimental results show that the CCBG sensors perform well for large strain measurement needed in structural health monitoring (SHM).

  4. Two-modality laser diode interferometer for high-accuracy measurement of long-range absolute distance

    NASA Astrophysics Data System (ADS)

    Wang, Bofan; Li, Zhongliang; Wang, Xiangzhao; Bu, Peng

    2010-08-01

    This paper presents a two-modality laser diode (LD) interferometer which combine as two-wavelength sinusoidal phase modulating (SPM) interferometer with a wavelength scanning interferometer (WSI) for measurement of distance over long range with high accuracy. Moreover, the intensity modulation due to power changes of LD is suppressed by appropriately choosing the modulation amplitude of injection current (IC) of LD. Triangle wave is used to modulate the IC of one LD with that of the other LD being constant at first. Thus the interferometer works as a wavelength scanning interferometer. An initial estimate of the distance can be obtained from the phase change of the interference signal. Then sinusoidal wave is used for modulating IC of both LDs to realize a two-wavelength SPM interferometer. However, the modulation of the IC of two LDs results in not only the wavelength modulation but also the intensity modulation. This intensity modulation will cause a measured phase error. To eliminate this error, SPM depths are appropriately chosen, therefore the distance to be measured can be accurately obtained with synthetic-wavelength algorithm. Experimental results indicate that an absolute distance measurement accuracy of 1μm can be achieved over the range of 40mm to 100mm.

  5. High-Accuracy Surface Figure Measurement of Silicon Mirrors at 80 K

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Davila, Pamela; Robinson, F. David

    2004-01-01

    This report describes the equipment, experimental methods, and first results at a new facility for interferometric measurement of cryogenically-cooled spherical mirrors at the Goddard Space Flight Center Optics Branch. The procedure, using standard phase-shifting interferometry, has an standard combined uncertainty of 3.6 nm rms in its representation of the two-dimensional surface figure error at 80, and an uncertainty of plus or minus 1 nm in the rms statistic itself. The first mirror tested was a concave spherical silicon foam-core mirror, with a clear aperture of 120 mm. The optic surface was measured at room temperature using standard absolute techniques; and then the change in surface figure error from room temperature to 80 K was measured. The mirror was cooled within a cryostat. and its surface figure error measured through a fused-silica window. The facility and techniques will be used to measure the surface figure error at 20K of prototype lightweight silicon carbide and Cesic mirrors developed by Galileo Avionica (Italy) for the European Space Agency (ESA).

  6. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    SciTech Connect

    Houshmandyar, S. Phillips, P. E.; Rowan, W. L.; Yang, Z. J.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  7. The measurement accuracy of passive radon instruments.

    PubMed

    Beck, T R; Foerster, E; Buchröder, H; Schmidt, V; Döring, J

    2014-01-01

    This paper analyses the data having been gathered from interlaboratory comparisons of passive radon instruments over 10 y with respect to the measurement accuracy. The measurement accuracy is discussed in terms of the systematic and the random measurement error. The analysis shows that the systematic measurement error of the most instruments issued by professional laboratory services can be within a range of ±10 % from the true value. A single radon measurement has an additional random measurement error, which is in the range of up to ±15 % for high exposures to radon (>2000 kBq h m(-3)). The random measurement error increases for lower exposures. The analysis especially applies to instruments with solid-state nuclear track detectors and results in proposing criteria for testing the measurement accuracy. Instruments with electrets and charcoal have also been considered, but the low stock of data enables only a qualitative discussion.

  8. Drawing accuracy measured using polygons

    NASA Astrophysics Data System (ADS)

    Carson, Linda; Millard, Matthew; Quehl, Nadine; Danckert, James

    2013-03-01

    The study of drawing, for its own sake and as a probe into human visual perception, generally depends on ratings by human critics and self-reported expertise of the drawers. To complement those approaches, we have developed a geometric approach to analyzing drawing accuracy, one whose measures are objective, continuous and performance-based. Drawing geometry is represented by polygons formed by landmark points found in the drawing. Drawing accuracy is assessed by comparing the geometric properties of polygons in the drawn image to the equivalent polygon in a ground truth photo. There are four distinct properties of a polygon: its size, its position, its orientation and the proportionality of its shape. We can decompose error into four components and investigate how each contributes to drawing performance. We applied a polygon-based accuracy analysis to a pilot data set of representational drawings and found that an expert drawer outperformed a novice on every dimension of polygon error. The results of the pilot data analysis correspond well with the apparent quality of the drawings, suggesting that the landmark and polygon analysis is a method worthy of further study. Applying this geometric analysis to a within-subjects comparison of accuracy in the positive and negative space suggests there is a trade-off on dimensions of error. The performance-based analysis of geometric deformations will allow the study of drawing accuracy at different levels of organization, in a systematic and quantitative manner. We briefly describe the method and its potential applications to research in drawing education and visual perception.

  9. Polarimetric Ku-Band Scatterometer for High Accuracy, Large Swath Global Wind Vector Measurements

    NASA Technical Reports Server (NTRS)

    Tsai, Wu-Yang; Nghiem, Son V.; Huddleston, James; Spencer, Michael; Stiles, Bryan; West, Richard

    2000-01-01

    In the past, wind measurements from space using fan-beam antennas, such as Seasat Scatterometer (SASS-1), ERS-1 &2, and NASA scatterometer (NSCAT), required up to six large stick-like antennas and suffered a nadir gap of up to 400 km. In the near future, a spinning pencil-beam scatterometer system is to be used for the SeaWinds scatterometer on QuikSCAT (QSCAT) and on ADEOS-2 (SeaWinds). This scatterometer, though offering wind measurements in the nadir region, still suffers from degraded performance in the nadir and outer swath. The purpose of this paper is to present an advanced polarimetric spinning pencil-beam scatterometer system, which can significantly improve the wind performance across the entire swath. The polarimetric scatterometer simultaneously measures co-polarized backscatter and the polarimetric correlation of co- and cross-polarized radar returns from the ocean surface. The advantage over the conventional scatterometer system is that, while the co-polarization radar returns are even function of the wind direction, the polarimetric correlation is an odd function of wind direction due to the reflection symmetry of the wind roughened surface. Therefore, this polarimetric scatterometer system can provide additional, equivalent measurements at azimuth angle 45degree away from the corresponding co-polarization measurements. The combined co-polarization and correlation measurements enable good wind performance across the whole swath to be obtained. In this paper, we will first present the theoretical formulation of all of the key components required for designing a polarimetric scatterometer. Then, we show that good wind performance can be achieved by a slight improvement in the signal-to-noise ratio of the current QSCAT/SeaWinds design. We then present the predicated wind performance using computer simulation based on a model function for the co-polarized backscatter obtained from actual spaceborne scatterometer data and an estimated model function for

  10. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  11. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  12. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  13. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  14. Method for high-accuracy reflectance measurements in the 2.5-μm region

    NASA Astrophysics Data System (ADS)

    Richter, Rudolf; Müller, Andreas

    2003-02-01

    Reflectance measurements with spectroradiometers in the solar wavelength region (0.4-2.5 μm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-μm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-μm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 °C.

  15. Method for high-accuracy reflectance measurements in the 2.5-microm region.

    PubMed

    Richter, Rudolf; Müller, Andreas

    2003-02-20

    Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C.

  16. Restoring high accuracy to laser Doppler vibrometry measurements affected by vibration of beam steering optics

    NASA Astrophysics Data System (ADS)

    Halkon, Ben J.; Rothberg, Steve J.

    2017-09-01

    Laser Doppler vibrometers are now well-established as an effective non-contact alternative to traditional contacting transducers. Wide-ranging applications include those where beam steering optics are required to reach locations that are difficult to access but no attention has yet been given to measurement sensitivity to the vibration of those optics. In this paper, a thorough mathematical treatment of this sensitivity to steering optic vibration and its correction is set out. A very practical scheme requiring a single correction measurement, from the back-surface of the mirror at the incidence point and aligned with the mirror normal, delivers an error reduction typically in excess of 30 dB. After validation in the laboratory, the scheme is then applied to a genuinely challenging measurement scenario on a single cylinder racing motorcycle. Correction is theoretically perfect for translational mirror vibrations but angular mirror vibrations require an adapted scheme using a triplet of accelerometers arranged around a circular path on the mirror back-surface and this is set out theoretically.

  17. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  18. A simple method for measuring the superhydrophobic contact angle with high accuracy

    SciTech Connect

    Hung, Yi-Lin; Chang, Yao-Yuan; Wang, Meng-Jiy; Lin, Shi-Yow

    2010-06-15

    A modified selected-plane method for contact angle ({theta}) measurement is proposed in this study that avoids the difficulty of finding the real contact point and image-distortion effects adjacent to the contact point. This method is particularly suitable for superhydrophobic surfaces. The sessile-drop method coupled with the tangent line is the most popular method to find the contact angle in literature, but it entails unavoidable errors in determining the air-solid base line due to the smoothness problem and substrate tilting. In addition, the tangent-line technique requires finding the actual contact point. The measurement error due to the base line problem becomes more profound for superhydrophobic surfaces. A larger {theta} deviation results from a more superhydrophobic surface with a fixed base line error. The proposed modified selected-plane method requires only four data points (droplet apex, droplet height, and two interfacial loci close to the air-solid interface), avoiding the problem of the sessile-drop-tangent method in finding the contact point and saving the trouble of the sessile-drop-fitting method for best fitting of the numerous edge points with the theoretical profile. A careful error analysis was performed, and a user-friendly program was provided in this work. This method resulted in an accurate {theta} measurement and a method that was much improved over the classical selected plane and the sessile-drop-tangent methods. The {theta} difference between this method and the sessile-drop-fitting method was found to be less than three degrees.

  19. A simple method for measuring the superhydrophobic contact angle with high accuracy.

    PubMed

    Hung, Yi-Lin; Chang, Yao-Yuan; Wang, Meng-Jiy; Lin, Shi-Yow

    2010-06-01

    A modified selected-plane method for contact angle (theta) measurement is proposed in this study that avoids the difficulty of finding the real contact point and image-distortion effects adjacent to the contact point. This method is particularly suitable for superhydrophobic surfaces. The sessile-drop method coupled with the tangent line is the most popular method to find the contact angle in literature, but it entails unavoidable errors in determining the air-solid base line due to the smoothness problem and substrate tilting. In addition, the tangent-line technique requires finding the actual contact point. The measurement error due to the base line problem becomes more profound for superhydrophobic surfaces. A larger theta deviation results from a more superhydrophobic surface with a fixed base line error. The proposed modified selected-plane method requires only four data points (droplet apex, droplet height, and two interfacial loci close to the air-solid interface), avoiding the problem of the sessile-drop-tangent method in finding the contact point and saving the trouble of the sessile-drop-fitting method for best fitting of the numerous edge points with the theoretical profile. A careful error analysis was performed, and a user-friendly program was provided in this work. This method resulted in an accurate theta measurement and a method that was much improved over the classical selected plane and the sessile-drop-tangent methods. The theta difference between this method and the sessile-drop-fitting method was found to be less than three degrees.

  20. A simple method for measuring the superhydrophobic contact angle with high accuracy

    NASA Astrophysics Data System (ADS)

    Hung, Yi-Lin; Chang, Yao-Yuan; Wang, Meng-Jiy; Lin, Shi-Yow

    2010-06-01

    A modified selected-plane method for contact angle (θ) measurement is proposed in this study that avoids the difficulty of finding the real contact point and image-distortion effects adjacent to the contact point. This method is particularly suitable for superhydrophobic surfaces. The sessile-drop method coupled with the tangent line is the most popular method to find the contact angle in literature, but it entails unavoidable errors in determining the air-solid base line due to the smoothness problem and substrate tilting. In addition, the tangent-line technique requires finding the actual contact point. The measurement error due to the base line problem becomes more profound for superhydrophobic surfaces. A larger θ deviation results from a more superhydrophobic surface with a fixed base line error. The proposed modified selected-plane method requires only four data points (droplet apex, droplet height, and two interfacial loci close to the air-solid interface), avoiding the problem of the sessile-drop-tangent method in finding the contact point and saving the trouble of the sessile-drop-fitting method for best fitting of the numerous edge points with the theoretical profile. A careful error analysis was performed, and a user-friendly program was provided in this work. This method resulted in an accurate θ measurement and a method that was much improved over the classical selected plane and the sessile-drop-tangent methods. The θ difference between this method and the sessile-drop-fitting method was found to be less than three degrees.

  1. Analysis of the influence of system parameters on the measurement accuracy of a high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Song, Changbo; Boselli, Antonella; Sannino, Alessia; Zhao, Yiming; Spinelli, Nicola; Wang, Xuan

    2016-10-01

    Atmospheric aerosols play very important roles in climate change and air particulate pollution. Lidars based on elastic scattering have been widely used to measure aerosol spatial distribution and to retrieve the profiles of aerosol optical properties by an assumption of the aerosol extinction-to-backscatter ratio. High Spectral Resolution Lidar (HSRL) is one of methods that can be used to measure aerosol optical properties without a-priori hypotheses. Compared to Raman lidar, HSRL has the advantage of day and night measurements and can be adapted to many kinds of carrying platforms. Unlike ordinary elastic backscatter lidar, HSRL needs to separate the Mie signal scattered by atmospheric aerosol and the Rayleigh signal scattered by atmospheric molecules. Due to small spectral difference between Mie and Rayleigh signals, there are three difficulties: firstly, the laser source must have a narrow bandwidth, high energy and stable center wavelength; secondly, the receiver should have a very narrow spectral filter to separate aerosol scattering and molecular scattering; thirdly, the center wavelength of the receiver must be real-time locked to laser source. In order to study the influence of system parameters on the measurement accuracy of a high spectral resolution lidar and to optimize their values, a simulation and analysis has been done and will be presented in this paper. In this paper, the system parameters including the linewidth of emission laser, the bandwidth of the Fabry-Pérot interferometric filter in the receiver and the spectral tracking accuracy between the receiver and laser are mainly analyzed. At the same time, several environmental factors have been considered, including atmospheric temperature and wind, pointing accuracy of platform, aerosol concentration range etc. A typical vertical distribution of atmospheric aerosol optical properties is considered and the received signals of high spectral channels are simulated. From the simulated signals, the

  2. High-accuracy mass measurements of neutron-rich Kr isotopes

    SciTech Connect

    Delahaye, P.; Kellerbauer, A.; Audi, G.; Lunney, D.; Blaum, K.; George, S.; Carrel, F.; Herfurth, F.; Yazidjian, C.; Herlert, A.; Schweikhard, L.; Kluge, H.-J.

    2006-09-15

    The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  3. Development of a switched integrator amplifier for high-accuracy optical measurements

    SciTech Connect

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-11-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.

  4. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  5. High Accuracy OH Reaction Rate Constant Measurements: Studies of Pressure Dependencies and of the Reactivities of Stereoisomers.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Kurylo, M. J., III

    2016-12-01

    The accuracy of OH kinetic data is of primary importance for the comprehensive modeling of any compound's atmospheric behavior and of its environmental impacts, such as its atmospheric residence time and its potential roles in stratospheric ozone depletion, global warming, and local pollution. Rate constants of OH reactions with hydrocarbons and halogenated hydrocarbons can now be determined with an accuracy of 2-3% over the temperature range 220 K to 370 K. This has been demonstrated in studies of OH reactions with various halogenated and non-substituted organics including alkanes, alkenes, alcohols, and ethers. Lower data scattering and higher measurement accuracy allow for rigorous statistical analysis of the results and can reveal often-missing details about the reactivity, such as the (small) dependencies of the rate constant on the temperature, pressure, and reactant molecular structure. Such details include the temperature dependence of both H-abstraction and OH-addition reactions exhibiting a noticeable curvature in the Arrhenius plot that cannot be attributed to experimental artifacts, determinations of the temperature dependencies of OH-addition rate constants that are approaching the collision frequency, determination of both low-pressure and high-pressure limiting rate constants from data obtained over a limited pressure range, observations of unexpected pressure dependencies for OH-addition reaction rate constants (such as in case of C4 alkenes), and determinations of substantially different reactivities and their temperature dependencies as well as IR absorption spectra for the stereoisomers of unsaturated compounds. This presentation will provide examples of several of these measurement results that were recently obtained in our laboratory.

  6. A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon's orbital angular momentum spectrum measurements.

    PubMed

    Uribe-Patarroyo, Néstor; Alvarez-Herrero, Alberto; Belenguer, Tomás

    2010-09-27

    With the current and upcoming applications of beams carrying orbital angular momentum (OAM), there will be the need to generate beams and measure their OAM spectrum with high accuracy. The instrumental OAM spectrum distortion is connected to the effect of its optical aberrations on the OAM content of the beams that the instrument creates or measures. Until now, the effect of the well-known Zernike aberrations has been studied partially, assuming vortex beams with trivial radial phase components. However, the traditional Zernike polynomials are not best suitable when dealing with vortex beams, as their OAM spectrum is highly sensitive to some Zernike terms, and completely insensitive to others. We propose the use of a new basis, the OAM-Zernike basis, which consists of the radial aberrations as described by radial Zernike polynomials and of the azimuthal aberrations described in the OAM basis. The traditional tools for the characterization of aberrations of optical instruments can be used, and the results translated to the new basis. This permits the straightforward calculation of the effect of any optical system, such as an OAM detection stage, on the OAM spectrum of an incoming beam. This knowledge permits to correct, a posteriori, the effect of instrumental OAM spectrum distortion on the measured spectra. We also found that the knowledge of the radial aberrations is important, as they affect the efficiency of the detection, and in some cases its accuracy. In this new framework, we study the effect of aberrations in common OAM detection methods, and encourage the characterization of those systems using this approach.

  7. High Accuracy Time Transfer Synchronization

    DTIC Science & Technology

    1994-12-01

    HIGH ACCURACY TIME TRANSFER SYNCHRONIZATION Paul Wheeler, Paul Koppang, David Chalmers, Angela Davis, Anthony Kubik and William Powell U.S. Naval...Observatory Washington, DC 20392 Abstract In July 1994, the US Naval Observatory (USNO) Time Service System Engineering Division conducted a...field test to establish a baseline accuracy for two-way satellite time transfer synchro- nization. Three Hewlett-Packard model 5071 high performance

  8. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry.

    PubMed

    Yu, Zhangjun; Yang, Jun; Yuan, Yonggui; Li, Chuang; Liang, Shuai; Hou, Lu; Peng, Feng; Wu, Bing; Zhang, Jianzhong; Liu, Zhihai; Yuan, Libo

    2016-01-25

    A white light temporal interferometric technique for measurement of the quasi-distributed birefringence dispersion (BD) in a polarization maintain (PM) device with high accuracy based on weighted least square (WLS) method is presented. It is verified theoretically and experimentally that the accuracy of WLS method and the conventional ordinary least square (OLS) method both are proportional to the signal-to-noise ratio (SNR) of interferogram, whereas the WLS method holds a higher scaling factor because it is more suitable for heteroscedastic model that has unequal error variance. The experiment results show a repeatability of ~4.6 × 10(-5) ps/nm @ 1550 nm with WLS method for 100 sets of data, and ~4.3 × 10(-4) ps/nm with OLS method, for an interferogram with SNR of 30 dB. Besides, WLS method without iterative operation is carried out by using power spectrum of interferogram as weight value. The feasibility of this technique is demonstrated by distinguishing the quasi-distributed BD of every part for a packaged Y-waveguide with two 1m-long PM pigtails.

  9. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2015-11-01

    One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.

  10. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  11. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  12. High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement.

    PubMed

    Zhang, Xiaodong; Jiang, Lili; Zeng, Zhen; Fang, Fengzhou; Liu, Xianlei

    2015-10-19

    Micro v-groove has found wide applications in optical areas as one of the most important structures. However, its performance is significantly affected by its angular geometry accuracy. The diamond cutting has been commonly used as the fabrication method of micro v-groove, but it is still difficult to guarantee the cutting tool angle, which is limited by the measurement accuracy in the manufacture and mounting of the diamond tool. A cutting tool alignment method based on the on-machine measurement is proposed to improve the fabricated quality of the v-groove angle. An on-machine probe is employed to scan the v-groove geometrical deviation precisely. The system errors model, data processing algorithm and tool alignment methods are analyzed in details. Experimental results show that the measurement standard deviation within 0.01° can be achieved. Retro-reflection mirrors are fabricated and measured finally by the proposed method for verification.

  13. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy.

    PubMed

    Gibson, Graham M; Leach, Jonathan; Keen, Stephen; Wright, Amanda J; Padgett, Miles J

    2008-09-15

    We assess the performance of a CMOS camera for the measurement of particle position within optical tweezers and the associated autocorrelation function and power spectrum. Measurement of the displacement of the particle from the trap center can also be related to the applied force. By considering the Allan variance of these measurements, we show that such cameras are capable of reaching the thermal limits of nanometer and femtonewton accuracies, and hence are suitable for many of the applications that traditionally use quadrant photodiodes. As an example of a multi-particle measurement we show the hydrodynamic coupling between two particles.

  14. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  15. Accuracy of distance measurements in biplane angiography

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Oishi, Satoru; Koster, David; Schroth, Gerhard

    1997-05-01

    Distance measurements of the vascular system of the brain can be derived from biplanar digital subtraction angiography (2p-DSA). The measurements are used for planning of minimal invasive surgical procedures. Our 90 degree-fixed-angle G- ring angiography system has the potential of acquiring pairs of such images with high geometric accuracy. The sizes of vessels and aneurysms are estimated applying a fast and accurate extraction method in order to select an appropriate surgical strategy. Distance computation from 2p-DSA is carried out in three steps. First, the boundary of the structure to be measured is detected based on zero-crossings and closeness to user-specified end points. Subsequently, the 3D location of the center of the structure is computed from the centers of gravity of its two projections. This location is used to reverse the magnification factor caused by the cone-shaped projection of the x-rays. Since exact measurements of possibly very small structures are crucial to the usefulness in surgical planning, we identified mechanical and computational influences on the geometry which may have an impact on the measurement accuracy. A study with phantoms is presented distinguishing between the different effects and enabling the computation of an optimal overall exactness. Comparing this optimum with results of distance measurements on phantoms whose exact size and shape is known, we found, that the measurement error for structures of size of 20 mm was less than 0.05 mm on average and 0.50 mm at maximum. The maximum achievable accuracy of 0.15 mm was in most cases exceeded by less than 0.15 mm. This accuracy surpasses by far the requirements for the above mentioned surgery application. The mechanic accuracy of the fixed-angle biplanar system meets the requirements for computing a 3D reconstruction of the small vessels of the brain. It also indicates, that simple measurements will be possible on systems being less accurate.

  16. On the accuracy of the interdiffusion coefficient measurements of high-temperature binary mixtures under ISS conditions

    NASA Astrophysics Data System (ADS)

    Saez, Núria; Ruiz, Xavier; Pallarés, Jordi; Shevtsova, Valentina

    2013-04-01

    An accelerometric record from the IVIDIL experiment (ESA Columbus module) has exhaustively been studied. The analysis involved the determination of basic statistical properties as, for instance, the auto-correlation and the power spectrum (second-order statistical analyses). Also, and taking into account the shape of the associated histograms, we address another important question, the non-Gaussian nature of the time series using the bispectrum and the bicoherence of the signals. Extrapolating the above-mentioned results, a computational model of a high-temperature shear cell has been performed. A scalar indicator has been used to quantify the accuracy of the diffusion coefficient measurements in the case of binary mixtures involving photovoltaic silicon or liquid Al-Cu binary alloys. Three different initial arrangements have been considered, the so-called interdiffusion, centred thick layer and the lateral thick layer. Results allow us to conclude that, under the conditions of the present work, the diffusion coefficient is insensitive to the environmental conditions, that is to say, accelerometric disturbances and initial shear cell arrangement.

  17. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy: The MISTRAL program at ISOLDE

    SciTech Connect

    Monsanglant, C.; Audi, G.; Conreur, G.; Cousin, R.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Lunney, D.; Saint Simon, M. de; Thibault, C.; Toader, C.; Bollen, G.; Lebee, G.; Scheidenberger, C.; Borcea, C.; Duma, M.; Kluge, H.-J.; Le Scornet, G.

    1999-11-16

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na, Mg, Al, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  18. High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain

    NASA Astrophysics Data System (ADS)

    Bize, S.; Sortais, Y.; Santos, M. S.; Mandache, C.; Clairon, A.; Salomon, C.

    1999-03-01

    We describe the operation of a laser-cooled rubidium 87Rb frequency standard. We present a new measurement of the 87Rb hyperfine frequency with a 1.3 × 10-14 relative accuracy, by comparison with a Cs fountain primary standard. The measured 87Rb ground-state hyperfine splitting is ν87 = 6 834 682 610.90429(9) Hz. This value differs from previously published values (see Essen L., Hope E. G. and Sutcliffe D., Nature 189 1961 298; Penselin S., Moran T., Cohen W. and Wscinkler G., Phys. Rev. 127 1962 524; Arditi M. and Cerez P. IEEE Trans. Instrum. Meas. IM-21 1972 391) by about 2 - 3 Hz and is 104 times more accurate. Because of the low collisional shift in 87Rb, future improvements may lead to a stability of 1 × 10-14τ-1/2 and a relative accuracy in the 10-17 range.

  19. A high-accuracy dual-channel method of measurement on visible light transmittance of telescope system

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Xiang, Yang; Wu, Liping; Yin, Kexin

    2008-03-01

    The Optical capability of visible light transmittance is studied on this paper. The system is based on the principle of cross-correlation detection, and measure the transmittance of visible light Optical system though the way of dual-channels, compare to the previous way, eliminate the error of measuring many times, and restrain the noise signal more effectively. Moreover, the whole system can work on the conditions of light field. And monitoring and dealing with the result in real-time. The testing accuracy reaches 1%.

  20. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  1. When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?

    PubMed Central

    Ramnarine, Shelina; Zhang, Juan; Chen, Li-Shiun; Culverhouse, Robert; Duan, Weimin; Hancock, Dana B.; Hartz, Sarah M.; Johnson, Eric O.; Olfson, Emily; Schwantes-An, Tae-Hwi; Saccone, Nancy L.

    2015-01-01

    Imputation, the process of inferring genotypes for untyped variants, is used to identify and refine genetic association findings. Inaccuracies in imputed data can distort the observed association between variants and a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped data and others are calculated without reference to true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is based on Cohen’s kappa statistic and compares imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement; however, it is not commonly used. To identify differences in accuracy assessment, we compared IQS with concordance rate, squared correlation, and accuracy measures built into imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246 and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP) coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with smoking behaviors. Additional masking and imputation was conducted for sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480 European Americans). Our results offer further evidence that concordance rate inflates accuracy estimates, particularly for rare and low frequency variants. For common variants, squared correlation, BEAGLE R2, IMPUTE2 INFO, and IQS produce similar assessments of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider when evaluating imputation accuracy, particularly for rare and low frequency variants. PMID:26458263

  2. Accuracy of the river discharge measurement

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han

    2013-04-01

    Discharge values recorded for water conservancy and hydrological analysis is a very important work. Flood control projects, watershed remediation and river environmental planning projects quite need the discharge measurement data. In Taiwan, we have 129 rivers, in accordance with the watershed situation, economic development and other factors, divided into 24 major rivers, 29 minor rivers and 79 ordinary rivers. If each river needs to measure and record these discharge values, it will be enormous work. In addition, the characteristics of Taiwan's rivers contain steep slope, flow rapidly and sediment concentration higher, so it really encounters some difficulties in high flow measurement. When the flood hazards come, to seek a solution for reducing the time, manpower and material resources in river discharge measurement is very important. In this study, the river discharge measurement accuracy is used to determine the tolerance percentage to reduce the number of vertical velocity measurements, thereby reducing the time, manpower and material resources in the river discharge measurement. The velocity data sources used in this study form Yang (1998). Yang (1998) used the Fiber-optic Laser Doppler Velocimetery (FLDV) to obtain different velocity data under different experimental conditions. In this study, we use these data to calculate the mean velocity of each vertical line by three different velocity profile formula (that is, the law of the wall, Chiu's theory, Hu's theory), and then multiplied by each sub-area to obtain the discharge measurement values and compared with the true values (obtained by the direct integration mode) to obtain the accuracy of discharge. The research results show that the discharge measurement values obtained by Chiu's theory are closer to the true value, while the maximum error is the law of the wall. The main reason is that the law of the wall can't describe the maximum velocity occurred in underwater. In addition, the results also show

  3. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  4. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  5. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  6. Experimental techniques and measurement accuracies

    SciTech Connect

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques.

  7. Measurement of Nuclear Reaction Q-values with High Accuracy: 7Li(p, n)7Be

    NASA Astrophysics Data System (ADS)

    White, R. E.; Barker, P. H.; Lovelock, D. M. J.

    1985-01-01

    A technique is described for the measurement of nuclear reaction Q-values with an accuracy of a few parts in 105, in which the ultimate reference is a one-volt standard. As a test of the technique the accurately known threshold energy of the 7Li(p, n)7Be reaction, 1880.51 +/- 0.08 keV, has been remeasured. The value found using the present technique is 1880.443 +/- 0.020 keV, in good agreement with previous values. An attempt to see evidence for atomic excitation effects in the 27A1(p,n)27Si reaction is also discussed. This yielded a new value of 5803.73 +/- 0.12 keV for the threshold of this reaction, again in a good agreement with, but more accurate than, previous values. Further test measurements are summarized. The main application of the technique, in measurements related to the theory of weak interactions, is discussed briefly and the results obtained to date are presented.

  8. High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

    PubMed

    Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R

    2017-02-01

    Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

  9. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    PubMed

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-09-15

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N2O5) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N2O5, both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H2O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N2O5 sensing platform was evaluated by real-time tracking N2O5 concentration in its most important nocturnal tropospheric chemical reaction of NO3 + NO2 ↔ N2O5 in an atmospheric simulation chamber. Based on an optical absorption path-length of Leff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant Keq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  10. Study on the influence of the response characteristics of a temperature sensor on the measurement accuracy of a water-absorption-based high-energy laser energy meter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Sun, Li Qun; Zhang, Kai

    2013-05-01

    When using water as a cooling or absorption medium for an energy meter, a temperature sensor is limited by response characteristics and cannot reflect the real-time temperature changes in the water flow. In order to improve the accuracy of measurement, we should ensure that the corresponding value of the temperature integral will be substantially independent of the effects of the sensor response time. According to the analysis of the interaction process between temperature sensor and water flow temperature field, we have established a hot physical model of the whole measurement process, and decomposed it into a superposition of a slowly varying process and a transient process, then simplified the model. Finally, a quantitative relationship between the sensor response characteristics and measurement accuracy of the high energy laser energy meter is derived. With the mandatory heat exchange method, the frequency characteristics of the temperature field meet the requirements of the frequency characteristics of a temperature sensor; as a result, the impact on measurement accuracy is eliminated. The experimental results show that this method has good effects, and it can help to improve the measurement accuracy of a high-energy laser energy meter.

  11. Discrimination in measures of knowledge monitoring accuracy

    PubMed Central

    Was, Christopher A.

    2014-01-01

    Knowledge monitoring predicts academic outcomes in many contexts. However, measures of knowledge monitoring accuracy are often incomplete. In the current study, a measure of students’ ability to discriminate known from unknown information as a component of knowledge monitoring was considered. Undergraduate students’ knowledge monitoring accuracy was assessed and used to predict final exam scores in a specific course. It was found that gamma, a measure commonly used as the measure of knowledge monitoring accuracy, accounted for a small, but significant amount of variance in academic performance whereas the discrimination and bias indexes combined to account for a greater amount of variance in academic performance. PMID:25339979

  12. First Results Using a New Technology for Measuring Masses of Very Short-Lived Nuclides with Very High Accuracy: the MISTRAL Program at ISOLDE

    SciTech Connect

    C. Monsanglant; C. Toader; G. Audi; G. Bollen; C. Borcea; G. Conreur; R. Cousin; H. Doubre; M. Duma; M. Jacotin; S. Henry; J.-F. Kepinski; H.-J. Kluge; G. Lebee; G. Le Scornet; D. Lunney; M. de Saint Simon; C. Scheidenberger; C. Thibault

    1999-12-31

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na{clubsuit}, Mg, Al{clubsuit}, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  13. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  14. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  15. Characterization of an experimental arrangement to measure position of particles in 3D with a high accuracy

    NASA Astrophysics Data System (ADS)

    Martínez González, A.; Guerrero Viramontes, J. A.; Moreno Hernández, D.

    2011-09-01

    Single particle position calculation in three dimensions (3D) with high accuracy is the very important in several branches of science. On the other hand, the use of in-line holography to study very small objects in a dynamic volume is a technique of importance for scientists and engineers across a variety of disciplines for obtaining information about size, shape, trajectory and velocity of small objects such as dust particles. However, in general for in-line holography, accurate determination of the object's position in the optical axis direction is difficult. In order to overcome this shortcoming, we proposed to use in-line holography set up to record particle images in two orthogonal forward configurations. In this study, we avoid digital holography reconstruction to calculate particle position. To determine particle position, the proposed method is based on the calculation of the size and position of the central spot size (CSS) of a particle diffraction image. The size of the CSS is calculated by using the Continuous Wavelet Transform (CWT) and Continuous Hough Transforms (CHT), an then the size of the CSS is related to a calibration curve calculated experimentally in order to determine the "z" particle position and centroid of the CSS render the "x-y" position of a particle image. The procedure proposed in this work to determine the 3D particle position is so simple since it avoids a complicated experimental set-up and several computational steps in order to obtain the 3D position of the particles. Our approach offers the following advantages: First, the mathematical accuracy, light illumination as well as particle and medium refractive indexes are used during the analysis. Second, it is not required to resolve the size of particle since we calculate only the size of CSS of a diffraction particle image pattern.

  16. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Zhou, Tong; Kuang, Ye

    2016-08-01

    A morphological filter is proposed to obtain a high-accuracy roundness measurement based on the four-parameter roundness measurement model, which takes into account eccentricity, probe offset, probe tip head radius and tilt error. This paper analyses the sample angle deviations caused by the four systematic errors to design a morphological filter based on the distribution of the sample angle. The effectiveness of the proposed method is verified through simulations and experiments performed with a roundness measuring machine. Compared to the morphological filter with the uniform sample angle, the accuracy of the roundness measurement can be increased by approximately 0.09 μm using the morphological filter with a non-uniform sample angle based on the four-parameter roundness measurement model, when eccentricity is above 16 μm, probe offset is approximately 1000 μm, tilt error is approximately 1″, the probe tip head radius is 1 mm and the cylindrical component radius is approximately 37 mm. The accuracy and reliability of roundness measurements are improved by using the proposed method for cylindrical components with a small radius, especially if the eccentricity and probe offset are large, and the tilt error and probe tip head radius are small. The proposed morphological filter method can be used for precision and ultra-precision roundness measurements, especially for functional assessments of roundness profiles.

  17. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  18. High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop.

    PubMed

    Dennis, Tasshi; Hale, Paul D

    2011-10-10

    We demonstrate a high-accuracy heterodyne measurement system for characterizing the magnitude of the frequency response of high-speed 1.55 µm photoreceivers from 2 MHz to greater than 50 GHz. At measurement frequencies below 2 GHz, we employ a phase-locked loop with a double-heterodyne detection scheme, which enables precise tuning of the heterodyne beat frequency with an RF synthesizer. At frequencies above 2 GHz the system is operated in free-run mode with thermal tuning of the laser beat frequency. We estimate the measurement uncertainties for the low frequency range and compare the measured high-frequency response of a photoreceiver to a measurement using electro-optic sampling.

  19. Analysis of accuracy in photogrammetric roughness measurements

    NASA Astrophysics Data System (ADS)

    Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne

    2017-04-01

    Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.

  20. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    NASA Astrophysics Data System (ADS)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  1. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    PubMed Central

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  2. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    PubMed

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  3. High Accuracy Measurements of Near-Infrared CO2 and O2 Transitions to Support Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Long, David A.; Hodges, Joseph T.; Okumura, Mitchio; Miller, Charles E.

    2012-06-01

    Recent remote sensing missions such as NASA's Orbiting Carbon Observatory (OCO-2) have aimed to measure carbon dioxide mixing ratios with a precision of 1 ppm (0.25%) in order to elucidate carbon sources and sinks. This daunting mission objective will require some of the most accurate spectroscopic reference data ever assembled. To address this need we have utilized frequency-stabilized cavity ring-down spectroscopy (FS-CRDS), an ultraprecise refinement of traditional cw-cavity ring-down spectroscopy, to measure CO_2 and O_2 transitions in the near-infrared. We will discuss new line lists as well as observations of subtle line shape effects such as Dicke narrowing, speed-dependence, and line mixing. The effects of line list and line shape on O_2 A-band atmospheric retrievals were assessed using simulated atmospheric transmission spectra. Furthermore, we will discuss a series of enhancements we have made to our spectrometer including high-bandwidth Pound-Drever-Hall locking and the use of a self-referenced optical frequency comb as an absolute frequency reference.

  4. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  5. Measurement Accuracy Limitation Analysis on Synchrophasors

    SciTech Connect

    Zhao, Jiecheng; Zhan, Lingwei; Liu, Yilu; Qi, Hairong; Gracia, Jose R; Ewing, Paul D

    2015-01-01

    This paper analyzes the theoretical accuracy limitation of synchrophasors measurements on phase angle and frequency of the power grid. Factors that cause the measurement error are analyzed, including error sources in the instruments and in the power grid signal. Different scenarios of these factors are evaluated according to the normal operation status of power grid measurement. Based on the evaluation and simulation, the errors of phase angle and frequency caused by each factor are calculated and discussed.

  6. Wind velocity measurement accuracy with highly stable 12 mJ/pulse high repetition rate CO2 laser master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.; Johnson, Steven C.; Rothermel, Jeffry

    1987-01-01

    A coherent CO2 lidar operating in a master oscillator power amplifier configuration (MOPA) is described for both ground-based and airborne operation. Representative data taken from measurements against stationary targets in both the ground-based and airborne configurations are shown for the evaluation of the frequency stability of the system. Examples of data are also given which show the results of anomalous system operation. Overall results demonstrate that velocity measurements can be performed consistently to an accuracy of + or - 0.5 m/s and in some cases + or - 0.1 m/s.

  7. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  8. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  9. Wind measurement accuracy for the NASA scatterometer

    NASA Astrophysics Data System (ADS)

    Long, David G.; Oliphant, Travis

    1997-09-01

    The NASA Scatterometer (NSCAT) is designed to make measurements of the normalized radar backscatter coefficient ((sigma) o) of the ocean's surface. The measured (sigma) o is a function of the viewing geometry and the surface roughness due to wind-generated waves. By making multiple measurements of the same location from different azimuth angles it is possible to retrieve the near-surface wind speed and direction with the aid of a Geophysical Model Function (GMF) which relates wind and (sigma) o. The wind is estimated from the noisy (sigma) o measurements using maximum likelihood techniques. The probability density of the measured (sigma) o is assumed to be Gaussian with a variance that depends on the true (sigma) o and therefore the wind through the GMF and the measurements from different azimuth angles are assumed independent in estimating the wind. In order to estimate the accuracy of the retrieved wind, we derive the Cramer-Reo (CR) bound for wind estimation from scatterometer measurements. We show that the CR bound can be used as an error bar on the estimated wind. The role of geophysical modeling error in the GMF is considered and shown to play a significant role in the wind accuracy. Estimates of the accuracy of NSCAT measurements are given along with other scatterometer geometries and types.

  10. Accuracy of Depth to Water Measurements

    EPA Pesticide Factsheets

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge or discharge, the hydraulic characteristics of...

  11. Method for measuring centroid algorithm accuracy

    NASA Technical Reports Server (NTRS)

    Klein, S.; Liewer, K.

    2002-01-01

    This paper will describe such a method for measuring the accuracy of centroid algorithms using a relatively inexpensive setup consisting of a white light source, lenses, a CCD camea, an electro-strictive actuator, and a DAC (Digital-to-Analog Converter), and employing embedded PowerPC, VxWorks, and Solaris based software.

  12. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  13. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  14. High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru; Matsumoto, Hirokazu

    2009-04-10

    We propose a variable-path interferometric technique for the measurement of the absolute refractive index of optical glasses. We use two interferometers to decide the ratio between changes in the optical path in a prism-shaped sample glass and in air resulting from displacement of the sample. The method allows precise measurements to be made without prior knowledge of the properties of the sample. The combined standard uncertainty of the proposed method is 1.6x10{sup -6}.

  15. High-accuracy measurement of linearity of optical detectors based on flux addition of LEDs in an integrating sphere

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Joo; Park, Seongchong; Jeong, Ki-Lyong; Park, Seung-Nam; Lee, Dong-Hoon

    2014-02-01

    We present an instrumental realization of linearity measurement of optical detectors based on flux addition of two light-emitting diodes (LEDs) in an integrating sphere. The instrument measures the linearity ratios at pre-defined photocurrent levels according to the algorithm which eliminates the drift effect of LED flux (Shin D J et al 2005 Metrologia 42 154). As a result, the non-linearity correction factors for detector responsivity are determined with their relative standard uncertainties ranging from 2 × 10-5 to 6 × 10-5 (k = 1) for photocurrent ranges from 10-8 A to 10-3 A. By changing the type of LEDs, the wavelength dependence of non-linearity can also be measured, which is demonstrated at 390 nm, 670 nm and 750 nm for a Si photodiode used as a transfer standard for spectral responsivity scale comparisons.

  16. Development of a dual-sinker densimeter for high-accuracy fluid P-V-T measurements. Appendix A

    SciTech Connect

    McLinden, M.O.; Frederick, N.V.

    1993-08-01

    A dual-sinker densimeter to very accurately measure the pressure-volume-temperature (P-V-T) properties of fluids over a temperature range of 80 K to 520 K and at pressures up to 35 MPa is in the final stages of development at NIST. The density of a fluid is determined by measuring the difference in the buoyancy forces experienced by two sinkers of identical mass, surface area, and surface material, but very different volumes. The buoyancy forces on the sinkers are transmitted to a semi-microbalance by means of a magnetic suspension coupling. This paper reviews the principle of the measurement and describes the overall design of the system.

  17. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  18. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.

    PubMed

    Schaufele, Fred

    2014-03-15

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  20. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  1. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  2. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  3. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  4. Accuracy Test of Microsoft Kinect for Human Morphologic Measurements

    NASA Astrophysics Data System (ADS)

    Molnár, B.; Toth, C. K.; Detrekői, A.

    2012-08-01

    The Microsoft Kinect sensor, a popular gaming console, is widely used in a large number of applications, including close-range 3D measurements. This low-end device is rather inexpensive compared to similar active imaging systems. The Kinect sensors include an RGB camera, an IR projector, an IR camera and an audio unit. The human morphologic measurements require high accuracy with fast data acquisition rate. To achieve the highest accuracy, the depth sensor and the RGB camera should be calibrated and co-registered to achieve high-quality 3D point cloud as well as optical imagery. Since this is a low-end sensor, developed for different purpose, the accuracy could be critical for 3D measurement-based applications. Therefore, two types of accuracy test are performed: (1) for describing the absolute accuracy, the ranging accuracy of the device in the range of 0.4 to 15 m should be estimated, and (2) the relative accuracy of points depending on the range should be characterized. For the accuracy investigation, a test field was created with two spheres, while the relative accuracy is described by sphere fitting performance and the distance estimation between the sphere center points. Some other factors can be also considered, such as the angle of incidence or the material used in these tests. The non-ambiguity range of the sensor is from 0.3 to 4 m, but, based on our experiences, it can be extended up to 20 m. Obviously, this methodology raises some accuracy issues which make accuracy testing really important.

  5. High accuracy measurement line in microwave range for polymer samples weak doped with BaTiO3

    NASA Astrophysics Data System (ADS)

    Hutanu, C.; Tulbure, A.; Ciortea, E. M.

    2016-08-01

    The nowadays tendencies regarding the process of making microprocessors presume architectures that, in the nearby future, it would be possible, to work on a frequency located between the range 5-10 GHz. In this context, it is imperious to know the behaving of the plastic materials that build the microchip in the microwave frequency range, as well as the behaving of the polymeric capsule of the electrical capacitors from the electric circuits. The aim of this contribution is to demonstrate throughout high-level experimental analysis how the main electric parameters of plastic materials, which build the microchip capsule and the one of electric capacitors, depend on the frequencies on which they work from the microwave range.

  6. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  7. Accuracy testing of electric groundwater-level measurement tapes

    USGS Publications Warehouse

    Jelinski, Jim; Clayton, Christopher S.; Fulford, Janice M.

    2015-01-01

    The accuracy tests demonstrated that none of the electric-tape models tested consistently met the suggested USGS accuracy of ±0.01 ft. The test data show that the tape models in the study should give a water-level measurement that is accurate to roughly ±0.05 ft per 100 ft without additional calibration. To meet USGS accuracy guidelines, the electric-tape models tested will need to be individually calibrated. Specific conductance also plays a part in tape accuracy. The probes will not work in water with specific conductance values near zero, and the accuracy of one probe was unreliable in very high conductivity water (10,000 microsiemens per centimeter).

  8. High-accuracy measurements of N2O concentration and isotopic composition of low and high concentration samples with small volume injections using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Palmer, Melissa; Huang, Kuan

    2015-04-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N2O production in various pathways and N2O fluxes across different reservoirs is the key to understanding the role of N2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its associated isotopic ratios (δ 15Nα , δ 15{N}β & δ 18O) is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high-precision measurements of [N2O] and Site-Preference-δ 15N (SP-δ 15N) and δ 18O of a continuous gas flow. However, many N2O samples are discrete with limited volume ( 2 ppm), and are not suitable for direct continuous measurements by CRDS. Here we present results of a small sample introduction and handling device, labelled as Small Sample Isotope Module (SSIM), coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM requires 20 ml of sample volume per analysis at STP, and transfers the sample to the CRDS for high-precision concentration and isotope ratio measurements. When the injected sample is

  9. High-accuracy measurements of N2O concentration and site-specific nitrogen isotopes in small or high concentration samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Arata, C.; Huang, K.

    2014-12-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N­2O production in various pathways and N­2O fluxes across different reservoirs is the key to understanding the role of N­2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its site-specific isotopic composition (SP-δ15N), namely δ15Nα and δ15Nβ, is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high precision measurements of [N2O] and SP-δ15N of a continuous gas flow. However, many N­­2O samples are discrete with limited volume (< 500 ml), and/or high [N2O] (> 2 ppm), and are not suitable for direct measurements by CRDS. Here we present results of a Small Sample Isotope Module 2 (SSIM2) which is coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM2 requires 20 ml of sample per analysis, and transfers the sample to the CRDS for high precision measurement. When the sample injection is < 20 ml, a zero gas is optionally filled to make up the volume. We used the SSIM2 to dilute high [N2O] samples and < 20 ml samples, and tested the effect of dilution on the measured SP-δ15N. In addition, we employed and tested a newly developed double injection method for samples adequate for two 20 ml injections. After the SSIM2 and the CRDS cavity was primed with the first injection, the second injection, which has negligible dilution of the sample, can be accurately measured for both [N2O] and SP-δ15N. Results of these experiments indicate that the precision of SSIM2-CRDS is similar to that of the continuous measurements using the CRDS alone, and that dilution has minimal effect on SP-δ15N, as along as the [N2O] is > 300 ppb after dilution. Overall, the precision of SP-δ15N measured using the SSIM2 is < 0.5 ‰.

  10. High accuracy gaseous x-ray detectors

    SciTech Connect

    Smith, G.C.

    1983-11-01

    An outline is given of the design and operation of high accuracy position-sensitive x-ray detectors suitable for experiments using synchrotron radiation. They are based on the gas proportional detector, with position readout using a delay line; a detailed examination is made of factors which limit spatial resolution. Individual wire readout may be used for extremely high counting rates.

  11. Boresighting Issues for High Accuracy TSPI Sensors

    DTIC Science & Technology

    2015-04-29

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 412 RANS/ENRT Edwards Air Force Base, CA...navigation sensor to accurately report the heading, roll, and pitch of an aircraft, the angular offset between the sensor inertial coordinate system and...the aircraft coordinate system, the “boresight”, must be measured . Errors in the boresight measurements directly affect the accuracy of the navigation

  12. Blood Gas Analyzer Accuracy of Glucose Measurements.

    PubMed

    Liang, Yafen; Wanderer, Jonathan; Nichols, James H; Klonoff, David; Rice, Mark J

    2017-07-01

    To investigate the comparability of glucose levels measured with blood gas analyzers (BGAs) and by central laboratories (CLs). Glucose measurements obtained between June 1, 2007, and March 1, 2016, at the Vanderbilt University Medical Center were reviewed. The agreement between CL and BGA results were assessed using Bland-Altman, consensus error grid (CEG), and surveillance error grid (SEG) analyses. We further analyzed the BGAs' performance against the US Food and Drug Administration (FDA) 2014 draft guidance and 2016 final guidance for blood glucose monitoring and the International Organization for Standardization (ISO) 15197:2013 standard. We analyzed 2671 paired glucose measurements, including 50 pairs of hypoglycemic values (1.9%). Bland-Altman analysis yielded a mean bias of -3.1 mg/dL, with 98.1% of paired values meeting the 95% limits of agreement. In the hypoglycemic range, the mean bias was -0.8 mg/dL, with 100% of paired values meeting the 95% limits of agreement. When using CEG analysis, 99.9% of the paired values fell within the no risk zone. Similar results were found using SEG analysis. For the FDA 2014 draft guidance, our data did not meet the target compliance rate. For the FDA 2016 final guidance, our data partially met the target compliance rate. For the ISO standard, our data met the target compliance rate. In this study, the agreement for glucose measurement between common BGAs and CL instruments met the ISO 2013 standard. However, BGA accuracy did not meet the stricter requirements of the FDA 2014 draft guidance or 2016 final guidance. Fortunately, plotting these results on either the CEG or the SEG revealed no results in either the great or extreme clinical risk zones. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  13. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

    SciTech Connect

    Craciunescu, Oana I.; Stauffer, Paul R.; Soher, Brian J.; Wyatt, Cory R.; Arabe, Omar; Maccarini, Paolo; Das, Shiva K.; Cheng, Kung-Shan; Wong, Terence Z.; Jones, Ellen L.; Dewhirst, Mark W.; Vujaskovic, Zeljko; MacFall, James R.

    2009-11-15

    Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a no. 15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 deg. C for the entire heating time and 0.85 deg. C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 deg. C and during the period of steady state was 0.62 deg. C. Conclusions: The

  14. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission measurement accuracy. 86.1338... Procedures § 86.1338-2007 Emission measurement accuracy. (a) Minimum limit. (1) The minimum limit of an... measurement must be made to ensure the accuracy of the calibration curve to within ±2 percent of...

  15. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission measurement accuracy. 86.1338... Procedures § 86.1338-2007 Emission measurement accuracy. (a) Minimum limit. (1) The minimum limit of an... measurement must be made to ensure the accuracy of the calibration curve to within ±2 percent of point...

  16. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  17. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  18. A high-accuracy blackbody for CLARREO

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri; Watson, Mike; Topham, Shane; Scott, Deron; Wojcik, Mike; Bingham, Gail

    2010-09-01

    The NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which is to measure Earth's emitted spectral radiance from orbit for 5 years, has an absolute accuracy requirement of 0.1 K (3σ) at 220 K over most of the thermal infrared. To meet this requirement, CLARREO needs highly accurate on-board blackbodies which remain accurate over the life of the mission. Space Dynamics Laboratory is developing a prototype blackbody that demonstrates the ability to meet the needs of CLARREO. This prototype is based on a blackbody design currently in use, which is relatively simple to build, was developed for use on the ground or on-orbit, and is readily scalable for aperture size and required performance. We expect the CLARREO prototype to have emissivity of ~0.9999 from 1.5 to 50 μm, temperature uncertainties of ~25 mK (3σ), and radiance uncertainties of ~10 mK due to temperature gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the SItraceable temperature uncertainty is attained through the use of phase change materials (mercury, gallium, and water) in the blackbody. Blackbody temperature sensor calibration is maintained over time by comparing sensor readings to the known melt temperatures of these materials, which are observed by heating through their melt points. Since blackbody emissivity can potentially change over time due to changes in surface emissivity (especially for an on-orbit blackbody) an on-board means of detecting emissivity change is desired. The prototype blackbody will include an emissivity monitor based on a quantum cascade laser to demonstrate the concept.

  19. Accuracy of temperature measurement in the cardiopulmonary bypass circuit.

    PubMed

    Newland, Richard F; Sanderson, Andrew J; Baker, Robert A

    2005-03-01

    Oxygenator arterial outlet blood temperature is routinely measured in the cardiopulmonary bypass (CPB) circuit as a surrogate for the temperature of the arterial blood delivered to sensitive organs such as the brain. The aim of this study was to evaluate the accuracy of the temperature thermistors used in the Terumo Capiox SX25 oxygenator and to compare the temperature measured at the outlet of the oxygenator using the Capiox CX*TL Luer Thermistor with temperatures measured at distal sites. Five experimental stages were performed in vitro to achieve this aim. Under our experimental conditions, the luer thermistors accurately measured the temperature as referenced by a precision thermometer. In the CPB circuit, the difference between arterial outlet and reference thermometer temperature varied with outlet temperature over-reading at low temperatures and under reading at high temperatures. There was negligible heat loss (-0.4+/-0.1degrees C) measured at 4.5 m from the arterial outlet. The Terumo Capiox CX*TL Luer Thermistor is an accurate and reliable instrument for measuring temperature when incorporated into the Capiox Oxygenator. The accuracy in the measurement of temperature using these thermistors is affected by the thermistor immersion depth. Under reading of the arterial blood temperature by approximately 0.5 degrees C should be considered at normothermic temperatures, to avoid exceeding the maximum arterial blood temperature as described by institutional protocols. The accuracy of blood temperature measurements should be considered for all oxygenator arterial outlet temperature probes.

  20. Secure Fingerprint Identification of High Accuracy

    DTIC Science & Technology

    2014-01-01

    work on secure face recognition ([12], [29] and others), DNA matching ([35], [6], and others), iris code comparisons ([9], [7]), fingerprint ...1 Secure Fingerprint Identification of High Accuracy Marina Blanton and Siddharth Saraph Department of Computer Science and Engineering University of...In this work, we treat the problem of privacy- preserving matching of two fingerprints , which can be used for secure fingerprint authentication and

  1. High Accuracy Fuel Flowmeter, Phase 1

    NASA Technical Reports Server (NTRS)

    Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.

    1983-01-01

    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.

  2. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    SciTech Connect

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  3. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement.

    PubMed

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-04-01

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  4. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Measurement, accuracy, and reliability... Monitors § 74.8 Measurement, accuracy, and reliability requirements. (a) Breathing zone measurement... demonstrates the following: (1) For full-shift measurements of 8 hours or more, a 95 percent confidence...

  5. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  6. High accuracy wavelength calibration for a scanning visible spectrometer

    SciTech Connect

    Scotti, Filippo; Bell, Ronald E.

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  7. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  8. Guiding Center Equations of High Accuracy

    SciTech Connect

    R.B. White, G. Spizzo and M. Gobbin

    2013-03-29

    Guiding center simulations are an important means of predicting the effect of resistive and ideal magnetohydrodynamic instabilities on particle distributions in toroidal magnetically confined thermonuclear fusion research devices. Because saturated instabilities typically have amplitudes of δ B/B of a few times 10-4 numerical accuracy is of concern in discovering the effect of mode particle resonances. We develop a means of following guiding center orbits which is greatly superior to the methods currently in use. In the presence of ripple or time dependent magnetic perturbations both energy and canonical momentum are conserved to better than one part in 1014, and the relation between changes in canonical momentum and energy is also conserved to very high order.

  9. Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking

    ERIC Educational Resources Information Center

    Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas

    2012-01-01

    This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…

  10. Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking

    ERIC Educational Resources Information Center

    Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas

    2012-01-01

    This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…

  11. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Emission measurement accuracy. 92.127 Section 92.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample...

  12. High accuracy in situ radiometric mapping.

    PubMed

    Tyler, Andrew N

    2004-01-01

    In situ and airborne gamma ray spectrometry have been shown to provide rapid and spatially representative estimates of environmental radioactivity across a range of landscapes. However, one of the principal limitations of this technique has been the influence of changes in the vertical distribution of the source (e.g. 137Cs) on the observed photon fluence resulting in a significant reduction in the accuracy of the in situ activity measurement. A flexible approach for single gamma photon emitting radionuclides is presented, which relies on the quantification of forward scattering (or valley region between the full energy peak and Compton edge) within the gamma ray spectrum to compensate for changes in the 137Cs vertical activity distribution. This novel in situ method lends itself to the mapping of activity concentrations in environments that exhibit systematic changes in the vertical activity distribution. The robustness of this approach has been demonstrated in a salt marsh environment on the Solway coast, SW Scotland, with both a 7.6 cm x 7.6 cm NaI(Tl) detector and a 35% n-type HPGe detector. Application to ploughed field environments has also been demonstrated using HPGe detector, including its application to the estimation of field moist bulk density and soil erosion measurement. Ongoing research work is also outlined.

  13. Improving Localization Accuracy: Successive Measurements Error Modeling

    PubMed Central

    Abu Ali, Najah; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  14. The uncertainty principle and measurement accuracy

    NASA Astrophysics Data System (ADS)

    Belinsky, A. V.; Lapshin, V. B.

    2017-06-01

    A gedanken experiment is proposed in which the momentum and position of a photon can be measured simultaneously in such a way that the product of their respective errors is less than the right-hand side of the appropriate Heisenberg uncertainty relation.

  15. IRCM spectral signature measurements instrumentation featuring enhanced radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Lantagne, Stéphane; Prel, Florent; Moreau, Louis; Roy, Claude; Willers, Cornelius J.

    2015-10-01

    Hyperspectral Infrared (IR) signature measurements are performed in military applications including aircraft- and -naval vessel stealth characterization, detection/lock-on ranges, and flares efficiency characterization. Numerous military applications require high precision measurement of infrared signature characterization. For instance, Infrared Countermeasure (IRCM) systems and Infrared Counter-Countermeasure (IRCCM) system are continuously evolving. Infrared flares defeated IR guided seekers, IR flares became defeated by intelligent IR guided seekers and Jammers defeated the intelligent IR guided seekers [7]. A precise knowledge of the target infrared signature phenomenology is crucial for the development and improvement of countermeasure and counter-countermeasure systems and so precise quantification of the infrared energy emitted from the targets requires accurate spectral signature measurements. Errors in infrared characterization measurements can lead to weakness in the safety of the countermeasure system and errors in the determination of detection/lock-on range of an aircraft. The infrared signatures are analyzed, modeled, and simulated to provide a good understanding of the signature phenomenology to improve the IRCM and IRCCM technologies efficiency [7,8,9]. There is a growing need for infrared spectral signature measurement technology in order to further improve and validate infrared-based models and simulations. The addition of imagery to Spectroradiometers is improving the measurement capability of complex targets and scenes because all elements in the scene can now be measured simultaneously. However, the limited dynamic range of the Focal Plane Array (FPA) sensors used in these instruments confines the ranges of measurable radiance intensities. This ultimately affects the radiometric accuracy of these complex signatures. We will describe and demonstrate how the ABB hyperspectral imaging spectroradiometer features enhanced the radiometric accuracy

  16. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Griffith, Elizabeth M.; Buckley, Wayne P.

    2014-02-01

    (BaSO4) is a widely distributed mineral that incorporates strontium (Sr) during formation. Mass-dependent fractionation of Sr isotopes occurs during abiotic precipitation of barite and formation of barite associated with biological processes (e.g., bacterial sulfide oxidation). Sr isotopes in barite can provide provenance information as well as potentially reconstruct sample formation conditions (e.g., saturation state, temperature, biotic versus abiotic). Incomplete separation of Ba from Sr has complicated measurements of Sr isotopes by MC-ICPMS. In this study, we tested the effects of Ba in Sr sample solutions and modified extraction chromatography of Sr using Eichrom Sr Spec (Eichrom Technologies LLC, USA) resin to enable rapid, accurate, and precise measurements of 88Sr/86Sr and 87Sr/86Sr ratios from Ba-rich matrices. Sr isotope ratios of sample solutions doped with Ba were statistically indistinguishable from Ba-free sample solutions below 1 ppm Ba. Deviations in both 87Sr/86Sr and δ88/86Sr occurred above 1 ppm Ba. An updated extraction chromatography method tested with barite and Ba-doped seawater produces Sr sample solutions containing 10-100 ppb levels of Ba. The practice of Zr spiking for external mass-discrimination correction of 88Sr/86Sr ratios was also evaluated, and it was confirmed that variable Zr levels do not have adverse effects on the accuracy and precision of 87Sr/86Sr ratios in the Zr concentration range required to produce accurate δ88/86Sr values.

  17. Measuring the spatial accuracy of the spatial scan statistic.

    PubMed

    Read, Simon; Bath, Peter; Willett, Peter; Maheswaran, Ravi

    2011-06-01

    The spatial scan statistic is well established in spatial epidemiology. However, studies of its spatial accuracy are infrequent and vary in approach, often using multiple measures which complicate the objective ranking of different implementations of the statistic. We address this with three novel contributions. Firstly, a modular framework into which different definitions of spatial accuracy can be compared and hybridised. Secondly, we derive a new single measure, Ω, which takes account of all true and detected clusters, without the need for arbitrary weightings and irrespective of any chosen significance threshold. Thirdly, we demonstrate the new measure, alongside existing ones, in a study of the six output filter options provided by SaTScan™. The study suggests filtering overlapping detected clusters tends to reduce spatial accuracy, and visualising overlapping clusters may be better than filtering them out. Although we only address spatial accuracy, the framework and Ω may be extendible to spatio-temporal accuracy.

  18. Developing a Weighted Measure of Speech Sound Accuracy

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.

    2011-01-01

    Purpose: To develop a system for numerically quantifying a speaker's phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, the authors describe a system for differentially weighting speech sound errors on the basis of various levels of phonetic accuracy using a Weighted Speech Sound…

  19. Developing a Weighted Measure of Speech Sound Accuracy

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.

    2011-01-01

    Purpose: To develop a system for numerically quantifying a speaker's phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, the authors describe a system for differentially weighting speech sound errors on the basis of various levels of phonetic accuracy using a Weighted Speech Sound…

  20. A Systematic Investigation of Accuracy and Response Time Based Measures Used to Index ANS Acuity

    PubMed Central

    Dietrich, Julia Felicitas; Huber, Stefan; Klein, Elise; Willmes, Klaus; Pixner, Silvia; Moeller, Korbinian

    2016-01-01

    The approximate number system (ANS) was proposed to be a building block for later mathematical abilities. Several measures have been used interchangeably to assess ANS acuity. Some of these measures were based on accuracy data, whereas others relied on response time (RT) data or combined accuracy and RT data. Previous studies challenged the view that all these measures can be used interchangeably, because low correlations between some of the measures had been observed. These low correlations might be due to poor reliability of some of the measures, since the majority of these measures are mathematically related. Here we systematically investigated the relationship between common ANS measures while avoiding the potential confound of poor reliability. Our first experiment revealed high correlations between all accuracy based measures supporting the assumption that all of them can be used interchangeably. In contrast, not all RT based measures were highly correlated. Additionally, our results revealed a speed-accuracy trade-off. Thus, accuracy and RT based measures provided conflicting conclusions regarding ANS acuity. Therefore, we investigated in two further experiments which type of measure (accuracy or RT) is more informative about the underlying ANS acuity, depending on participants’ preferences for accuracy or speed. To this end, we manipulated participants’ preferences for accuracy or speed both explicitly using different task instructions and implicitly varying presentation duration. Accuracy based measures were more informative about the underlying ANS acuity than RT based measures. Moreover, the influence of the underlying representations on accuracy data was more pronounced when participants preferred accuracy over speed after the accuracy instruction as well as for long or unlimited presentation durations. Implications regarding the diffusion model as a theoretical framework of dot comparison as well as regarding the relationship between ANS acuity and

  1. Accuracy of exhaust emission factor measurements on chassis dynamometer.

    PubMed

    Joumard, Robert; Laurikko, Juhani; Le Han, Tuan; Geivanidis, Savas; Samaras, Zissis; Merétei, Tamás; Devaux, Philippe; André, Jean-Marc; Cornelis, Erwin; Lacour, Stéphanie; Prati, Maria Vittoria; Vermeulen, Robin; Zallinger, Michael

    2009-06-01

    To improve the accuracy, reliability, and representativeness of emission factors, 10 European laboratories worked together to study the influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer of 4 main categories: driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters. The results are based on (1) literature synthesis, (2) approximately 2700 specific tests with 183 vehicles, and (3) the reprocessing of more than 900 tests. These tests concern the regulated atmospheric pollutants and pre-Euro to Euro 4 vehicles. Of the 20 parameters analyzed, 7 seemed to have no effect, 7 were qualitatively influential, and 6 were highly influential (gearshift strategy, vehicle mileage, ambient temperature, humidity, dilution ratio, and driving cycle). The first four of the six were able to have correction factors developed for them. The results allow for the design of recommendations or guidelines for the emission factor measurement method.

  2. Potential accuracy of measuring the angular coordinates of signal sources and accuracy of measuring them using optimal spatial filtration

    NASA Astrophysics Data System (ADS)

    Kalenov, E. N.

    2015-03-01

    The paper investigates the potential accuracy of measuring the angular coordinates of a signal source in the presence of interference sources, as well as the accuracy of measuring these coordinates via the formation of a signal's spatial spectrum using optimal spatial filtration. For a linear equidistant array, analytical solutions are obtained that determine the dependence of the accuracies in measuring the angular coordinates on the array parameters, the angular distance to the noise source, and spectral power densities of a signal, noise, and an interference source.

  3. Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.; Yoon, Howard W.; Jarrett, Dean G.; Larason, Thomas C.

    2013-10-01

    For photocurrent measurements with low uncertainties, wide dynamic range reference current-to-voltage converters and a new converter calibration method have been developed at the National Institute of Standards and Technology (NIST). The high-feedback resistors of a reference converter were in situ calibrated on a high-resistivity, printed circuit board placed in an electrically shielded box electrically isolated from the operational amplifier using jumpers. The feedback resistors, prior to their installation, were characterized, selected and heat treated. The circuit board was cleaned with solvents, and the in situ resistors were calibrated using measurement systems for 10 kΩ to 10 GΩ standard resistors. We demonstrate that dc currents from 1 nA to 100 µA can be measured with uncertainties of 55 × 10-6 (k = 2) or lower, which are lower in uncertainties than any commercial device by factors of 10 to 30 at the same current setting. The internal (NIST) validations of the reference converter are described.

  4. Measuring the accuracy of management effectiveness evaluations of protected areas.

    PubMed

    Cook, Carly N; Carter, R W Bill; Hockings, Marc

    2014-06-15

    Evaluating the effectiveness of protected area management to help improve management outcomes is becoming an increasingly common practice. The evaluation tools developed and implemented in over 100 countries generally rely on the expert judgements of protected area managers. Despite the growing collection and use of management effectiveness evaluation data, there have been no previous attempts to measure the accuracy of these data. We measured the accuracy of managers' judgements about the conditions in their reserves by collecting independent field data. We also assessed how accurately the evaluation tool reflected managers' views by conducting semi-structured interviews with 23 protected area managers from New South Wales, Australia. We found that managers made highly accurate judgements of the extent of a common weed species, Rubus fruticosus (blackberry), but often misinterpreted the scope, scale and timeframe of the evaluation. These framing effects can lead to error being introduced into the evaluation dataset, affecting the precision of evaluations such that they cannot be reliably compared among reserves. We suggest that the wording of evaluation questions needs to be explicit about the assessment frame to minimize the influence of framing effects on management effectiveness evaluations.

  5. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  6. A direct detection 1.6μm DIAL with three wavelengths for high accuracy measurements of vertical CO2 concentration and temperature profiles

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2013-10-01

    The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. A differential absorption lidar (DIAL) is an attractive method for obtaining vertical CO2 profiles and we have developed an 1.6μm DIAL system to perform simultaneous measurements of CO2 concentration, atmospheric temperature profile and wind profile. The absorption cross sections of gas and air density depends on atmospheric temperature and pressure. Then precise temperature and pressure profiles are necessary for accurate CO2 mixing ratio measurement by DIAL. Laser beams of three wavelengths around a CO2 absorption line are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature. The receiving optics include the near-infrared photomultiplier tube and a fiber Bragg grating (FBG) filter to detect a Doppler shift.

  7. High Speed, High Accuracy Stage for Advanced Lithography. Phase I

    DTIC Science & Technology

    2007-11-02

    noise and 5nm LSB of our laser interferometer. Zerodur Mounting bar Base expended in this direction Sensor heads Interferometer mirror ...state of the art. Their CORE machine claims an accuracy of 80nm over a 6- inch square field. This machine uses high-speed mirrors to scan multiple...variety of optical paths. If the laboratory is not quiet (e.g. if the interferometer mirror is moving, or if people are talking in the laboratory

  8. Accuracy of digital American Board of Orthodontics Discrepancy Index measurements.

    PubMed

    Dragstrem, Kristina; Galang-Boquiren, Maria Therese S; Obrez, Ales; Costa Viana, Maria Grace; Grubb, John E; Kusnoto, Budi

    2015-07-01

    A digital analysis that is shown to be accurate will ease the demonstration of initial case complexity. To date, no literature exists on the accuracy of the digital American Board of Orthodontics Discrepancy Index (DI) calculations when applied to pretreatment digital models. Plaster models were obtained from 45 previous patients with varying degrees of malocclusion. Total DI scores and the target disorders were computed manually with a periodontal probe on the original plaster casts (gold standard) and digitally using Ortho Insight 3D (Motion View Software, Hixson, Tenn) and OrthoCAD (Cadent, Carlstadt, NJ). Intrarater and interrater reliabilities were assessed for 15 subjects using the Spearman rho correlation test. Accuracies of the DI scores and target disorders were assessed for all 45 subjects using Wilcoxon signed ranks tests. Intrarater and interrater reliabilities were high for total DI scores and most target disorders (r > 0.8). No significant difference was found between total DI score when measured with OrthoCAD compared with manual calculations. The total DI scores calculated by Ortho Insight 3D were found to be significantly greater than those by manual calculation by 2.71 points. The findings indicate that a DI calculated by Ortho Insight 3D may lead the clinician to overestimate case complexity. OrthoCAD's DI module was demonstrated to be a clinically acceptable alternative to manual calculation of the total scores. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Measurements of dimensional accuracy using linear and scanning profile techniques.

    PubMed

    Harrison, A; Huggett, R; Zissis, A

    1992-01-01

    Various measurement methods have been described for the determination of dimensional accuracy and stability of denture base materials. This investigation introduces a computerised coordinate measuring machine (CCMM) and compares it with two methods routinely used for assessment of the accuracy of fit of denture base materials. The results demonstrate that the three methods (digital calipers, optical comparator, and CCMM) are acceptable for linear measurement. The CCMM was also used in its scanning mode to define and to quantify the contour changes of the resin bases. The advantages of the CCMM become apparent when two-dimensional changes require assessment.

  10. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  11. Factors affecting the measurement accuracy of ITER neutron activation system

    NASA Astrophysics Data System (ADS)

    Cheon, M. S.; Ahn, Y. H.; Pak, S.; Seon, C.; Krasilnikov, V.; Bertalot, L.

    2017-08-01

    One of the main purposes of the ITER2 neutron activation system (NAS) is to evaluate the total neutron production rate from all over the plasma. The measurement accuracy depends on the position and profile of the plasma and the material in front of the irradiation end. It is required to minimize the amount of material and its density variation across the field of view between the plasma and the irradiation end. Due to the radiation and thermal environment of the ITER in-vessel, however, the measurement from ITER NAS cannot avoid the strong influence from in-vessel materials such as the diagnostic first wall, blanket modules, and divertor cassettes, those are located near the irradiation ends. In order to improve the reliability of the measurement in such environment, special cutouts in the diagnostic first wall are introduced near the irradiation end structures located in the port plugs. The effect of the materials and the position and profile of the neutron source in the plasma are evaluated for these irradiation locations, as well as the ones under the divertor cassettes and between blanket modules, by the neutron transport calculation. Calculation results show that simultaneous measurements at upper port and divertor location can provide highly accurate results even without a position or profile correction from other diagnostics.

  12. Is it Possible to increase the Accuracy of Environmental Measurements?

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Sonobe, Jun

    2017-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which has resulted in substantial temperature increases. Many countries have entered into agreements to limit and / or decrease GHG emissions. This requires precise measurements by region to clearly evaluate GHG emissions, sinks and evolution as well as mitigation strategies. High precision measurements are a key requirement to study and evaluate the global carbon cycle and its effect on climate change. Calibrating the analytical instruments used to make atmospheric measurements are often done using standards prepared in synthetic air. There are significant differences between synthetic air and natural air which introduce bias into some measurement; therefore natural air is preferred. This presentation will examine the natural air and isotopic mixture preparation process and the role of precisely characterized materials, highlighting stability of isotopic mixtures in natural air. Emphasis will focus on adjustment of isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy

  13. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    SciTech Connect

    Keehan, S; Franich, R; Taylor, M; Lonski, P; Kron, T

    2015-06-15

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and the ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.

  14. Accuracy of CBCT for volumetric measurement of simulated periapical lesions.

    PubMed

    Ahlowalia, M S; Patel, S; Anwar, H M S; Cama, G; Austin, R S; Wilson, R; Mannocci, F

    2013-06-01

    To compare the accuracy of cone beam computed tomography (CBCT) and micro-computed tomography (μCT) when measuring the volume of bone cavities. Ten irregular-shaped cavities of varying dimensions were created in bovine bone specimens using a rotary diamond bur. The samples were then scanned using the Accuitomo 3D CBCT scanner. The scanned information was converted to the Digital Imaging and Communication in Medicine (DICOM) format ready for analysis. Once formatted, 10 trained and calibrated examiners segmented the scans and measured the volumes of the lesions. Intra/interexaminer agreement was assessed by each examiner re-segmenting each scan after a 2-week interval. Micro-CT scans were analysed by a single examiner. To achieve a physical reading of the artificially created cavities, replicas were created using dimensionally stable silicone impression material. After measuring the mass of each impression sample, the volume was calculated by dividing the mass of each sample by the density of the set impression material. Further corroboration of these measurements was obtained by employing Archimedes' principle to measure the volume of each impression sample. Intraclass correlation was used to assess agreement. Both CBCT (mean volume: 175.9 mm3) and μCT (mean volume: 163.1 mm3) showed a high degree of agreement (intraclass correlation coefficient >0.9) when compared to both weighed and 'Archimedes' principle' measurements (mean volume: 177.7 and 182.6 mm3, respectively). Cone beam computed tomography is an accurate means of measuring volume of artificially created bone cavities in an ex vivo model. This may provide a valuable tool for monitoring the healing rate of apical periodontitis; further investigations are warranted. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.

  15. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO’s Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating’s first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of “uncalibrated” first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the “uncalibrated” first-order “solar” component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  16. Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy

    NASA Astrophysics Data System (ADS)

    Basher, R. E.

    1982-11-01

    The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.

  17. Accuracy assessment of elastic strain measurement by EBSD.

    PubMed

    Villert, S; Maurice, C; Wyon, C; Fortunier, R

    2009-02-01

    A detailed accuracy analysis of electron backscatter diffraction (EBSD) elastic strain measurement has been carried out using both simulated and experimental patterns. Strains are determined by measuring shifts between two EBSD patterns (one being the reference) over regions of interest (ROI) using an iterative cross-correlation algorithm. An original minimization procedure over 20 regions of interests gives a unique solution for the eight independent components of the deviatoric displacement gradient tensor. It is shown that this method leads to strain measurements on simulated patterns with an accuracy better than 10(-4). The influence of the projection parameters is also investigated. The accuracy assessment is illustrated by two worked examples: (i) four-point bending of a silicon single crystal and (ii) Si(1-x)Ge(x) layers on a Si substrate. Experimental results are compared with finite-element simulations.

  18. Accuracy of rainfall estimates at high altitude in the Garhwal Himalaya (India): A comparison of secondary precipitation products and station rainfall measurements

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Alok; Ziegler, Alan D.; Wasson, Robert J.; Chow, Winston T. L.

    2017-05-01

    Accurate estimation of the magnitude and spatio-temporal variability of rainfall in the Indian Himalaya is difficult because of the sparse and limited network of ground stations located within complex terrain, as well as the difficulty of maintaining the stations over time. Thus, secondary rainfall sources are important to hydrological and hazard studies, if they reproduce the dynamics of rainfall satisfactorily. In this work, we evaluate four secondary products in the Garhwal Himalaya in India, with a focus on their application within the Mandakini River Catchment, the site of a devastating flood and multiple large landslides in 2013. The analysis included two satellite products: from the Tropical Rainfall Measuring Mission (TRMM) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) program, as well as two gridded products: the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) product and the India Meteorological Department (IMD) product. In comparing the four products against data collected at four ground stations (Rudraprayag, Joshimath, Purola, and Mukhim) using a variety of statistical indices, we determined that the IMD and TRMM products were superior to the others. In particular, the IMD product ranked the best for most indices including probability of detection (POD), false alarm ratio (FAR), receiver operating curve (ROC), and root mean squared error (RMSE). The TRMM product performed satisfactorily in terms of bias and detecting daily maximum monsoon rainfall at three of the four stations. The APHRODITE product had POD, FAR and ROC values that were among the best at higher rainfall depths at the Mukhim station. The PERSIANN product generally did not perform well based on these indices, consistently underestimating station rainfall depths. Finally, the IMD product could document the daily rainfall distribution during the June 2013

  19. Accuracy of Handheld Blood Glucose Meters at High Altitude

    PubMed Central

    de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Methodology/Principal Findings Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. Conclusion At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy. PMID:21103399

  20. Accuracy of handheld blood glucose meters at high altitude.

    PubMed

    de Mol, Pieter; Krabbe, Hans G; de Vries, Suzanna T; Fokkert, Marion J; Dikkeschei, Bert D; Rienks, Rienk; Bilo, Karin M; Bilo, Henk J G

    2010-11-12

    Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy.

  1. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique.

    PubMed

    Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z

    2012-03-01

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  2. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique

    SciTech Connect

    Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z.

    2012-09-25

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  3. Low Cost, High Accuracy Positioning In Urban Environments

    NASA Astrophysics Data System (ADS)

    Hide, Chris; Moore, Terry; Hill, Chris; Park, David

    It is well known that GPS measurements are regularly obstructed in urban environments. Positioning accuracy in such environments is significantly degraded and in many areas, it is not possible to obtain a GPS position fix at all. There are currently two methods that can be used to improve availability in the urban environment. Firstly, GPS receivers can be augmented with dead reckoning sensors such as an INS. Alternatively, High Sensitivity GPS (HSGPS) receivers can be used which are able to acquire and track very weak signals. This paper assesses the performance obtained from a GPS and low cost INS integrated system and a HSGPS receiver in an urban environment in Nottingham, UK. The navigation systems are compared to a high accuracy integrated GPS/INS system which is used to provide a reference trajectory. It is demonstrated that the differential GPS and low cost INS system can provide horizontal positioning accuracy of better than 2·5 m RMS in real-time, and better than 1 m RMS in post-processing, whereas the non-differential HSGPS receiver provides a real-time performance of 5 m RMS. These results were obtained in an environment where, with conventional GPS receivers, a position solution is only available 48·4% of the time. Operational considerations such as initial alignment of the GPS and low cost INS are also discussed when comparing the two systems for urban positioning applications.

  4. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  5. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  6. An accuracy measurement method for star trackers based on direct astronomic observation

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  7. Some Astronomical Applications of High Accuracy Stellar Interferometry

    NASA Astrophysics Data System (ADS)

    Mennesson, B.

    2014-04-01

    Optical astronomical interferometry has seen spectacular progress over the last two decades, notably in terms of spatial/spectral resolution, sensitivity, and in the number of accessible baselines. A significant (x 100) parallel improvement has taken place in the accuracy of interferometric measurements, whether phase or amplitude related. This evolution is important because higher measurement accuracy directly translates into higher contrast observations, which is key for a number of astronomical investigations demanding both high resolution and high contrast at the same time. This includes the characterization of molecular layers in the extended atmospheres of evolved stars, the direct imaging of surface oblateness in fast rotating stars, the direct measurement of Cepheids angular diameter changes vs pulsation - and subsequent distance determination -, the detection of faint exozodiacal dust around mature stars, and the search for sub-stellar companions to nearby stars. The latter two applications have particularly driven the field improvements over the last few years. Contrast levels of 1000:1 or better have now been achieved at several facilities, and there are prospects for an other tenfold gain in the near future, notably with the Large Binocular Telescope Interferometer (LBTI).

  8. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  9. 40 CFR 86.1338-84 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... computers, data loggers, etc., can provide sufficient accuracy and resolution below 15 percent of full scale... operating range of the analyzer and at least 90% of full scale. (ii) Generate calibration data over the full... using the calibration data obtained with both calibration gases. (b) Measurement accuracy—Continuous...

  10. 40 CFR 86.1338-84 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... computers, data loggers, etc., can provide sufficient accuracy and resolution below 15 percent of full scale... operating range of the analyzer and at least 90% of full scale. (ii) Generate calibration data over the full... using the calibration data obtained with both calibration gases. (b) Measurement accuracy—Continuous...

  11. 40 CFR 86.1338-84 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... computers, data loggers, etc., can provide sufficient accuracy and resolution below 15 percent of full scale... operating range of the analyzer and at least 90% of full scale. (ii) Generate calibration data over the full... using the calibration data obtained with both calibration gases. (b) Measurement accuracy—Continuous...

  12. 40 CFR 86.1338-84 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... computers, data loggers, etc., can provide sufficient accuracy and resolution below 15 percent of full scale... operating range of the analyzer and at least 90% of full scale. (ii) Generate calibration data over the full... using the calibration data obtained with both calibration gases. (b) Measurement accuracy—Continuous...

  13. Measures of Linguistic Accuracy in Second Language Writing Research.

    ERIC Educational Resources Information Center

    Polio, Charlene G.

    1997-01-01

    Investigates the reliability of measures of linguistic accuracy in second language writing. The study uses a holistic scale, error-free T-units, and an error classification system on the essays of English-as-a-Second-Language students and discusses why disagreements arise within a rater and between raters. (24 references) (Author/CK)

  14. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  15. A Comparison of Bias in Four Measures of Monitoring Accuracy

    ERIC Educational Resources Information Center

    Kuch, Frederick H.

    2012-01-01

    Typically in calibration research, subjects perform a task and make a judgment about the success of the task. Accurate findings help subjects improve self-calibration. In addition, researchers rely on the accuracy of findings to make inferences about underlying metacognitive processes. Consequently, it is important that the measures used to assess…

  16. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  17. Measures of Linguistic Accuracy in Second Language Writing Research.

    ERIC Educational Resources Information Center

    Polio, Charlene G.

    1997-01-01

    Investigates the reliability of measures of linguistic accuracy in second language writing. The study uses a holistic scale, error-free T-units, and an error classification system on the essays of English-as-a-Second-Language students and discusses why disagreements arise within a rater and between raters. (24 references) (Author/CK)

  18. The Influence of Motor Skills on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Brychta, Petr; Sadílek, Marek; Brychta, Josef

    2016-10-01

    This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.

  19. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    PubMed

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  20. Multi-Camera and Structured-Light Vision System (MSVS) for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    PubMed Central

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-01-01

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results. PMID:25875190

  1. Evaluation of novel approach to deflectometry for high accuracy optics

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo; Tayabaly, Kashmira; Pareschi, Giovanni

    2016-07-01

    A deflectometrical facility was developed at Italian National Institute for Astrophysics-OAB to characterize free-form optics with shape errors within few microns rms. Deflectometry is an interesting technique because it allows the fast characterization of free-form optics. The capabilities of deflectometry in measuring medium-high frequencies are well known, but the low frequencies error characterization is more challenging. Our facility design foresees an innovative approach based on the acquisition of multiple direct images to enhance the performance on the challenging low frequencies range. This contribution presents the error-budget analysis of the measuring method and a study of the configuration tolerances required to allow the use of deflectometry in the realization of optical components suitable for astronomical projects with a requirement of high accuracy for the optics. As test examples we took into account mirrors for the E-ELT telescope.

  2. A study of the accuracy of lens measures.

    PubMed

    Hilton, O; Obstfeld, H

    1998-05-01

    The accuracy of 26 aged and three new lens measures was investigated. Instruments were applied to surfaces of known curvature employing the conventional, hand-held method as well as while rigged on an optical bench. In addition, using the latter method, a controlled amount of surface tilt was introduced. A large inter-instrument variation in accuracy was encountered. In general, hand-held lens measures were found to provide equally accurate measurements on convex and concave surfaces, with the exception of the -20 D surface, and inclinations from 0 degree to 5 degrees did not result in erroneous measurements. Results for inclinations of 15 degrees became unreliable. The different usages of the instrument are discussed.

  3. USE OF CHEMICAL INVENTORY ACCURACY MEASUREMENTS AS LEADING INDICATORS

    SciTech Connect

    Kuntamukkula, M.

    2011-02-10

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: what properties make leading indicators effective, how chemical inventories can be used as a leading indicator, how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and what a subpar inventory accuracy measurement portends.

  4. Use of Chemical Inventory Accuracy Measurements as Leading Indicators

    SciTech Connect

    Quigley, David; Freshwater, David; Alnajjar, Mikhail S.; Siegel, Dina; Kuntamukkula, Murty; Simmons, Fred

    2012-05-15

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: (1) what properties make leading indicators effective, (2) how chemical inventories can be used as a leading indicator, (3) how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and (4) what a subpar inventory accuracy measurement portends.

  5. High accuracy and visibility-consistent dense multiview stereo.

    PubMed

    Vu, Hoang-Hiep; Labatut, Patrick; Pons, Jean-Philippe; Keriven, Renaud

    2012-05-01

    Since the initial comparison of Seitz et al., the accuracy of dense multiview stereovision methods has been increasing steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations, being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on the dense multiview benchmark proposed by Strecha et al., showing the results to compare more than favorably with the current state-of-the-art methods.

  6. Assessment of relative error sources in IR DIAL measurement accuracy

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.

    1983-01-01

    An assessment is made of the role the various error sources play in limiting the accuracy of infrared differential absorption lidar measurements used for the remote sensing of atmospheric species. An overview is presented of the relative contribution of each error source including the inadequate knowledge of the absorption coefficient, differential spectral reflectance, and background interference as well as measurement errors arising from signal fluctuations.

  7. Accuracy of point-of-care glucose measurements.

    PubMed

    Rebel, Annette; Rice, Mark A; Fahy, Brenda G

    2012-03-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making.

  8. The Accuracy of Point-of-Care Glucose Measurements

    PubMed Central

    Rebel, Annette; Rice, Mark A.; Fahy, Brenda G.

    2012-01-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making. PMID:22538154

  9. Accuracy of overlay measurements: tool and mark asymmetry effects

    NASA Astrophysics Data System (ADS)

    Coleman, Daniel J.; Larson, Patricia J.; Lopata, Alexander D.; Muth, William A.; Starikov, Alexander

    1990-06-01

    Results of recent Investigations uncovering significant errors in overlay (O/L) measurements are reported. The two major contributors are related to the failures of symmetry of the overlay measurement tool and of the mark. These may result In measurement errors on the order of 100 nm. Methodology based on the conscientious verification of assumptions of symmetry is shown to be effective in identifying the extent and sources of such errors. This methodology can be used to arrive at an estimate of the relative accuracy of the O/L measurements, even in absence of certified O/L reference materials. Routes to improve the accuracy of O/L measurements are outlined and some examples of improvements are given. Errors in O/L measurements associated with the asymmetry of the metrology tool can be observed by comparing the O/L measurements taken at 0 and 180 degree orientations of the sample in reference to the tool. Half the difference of these measurements serves as an estimate of such tool related bias in estimating O/L. This is called tool induced shift (TIS). Errors of this kind can be traced to asymmetries of tool components, e. g., camera, illumination misalignment, residual asymmetric aberrations etc. Tool asymmetry leads to biased O/L estimates even on symmetric O/L measurement marks. Its impact on TIS depends on the optical properties of the structure being measured, the measurement procedure and on the combination of tool and sample asymmetries. It is also a function of design and manufacture of the O/L metrology tool. In the absence of certified O/L samples, measurement accuracy and repeatability may be improved by demanding that TIS be small for all tools on all structures.

  10. Portable and autonomous X-ray equipment for in-situ threat materials identification by effective atomic number high-accuracy measurement

    NASA Astrophysics Data System (ADS)

    Iovea, M.; Neagu, M.; Mateiasi, G.; Duliu, O.

    2011-06-01

    A novel portable and autonomous X-ray dual-energy Radioscopy equipment, developed for bomb squad interventions and NDT applications and capable of in-situ digital radiography imaging with measurement of the effective Atomic number of materials (Zeff), is presented. The system consists of a 2D dual-energy X-ray detector based on a rapidly translated linear array, a portable X-ray source and dedicated software running on a laptop or tablet PC. By measurement of the collected x-ray intensities at two different energy spectra, the system can directly compute the material Zeff value for various organic materials contained in the scanned object and then identify them from a database list. The entire system calibration has been obtained using explosive simulants with known Zeff values, the measurement error of Zeffbeing around +/-3.5 % with respect to the reference values. The excellent image resolution and the ability of the automated threat identification algorithm are presented for experiments with a briefcase and a hand-held baggage having various domestic objects and an explosive simulant inside.

  11. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  12. Accuracy of smartphone apps for heart rate measurement.

    PubMed

    Coppetti, Thomas; Brauchlin, Andreas; Müggler, Simon; Attinger-Toller, Adrian; Templin, Christian; Schönrath, Felix; Hellermann, Jens; Lüscher, Thomas F; Biaggi, Patric; Wyss, Christophe A

    2017-08-01

    Background Smartphone manufacturers offer mobile health monitoring technology to their customers, including apps using the built-in camera for heart rate assessment. This study aimed to test the diagnostic accuracy of such heart rate measuring apps in clinical practice. Methods The feasibility and accuracy of measuring heart rate was tested on four commercially available apps using both iPhone 4 and iPhone 5. 'Instant Heart Rate' (IHR) and 'Heart Fitness' (HF) work with contact photoplethysmography (contact of fingertip to built-in camera), while 'Whats My Heart Rate' (WMH) and 'Cardiio Version' (CAR) work with non-contact photoplethysmography. The measurements were compared to electrocardiogram and pulse oximetry-derived heart rate. Results Heart rate measurement using app-based photoplethysmography was performed on 108 randomly selected patients. The electrocardiogram-derived heart rate correlated well with pulse oximetry ( r = 0.92), IHR ( r = 0.83) and HF ( r = 0.96), but somewhat less with WMH ( r = 0.62) and CAR ( r = 0.60). The accuracy of app-measured heart rate as compared to electrocardiogram, reported as mean absolute error (in bpm ± standard error) was 2 ± 0.35 (pulse oximetry), 4.5 ± 1.1 (IHR), 2 ± 0.5 (HF), 7.1 ± 1.4 (WMH) and 8.1 ± 1.4 (CAR). Conclusions We found substantial performance differences between the four studied heart rate measuring apps. The two contact photoplethysmography-based apps had higher feasibility and better accuracy for heart rate measurement than the two non-contact photoplethysmography-based apps.

  13. Accuracy and Measurement Error of the Medial Clear Space of the Ankle.

    PubMed

    Metitiri, Ogheneochuko; Ghorbanhoseini, Mohammad; Zurakowski, David; Hochman, Mary G; Nazarian, Ara; Kwon, John Y

    2017-04-01

    Measurement of the medial clear space (MCS) is commonly used to assess deltoid ligament competency and mortise stability when managing ankle fractures. Lacking knowledge of the true anatomic width measured, previous studies have been unable to measure accuracy of measurement. The purpose of this study was to determine MCS measurement error and accuracy and any influencing factors. Using 3 normal transtibial ankle cadaver specimens, deltoid and syndesmotic ligaments were transected and the mortise widened and affixed at a width of 6 mm (specimen 1) and 4 mm (specimen 2). The mortise was left intact in specimen 3. Radiographs were obtained of each cadaver at varying degrees of rotation. Radiographs were randomized, and providers measured the MCS using a standardized technique. Lack of accuracy as well as lack of precision in measurement of the medial clear space compared to a known anatomic value was present for all 3 specimens tested. There were no significant differences in mean delta with regard to level of training for specimens 1 and 2; however, with specimen 3, staff physicians showed increased measurement accuracy compared with trainees. Accuracy and precision of MCS measurements are poor. Provider experience did not appear to influence accuracy and precision of measurements for the displaced mortise. This high degree of measurement error and lack of precision should be considered when deciding treatment options based on MCS measurements.

  14. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  15. High-accuracy Propagation of Light Rays

    NASA Astrophysics Data System (ADS)

    Teyssandier, Pierre

    2009-05-01

    We recall the relativistic definition of the angle between a light ray and a given direction or between two light rays as measured by an observer moving with a given unit 4-velocity. Then we present a review of the different methods currently used to determine the deflection of light in a gravitational field. In almost all the works devoted to this problem, the deflection of light is determined by integrating the differential equations of null geodesics of the metric. For example, this procedure is the basis of the different models proposed to exploit the data furnished by GAIA. However, very different approaches have been developed in recent years. These new procedures are particularly convenient for treating the cases where both the source of the ray and the observer are located at a finite distance. Moreover, these alternative approaches avoid integrating the geodesic equations. After a brief discussion of the advantages and disadvantages of each method, we summarize some recent results enabling new tests of relativity, especially the bending of light due to the mass-multipoles of a giant planet.

  16. A high accuracy automated strain-field mapper

    SciTech Connect

    James, M.R.; Morris, W.L.; Cox, B.N. )

    1990-03-01

    The design and capabilities of a computer-automated high-spatial-resolution displacement-measurement system are described. The system is used to determine the relative displacement fields generated by thermal or mechanical loads by comparing a pair of SEM or optical micrographs, one recorded before the load is applied and the other afterwards. The displacements are measured by cross-correlation analysis of the relative positions of visible surface texture on the micrographs. Displacement accuracy on a specimen surface is + or - 60 A for optical microscopy, and + or - 10 A for SEM. Both in-plane or out-of-plane deformation can be characterized, depending on the angle at which the specimen is viewed. This instrument has the potential of quantifying surface deformation over submicron-gage lengths and will be an invaluable tool in experimental micromechanics. 15 refs.

  17. Effect of temporal resolution on the accuracy of ADCP measurements

    USGS Publications Warehouse

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  18. High-accuracy theoretical thermochemistry of fluoroethanes.

    PubMed

    Nagy, Balázs; Csontos, Botond; Csontos, József; Szakács, Péter; Kállay, Mihály

    2014-07-03

    A highly accurate coupled-cluster-based ab initio model chemistry has been applied to calculate the thermodynamic functions including enthalpies of formation and standard entropies for fluorinated ethane derivatives, C2HxF6-x (x = 0-5), as well as ethane, C2H6. The invoked composite protocol includes contributions up to quadruple excitations in coupled-cluster (CC) theory as well as corrections beyond the nonrelativistic and Born-Oppenheimer approximations. For species CH2F-CH2F, CH2F-CHF2, and CHF2-CHF2, where anti/gauche isomerism occurs due to the hindered rotation around the C-C bond, conformationally averaged enthalpies and entropies at 298.15 K are also calculated. The results obtained here are in reasonable agreement with previous experimental and theoretical findings, and for all fluorinated ethanes except CH2FCH3 and C2F6 this study delivers the best available theoretical enthalpy and entropy estimates.

  19. Reassure on accuracy of laser tracker based on single point measurement model

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Lijuan; Zhao, Yan h.; Hua, Caoguo

    2015-10-01

    The Space point measurement repeatability is a prerequisite for achieving high-precision measurements to tracker, so it is important to Spatial positioning accuracy. Different measurement object means different error propagation model. In this paper, we research on the tracker measure a fixed point in a manner such single point, which according to model arrangement, under controlled conditions. Experimental measurements from three different perspectives just as different distances, different horizontal and different Vertical angle. From the integrated angle error, the repeat single point measurement accuracy is given. Then establish of a single point evaluate model that combine with algorithm.

  20. High Accuracy in Silico Sulfotransferase Models*

    PubMed Central

    Cook, Ian; Wang, Ting; Falany, Charles N.; Leyh, Thomas S.

    2013-01-01

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico “enzymes” capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds—endogenous metabolites, drugs and other xenobiotics—by transferring the sulfuryl moiety (SO3) from 3′-phosphoadenosine 5′-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μm. In total, 23 “new” drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico. PMID:24129576

  1. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The... flow measurements are made at intervals not to exceed 5 minutes. The flow rate cut-off test, conducted... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by...

  2. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The... flow measurements are made at intervals not to exceed 5 minutes. The flow rate cut-off test, conducted... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by...

  3. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The... flow measurements are made at intervals not to exceed 5 minutes. The flow rate cut-off test, conducted... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by...

  4. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The... flow measurements are made at intervals not to exceed 5 minutes. The flow rate cut-off test, conducted... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by...

  5. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The... flow measurements are made at intervals not to exceed 5 minutes. The flow rate cut-off test, conducted... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by...

  6. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    PubMed Central

    Chao, Lidia S.

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402

  7. Accuracy of rainfall measurement for scales of hydrological interest

    NASA Astrophysics Data System (ADS)

    Wood, S. J.; Jones, D. A.; Moore, R. J.

    The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a "true value" of rainfall against which the 2 km radar grid and a single "typical gauge" estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day) and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the "true catchment rainfall" and the accuracy of a radar estimate (an area-weighted average of radar pixel values) and a single "typical gauge" estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000) considers the accuracy of rainfall estimates obtained using raingauge and radar in combination.

  8. On precision and accuracy (bias) statements for measurement procedures

    SciTech Connect

    Bruckner, L.A.; Hume, M.W.; Delvin, W.L.

    1988-01-01

    Measurement procedures are often required to contain precision and accuracy of precision and bias statements. This paper contains a glossary that explains various terms that often appear in these statements as well as an example illustrating such statements for a specific set of data. Precision and bias statements are shown to vary according to the conditions under which the data were collected. This paper emphasizes that the error model (an algebraic expression that describes how the various sources of variation affect the measurement) is an important consideration in the formation of precision and bias statements.

  9. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  10. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  11. A Monte Carlo Comparison of Measures of Relative and Absolute Monitoring Accuracy

    ERIC Educational Resources Information Center

    Nietfeld, John L.; Enders, Craig K; Schraw, Gregory

    2006-01-01

    Researchers studying monitoring accuracy currently use two different indexes to estimate accuracy: relative accuracy and absolute accuracy. The authors compared the distributional properties of two measures of monitoring accuracy using Monte Carlo procedures that fit within these categories. They manipulated the accuracy of judgments (i.e., chance…

  12. Estimation and filtering techniques for high-accuracy GPS applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1989-01-01

    Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.

  13. Applications for high-accuracy digital ionosonde data

    SciTech Connect

    Paul, A.K.

    1990-05-03

    The new technology used in modern digital ionosondes permits the measurement of traditional (virtual heights and amplitude of echoes) and new (radio phase of echoes) ionospheric data with very high precision. Consequently, higher accuracy for standard ionospheric parameters can be achieved and new types of parameters can be obtained using new processing methods. Details of such data analysis programs may depend on the type of digital ionosonde used; however, the basic physical principles involved are the same. For example, there is no doubt that the change of the radio phase with time is proportional to the Doppler frequency of the echo. In recent years much effort has gone into modeling of the ionosphere. Unfortunately the spatial and the temporal resolution of the most basic parameters of the data base for testing such models is inadequate. For example, it appears that in some areas (e.g., Europe) the spatial resolution of the F-layer maximum electron density may be sufficient, but this is not true for the height of the maximum and the half-thickness of the F-layer, since very few station computed electron density profiles from the recorded ionograms. In the following we will outline a new procedure for computing F-layer profile parameters. The process is simple and its routine application could significantly improve the data base. The accuracy limits of the resulting parameters will be discussed together with some other important ionospheric quantities observable with digital ionosondes.

  14. Monitoring techniques for high accuracy interference fit assembly processes

    NASA Astrophysics Data System (ADS)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  15. Forecasting method in multilateration accuracy based on laser tracker measurement

    NASA Astrophysics Data System (ADS)

    Aguado, Sergio; Santolaria, Jorge; Samper, David; José Aguilar, Juan

    2017-02-01

    Multilateration based on a laser tracker (LT) requires the measurement of a set of points from three or more positions. Although the LTs’ angular information is not used, multilateration produces a volume of measurement uncertainty. This paper presents two new coefficients from which to determine whether the measurement of a set of points, before performing the necessary measurements, will improve or worsen the accuracy of the multilateration results, avoiding unnecessary measurement, and reducing the time and economic cost required. The first specific coefficient measurement coefficient (MCLT) is unique for each laser tracker. It determines the relationship between the radial and angular laser tracker measurement noise. Similarly, the second coefficient is related with specific conditions of measurement β. It is related with the spatial angle between the laser tracker positions α and its effect on error reduction. Both parameters MCLT and β are linked in error reduction limits. Beside these, a new methodology to determine the multilateration reduction limit according to the multilateration technique of an ideal laser tracker distribution and a random one are presented. It provides general rules and advice from synthetic tests that are validated through a real test carried out in a coordinate measurement machine.

  16. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  17. High accuracy solutions of incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gupta, Murli M.

    1990-01-01

    In recent years, high accuracy finite difference approximations were developed for partial differential equations of elliptic type, with particular emphasis on the convection-diffusion equation. These approximations are of compact type, have a local truncation error of fourth order, and allow the use of standard iterative schemes to solve the resulting systems of algebraic equations. These high accuracy approximations are extended to the solution of Navier-Stokes equations. Solutions are obtained for the model problem of driven cavity and are compared with solutions obtained using other approximations and those obtained by other authors. It is discovered that the high order approximations do indeed produce high accuracy solutions and have a potential for use in solving important problems of viscous fluid flows.

  18. Measures of spatio-temporal accuracy for time series land cover data

    NASA Astrophysics Data System (ADS)

    Tsutsumida, Narumasa; Comber, Alexis J.

    2015-09-01

    Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatio-temporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multi-temporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed.

  19. The limitations of wind measurement accuracy for balloon systems

    NASA Technical Reports Server (NTRS)

    Luers, J. K.; Macarthur, C. D.

    1974-01-01

    The error in horizontal wind field measurements as computed from the trajectory of balloons with linear and quadratic rise rates (as functions of altitude) has been derived. Balloon trajectories through light, moderate, and severe wind fields have been considered. Figures are presented which show the wind error vs altitude for various rise rates in each wind field, assuming linear smoothing of the trajectory data. The rise rate profile of the Jimsphere is analyzed as a special case. The results and figures presented are useful in determining the ultimate capability of rising balloon systems in general and for the Jimsphere system in particular for measuring wind from the surface to 18 km. Using the figures presented, it is possible to estimate the wind accuracy that can be achieved by any type of rising balloon by knowing only its rise rate behavior vs altitude. In addition, the results can be used in balloon design to determine what rise rate function is needed to achieve specified wind accuracies. A table is presented which shows the balloon radius for smooth and roughened spheres needed to achieve 2 to 20 m/sec rise rates at 10 and 14 km altitudes.

  20. Accuracy improvement in dissipated energy measurement by using phase information

    NASA Astrophysics Data System (ADS)

    Shiozawa, D.; Inagawa, T.; Washio, T.; Sakagami, T.

    2017-04-01

    In this paper, a technique for improving the accuracy of a dissipated energy measurement based on the phase information—called the phase 2f lock-in infrared method—is proposed. In the conventional 2f lock-in infrared method, the dissipated energy is obtained as the double frequency component of the measured temperature change. In this work, a phase analysis of the double frequency component has been conducted. It is found that the double frequency component includes the influence of the energy dissipation and harmonic vibration of the fatigue testing machine, and the phase difference between the thermoelastic temperature change and the double frequency component is a specific value. The phase 2f lock-in method utilizes a specific phase of the dissipated energy and is effective for removing the noise component such as the thermoelastic temperature change due to the harmonic vibration of fatigue testing machine. This method provides an improvement in the accuracy of the fatigue-limit estimate and the detection of future crack initiation points based on the dissipated energy.

  1. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees.

    PubMed Central

    Buckland-Wright, J C; Macfarlane, D G; Williams, S A; Ward, R J

    1995-01-01

    OBJECTIVES--To improve the reproducibility and accuracy of joint space width (JSW) measurement as an assessment of cartilage loss in patients with osteoarthritis (OA) of the knee by determining how precision and accuracy of JSW measurement were altered by a computerised method of measurement, correction for radiographic magnification, radiography of the knee in the standing semiflexed view, and high definition macroradiography of the knee in the semiflexed view--taking JSW measurements from standard radiographs of OA knees in the extended view as the standard for comparison. METHODS--Twenty five OA and 10 nonarthritic knees were radiographed in the extended view and minimum JSW was measured manually. Conventional and x5 macroradiographs were taken in the semiflexed view. All radiographs were taken twice on the same day and repeated two weeks later. Automated computerised measurement of minimum JSW was obtained from digitally stored images of all radiographs. RESULTS--For medial compartment JSW measurements, computerised was more accurate than manual, correction for radiographic magnification improved precision and accuracy, measurements in the semiflexed view were more precise and accurate, and macroradiography increased measurement precision. For the lateral compartment JSW measurements, correction for radiographic magnification improved precision and accuracy, and the semiflexed view improved precision only. CONCLUSIONS--Protocols defining radiographic and mensural procedures are essential for quality control of knee radiography in the semiflexed view to permit accurate and reproducible measurement of JSW. Macroradiography provides greater precision of JSW measurement. Images PMID:7492235

  2. Accuracy of MRI-based Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl

    Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.

  3. Measuring Limb Volume: Accuracy and Reliability of Tape Measurement Versus Perometer Measurement.

    PubMed

    Sharkey, Amy R; King, Samuel W; Kuo, Rachel Y; Bickerton, Shixin B; Ramsden, Alexander J; Furniss, Dominic

    2017-09-28

    Accurate limb volume measurement is key in the assessment of outcomes in lymphedema microsurgery. There are two commonly used methods as follows: manual circumferential measurement (tape) or Perometer measurement. There are no data on the intra- and interclass correlation of either method, making it difficult to establish a gold standard of limb volume measurement. We aim to assess the intra- and interclass correlation of each method to establish the most appropriate method for clinical practice and future research studies, aiming to compare the accuracy and reliability of tape measurement as assessed against Perometer measurement. Student volunteers and experts (lymphedema practitioners) were each asked to perform repeat tape and Perometer measurements on the upper or lower limb of one healthy volunteer. Perometer measurements were globally more accurate than tape (average SE [Perometer]: 23.23 vs. 77.21 [tape]). For intraobserver reliability, experts outperformed students in all domains tested, with little difference in intraobserver reliability using tape or Perometer (average Cronbach's alpha 0.9597 [expert)] vs. 0.6033 [student]). We recommend that, for increased interobserver reliability, the Perometer provides a more reliable standard of limb volume measurement.

  4. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  5. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  6. New approach to accuracy enhancement and traceability realization of radius of curvature measurement

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Li, Fei; Liu, Wenli

    2012-10-01

    High accuracy radius of curvature (ROC) measurement of optical surfaces is usually realized by techniques such as autocollimation, interferometry and profilometry, with theoretical accuracy as high as 10-6. In practical application, significant discrepancy may exist in results obtained by different methods owing to figure error of measured surfaces. In this paper, mathematical models are built up to characterize the relationship between the ROC and the figure error as well as the aperture angle. Based on the models, equations for calculating the ROC accuracy are derived and tested on several ROC measuring methods. Experiments are carried out on a set of high quality spheres whose diameters are from 11mm to 93mm and roundness is from 0.03μm to 0.07μm, measured by instruments with top level accuracy, which are a length measuring machine, a profilometer and a homemade differential confocal system. Uncertainties are calculated and analyzed against several factors. The reason for the discrepancy between different methods is explained. An approach is also proposed which could reduce the uncertainty of ROC by 1~2 scales, making it possible to trace the results of ROC measuring instruments to the primary standard of length via diameter and roundness measurement method.

  7. Calibration of GPS based high accuracy speed meter for vehicles

    NASA Astrophysics Data System (ADS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-02-01

    GPS based high accuracy speed meter for vehicles is a special type of GPS speed meter which uses Doppler Demodulation of GPS signals to calculate the speed of a moving target. It is increasingly used as reference equipment in the field of traffic speed measurement, but acknowledged standard calibration methods are still lacking. To solve this problem, this paper presents the set-ups of simulated calibration, field test signal replay calibration, and in-field test comparison with an optical sensor based non-contact speed meter. All the experiments were carried out on particular speed values in the range of (40-180) km/h with the same GPS speed meter. The speed measurement errors of simulated calibration fall in the range of +/-0.1 km/h or +/-0.1%, with uncertainties smaller than 0.02% (k=2). The errors of replay calibration fall in the range of +/-0.1% with uncertainties smaller than 0.10% (k=2). The calibration results justify the effectiveness of the two methods. The relative deviations of the GPS speed meter from the optical sensor based noncontact speed meter fall in the range of +/-0.3%, which validates the use of GPS speed meter as reference instruments. The results of this research can provide technical basis for the establishment of internationally standard calibration methods of GPS speed meters, and thus ensures the legal status of GPS speed meters as reference equipment in the field of traffic speed metrology.

  8. Hyperfiltration Affects Accuracy of Creatinine eGFR Measurement

    PubMed Central

    Huang, Shih-Han S.; Sharma, Ajay P.; Yasin, Abeer; Lindsay, Robert M.; Clark, William F.

    2011-01-01

    Summary Background and objectives Surrogate markers such as creatinine, cystatin C (CysC), and beta trace protein (BTP) have been used to estimate GFR (eGFR). The accuracy of eGFR may be altered with hyperfiltration and differences in filtration fraction (FF). It is hypothesized that the accuracy of creatinine for eGFR may be affected by hyperfiltration and different effective renal plasma flow (ERPF). Design, setting, participants, & measurements A total of 127 pediatric patients with various renal diseases underwent simultaneous measurements of GFR using 51Cr-EDTA renal scan and ERPF (131I-hippurate clearance) to calculate the FF (FF = GFR/ERPF). The eGFRs were calculated using the commonly used Schwartz (creatinine), Filler (CysC), and Benlamri (BTP) formulas. Agreement of the eGFRs with the measured isotope GFRs was assessed by Bland–Altman plots. Correlation analysis was performed using nonparametric tests to compare FF with eGFR − GFR. Results The 127 children at a median age (with 25th percentile, 75th percentile) of 11.9 (8.5, 14.9) years had a mean 51Cr EDTA-GFR of 100.6 ± 32.1 ml/min per 1.73 m2 and a median 131I-hippurate clearance (ERPF) of 588 (398,739) ml/min per 1.73 m2. Mean FF was 17.7 ± 4.5% with no correlation between the FF and the error (eGFR − GFR) for CysC and BTP eGFR, whereas there was a significant negative correlation between the error for Schwartz eGFR and FF. Conclusions There is a significant negative correlation between the error for the Schwartz eGFR and the FF. CysC and BTP are not affected by differences in FF. PMID:20966120

  9. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; De Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2014-02-01

    A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  10. Accuracy of Blood Loss Measurement during Cesarean Delivery

    PubMed Central

    Doctorvaladan, Sahar V.; Jelks, Andrea T.; Hsieh, Eric W.; Thurer, Robert L.; Zakowski, Mark I.; Lagrew, David C.

    2017-01-01

    Objective This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland–Altman method. Results Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R2 = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R2 = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R2 = 0.304). Conclusion During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes. PMID:28497007

  11. Accuracy of Blood Loss Measurement during Cesarean Delivery.

    PubMed

    Doctorvaladan, Sahar V; Jelks, Andrea T; Hsieh, Eric W; Thurer, Robert L; Zakowski, Mark I; Lagrew, David C

    2017-04-01

    Objective This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland-Altman method. Results Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R(2) = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R(2) = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R(2) = 0.304). Conclusion During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes.

  12. Influence of spatial temperature distribution on high accuracy interferometric metrology

    NASA Astrophysics Data System (ADS)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  13. Accuracy of wind measurements using an airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1986-01-01

    Simulated wind fields and lidar data are used to evaluate two sources of airborne wind measurement error. The system is sensitive to ground speed and track angle errors, with accuracy required of the angle to within 0.2 degrees and of the speed to within 1 knot, if the recovered wind field is to be within five percent of the correct direction and 10 percent of the correct speed. It is found that errors in recovered wind speed and direction are dependent on wind direction relative to the flight path. Recovery of accurate wind fields from nonsimultaneous sampling errors requires that the lidar data be displaced to account for advection so that the intersections are defined by air parcels rather than fixed points in space.

  14. The Accuracy of Radio Interferometric Measurements of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Spieth, M. A.

    1985-01-01

    The accuracy of very long base interferometry earth rotation (UT1) measurements is examined by intercomparing TEMPO and POLARIS data for 1982 and the first half of 1983. None of these data are simultaneous, and so a proper intercomparison requires accounting for the scatter introduced by the rapid, unpredictable, UT1 variations driven by exchanges of angular momentum with the atmosphere. A statistical model of these variations, based on meteorological estimates of the Atmospheric Angular Momentum is derived, and the optimal linear (Kalman) smoother for this model is constructed. The scatter between smoothed and independent raw data is consistent with the residual formal errors, which do not depend upon the actual scatter of the UT1 data. This represents the first time that an accurate prediction of the scatter between UT1 data sets were possible.

  15. Investigation of measurement accuracy of factors used for detective quantum efficiency measurement in digital radiography.

    PubMed

    Kunitomo, Hiroshi; Koyama, Shuji; Higashide, Ryo; Ichikawa, Katsuhiro; Hattori, Masumi; Okada, Yoko; Hayashi, Norio; Sawada, Michito

    2014-07-01

    In the detective quantum efficiency (DQE) evaluation of detectors for digital radiography (DR) systems, physical image quality indices such as modulation transfer function (MTF) and normalized noise power spectrum (NNPS) need to be accurately measured to obtain highly accurate DQE evaluations. However, there is a risk of errors in these measurements. In this study, we focused on error factors that should be considered in measurements using clinical DR systems. We compared the incident photon numbers indicated in IEC 62220-1 with those estimated using a Monte Carlo simulation based on X-ray energy spectra measured employing four DR systems. For NNPS, influences of X-ray intensity non-uniformity, tube voltage and aluminum purity were investigated. The effects of geometric magnifications on MTF accuracy were also examined using a tungsten edge plate at distances of 50, 100 and 150 mm from the detector surface at a source-image receptor distance of 2000 mm. The photon numbers in IEC 62220-1 coincided with our estimates of values, with error rates below 2.5%. Tube voltage errors of approximately ±5 kV caused NNPS errors of within 1.0%. The X-ray intensity non-uniformity caused NNPS errors of up to 2.0% at the anode side. Aluminum purity did not affect the measurement accuracy. The maximum MTF reductions caused by geometric magnifications were 3.67% for 1.0-mm X-ray focus and 1.83% for 0.6-mm X-ray focus.

  16. New solution for the high accuracy alignment of accelerator components

    NASA Astrophysics Data System (ADS)

    Caiazza, D.; Catalan Lasheras, N.; Mainaud Durand, H.; Modena, M.; Sanz, C.; Tshilumba, D.; Vlachakis, V.; Wendt, M.; Zorzetti, S.

    2017-08-01

    Several state-of-the-art metrology measurement methods have been investigated and combined for a fiducialization of accelerator components in the micrometric regime. The PACMAN project at CERN applied stretched-wire measurement methods to Compact Linear Collider quadrupole and cavity beam position monitor prototypes, to locate their magnetic, respectively, electromagnetic, axis using a dedicated test stand and to determine the position of the wire with respect to external alignment targets (fiducials) testing different methods, such as coordinate measuring machine measurements and microtriangulation. Further studies have been performed using a nanopositioning system, verifying the absolute accuracy and repeatability of the fiducialization method within a few micrometers.

  17. Accuracy Improvement on the Measurement of Human-Joint Angles.

    PubMed

    Meng, Dai; Shoepe, Todd; Vejarano, Gustavo

    2016-03-01

    A measurement technique that decreases the root mean square error (RMSE) of measurements of human-joint angles using a personal wireless sensor network is reported. Its operation is based on virtual rotations of wireless sensors worn by the user, and it focuses on the arm, whose position is measured on 5 degree of freedom (DOF). The wireless sensors use inertial magnetic units that measure the alignment of the arm with the earth's gravity and magnetic fields. Due to the biomechanical properties of human tissue (e.g., skin's elasticity), the sensors' orientation is shifted, and this shift affects the accuracy of measurements. In the proposed technique, the change of orientation is first modeled from linear regressions of data collected from 15 participants at different arm positions. Then, out of eight body indices measured with dual-energy X-ray absorptiometry, the percentage of body fat is found to have the greatest correlation with the rate of change in sensors' orientation. This finding enables us to estimate the change in sensors' orientation from the user's body fat percentage. Finally, an algorithm virtually rotates the sensors using quaternion theory with the objective of reducing the error. The proposed technique is validated with experiments on five different participants. In the DOF, whose error decreased the most, the RMSE decreased from 2.20(°) to 0.87(°). This is an improvement of 60%, and in the DOF whose error decreased the least, the RMSE decreased from 1.64(°) to 1.37(°). This is an improvement of 16%. On an average, the RMSE improved by 44%.

  18. Quantitative evaluation of three-dimensional facial scanners measurement accuracy for facial deformity

    NASA Astrophysics Data System (ADS)

    Zhao, Yi-jiao; Xiong, Yu-xue; Sun, Yu-chun; Yang, Hui-fang; Lyu, Pei-jun; Wang, Yong

    2015-07-01

    Objective: To evaluate the measurement accuracy of three-dimensional (3D) facial scanners for facial deformity patients from oral clinic. Methods: 10 patients in different types of facial deformity from oral clinical were included. Three 3D digital face models for each patient were obtained by three facial scanners separately (line laser scanner from Faro for reference, stereophotography scanner from 3dMD and structured light scanner from FaceScan for test). For each patient, registration based on Iterative Closest Point (ICP) algorithm was executed to align two test models (3dMD data & Facescan data) to the reference models (Faro data in high accuracy) respectively. The same boundaries on each pair models (one test and one reference models) were obtained by projection function in Geomagic Stuido 2012 software for trimming overlapping region, then 3D average measurement errors (3D errors) were calculated for each pair models also by the software. Paired t-test analysis was adopted to compare the 3D errors of two test facial scanners (10 data for each group). 3D profile measurement accuracy (3D accuracy) that is integrated embodied by average value and standard deviation of 10 patients' 3D errors were obtained by surveying analysis for each test scanner finally. Results: 3D accuracies of 2 test facial scanners in this study for facial deformity were 0.44+/-0.08 mm and 0.43+/-0.05 mm. The result of structured light scanner was slightly better than stereophotography scanner. No statistical difference between them. Conclusions: Both test facial scanners could meet the accuracy requirement (0.5mm) of 3D facial data acquisition for oral clinic facial deformity patients in this study. Their practical measurement accuracies were all slightly lower than their nominal accuracies.

  19. Theoferometer for High Accuracy Optical Alignment and Metrology

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Leviton, Doug; Koterba, Seth

    2004-01-01

    The accurate measurement of the orientation of optical parts and systems is a pressing problem for upcoming space missions, such as stellar interferometers, requiring the knowledge and maintenance of positions to the sub-arcsecond level. Theodolites, the devices commonly used to make these measurements, cannot provide the needed level of accuracy. This paper describes the design, construction, and testing of an interferometer system to fill the widening gap between future requirements and current capabilities. A Twyman-Green interferometer mounted on a 2 degree of freedom rotation stage is able to obtain sub-arcsecond, gravity-referenced tilt measurements of a sample alignment cube. Dubbed a 'theoferometer,' this device offers greater ease-of-use, accuracy, and repeatability than conventional methods, making it a suitable 21st-century replacement for the theodolite.

  20. Accuracy of airspeed measurements and flight calibration procedures

    NASA Technical Reports Server (NTRS)

    Huston, Wilber B

    1948-01-01

    The sources of error that may enter into the measurement of airspeed by pitot-static methods are reviewed in detail together with methods of flight calibration of airspeed installations. Special attention is given to the problem of accurate measurements of airspeed under conditions of high speed and maneuverability required of military airplanes. (author)

  1. Accuracy of methods to measure femoral head penetration within metal-backed acetabular components.

    PubMed

    Callary, Stuart A; Solomon, Lucian B; Holubowycz, Oksana T; Campbell, David G; Howie, Donald W

    2016-06-30

    A number of different software programs are used to investigate the in vivo wear of polyethylene bearings in total hip arthroplasty. With wear rates below 0.1 mm/year now commonly being reported for highly cross-linked polyethylene (XLPE) components, it is important to identify the accuracy of the methods used to measure such small movements. The aims of this study were to compare the accuracy of current software programs used to measure two-dimensional (2D) femoral head penetration (FHP) and to determine whether the accuracy is influenced by larger femoral heads or by different methods of representing the acetabular component within radiostereometric analysis (RSA). A hip phantom was used to compare known movements of the femoral head within a metal-backed acetabular component to FHP measured radiographically using RSA, Hip Analysis Suite (HAS), PolyWare, Ein Bild Roentgen Analyse (EBRA), and Roentgen Monographic Analysis Tool (ROMAN). RSA was significantly more accurate than the HAS, PolyWare, and ROMAN methods when measuring 2D FHP with a 28 mm femoral head. Femoral head size influenced the accuracy of HAS and ROMAN 2D FHP measurements, EBRA proximal measurements, and RSA measurements in the proximal and anterior direction. The use of different acetabular reference segments did not influence accuracy of RSA measurements. The superior accuracy and reduced variability of RSA wear measurements allow much smaller cohorts to be used in RSA clinical wear studies than those utilizing other software programs. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  2. Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"

    NASA Astrophysics Data System (ADS)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".

  3. Trade-offs between accuracy measures for electronic healthcare data algorithms

    PubMed Central

    Chubak, Jessica; Pocobelli, Gaia; Weiss, Noel S.

    2011-01-01

    Objective We review uses of electronic healthcare data algorithms, measures of their accuracy, and reasons for prioritizing one measure of accuracy over another. Study design and setting We use real studies to illustrate the variety of uses of automated healthcare data in epidemiologic and health services research. Hypothetical examples show the impact of different types of misclassification when algorithms are used to ascertain exposure and outcome. Results High algorithm sensitivity is important for reducing the costs and burdens associated with the use of a more accurate measurement tool, for enhancing study inclusiveness, and for ascertaining common exposures. High specificity is important for classifying outcomes. High positive predictive value is important for identifying a cohort of persons with a condition of interest but that need not be representative of or include everyone with that condition. Finally, a high negative predictive value is important for reducing the likelihood that study subjects have an exclusionary condition. Conclusion Epidemiologists must often prioritize one measure of accuracy over another when generating an algorithm for use in their study. We recommend researchers publish all tested algorithms—including those without acceptable accuracy levels—to help future studies refine and apply algorithms that are well-suited to their objectives. PMID:22197520

  4. Automated planimetric quality control in high accuracy airborne laser scanning surveys

    NASA Astrophysics Data System (ADS)

    Vosselman, George

    2012-11-01

    With the increasing point densities of airborne laser scanning surveys, the applications of the generated point clouds have evolved from the production of digital terrain models to 3D modelling of a wide variety of objects. Likewise in quality control procedures criteria for height accuracy are extended with measures to describe the planimetric accuracy. This paper introduces a measure for the potential accuracy of outlining objects in a point cloud. It describes how this accuracy can be verified with the use of ridge lines of gable roofs in strip overlaps. Because of the high accuracy of modern laser scanning surveys, the influence of roof tiles onto the estimation of ridge lines is explicitly modelled. New selection criteria are introduced that allow an automated, reliable and accurate extraction of ridge lines from point clouds. The applicability of the procedure is demonstrated in a pilot project in an area covering 100,000 ha with around 20 billion points.

  5. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  6. High accuracy fuel flowmeter. Phase 2C and 3: The mass flowrate calibration of high accuracy fuel flowmeters

    NASA Technical Reports Server (NTRS)

    Craft, D. William

    1992-01-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  7. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  8. Dependence of measurement accuracy on the birefringence of PANDA fiber Bragg gratings in distributed simultaneous strain and temperature sensing.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi; Kageyama, Kazuro

    2017-02-20

    By both simulation and experiment, we studied the relationship of the measurement accuracy and the birefringence of the distributed simultaneous strain and temperature sensor using polarization-maintaining fiber Bragg gratings (PANDA-FBGs). The PANDA-FBGs were applied to an optical frequency domain reflectometry (OFDR) which is capable of distributed measurement at high spatial resolution and sampling rate. The simulated results had agreement with the experimental results that the measurement accuracy of both strain and temperature were improved by increasing the birefringence. Additionally, the efficiency of the accuracy improvements decreased when accuracy increased.

  9. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    NASA Astrophysics Data System (ADS)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  10. Accuracy enhancement of three-dimensional surface shape measurement using curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhao, Biyu; Yue, Huimin; Wu, Yuxiang; Ou, Zhonghua; Liu, Yong

    2014-09-01

    Fringe projection profilometry (FPP) has been widely used for 3-D surface shape measurement with the features of high accuracy, non-contact and fast speed. In FPP, the phase distribution is extracted from the captured distorted fringe pattern, and the height information could subsequently be obtained by the phase-height relation. In actual measurement, the captured pattern usually contains noises, which will influence the precision of the reconstructed result. In order to increase the accuracy of measurement, noise reduction procedure to these fringe patterns is required. The existing noise reducing methods (such as Fourier transform, Wavelet transform) have certain effect. However, they will eliminate some high frequencies generated by a surface with sharp change and make the image blurring. In this paper, we use Curvelet transform to enhance the accuracy of measurement in FPP. The Curvelet transform has the ability of multiscale and multidirection analysis in image processing. It has better descriptions of edges and detailed information of images. Simulations and the experimental results show that the Curvelet transform has an excellent performance in image denoising and it has a wonderful effect on accuracy enhancement of complex surface shape measurement in FPP.

  11. Models of Accuracy in Repeated-Measures Designs

    ERIC Educational Resources Information Center

    Dixon, Peter

    2008-01-01

    Accuracy is often analyzed using analysis of variance techniques in which the data are assumed to be normally distributed. However, accuracy data are discrete rather than continuous, and proportion correct are constrained to the range 0-1. Monte Carlo simulations are presented illustrating how this can lead to distortions in the pattern of means.…

  12. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.

  13. Accuracy and reliability of cetacean cranial measurements using computed tomography three dimensional volume rendered images

    PubMed Central

    Yuen, Adams Hei Long; Tsui, Henry Chun Lok; Kot, Brian Chin Wing

    2017-01-01

    Computed tomography (CT) has become more readily available for post-mortem examination, offering an alternative to cetacean cranial measurements obtained manually. Measurement error may result in possible variation in cranial morphometric analysis. This study aimed to evaluate the accuracy and reliability of cetacean cranial measurements obtained by CT three-dimensional volume rendered images (3DVRI). CT scans of 9 stranded cetaceans were performed. The acquired images were reconstructed using bone reconstruction algorithms. The reconstructed crania obtained by 3DVRI were visualized after excluding other body structures. Accuracy of cranial measurements obtained by CT 3DVRI was evaluated by comparing with that obtained by manual approach as standard of reference. Reproducibility and repeatability of cranial measurements obtained by CT 3DVRI were evaluated using intraclass correlation coefficient (ICC). The results demonstrated that cranial measurements obtained by CT 3DVRI yielded high accuracy (88.05%– 99.64%). High reproducibility (ICC ranged from 0.897 to 1.000) and repeatability (ICC ranged from 0.919 to 1.000 for operator 1 and ICC range from 0.768 to 1.000 for operator 2) were observed in cranial measurements obtained by CT 3DVRI. Therefore, cranial measurements obtained by CT 3DVRI could be considered as virtual alternative to conventional manual approach. This may help the development of a normative reference for current cranial maturity and discriminant analysis studies in cetaceans. PMID:28329016

  14. Accuracy and reliability of cetacean cranial measurements using computed tomography three dimensional volume rendered images.

    PubMed

    Yuen, Adams Hei Long; Tsui, Henry Chun Lok; Kot, Brian Chin Wing

    2017-01-01

    Computed tomography (CT) has become more readily available for post-mortem examination, offering an alternative to cetacean cranial measurements obtained manually. Measurement error may result in possible variation in cranial morphometric analysis. This study aimed to evaluate the accuracy and reliability of cetacean cranial measurements obtained by CT three-dimensional volume rendered images (3DVRI). CT scans of 9 stranded cetaceans were performed. The acquired images were reconstructed using bone reconstruction algorithms. The reconstructed crania obtained by 3DVRI were visualized after excluding other body structures. Accuracy of cranial measurements obtained by CT 3DVRI was evaluated by comparing with that obtained by manual approach as standard of reference. Reproducibility and repeatability of cranial measurements obtained by CT 3DVRI were evaluated using intraclass correlation coefficient (ICC). The results demonstrated that cranial measurements obtained by CT 3DVRI yielded high accuracy (88.05%- 99.64%). High reproducibility (ICC ranged from 0.897 to 1.000) and repeatability (ICC ranged from 0.919 to 1.000 for operator 1 and ICC range from 0.768 to 1.000 for operator 2) were observed in cranial measurements obtained by CT 3DVRI. Therefore, cranial measurements obtained by CT 3DVRI could be considered as virtual alternative to conventional manual approach. This may help the development of a normative reference for current cranial maturity and discriminant analysis studies in cetaceans.

  15. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  16. Accuracy and validity of IK4 handheld video keratometer measurements in children

    PubMed Central

    Harvey, Erin M.; Miller, Joseph M.; Schwiegerling, Jim; Clifford-Donaldson, Candice E.; Green, Tina K.; Messer, Dawn H.; Dobson, Velma

    2011-01-01

    The Infant Keratometer (IK4) is a custom handheld instrument that was designed specifically to allow measurement of corneal astigmatism in infants as young as 6 months of age. In this study, accuracy of IK4 measurements using standard toric surfaces was within 0.25 D. Validity measurements obtained in 860 children aged 3–7 years demonstrated slightly higher astigmatism measurements in the IK4 than in the Retinomax K+. Measurement success was 98% using the IK4. The IK4 may prove to be clinically useful for screening children as young as 3 years of age at high risk for corneal astigmatism. PMID:21907130

  17. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  18. Precision and Accuracy of Topography Measurements on Europa

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Hurford, T. A.; Foley, M. A.; Varland, K.

    2007-03-01

    Reports of the death of the melt-through model for chaotic terrain on Europa have been greatly exaggerated, to paraphrase Mark Twain. They are based on topographic maps of insufficient quantitative accuracy and precision.

  19. Mechanism of [m+h]+ formation in atmospheric pressure photoionization mass spectrometry: identification of propionitrile in acetonitrile with high mass accuracy measurement and tandem mass spectrometry and evidence for its involvement in the protonation phenomenon.

    PubMed

    Kamel, Amin; Jeanville, Patrick; Colizza, Kevin; J-Rivera, Lauren Elizabeth

    2008-11-01

    The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.

  20. Accuracy of Linear Measurements Using Cone Beam Computed Tomography in Comparison with Clinical Measurements

    PubMed Central

    Rokn, Amir Reza; Hashemi, Kazem; Akbari, Solmaz; Kharazifard, Mohammad Javad; Barikani, Hamidreza; Panjnoosh, Mehrdad

    2016-01-01

    Objectives: This study sought to evaluate the accuracy and errors of linear measurements of mesiodistal dimensions of Kennedy Class III edentulous space using cone beam computed tomography (CBCT) in comparison with clinical measurements. Materials and Methods: Nineteen Kennedy Class III dental arches were evaluated. An impression was made of each dental arch and poured with dental stone. The distance was measured on dental cast using a digital Vernier caliper with an accuracy of 0.1mm and on CBCT scans. Finally, the linear mesiodistal measurements were compared and the accuracy of CBCT technique was evaluated by calculating absolute value of errors, intra-class correlation coefficient and simple linear regression model. Results: In comparison with the cast method, estimation of size on CBCT scans had an error of −8.46% (underestimation) to 5.21% (overestimation). In 26.5% of the cases, an accepted error of ±1% was found. The absolute value of errors was found to be in the range of 0.21–8.46mm with an average value of 2.86 ±2.30mm. Conclusions: Although the measurements revealed statistically significant differences, this does not indicate a lower accuracy for the CBCT technique. In fact, CBCT can provide some information as a paraclinical tool and the clinician can combine these data with clinical data and achieve greater accuracy. Undoubtedly, calibration of data collected by clinical and paraclinical techniques and the clinician’s expertise in use of CBCT software programs can increase the accuracy of implant placement. PMID:28127327

  1. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  2. Nanometer Accuracy Amplitude Modulation Sensor Technique Used For Roundness Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, H.

    2006-10-01

    This paper introduces the advantage of digital phase sensitivity demodulation technique based on analyzing the errors of the analog phase sensitivity demodulation technique. And the digital phase sensitivity demodulation technique is used in the amplitude modulation sensor circuit for roundness measurement. The digital phase sensitivity demodulation technique can simplify the circuit design and improve the reliability. The experiment shows the amplitude modulation sensor circuit using the digital phase sensitivity demodulation technique can reach nanometer precision, so it can be used to accomplish the high precision roundness measurement.

  3. Magnetic bearing wheels for very high pointing accuracy satellite missions

    NASA Technical Reports Server (NTRS)

    Roland, J. P.

    1992-01-01

    Inertia wheels used as actuators in Attitude Control Systems remain the most frequently encountered solution for all types of scientific or military space missions. The magnetic levitation of the flywheel leads to increased performance, which will be necessary for the high pointing accuracy missions in the next decade. For military and commercial earth observation missions, for optical link telecommunication missions, as well as for metallurgical process missions under microgravity conditions, the need for platform stability will become stronger and stronger. Work in progress on the Magnetic Bearing Reaction Wheel, dedicated to the HELIOS military earth observation satellite, is presented. The HELIOS program is very demanding in terms of pointing accuracy. The main features of this wheel and its overall characteristics are given.

  4. Magnetic bearing wheels for very high pointing accuracy satellite missions

    NASA Technical Reports Server (NTRS)

    Roland, J. P.

    1992-01-01

    Inertia wheels used as actuators in Attitude Control Systems remain the most frequently encountered solution for all types of scientific or military space missions. The magnetic levitation of the flywheel leads to increased performance, which will be necessary for the high pointing accuracy missions in the next decade. For military and commercial earth observation missions, for optical link telecommunication missions, as well as for metallurgical process missions under microgravity conditions, the need for platform stability will become stronger and stronger. Work in progress on the Magnetic Bearing Reaction Wheel, dedicated to the HELIOS military earth observation satellite, is presented. The HELIOS program is very demanding in terms of pointing accuracy. The main features of this wheel and its overall characteristics are given.

  5. A high-accuracy map of global terrain elevations

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai; Ikeshima, Daiki; Tawatari, Ryunosuke; Yamaguchi, Tomohiro; O'Loughlin, Fiachra; Neal, Jeffery C.; Sampson, Christopher C.; Kanae, Shinjiro; Bates, Paul D.

    2017-06-01

    Spaceborne digital elevation models (DEMs) are a fundamental input for many geoscience studies, but they still include nonnegligible height errors. Here we introduce a high-accuracy global DEM at 3″ resolution ( 90 m at the equator) by eliminating major error components from existing DEMs. We separated absolute bias, stripe noise, speckle noise, and tree height bias using multiple satellite data sets and filtering techniques. After the error removal, land areas mapped with ±2 m or better vertical accuracy were increased from 39% to 58%. Significant improvements were found in flat regions where height errors larger than topography variability, and landscapes such as river networks and hill-valley structures, became clearly represented. We found the topography slope of previous DEMs was largely distorted in most of world major floodplains (e.g., Ganges, Nile, Niger, and Mekong) and swamp forests (e.g., Amazon, Congo, and Vasyugan). The newly developed DEM will enhance many geoscience applications which are terrain dependent.

  6. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.

  7. High accuracy operon prediction method based on STRING database scores

    PubMed Central

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-01-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412–D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/. PMID:20385580

  8. Teaching High-Accuracy Global Positioning System to Undergraduates Using Online Processing Services

    ERIC Educational Resources Information Center

    Wang, Guoquan

    2013-01-01

    High-accuracy Global Positioning System (GPS) has become an important geoscientific tool used to measure ground motions associated with plate movements, glacial movements, volcanoes, active faults, landslides, subsidence, slow earthquake events, as well as large earthquakes. Complex calculations are required in order to achieve high-precision…

  9. Improving the accuracy of smart devices to measure noise exposure.

    PubMed

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  10. Precision and accuracy of TearLab osmometer in measuring osmolarity of salt solutions.

    PubMed

    Yoon, Dan; Gadaria-Rathod, Neha; Oh, Cheongeun; Asbell, Penny A

    2014-12-01

    The purpose of this study was to examine the inherent precision and accuracy of TearLab Osmolarity System using salt solutions, including solutions of very high osmolarity (>360 mOsm/L). Ten salt solutions with osmolarity between 286 mOsm/L and 394 mOsm/L (increments of 12 mOsm/L) plus an additional solution of 400 mOsm/L were tested twice on both the TearLab osmometer and a freezing point depression osmometer. For precision, we compared the two repeated osmolarity measurements of 11 solutions obtained from TearLab. For accuracy, we compared the averaged osmolarity measurements obtained from TearLab to those from the freezing point depression osmometer. For both precision and accuracy, Bland-Altman test of agreement was used. For precision, the upper 95% limit of agreement was 4.7 mOsm/L, and the lower 95% limit of agreement was -7.1 mOsm/L. The repeatability coefficient was 5.9 mOsm/L. For accuracy, the upper 95% limit of agreement was 4.8 mOsm/L and the lower 95% limit of agreement was -5.3 mOsm/L. The present study is the first study to demonstrate that the TearLab in situ osmometer can precisely and accurately measure osmolarity of salt solutions, including those with very high osmolarity. Future studies to evaluate the precision and the accuracy of the machine in measuring complex fluids, such as tears, need to be done, and the clinical significance of measuring tear osmolarity in patients needs to be further determined.

  11. Radiographic total disc replacement angle measurement accuracy using the Oxford Cobbometer: precision and bias

    PubMed Central

    Stafylas, Kosmas; McManus, John; Schizas, Constantin

    2008-01-01

    Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4–L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4° between readings at any individual position, and as high as 6° between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs. PMID:18496719

  12. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.

    PubMed

    Wilson, Derek C; Niosi, Christina A; Zhu, Qingan A; Oxland, Thomas R; Wilson, David R

    2006-01-01

    We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.

  13. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  14. Complexity, Accuracy and Fluency: Definitions, Measurement and Research

    ERIC Educational Resources Information Center

    Housen, Alex; Kuiken, Folkert; Vedder, Ineke

    2012-01-01

    The theme of this volume, complexity, accuracy and fluency (CAF) as dimensions of second language production, proficiency and development, represents a thriving area of research that addresses two general questions that are at the heart of many studies in second language acquisition and applied linguistics: What makes a second language (L2)…

  15. Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app.

    PubMed

    Wang, Sheila C; Anderson, John A E; Evans, Robyn; Woo, Kevin; Beland, Benjamin; Sasseville, Denis; Moreau, Linda

    2017-01-01

    Current wound assessment practices are lacking on several measures. For example, the most common method for measuring wound size is using a ruler, which has been demonstrated to be crude and inaccurate. An increase in periwound temperature is a classic sign of infection but skin temperature is not always measured during wound assessments. To address this, we have developed a smartphone application that enables non-contact wound surface area and temperature measurements. Here we evaluate the inter-rater reliability and accuracy of this novel point-of-care wound assessment tool. The wounds of 87 patients were measured using the Swift Wound app and a ruler. The skin surface temperature of 37 patients was also measured using an infrared FLIR™ camera integrated with the Swift Wound app and using the clinically accepted reference thermometer Exergen DermaTemp 1001. Accuracy measurements were determined by assessing differences in surface area measurements of 15 plastic wounds between a digital planimeter of known accuracy and the Swift Wound app. To evaluate the impact of training on the reproducibility of the Swift Wound app measurements, three novice raters with no wound care training, measured the length, width and area of 12 plastic model wounds using the app. High inter-rater reliabilities (ICC = 0.97-1.00) and high accuracies were obtained using the Swift Wound app across raters of different levels of training in wound care. The ruler method also yielded reliable wound measurements (ICC = 0.92-0.97), albeit lower than that of the Swift Wound app. Furthermore, there was no statistical difference between the temperature differences measured using the infrared camera and the clinically tested reference thermometer. The Swift Wound app provides highly reliable and accurate wound measurements. The FLIR™ infrared camera integrated into the Swift Wound app provides skin temperature readings equivalent to the clinically tested reference thermometer. Thus, the Swift

  16. [Accuracy analysis on a sort of polarized measurement in remote sensing].

    PubMed

    Chen, Li-gang; Hong, Jin; Qiao, Yan-li; Sun, Xiao-bing; Wang, Yuan-jun

    2008-10-01

    Angular error of polarizer in polarimetric measurement is an important element affecting the measurement accuracy of degree of polarization, so angular error of polarizer should be considered in remote sensing of high-accuracy quantitative polarization. Simulation study shows that polarimetric measurement is relative to the polarization state (polarization angle or degree of polarization) of incident light in a specific measurement system of polarization. In the measurement mode of polarizer setting (0 degree, 60 degrees, 120 degrees), there is a maximum error of polarization measurement at the 0 degree or 180 degrees polarization angle while a minimum error at the 30 degrees, 90 degrees and 150 degrees polarization angle; In the measurement mode of polarizer setting (0 degree, 45 degrees, 90 degrees), there is a maximum error of polarization measurement near the 45 degrees polarization angle while a minimum error at the 0 degree, 90 degrees and 135 degrees polarization angle. The larger degree of polarization of incident light often contributes to the bigger measurement error except for incident light with several polarization angles. So the polarization measurement may be evaluated by the average degree of polarizatioo of linearly polarized light introduced in this paper. It is indicated that the measurement mode of polarizer setting (0 degree, 60 degrees, 120 degrees) is better than that of (0 degree, 45 degrees, 90 degrees).

  17. Accuracy and reliability of facial soft tissue depth measurements using cone beam computer tomography.

    PubMed

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O; Ren, Yijin

    2010-06-15

    It is important to have accurate and reliable measurements of soft tissue thickness for specific landmarks of the face and scalp when producing a facial reconstruction. In the past several methods have been created to measure facial soft tissue thickness (FSTT) in cadavers and in the living. The conventional spiral CT is mostly used to determine the FSTT but is associated with high radiation doses. The cone beam CT (CBCT) is a relatively new computer tomography system that focuses on head and neck regions and has much lower radiation doses. The aim of this study is to determine the accuracy and reliability of CBCT scans to measure the soft tissue thicknesses of the face. Seven cadaver heads were used. Eleven soft tissue landmarks were identified on each head and a punch hole was made on each landmark using a dermal biopsy punch. The seven cadaver heads were scanned in the CBCT with 0.3 and 0.4mm resolution. The FSTT at the 11 different sites (soft tissue landmarks) were measured using SimPlant-ortho volumetric software. These measurements were compared to the physical measurements. Statistical analysis for the reliability was done by means of the interclass coefficient (ICC) and the accuracy by means of the absolute error (AE) and absolute percentage error (APE). The intra-observer (0.976-0.999) and inter-observer (0.982-0.997) correlations of the CBCT and physical measurements were very high. There was no clinical significant difference between the measurements made on the CBCT images and the physical measurements. Increasing the voxel size from 0.4 to 0.3mm resulted in a slight increase of accuracy. Cone beam CT images of the face using routine scanning protocols are reliable for measuring soft tissue thickness in the facial region and give a good representation of the facial soft tissues. For more accurate data collection the 0.3mm voxel size should be considered.

  18. Primary measurement of total ultrasonic power with improved accuracy in rf voltage measurement.

    PubMed

    Dubey, P K; Kumar, Ashok; Kumar, Yudhisther; Gupta, Reeta; Joshi, Deepa

    2010-10-01

    Out of the various existing ultrasonic power measurement techniques, the radiation force balance method using microbalance is most widely used in low power (below 1 W) regime. The major source of uncertainty associated with this technique is the error in ac voltage measurement applied to the transducer for the generation of ultrasonic waves. The sources that deteriorate the ac voltage measurement accuracy include cable length and impedance mismatch. We introduce a new differential peak to peak measurement approach to reduce the ac voltage measurement error. The method holds the average peak amplitude of each polarity. Ultralow offset difference amplifier is used to measure peak to peak voltage. The method is insensitive to the variations in the dc offset of the source. The functionality of this method has been tested and compared with the conventional rf voltage measurement method. The output of this proposed technique is dc, which can be measured with an error of less than 0.1%.

  19. Primary measurement of total ultrasonic power with improved accuracy in rf voltage measurement

    NASA Astrophysics Data System (ADS)

    Dubey, P. K.; Kumar, Ashok; Kumar, Yudhisther; Gupta, Reeta; Joshi, Deepa

    2010-10-01

    Out of the various existing ultrasonic power measurement techniques, the radiation force balance method using microbalance is most widely used in low power (below 1 W) regime. The major source of uncertainty associated with this technique is the error in ac voltage measurement applied to the transducer for the generation of ultrasonic waves. The sources that deteriorate the ac voltage measurement accuracy include cable length and impedance mismatch. We introduce a new differential peak to peak measurement approach to reduce the ac voltage measurement error. The method holds the average peak amplitude of each polarity. Ultralow offset difference amplifier is used to measure peak to peak voltage. The method is insensitive to the variations in the dc offset of the source. The functionality of this method has been tested and compared with the conventional rf voltage measurement method. The output of this proposed technique is dc, which can be measured with an error of less than 0.1%.

  20. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  1. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of NIST...

  2. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of NIST...

  3. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of NIST...

  4. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of NIST...

  5. Accuracy of five electronic pedometers for measuring distance walked.

    PubMed

    Bassett, D R; Ainsworth, B E; Leggett, S R; Mathien, C A; Main, J A; Hunter, D C; Duncan, G E

    1996-08-01

    This is a three-part study that examined the accuracy of five brands of electronic pedometers (Freestyle Pacer, Eddie Bauer, L.L. Bean, Yamax, and Accusplit) under a variety of different conditions. In Part I, 20 subjects walked a 4.88-km sidewalk course while wearing two devices of the same brand (on the left and right side of the body) for each of five different trials. There were significant differences among pedometers (P < 0.05), with the Yamax, Pacer, and Accusplit approximating the actual distance more closely than the other models. The Yamax pedometers showed close agreement, but the left and right Pacer pedometers differed significantly (P = 0.0003) and the Accusplit displayed a similar trend (P = 0.0657). In Part II, the effects of walking surface on pedometer accuracy were examined. Ten of the original subjects completed an additional five trials around a 400-m rubberized outdoor track. The devices showed similar values for sidewalk and track surfaces. In Part III, the effects of walking speed on pedometer accuracy were examined. Ten different subjects walked on a treadmill at various speeds (54, 67, 80, 94, and 107 m.min-1). Pedometers that displayed both distance and number of steps were examined. The Yamax was more accurate than the Pacer and Eddie Bauer at slow-to-moderate speeds (P < 0.05), though no significant differences were seen at the fastest speed. While there are variations among brands in terms of accuracy, electronic pedometers may prove useful in recording walking activities in free-living populations.

  6. Highly Integrated High Accuracy and Resolution Optical Encoder for Space Application

    NASA Astrophysics Data System (ADS)

    Talvat, T.; Bouyeron, L.; Grass, A.; Gibard, D.; Privat, M.

    2015-09-01

    Optical encoders are preferred in Space mechanism applications which require high resolution and accuracy. The size minimization (diameter, mass) becomes a stringent driver for future missions whereas applicable standards require bulky high reliability electronics. Therefore some encoders, designed in the 2000s and incorporating C.O.T.S. cannot be upgraded while maintaining the same interface requirements.To overcome that concern, a new mixed-signal ASIC is developed by ID-MOS (FR), under CODEHAMP specification, with the support of CNES. It will compensate the lack of space by an increased integration, guarantee independence from ITAR and EAR regulations and immunize the encoder to SEE.In parallel, CODECHAMP developed, with the support of Airbus Defence and Space (FR-Th Blais and F Di Gesu), a new accuracy measurement mean for high resolution optical encoders. It is a basic weight pendulum, not requiring any auxiliary metrology, which provides the high frequency spatial error over a limited angular range (typically 20°).

  7. Positioning Accuracy in Otosurgery Measured with Optical Tracking

    PubMed Central

    Óvári, Attila; Neményi, Dóra; Just, Tino; Schuldt, Tobias; Buhr, Anne; Mlynski, Robert; Csókay, András; Pau, Hans-Wilhelm; Valálik, István

    2016-01-01

    Objectives To assess positioning accuracy in otosurgery and to test the impact of the two-handed instrument holding technique and the instrument support technique on surgical precision. To test an otologic training model with optical tracking. Study Design In total, 14 ENT surgeons in the same department with different levels of surgical experience performed static and dynamic tasks with otologic microinstruments under simulated otosurgical conditions. Methods Tip motion of the microinstrument was registered in three dimensions by optical tracking during 10 different tasks simulating surgical steps such as prosthesis crimping and dissection of the middle ear using formalin-fixed temporal bone. Instrument marker trajectories were compared within groups of experienced and less experienced surgeons performing uncompensated or compensated exercises. Results Experienced surgeons have significantly better positioning accuracy than novice ear surgeons in terms of mean displacement values of marker trajectories. The instrument support and the two-handed instrument holding techniques significantly reduce surgeons’ tremor. The laboratory set-up presented in this study provides precise feedback for otosurgeons about their surgical skills and proved to be a useful device for otosurgical training. Conclusions Simple tremor compensation techniques may offer trainees the potential to improve their positioning accuracy to the level of more experienced surgeons. Training in an experimental otologic environment with optical tracking may aid acquisition of technical skills in middle ear surgery and potentially shorten the learning curve. Thus, simulated exercises of surgical steps should be integrated into the training of otosurgeons. PMID:27027500

  8. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  9. Spectral reflectance inversion with high accuracy on green target

    NASA Astrophysics Data System (ADS)

    Jiang, Le; Yuan, Jinping; Li, Yong; Bai, Tingzhu; Liu, Shuoqiong; Jin, Jianzhou; Shen, Jiyun

    2016-09-01

    Using Landsat-7 ETM remote sensing data, the inversion of spectral reflectance of green wheat in visible and near infrared waveband in Yingke, China is studied. In order to solve the problem of lower inversion accuracy, custom atmospheric conditions method based on moderate resolution transmission model (MODTRAN) is put forward. Real atmospheric parameters are considered when adopting this method. The atmospheric radiative transfer theory to calculate atmospheric parameters is introduced first and then the inversion process of spectral reflectance is illustrated in detail. At last the inversion result is compared with simulated atmospheric conditions method which was a widely used method by previous researchers. The comparison shows that the inversion accuracy of this paper's method is higher in all inversion bands; the inversed spectral reflectance curve by this paper's method is more similar to the measured reflectance curve of wheat and better reflects the spectral reflectance characteristics of green plant which is very different from green artificial target. Thus, whether a green target is a plant or artificial target can be judged by reflectance inversion based on remote sensing image. This paper's research is helpful for the judgment of green artificial target hidden in the greenery, which has a great significance on the precise strike of green camouflaged weapons in military field.

  10. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  11. Improving the Accuracy of High-Order Nodal Transport Methods

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-09-27

    This paper outlines some recent advances towards improving the accuracy of neutron transport calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering adverse effects from round-off error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one ordeq (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively refining the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.

  12. Improving the Accuracy of High-Order Nodal Transport Methods

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-09-27

    This paper outlines some recent advances towards improving the accuracy of neutron calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These transport advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering from pollution from round-off, error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one order; (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively reftig the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.

  13. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  14. Accuracy Analysis on Large Blocks of High Resolution Images

    NASA Technical Reports Server (NTRS)

    Passini, Richardo M.

    2007-01-01

    Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.

  15. Soccer-specific accuracy and validity of the local position measurement (LPM) system.

    PubMed

    Frencken, Wouter G P; Lemmink, Koen A P M; Delleman, Nico J

    2010-11-01

    Limited data is available on accuracy and validity of video-based, GPS and electronic tracking systems, particularly with reference to curved courses and short high intensity running activities. The main goal of this study was to assess soccer-specific accuracy and validity of the radio-frequency based local position measurement (LPM) system (1000Hz) for measuring distance and speed during walking and sprinting. Three males walked and sprinted 4 soccer-specific courses 10 times each. Distance and speed recorded by LPM were compared to actual distance and speed measured by measuring tape and timing gates. In addition, accuracy was assessed. The static accuracy (SD of the mean) is 1cm for devices put on the pitch and 2-3 cm when worn by participants. LPM underestimates actual distance (mean difference at most -1.6%). Coefficient of variation becomes larger at higher speed and increased turning angle. With regard to speed, validity correlations are high (range: 0.71-0.97). The LPM speed is significantly and systematically lower, although absolute and relative differences are small, between -0.1 km h⁻¹ (-1.3%) and -0.6 km h⁻¹ (-3.9%). The typical error of the estimate increases with increased speed, but does not increase with increased turning angle. Because the reported differences are small, we conclude that the LPM-system produces highly accurate position and speed data in static and dynamic conditions and is a valid tool for player tracking in soccer and ball team sports in general.

  16. Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems.

    PubMed

    Chrzanowski, K; Szulim, M

    1998-08-01

    The noise-equivalent temperature difference is a measure of the detector-noise-limited sensitivity of single-band IR systems for noncontact temperature measurement. However, because its definition is based on the signal-to-noise ratio in a single detector channel, the notion of noise-equivalent temperature difference must be generalized in case of dual-band or multiband IR systems. A new measure of temperature-measurement sensitivity is proposed that can be used to describe single-band, dual-band, and multiband IR measurement systems. With this measure a comparison of temperature-measurement accuracy among single-band, dual-band, and multiband systems was carried out.

  17. High Accuracy 3D Processing of Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Gruen, A.; Zhang, L.; Kocaman, S.

    2007-01-01

    Automatic DSM/DTM generation reproduces not only general features, but also detailed features of the terrain relief. Height accuracy of around 1 pixel in cooperative terrain. RMSE values of 1.3-1.5 m (1.0-2.0 pixels) for IKONOS and RMSE values of 2.9-4.6 m (0.5-1.0 pixels) for SPOT5 HRS. For 3D city modeling, the manual and semi-automatic feature extraction capability of SAT-PP provides a good basis. The tools of SAT-PP allowed the stereo-measurements of points on the roofs in order to generate a 3D city model with CCM The results show that building models with main roof structures can be successfully extracted by HRSI. As expected, with Quickbird more details are visible.

  18. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    NASA Astrophysics Data System (ADS)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  19. Measuring physicians' performance in clinical practice: reliability, classification accuracy, and validity.

    PubMed

    Weifeng Weng; Hess, Brian J; Lynn, Lorna A; Holmboe, Eric S; Lipner, Rebecca S

    2010-09-01

    Much research has been devoted to addressing challenges in achieving reliable assessments of physicians' clinical performance but less work has focused on whether valid and accurate classification decisions are feasible. This study used 957 physicians certified in internal medicine (IM) or a subspecialty, who completed the American Board of Internal Medicine (ABIM) Diabetes Practice Improvement Module (PIM). Ten clinical and two patient-experience measures were aggregated into a composite measure. The composite measure score was highly reliable (r = .91) and classification accuracy was high across the entire score scale (>0.90), which indicated that it is possible to differentiate high-performing and low-performing physicians. Physicians certified in endocrinology and those who scored higher on their IM certification examination had higher composite scores, providing some validity evidence. In summary, it is feasible to create a psychometrically robust composite measure of physicians' clinical performance, specifically for the quality of care they provide to patients with diabetes.

  20. Evaluation method of lead measurement accuracy of gears using a wedge artefact

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Takeoka, Fumi; Kubo, Aizoh; Okamoto, Kazuhiko; Osawa, Sonko; Sato, Osamu; Takatsuji, Toshiyuki

    2009-02-01

    The reduction of the vibration and noise of gears is an important issue in mechanical devices such as vehicles and wind turbines. The characteristics of the vibration and noise of gears are markedly affected by deviations of the tooth flank form of micrometre order; therefore, a strict quality control of the tooth flank form is required. The accuracy of the lead measurement for a gear-measuring instrument is usually evaluated using a master gear or a lead master. However, it is difficult to manufacture masters with high accuracy because the helix is a complicated geometrical form. In this paper, we propose a method of evaluating a gear-measuring instrument using a wedge artefact, which includes a highly precise plane surface. The concept of the wedge artefact is described and a mathematical model of the measuring condition of the wedge artefact is constructed. Theoretical measurement results for the wedge artefact are calculated. The wedge artefact is designed and produced on the basis of the theoretical measurement results. A measurement experiment using the wedge artefact is carried out and its effectiveness is verified.

  1. Classification accuracy of brief parent report measures of language development in Spanish-speaking toddlers.

    PubMed

    Guiberson, Mark; Rodríguez, Barbara L; Dale, Philip S

    2011-10-01

    The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as determined through multiple sources of information, and 22 had typical language development (TD). Parents completed the Spanish version of the Ages and Stages Questionnaire (Spanish ASQ; Squires, Potter, & Bricker, 1999) and the short-form of the Inventarios del Desarrollo de Habilidades Comunicativas Palabras y Enunciados (INV-II; Jackson-Maldonado, Bates, & Thal, 1992; Jackson-Maldonado et al., 2003), which is the Spanish version of the MacArthur-Bates Communicative Development Inventories Words and Sentences form, and reported children's 3 longest utterances (M3L-W). Children were administered the Preschool Language Scale, Fourth Edition, Spanish Edition (SPLS-4; Zimmerman, Steiner, & Pond, 2002) at early childhood centers. All 3 parent report measures were significantly correlated with the SPLS-4, establishing their concurrent validity. Children with ELDs scored significantly lower than TD children on all 3 parent report measures. The Spanish ASQ demonstrated less than desirable levels of sensitivity and specificity; both the short-form INV-II and M3L-W measures demonstrated favorable sensitivity and specificity. Of these measures, M3L-W demonstrated the strongest classification accuracy qualities, including sensitivity, negative predictive value, and area under the receiver operating characteristics curve. The short-form INV-II and M3L-W demonstrated highly satisfactory classification accuracy of ELDs, but M3L-W demonstrated slightly stronger accuracy. These results indicate that these measures may be useful in screening for ELDs in Spanish-speaking toddlers.

  2. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  3. Stability and accuracy of the sweep rate measurements for LLNL optical streak cameras

    SciTech Connect

    Montgomery, D.S.

    1989-08-04

    Precise pulse shaping is vital for present and future high-power lasers that will attempt to achieve low-entropy laser-fusion implosions. Multichannel, streak-camera-based systems are used to make such measurements. Such systems must be accurately calibrated in order to correct for time-base and flat-field variations. We use an on-line calibration system in order to measure the sweep rate, and in our recent work we have evaluated the accuracy of this measurement technique. By analyzing a large number of calibrations, and the effect of noise on our measurement technique, we have concluded that the sweep rate for our streak camera systems is reproducible to a least {plus minus}1.2% and that our measurement technique contributes an additional {plus minus}0.5% uncertainty in the measurement. 18 refs., 3 figs., 1 tab.

  4. [Measurement accuracy of granier calibration based on transpiration of Platycladus orientalis].

    PubMed

    Liu, Qing-Xin; Meng, Ping; Zhang, Jin-Song; Gao, Jun; Sun, Shou-Jia; Jia, Chang-Rong

    2012-06-01

    In order to understand the accuracy of Granier' s thermal dissipation method in measuring tree water consumption, a comparative study was made from May to June, 2010. The sap flow density of potted Platycladus orientalis was measured with thermal dissipation probe, which was compared with the whole-plant gravimetric measurement. There were significant linear relationships (R2 > 0.825) between the sap flow velocity in both north and south directions of P. orientalis measured by thermal dissipation probe and the transpiration rate measured by gravimetric method. The average daily sap flux in the north and south directions of P. orientalis were 10.6% and 15.1% lower than the daily average transpiration of P. orientalis, respectively, but the differences were not significant. Therefore, Granier's method had high reliability in the measurement of P. orientalis transpiration at daily scale, though the large temperature fluctuation between day and night could result in a lower daily sap flux than daily transpiration.

  5. Evaluation of diagnostic accuracy and dimensional measurements by using CBCT in mandibular first molars

    PubMed Central

    Asgary, Saeed; Nikneshan, Sima; Akbarzadeh-Bagheban, Alireza

    2016-01-01

    Background This study aimed to assess the diagnostic accuracy of cone beam computed tomography (CBCT) and quantitatively evaluate the morphology of mandibular first molars using CBCT. Material and Methods Twenty-four double-rooted mandibular first molars were evaluated by NewTom VGi CBCT. The distance from the furcation and apex to the cementoenamel junction (CEJ), diameter and thickness of canal walls, the buccolingual (BL) to mesiodistal (MD) ratio (ΔD), prevalence of oval canals at different sections and taper of the canals were all determined. In order to assess the diagnostic accuracy of CBCT, distance from the furcation and apex to the CEJ and thickness of canal walls at the CEJ and apex were compared with the gold standard values (caliper and stereomicroscope). Statistical analyses were carried out using intraclass correlation coefficient (ICC), paired t-test and repeated measures ANOVA. Results A high correlation existed between the CBCT and gold standard measurements (P<0.001). In dimensional measurements, length of mesial root was higher than the distal root and lingual furcation was farther from the CEJ than the buccal furcation (P<0.001). An important finding of this study was the mesiodistal taper of the mesiobuccal (MB) and mesiolingual (ML) canals; which was equal to 0.02. Conclusions CBCT has acceptable diagnostic accuracy for measurement of canal wall thickness. Cleaning and shaping of the canals should be performed based on the unique anatomy of the respective canal; which necessitates the use of advanced imaging techniques for thorough assessment of root canal anatomy in a clinical setting. Key words:Permanent mandibular first molar, accuracy, cone-beam computed tomography, dimensional measurement. PMID:26855697

  6. Nested uncertainties and hybrid metrology to improve measurement accuracy

    NASA Astrophysics Data System (ADS)

    Silver, R. M.; Zhang, N. F.; Barnes, B. M.; Zhou, H.; Qin, J.; Dixson, R.

    2011-03-01

    In this paper we present a method to combine measurement techniques that reduce uncertainties and improve measurement throughput. The approach has immediate utility when performing model-based optical critical dimension (OCD) measurements. When modeling optical measurements, a library of curves is assembled through the simulation of a multi-dimensional parameter space. Parametric correlation and measurement noise lead to measurement uncertainty in the fitting process resulting in fundamental limitations due to parametric correlations. We provide a strategy to decouple parametric correlation and reduce measurement uncertainties. We also develop the rigorous underlying Bayesian statistical model to apply this methodology to OCD metrology. These statistical methods use a priori information rigorously to reduce measurement uncertainty, improve throughput and develop an improved foundation for comprehensive reference metrology.

  7. Accuracy of daily fluid intake measurements using a "smart" water bottle.

    PubMed

    Borofsky, Michael S; Dauw, Casey A; York, Nadya; Terry, Colin; Lingeman, James E

    2017-10-04

    High fluid intake is an effective preventative strategy against recurrent kidney stones but is known to be challenging to achieve. Recently, a smart water bottle (Hidrate Spark™, Minneapolis, MN) was developed as a non-invasive fluid intake monitoring system. This device could help patients who form stones from low urine volume achieve sustainable improvements in hydration, but has yet to be validated in a clinical setting. Hidrate Spark™ uses capacitive touch sensing via an internal sensor. It calculates volume measurements by detecting changes in water level and sends data wirelessly to users' smartphones through an application. A pilot study was conducted to assess accuracy of measured fluid intake over 24 h periods when used in a real life setting. Subjects were provided smart bottles and given short tutorials on their use. Accuracy was determined by comparing 24-h fluid intake measurements calculated through the smart bottle via sensor to standard volume measurements calculated by the patient from hand over the same 24 h period. Eight subjects performed sixty-two 24-h measurements (range 4-14). Mean hand measurement was 57.2 oz/1692 mL (21-96 oz/621-2839 mL). Corresponding mean smart bottle measurement underestimated true fluid intake by 0.5 ozs. (95% CI -1.9, 0.9). Percent difference between hand and smart bottle measurements was 0.0% (95% CI - 3%, 3%). Intraclass correlation coefficient (ICC), calculated to assess consistency between hand measures and bottle measures, was 0.97 (0.95, 0.98) indicating an extremely high consistency between measures. 24-h fluid intake measurements from a novel fluid monitoring system (Hidrate Spark™) are accurate to within 3%. Such technology may be useful as a behavioral aide and/or research tool particularly among recurrent stone formers with low urinary volume.

  8. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  9. Measuring Intuition: Nonconscious Emotional Information Boosts Decision Accuracy and Confidence.

    PubMed

    Lufityanto, Galang; Donkin, Chris; Pearson, Joel

    2016-05-01

    The long-held popular notion of intuition has garnered much attention both academically and popularly. Although most people agree that there is such a phenomenon as intuition, involving emotionally charged, rapid, unconscious processes, little compelling evidence supports this notion. Here, we introduce a technique in which subliminal emotional information is presented to subjects while they make fully conscious sensory decisions. Our behavioral and physiological data, along with evidence-accumulator models, show that nonconscious emotional information can boost accuracy and confidence in a concurrent emotion-free decision task, while also speeding up response times. Moreover, these effects were contingent on the specific predictive arrangement of the nonconscious emotional valence and motion direction in the decisional stimulus. A model that simultaneously accumulates evidence from both physiological skin conductance and conscious decisional information provides an accurate description of the data. These findings support the notion that nonconscious emotions can bias concurrent nonemotional behavior-a process of intuition.

  10. Improved accuracy of measurements of complex permittivity and permeability using transmission lines

    NASA Astrophysics Data System (ADS)

    Shemelin, V.; Valles, N.

    2014-12-01

    Strong damping of Higher-Order-Modes (HOMs) excited by the beam in accelerating cavities is a necessary condition for achievement of high currents and low emittances in storage rings, electron-positron colliders, and high average power Energy Recovery Linacs (ERLs). Characterization of the electromagnetic properties of lossy ceramics and ferrites used in HOM loads is therefore an essential part of constructing these accelerators. Here we show how to improve these measurements beyond the state of the art. In the past, significant discrepancies have been typical between measured properties for different batches of the same material. Here we show that these can be explained not only by technological deviations in the material production but also by errors in the dimensions of the measured samples. We identify the main source of errors and show how to improve the accuracy of measuring the electromagnetic parameters of absorbing materials.

  11. State of the art in high accuracy high detail DTMs derived from ALS

    NASA Astrophysics Data System (ADS)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  12. Accuracy of magnetic resonance imaging for measuring maturing cartilage: A phantom study.

    PubMed

    McKinney, Jennifer R; Sussman, Marshall S; Moineddin, Rahim; Amirabadi, Afsaneh; Rayner, Tammy; Doria, Andrea S

    2016-07-01

    To evaluate the accuracy of magnetic resonance imaging measurements of cartilage tissue-mimicking phantoms and to determine a combination of magnetic resonance imaging parameters to optimize accuracy while minimizing scan time. Edge dimensions from 4 rectangular agar phantoms ranging from 10.5 to 14.5 mm in length and 1.25 to 5.5 mm in width were independently measured by two readers using a steel ruler. Coronal T1 spin echo (T1 SE), fast spoiled gradient-recalled echo (FSPGR) and multiplanar gradient-recalled echo (GRE MPGR) sequences were used to obtain phantom images on a 1.5-T scanner. Inter- and intra-reader reliability were high for both direct measurements and for magnetic resonance imaging measurements of phantoms. Statistically significant differences were noted between the mean direct measurements and the mean magnetic resonance imaging measurements for phantom 1 when using a GRE MPGR sequence (512x512 pixels, 1.5-mm slice thickness, 5:49 min scan time), while borderline differences were noted for T1 SE sequences with the following parameters: 320x320 pixels, 1.5-mm slice thickness, 6:11 min scan time; 320x320 pixels, 4-mm slice thickness, 6:11 min scan time; and 512x512 pixels, 1.5-mm slice thickness, 9:48 min scan time. Borderline differences were also noted when using a FSPGR sequence with 512x512 pixels, a 1.5-mm slice thickness and a 3:36 min scan time. FSPGR sequences, regardless of the magnetic resonance imaging parameter combination used, provided accurate measurements. The GRE MPGR sequence using 512x512 pixels, a 1.5-mm slice thickness and a 5:49 min scan time and, to a lesser degree, all tested T1 SE sequences produced suboptimal accuracy when measuring the widest phantom.

  13. New way for accuracy measurement of fine-pitch gears in batch production

    NASA Astrophysics Data System (ADS)

    Xie, Huakun; Fu, Ying; Feng, Gang; Ye, Yong; Huang, Wenliang

    2011-05-01

    Fine-pitch gears with module ranging from 0.05 to 0.5 are widely used in the fields of dial indicators, aeronautic gauges and instruments, timers and watches and so on; but because of their small size and weak rigidity and small aount of inertia, so far there are few methods in practice being able to meet the requirements of their reliable, precise and efficient accuracy measurements, especially in batch production. Based on the gear integrated error measuring technology and the gear single flank rolling tester, a differential type of gear single flank point rolling scan measuring technique and a prototype of the gear differential single flank rolling tester have been developed to explore a new way to solve the problem. By using a special made master gear, the tester can perform not only the measurement of the gear tangential composite deviations but also the measurement of the gear elementary deviations, including profile deviations and pitch deviations, and also integrated deviatons of fine-pitch gears in batch production with high efficiency and accuracy. The conception of "Two spindles be driven in synchronization, and one differential measurement be in closed loop" and the design structure of "spindle on spindle" adopted by the prototype are introduced in the paper. Some practical measurement results in factory and a few discussions are also presented.

  14. New way for accuracy measurement of fine-pitch gears in batch production

    NASA Astrophysics Data System (ADS)

    Xie, Huakun; Fu, Ying; Feng, Gang; Ye, Yong; Huang, Wenliang

    2010-12-01

    Fine-pitch gears with module ranging from 0.05 to 0.5 are widely used in the fields of dial indicators, aeronautic gauges and instruments, timers and watches and so on; but because of their small size and weak rigidity and small aount of inertia, so far there are few methods in practice being able to meet the requirements of their reliable, precise and efficient accuracy measurements, especially in batch production. Based on the gear integrated error measuring technology and the gear single flank rolling tester, a differential type of gear single flank point rolling scan measuring technique and a prototype of the gear differential single flank rolling tester have been developed to explore a new way to solve the problem. By using a special made master gear, the tester can perform not only the measurement of the gear tangential composite deviations but also the measurement of the gear elementary deviations, including profile deviations and pitch deviations, and also integrated deviatons of fine-pitch gears in batch production with high efficiency and accuracy. The conception of "Two spindles be driven in synchronization, and one differential measurement be in closed loop" and the design structure of "spindle on spindle" adopted by the prototype are introduced in the paper. Some practical measurement results in factory and a few discussions are also presented.

  15. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  16. High accuracy mantle convection simulation through modern numerical methods

    NASA Astrophysics Data System (ADS)

    Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang

    2012-10-01

    Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth's mantle, and discusses their implementation in the Open Source code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. ASPECT relies on the numerical software packages DEAL.II and TRILINOS, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs.

  17. Ultrasound Accuracy of Liver Length Measurement with Cadaveric Specimens.

    PubMed

    Riestra-Candelaria, Bárbara L; Rodríguez-Mojica, Wilma; Vázquez-Quiñones, Luis E; Jorge, Juan Carlos

    2016-01-01

    The liver is one of the principal organs of our body involved in over 500 physiological functions related to metabolism, digestion, immunity, and storage of nutrients, which makes it an essential organ to preserve life. Given that there are a number of approaches to measure liver length through diagnostic 2D sonography, this work aims to determine the most accurate measurement of this organ. Cadaveric specimens (n = 21) were employed to assess measurements in midclavicular line (MCL) and midaxillary line (MAL). Each measurement was calculated in anteroposterior (AP) and craniocaudal (CC) planes. In addition, in situ measurements were obtained by accessing the organ through the anterior thoracoabdominal wall. Statistical differences were detected between MCL and MAL measurements (p < 0.05), a positive correlation between MAL CC and in situ anterior measurements were noted (r = 0.97). Liver size, as assessed through in situ measurements, varied as a funtion of BMI and waist circumference (p < 0.05). It is concluded that CC measurement of the RLL in MAL from the uppermost right hemi-diaphragm to the inferior tip of the right lobe through a horizontal line parallel to the anterior liver wall is the most accurate measurement of the organ by sonography.

  18. Ultrasonic thickness structural health monitoring photoelastic visualization and measurement accuracy for internal pipe corrosion

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Oil refinery production of fuels is becoming more challenging as a result of the changing world supply of crude oil towards properties of higher density, higher sulfur concentration, and higher acidity. One such production challenge is an increased risk of naphthenic acid corrosion that can result in various surface degradation profiles of uniform corrosion, non-uniform corrosion, and localized pitting in piping systems at temperatures between 150°C and 400°C. The irregular internal surface topology and high external surface temperature leads to a challenging in-service monitoring application for accurate pipe wall thickness measurements. Improved measurement technology is needed to continuously profile the local minimum thickness points of a non-uniformly corroding surface. The measurement accuracy and precision must be sufficient to provide a better understanding of the integrity risk associated with refining crude oils of higher acid concentration. This paper discusses potential technologies for measuring localized internal corrosion in high temperature steel piping and describes the approach under investigation to apply flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process. Next, the elastic wave beam profile of a sol-gel transducer is characterized via photoelastic visualization. Finally, the variables that impact measurement accuracy and precision are discussed and a maximum likelihood statistical method is presented and demonstrated to quantify the measurement accuracy and precision of various time-of-flight thickness calculation methods in an ideal environment. The statistical method results in confidence values analogous to the a90 and a90/95 terminology used in Probability-of-Detection (POD) assessments.

  19. Evaluation of the accuracy of different molar teeth measurements in assessing sex.

    PubMed

    Zorba, Eleni; Spiliopoulou, Chara; Moraitis, Konstantinos

    2013-03-01

    Teeth are considered to be a very useful tissue for sex determination and molars are among the most dimorphic teeth. Even though mesiodistal (MD) and buccolingual (BL) crown diameters are usually employed for sex assessment, alternative measurements like MD and BL cervical diameters as well as crown and cervical diagonal diameters have been developed. This study explores the utility of crown and cervical MD, BL and diagonal measurements of molars in sex assessment when used separately. A total of 254 permanent molars (excluded third molars) from 101 individuals (51 males, 50 females) from the Athens Collection were examined. Stepwise discriminant analysis was used to evaluate the accuracy of each diameter group in assessing sex. It was found that the accuracy ranges from 65.5 to 88.4 %. Cervical diagonal diameters are the most accurate followed by crown diagonal diameters, and crown and cervical MD and BL diameters. Therefore the high classification accuracy of diagonal diameters show that these measurements are more reliable for sex determination than the traditional MD and BL and can be considered a promising method for sex assessment from human teeth.

  20. Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements

    PubMed Central

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  1. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.

    PubMed

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L; Rodríguez-Lizana, Antonio

    2015-01-28

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate.

  2. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  3. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard deviation shall be less than 0.1275 without bias for both full-shift measurements of 8 hours or...) Bias. The bias of the CPDM measurements shall be limited such that the uncorrectable discrepancy... testing shall be no greater than 10 percent. Bias must be constant over the range of dust...

  4. Evapotranspiration information reporting: I. Factors governing measurement accuracy

    USDA-ARS?s Scientific Manuscript database

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are being reported in the literature and used to develop, calibrate, and test important ET process models. Evapotranspiration data are derived from a range of measurement systems including lysimeter...

  5. Accuracy of Estimations of Measurements by Students with Visual Impairments

    ERIC Educational Resources Information Center

    Jones, M. Gail; Forrester, Jennifer H.; Robertson, Laura E.; Gardner, Grant E.; Taylor, Amy R.

    2012-01-01

    There is a dearth of information about how students with visual impairments learn science-process skills. This study investigated students' concepts and skills in one science area: the estimation of measurements. The estimation of measurements is one of the fundamental concepts that connects all science disciplines that provide the necessary…

  6. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diluted NOX concentration determined in paragraph (a)(1) of this section. (b) Measurement accuracy—Bag sampling. Analyzers used for bag analysis must be operated such that the measured concentration falls... with a given dilution and sampling system, an engine emitting NOX at the level of the standard (e.g., 0...

  7. Accuracy of Estimations of Measurements by Students with Visual Impairments

    ERIC Educational Resources Information Center

    Jones, M. Gail; Forrester, Jennifer H.; Robertson, Laura E.; Gardner, Grant E.; Taylor, Amy R.

    2012-01-01

    There is a dearth of information about how students with visual impairments learn science-process skills. This study investigated students' concepts and skills in one science area: the estimation of measurements. The estimation of measurements is one of the fundamental concepts that connects all science disciplines that provide the necessary…

  8. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  9. A laboratory assessment of the measurement accuracy of weighing type rainfall intensity gauges

    NASA Astrophysics Data System (ADS)

    Colli, M.; Chan, P. W.; Lanza, L. G.; La Barbera, P.

    2012-04-01

    In recent years the WMO Commission for Instruments and Methods of Observation (CIMO) fostered noticeable advancements in the accuracy of precipitation measurement issue by providing recommendations on the standardization of equipment and exposure, instrument calibration and data correction as a consequence of various comparative campaigns involving manufacturers and national meteorological services from the participating countries (Lanza et al., 2005; Vuerich et al., 2009). Extreme events analysis is proven to be highly affected by the on-site RI measurement accuracy (see e.g. Molini et al., 2004) and the time resolution of the available RI series certainly constitutes another key-factor in constructing hyetographs that are representative of real rain events. The OTT Pluvio2 weighing gauge (WG) and the GEONOR T-200 vibrating-wire precipitation gauge demonstrated very good performance under previous constant flow rate calibration efforts (Lanza et al., 2005). Although WGs do provide better performance than more traditional Tipping Bucket Rain gauges (TBR) under continuous and constant reference intensity, dynamic effects seem to affect the accuracy of WG measurements under real world/time varying rainfall conditions (Vuerich et al., 2009). The most relevant is due to the response time of the acquisition system and the derived systematic delay of the instrument in assessing the exact weight of the bin containing cumulated precipitation. This delay assumes a relevant role in case high resolution rain intensity time series are sought from the instrument, as is the case of many hydrologic and meteo-climatic applications. This work reports the laboratory evaluation of Pluvio2 and T-200 rainfall intensity measurements accuracy. Tests are carried out by simulating different artificial precipitation events, namely non-stationary rainfall intensity, using a highly accurate dynamic rainfall generator. Time series measured by an Ogawa drop counter (DC) at a field test site

  10. Clinical measures of hearing aid directivity: assumption, accuracy, and reliability.

    PubMed

    Wu, Yu-Hsiang; Bentler, Ruth A

    2012-01-01

    A number of clinical measures of directivity, including the front-to-back ratio (FBR) and front-to-side ratio (FSR), have been suggested to audiologists to monitor the functionality of hearing aids with directional microphones. These suggestions, however, are based on the assumption that directivity measured clinically changes monotonically when compared with changes measured using the directivity index (DI) and perceptual directional benefit. The objective of the present study was to empirically examine this assumption. In addition, the reliability of the clinical directivity measure was estimated to establish a referral threshold for defective directional microphone hearing aids. The directivity of the directional microphones of two behind-the-ear hearing aids was systematically degraded by plugging the microphone ports. The directivity was measured using four clinical measures: the FBR and FSR performed in the test chamber of a hearing aid analyzer and in sound field. Each measure was repeated four times in each directivity-degraded condition. The degraded directivity was also assessed using the DI measure in an anechoic chamber. The perceptual directional benefit in each directivity-degraded condition was obtained by testing 10 hearing-impaired adults in a sound field with diffuse noise using the Hearing in Noise Test (HINT). The results of the DI and HINT measures showed strong correlation between the two FSRs (test chamber and sound field), while the two FBRs showed no correlation. The directivity generated by the FBRs could remain unchanged even when the directional microphone had lost more than 50% of its directivity. The results further indicated that the measures performed in the sound field were more reliable than those performed in the test chamber. Based on the results of the reliability measures, a 30% change in directivity was suggested as the referral threshold signifying defective directional systems. Because the FSR predicts the DI and HINT

  11. A high-accuracy DCO with hybrid architecture

    NASA Astrophysics Data System (ADS)

    Sun, Yapeng; Zhao, Huidong; Qiao, Shushan; Hei, Yong; Zhang, Fuhai

    2017-07-01

    In this paper, a novel hybrid digital-controlled oscillator (DCO) is proposed, which is used to improve the accuracy of the all-digital clock generator without reference source. The DCO with hybrid architecture consists of two parts: DCO_high and DCO_low. The DCO_high decides the coarse output frequency of DCO, and adopts the cascade structure to decrease the area. The DCO_low adopts the chain structure with three-state buffer, and decides the fine output frequency of DCO. Compared with traditional cascade DCO, the proposed hybrid DCO features higher precision with less inherent delay. Therefore the clock generator can tolerate process, voltage and temperature (PVT) variation and meet the needs of different conditions. The DCO is designed in SMIC 180 nm CMOS process with 0.021 mm2 chip area. The output frequency is adjusted from 15-120 MHz. The frequency error is less than 0.83% at 25 MHz with 1.6-1.8 V supply voltage and 0-80 °C temperature variations in TT, FF, SS corners. Project supported by the National Natural Science Foundation of China (Nos. 61306025, 61474135).

  12. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... measured by the oxides of nitrogen analyzer following the analyzer's monthly periodic calibration....

  13. Measuring Speech Recognition Proficiency: A Psychometric Analysis of Speed and Accuracy

    ERIC Educational Resources Information Center

    Rader, Martha H.; Bailey, Glenn A.; Kurth, Linda A.

    2008-01-01

    This study examined the validity of various measures of speed and accuracy for assessing proficiency in speech recognition. The study specifically compared two different word-count indices for speed and accuracy (the 5-stroke word and the 1.4-syllable standard word) on a timing administered to 114 speech recognition students measured at 1-, 2-,…

  14. Measuring Speech Recognition Proficiency: A Psychometric Analysis of Speed and Accuracy

    ERIC Educational Resources Information Center

    Rader, Martha H.; Bailey, Glenn A.; Kurth, Linda A.

    2008-01-01

    This study examined the validity of various measures of speed and accuracy for assessing proficiency in speech recognition. The study specifically compared two different word-count indices for speed and accuracy (the 5-stroke word and the 1.4-syllable standard word) on a timing administered to 114 speech recognition students measured at 1-, 2-,…

  15. Cryogenic emittance measurement and its accuracy for the James Webb space telescope

    NASA Astrophysics Data System (ADS)

    Or, Chuen; Tolson, Warren; Glazer, Stuart; Kobel, Mark; Packard, Edward

    2005-08-01

    NASA's James Webb Space Telescope-Integrated Science Instrument Module (JWST-ISIM) radiators and structures operate in the 30 to 40 K range. There is limited emittance data for coatings of interest in this temperature range. Calorimetric emittance tests performed at Goddard Space Flight Center in the past have used a transient technique, which results in large uncertainties (typically > +/-30%) at the lowest temperatures. These large uncertainties would practically require use of overly conservative emissivities in radiator sizing, which would in turn pose unnecessary area and mass penalties. There is thus a strong incentive to make highly accurate emittance measurements. A special liquid helium cryogenic facility was fabricated for this purpose, and a series of thermal balance tests were subsequently performed at NASA/GSFC to measure the emittance of selected ISIM coatings accurately at temperatures down to 25K. This paper discusses the test methodology, and the analytical methods used to calculate the emittance and its accuracy from the measured data. Preliminary results show that for relatively high emittance coatings, typical measurement accuracies at 30 K approach +/- 5%.

  16. Ultracompact vibrometry measurement with nanometric accuracy using optical feedback

    NASA Astrophysics Data System (ADS)

    Jha, Ajit; Azcona, Francisco; Royo, Santiago

    2015-05-01

    The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.

  17. The effect of clock, media, and station location errors on Doppler measurement accuracy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1993-01-01

    Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

  18. The ultimate quantum limits on the accuracy of measurements

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1992-01-01

    A quantum generalization of rate-distortion theory from standard communication and information theory is developed for application to determining the ultimate performance limit of measurement systems in physics. For the estimation of a real or a phase parameter, it is shown that the root-mean-square error obtained in a measurement with a single-mode photon level N cannot do better than approximately N exp -1, while approximately exp(-N) may be obtained for multi-mode fields with the same photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

  19. Improving the accuracy of mirror measurements by removing noise and lens distortion

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhou

    2016-11-01

    Telescope mirrors determine the imaging quality and observation ability of telescopes. Unfortunately, manufacturing highly accurate mirrors remains a bottleneck problem in space optics. One main factor is the lack of a technique for measuring the 3D shapes of mirrors accurately for inverse engineering. Researchers have studied and developed techniques for testing the quality of telescope mirrors and methods for measuring the 3D shapes of mirrors for centuries. Among these, interferometers have become popular in evaluating the surface errors of manufactured mirrors. However, interferometers are unable to measure some important mirror parameters directly and accurately, e.g. the paraxial radius, geometry dimension and eccentric errors, and these parameters are essential for mirror manufacturing. In this paper, we aim to remove the noise and lens distortion inherent in the system to improve the accuracy of a previously proposed one-shot projection mirror measurement method. To this end, we propose a ray modeling and a pattern modeling method. The experimental results show that the proposed ray modeling and pattern modeling method can improve the accuracy of the one-shot projection method significantly, making it feasible as a commercial device to measure the shapes of mirrors quantitatively and accurately.

  20. 40 CFR 86.338-79 - Exhaust measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of full-scale chart deflection during the measurement of the emissions for each mode. The... percent of full-scale if the full-scale value is 155 ppm (or ppm C) or less. (2) Option. For CO analysis the analyzer's response may be less than 15 percent of full scale if the full-scale value is 5500 ppm...

  1. 40 CFR 86.338-79 - Exhaust measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of full-scale chart deflection during the measurement of the emissions for each mode. The... percent of full-scale if the full-scale value is 155 ppm (or ppm C) or less. (2) Option. For CO analysis the analyzer's response may be less than 15 percent of full scale if the full-scale value is 5500 ppm...

  2. Accuracy of predictive ability measures for survival models.

    PubMed

    Flandre, Philippe; Deutsch, Reena; O'Quigley, John

    2017-09-10

    One aspect of an analysis of survival data based on the proportional hazards model that has been receiving increasing attention is that of the predictive ability or explained variation of the model. A number of contending measures have been suggested, including one measure, R(2) (β), which has been proposed given its several desirable properties, including its capacity to accommodate time-dependent covariates, a major feature of the model and one that gives rise to great generality. A thorough study of the properties of available measures, including the aforementioned measure, has been carried out recently. In that work, the authors used bootstrap techniques, particularly complex in the setting of censored data, in order to obtain estimates of precision. The motivation of this work is to provide analytical expressions of precision, in particular confidence interval estimates for R(2) (β). We use Taylor series approximations with and without local linearizing transforms. We also consider a very simple expression based on the Fisher's transformation. This latter approach has two great advantages. It is very easy and quick to calculate, and secondly, it can be obtained for any of the methods given in the recent review. A large simulation study is carried out to investigate the properties of the different methods. Finally, three well-known datasets in breast cancer, lymphoma and lung cancer research are given as illustrations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., for intrashift measurements within such equivalent concentration ranges. (c) Reliability of... Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Persons may obtain a copy at the address below: NIOSH-Publications Dissemination, 4676 Columbia...

  4. Evaluation of the Aurora Application Shade Measurement Accuracy

    SciTech Connect

    2015-12-01

    Aurora is an integrated, Web-based application that helps solar installers perform sales, engineering design, and financial analysis. One of Aurora's key features is its high-resolution remote shading analysis.

  5. Improving optical measurement accuracy using multi-technique nested uncertainties

    NASA Astrophysics Data System (ADS)

    Silver, R. M.; Zhang, N. F.; Barnes, B. M.; Zhou, H.; Heckert, A.; Dixson, R.; Germer, T. A.; Bunday, B.

    2009-03-01

    This paper compares and contrasts different combinations of scatterfield and scatterometry optical configurations as well as introduces a new approach to embedding atomic force microscopy (AFM) or other reference metrology results directly in the uncertainty analysis and library-fitting process to reduce parametric uncertainties. We present both simulation results and experimental data demonstrating this new method, which is based on the application of a Bayesian analysis to library-based regression fitting of optical critical dimension (OCD) data. We develop the statistical methods to implement this approach of nested uncertainty analysis and give several examples, which demonstrate reduced uncertainties in the final combined measurements. The approach is also demonstrated through a combined reference metrology application using several independent measurement methods.

  6. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  7. Theoretical Accuracy of Along-Track Displacement Measurements from Multiple-Aperture Interferometry (MAI)

    PubMed Central

    Jung, Hyung-Sup; Lee, Won-Jin; Zhang, Lei

    2014-01-01

    The measurement of precise along-track displacements has been made with the multiple-aperture interferometry (MAI). The empirical accuracies of the MAI measurements are about 6.3 and 3.57 cm for ERS and ALOS data, respectively. However, the estimated empirical accuracies cannot be generalized to any interferometric pair because they largely depend on the processing parameters and coherence of the used SAR data. A theoretical formula is given to calculate an expected MAI measurement accuracy according to the system and processing parameters and interferometric coherence. In this paper, we have investigated the expected MAI measurement accuracy on the basis of the theoretical formula for the existing X-, C- and L-band satellite SAR systems. The similarity between the expected and empirical MAI measurement accuracies has been tested as well. The expected accuracies of about 2–3 cm and 3–4 cm (γ = 0.8) are calculated for the X- and L-band SAR systems, respectively. For the C-band systems, the expected accuracy of Radarsat-2 ultra-fine is about 3–4 cm and that of Sentinel-1 IW is about 27 cm (γ = 0.8). The results indicate that the expected MAI measurement accuracy of a given interferometric pair can be easily calculated by using the theoretical formula. PMID:25251408

  8. a Protocol for High-Accuracy Theoretical Thermochemistry

    NASA Astrophysics Data System (ADS)

    Welch, Bradley; Dawes, Richard

    2017-06-01

    Theoretical studies of spectroscopy and reaction dynamics including the necessary development of potential energy surfaces rely on accurate thermochemical information. The Active Thermochemical Tables (ATcT) approach by Ruscic^{1} incorporates data for a large number of chemical species from a variety of sources (both experimental and theoretical) and derives a self-consistent network capable of making extremely accurate estimates of quantities such as temperature dependent enthalpies of formation. The network provides rigorous uncertainties, and since the values don't rely on a single measurement or calculation, the provenance of each quantity is also obtained. To expand and improve the network it is desirable to have a reliable protocol such as the HEAT approach^{2} for calculating accurate theoretical data. Here we present and benchmark an approach based on explicitly-correlated coupled-cluster theory and vibrational perturbation theory (VPT2). Methyldioxy and Methyl Hydroperoxide are important and well-characterized species in combustion processes and begin the family of (ethyl-, propyl-based, etc) similar compounds (much less is known about the larger members). Accurate anharmonic frequencies are essential to accurately describe even the 0 K enthalpies of formation, but are especially important for finite temperature studies. Here we benchmark the spectroscopic and thermochemical accuracy of the approach, comparing with available data for the smallest systems, and comment on the outlook for larger systems that are less well-known and characterized. ^{1}B. Ruscic, Active Thermochemical Tables (ATcT) values based on ver. 1.118 of the Thermochemical Network (2015); available at ATcT.anl.gov ^{2}A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton. JCP 121, (2004): 11599.

  9. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  10. Accuracy of echocardiography measurements in the fetal lamb.

    PubMed

    Veille, J C; Sivakoff, M; Nemeth, M

    1988-05-01

    Echocardiography is becoming an important noninvasive method to evaluate the heart of the human fetus. Validation of this technique, however, is lacking. To establish the correlation of M-mode and two-dimensional echocardiography with direct invasive methods, the size and volume of the heart of 10 fetal lambs were determined. Both M-mode echocardiography as well as the two-dimensional method were found to correlate well with direct measurements. As determined by all three modalities, the right ventricular cavity was found to be larger than the left ventricular cavity. Intraventricular septum thickness was best measured by the two-dimensional technique, whereas posterior wall dimensions were difficult to assess by this technique. This is the first study that attempts to validate echocardiography as it pertains to the fetus. It shows that a good correlation between invasive and noninvasive methodology can be obtained. Encouraging findings may lead other investigators to use such techniques in the human fetus to quantify ventricular size and output under normal and abnormal conditions.

  11. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    SciTech Connect

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  12. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  13. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer.

    PubMed

    Zong, Y; Datla, R U

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10(-12) [Formula: see text] at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer.

  14. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    NASA Astrophysics Data System (ADS)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  15. Accuracy and uncertainty in random speckle modulation transfer function measurement of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Jacobs, Eddie L.; Plummer, Philip J.

    2016-12-01

    This paper expands upon a previously reported random speckle technique for measuring the modulation transfer function of midwave infrared focal plane arrays by considering a number of factors that impact the accuracy of the estimated modulation transfer function. These factors arise from assumptions in the theoretical derivation and bias in the estimation procedure. Each factor is examined and guidelines are determined to maintain accuracy within 2% of the true value. The uncertainty of the measurement is found by applying a one-factor ANOVA analysis and confidence intervals are established for the results. The small magnitude of the confidence intervals indicates a very robust technique capable of distinguishing differences in modulation transfer function among focal plane arrays on the order of a few percent. This analysis directly indicates the high quality of the random speckle modulation transfer function measurement technique. The methodology is applied to a focal plane array and results are presented that emphasize the need for generating independent random speckle realizations to accurately assess measured values.

  16. High-Accuracy Potentials for Van Der Waals Systems

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Wang, Xiao-Gang; Brown, James; Carrington, Tucker; , Jr.

    2012-06-01

    Recent experimental studies of vdWs systems including those by Moazzen-Ahmadi and McKellar,1,2 as well as microwave studies by Minei and Novick3,4 have observed previously unknown stable polar isomers for systems such as (NNO)2 and (OCS)2. The multi-welled floppy nature of the PESs and the small barriers between minima place stringent requirements on the PES for a successful theoretical description of these states. An automated method of generating accurate PESs for vdW systems has been developed and is demonstrated here.5,6 A limited number of ab initio data at the explicitly correlated CCSD(T)-F12b level are interpolated into analytic PESs with negligible fitting error. High-accuracy PESs were developed for a number of systems including (NNO)2, (OCS)2, (CO)2, CO2:CS2 and (NH3)2. Using the PESs, the rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All inter-monomer coordinates are included in the calculations. Calculated transition frequencies are in very close agreement with experiment. References (1) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 164310 (2007). (2) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 071102 (2007). (3) N. R. Walker, R. Nicholas, A. J. Minei, S. E. Novick, A. C. Legon, J. Mol. Spec. 251, 153 (2008). (4) A. J. Minei and S. E. Novick, J. Chem. Phys. 126, 101101 (2007). (5) R. Dawes, X.-G. Wang, A. W. Jasper, T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010). (6) X.-G. Wang, T. Carrington Jr., R. Dawes and A. W. Jasper, J. Mol. Spec. 268, 53 (2011).

  17. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  18. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy.

    PubMed

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  19. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  20. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    NASA Astrophysics Data System (ADS)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  1. The Discriminant Accuracy of a Grammatical Measure with Latino English-Speaking Children

    ERIC Educational Resources Information Center

    Gutierrez-Clellen, Vera F.; Simon-Cereijido, Gabriela

    2007-01-01

    Purpose: To evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment (LI) in Latino English-speaking children. Specifically, the study examined the diagnostic accuracy of the Test of English Morphosyntax (E-MST; Pena, Gutierrez-Clellen, Iglesias, Goldstein, & Bedore (n.d.) to determine (a)…

  2. The Discriminant Accuracy of a Grammatical Measure with Latino English-Speaking Children

    ERIC Educational Resources Information Center

    Gutierrez-Clellen, Vera F.; Simon-Cereijido, Gabriela

    2007-01-01

    Purpose: To evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment (LI) in Latino English-speaking children. Specifically, the study examined the diagnostic accuracy of the Test of English Morphosyntax (E-MST; Pena, Gutierrez-Clellen, Iglesias, Goldstein, & Bedore (n.d.) to determine (a)…

  3. Curriculum-Based Measurement of Reading: Accuracy of Recommendations from Three-Point Decision Rules

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Christ, Theodore J.

    2016-01-01

    Despite their widespread use, there is little research to support the accuracy of curriculum-based measurement of reading progress monitoring decision rules. The purpose of this study was to investigate the accuracy of a common data point decision rule. This study used a three-point rule with a goal line of 1.50 words read correctly per minute…

  4. The ADI-FDTD method for high accuracy electrophysics applications

    NASA Astrophysics Data System (ADS)

    Haeri Kermani, Mohammad

    The Finite-Difference Time-Domain (FDTD) is a dependable method to simulate a wide range of problems from acoustics, to electromagnetics, and to photonics, amongst others. The execution time of an FDTD simulation is inversely proportional to the time-step size. Since the FDTD method is explicit, its time-step size is limited by the well-known Courant-Friedrich-Levy (CFL) stability limit. The CFL stability limit can render the simulation inefficient for very fine structures. The Alternating Direction Implicit FDTD (ADI-FDTD) method has been introduced as an unconditionally stable implicit method. Numerous works have shown that the ADI-FDTD method is stable even when the CFL stability limit is exceeded. Therefore, the ADI-FDTD method can be considered an efficient method for special classes of problems with very fine structures or high gradient fields. Whenever the ADI-FDTD method is used to simulate open-region radiation or scattering problems, the implementation of a mesh-truncation scheme or absorbing boundary condition becomes an integral part of the simulation. These truncation techniques represent, in essence, differential operators that are discretized using a distinct differencing scheme which can potentially affect the stability of the scheme used for the interior region. In this work, we show that the ADI-FDTD method can be rendered unstable when higher-order mesh truncation techniques such as Higdon's Absorbing Boundary Condition (ABC) or Complementary Derivatives Method (COM) are used. When having large field gradients within a limited volume, a non-uniform grid can reduce the computational domain and, therefore, it decreases the computational cost of the FDTD method. However, for high-accuracy problems, different grid sizes increase the truncation error at the boundary of domains having different grid sizes. To address this problem, we introduce the Complementary Derivatives Method (CDM), a second-order accurate interpolation scheme. The CDM theory is

  5. Improvement of the prediction accuracy of a high speed algorithm.

    NASA Astrophysics Data System (ADS)

    Bojkov, V. F.; Makhonin, G. N.; Testov, A. V.; Khutorovskij, Z. N.; Shogin, A. N.

    Methods to improve the predictions accuracy for two classes of orbits (e < 0.05 and e ≍ 0.7) taking into account in the algorithm disturbances from tesseral harmonics are presented. For the first class of orbits a speed of 0.004 sec for the computer "Elbrus" and an accuracy in positioning about 200 m is achieved by traditional expansion of the Hamiltonian function in the Fourier series along the mean anomaly. For the second class a more compact second expansion along the true anomaly of the Hamiltonian function is suggested.

  6. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  7. Analysis of linear measurement accuracy obtained by cone beam computed tomography (CBCT-NewTom VG).

    PubMed

    Moshfeghi, Mahkameh; Tavakoli, Mohammad Amin; Hosseini, Ehsan Tavakoli; Hosseini, Ali Tavakoli; Hosseini, Iman Tavakoli

    2012-12-01

    One of the major uses of cone beam computed tomography (CBCT) is presurgical implant planning. Linear measurement is used for the determination of the quantity of alveolar bone (height and width). Linear measurements are used in orthodontic analysis and definition of jaw tumor size. The objective of this study is to evaluate the accuracy of the linear measurement of CBCT (Newtom VG) in the axial and coronal planes, with two different voxel sizes. In this accuracy diagnostic study, 22 anatomic landmarks in four dry human skulls were marked by gutta-percha. Fifteen linear measurements were obtained using a digital caliper. These were considered to be the gold standard (real measurement). The skulls were scanned by CBCT (Newtom VG) at two settings: (a) Voxel size 0.3 mm (b) voxel size 0.15 mm High Resolution (HR). The radiographic distance measurements were made in the axial and coronal sections by three observers. The radiographic measurements were repeated two weeks later for evaluation of intraobserver reliability. SPSS software version 17 was used for data analysis. The level of significance was considered to be 5% (P ≤ 0.05). The mean differences of real and radiographic measurements were -0.10±0.99 mm in the axial sections, -0.27±1.07 mm in the coronal sections, +0.14±1.44 mm in the axial (HR) sections, and 0.02±1.4 mm in the coronal (HR) sections. The intraclass correlation (ICC) for CBCT measurements in the axial sections was 0.9944, coronal sections 0.9941, axial (HR) sections 0.9935, and coronal (HR) sections 0.9937. The statistical analysis showed high interobserver and intraobserver reliability (P ≤ 0.05). CBCT (Newtom VG) is highly accurate and reproducible in linear measurements in the axial and coronal image planes and in different areas of the maxillofacial region. According to the findings of the present study, a CBCT scan with a larger voxel size (0.3 mm in comparison to 0.15 mm) is recommended when the purpose of the CBCT scan is to measure

  8. Key technologies for high-accuracy large mesh antenna reflectors

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  9. High accuracy magnetic field sensors with wide operation temperature range

    NASA Astrophysics Data System (ADS)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  10. One high-accuracy camera calibration algorithm based on computer vision images

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    Camera calibration is the first step of computer vision and one of the most active research fields nowadays. In order to improve the measurement precision, the internal parameters of the camera should be accurately calibrated. So one high-accuracy camera calibration algorithm is proposed based on the images of planar targets or tridimensional targets. By using the algorithm, the internal parameters of the camera are calibrated based on the existing planar target at the vision-based navigation experiment. The experimental results show that the accuracy of the proposed algorithm is obviously improved compared with the conventional linear algorithm, Tsai general algorithm, and Zhang Zhengyou calibration algorithm. The algorithm proposed by the article can satisfy the need of computer vision and provide reference for precise measurement of the relative position and attitude.

  11. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography

    PubMed Central

    Marino, Miguel; Li, Yi; Rueschman, Michael N.; Winkelman, J. W.; Ellenbogen, J. M.; Solet, J. M.; Dulin, Hilary; Berkman, Lisa F.; Buxton, Orfeu M.

    2013-01-01

    Objectives: We validated actigraphy for detecting sleep and wakefulness versus polysomnography (PSG). Design: Actigraphy and polysomnography were simultaneously collected during sleep laboratory admissions. All studies involved 8.5 h time in bed, except for sleep restriction studies. Epochs (30-sec; n = 232,849) were characterized for sensitivity (actigraphy = sleep when PSG = sleep), specificity (actigraphy = wake when PSG = wake), and accuracy (total proportion correct); the amount of wakefulness after sleep onset (WASO) was also assessed. A generalized estimating equation (GEE) model included age, gender, insomnia diagnosis, and daytime/nighttime sleep timing factors. Setting: Controlled sleep laboratory conditions. Participants: Young and older adults, healthy or chronic primary insomniac (PI) patients, and daytime sleep of 23 night-workers (n = 77, age 35.0 ± 12.5, 30F, mean nights = 3.2). Interventions: N/A. Measurements and Results: Overall, sensitivity (0.965) and accuracy (0.863) were high, whereas specificity (0.329) was low; each was only slightly modified by gender, insomnia, day/night sleep timing (magnitude of change < 0.04). Increasing age slightly reduced specificity. Mean WASO/night was 49.1 min by PSG compared to 36.8 min/night by actigraphy (β = 0.81; CI = 0.42, 1.21), unbiased when WASO < 30 min/night, and overestimated when WASO > 30 min/night. Conclusions: This validation quantifies strengths and weaknesses of actigraphy as a tool measuring sleep in clinical and population studies. Overall, the participant-specific accuracy is relatively high, and for most participants, above 80%. We validate this finding across multiple nights and a variety of adults across much of the young to midlife years, in both men and women, in those with and without insomnia, and in 77 participants. We conclude that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with

  12. Improving the accuracy of helium and neon measurements in ocean waters

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Roether, W.; Vogel, S.; Sueltenfuss, J.

    2012-04-01

    The helium and neon solubility disequilibria across the ocean-atmosphere interface serve to study the physics of air-sea gas exchange, but the effect is small so that only high-accuracy data give useful results. Weak points are measurement calibration and uncertain solubility equilibrium values in seawater, especially so for the helium isotopes. Calibration: The classical calibration of mass spectrometric helium and neon measurements uses aliquots of atmospheric air, which is convenient but limited in accuracy and long-term stability. Our alternative is to use water samples equilibrated with undisturbed air, so that their mass can be converted into equivalent volumes of air using a solubility function. In this way, the samples allow a precise recalibration of the air aliquots. A bias relative to regular samples is excluded because the equilibrated water is subjected to exactly the same treatment. The equilibration unit has a water capacity of 4.5 liters. The water is circulated over exchange mats, yielding full air-water equilibrium within two hours, and temperature, pressure, and humidity are precisely controlled. In consequence, we achieve solubility equilibrium within ± 0.03%, so that high accuracy and long-term stability of the calibration are guaranteed. The solubility equilibrium values are more uncertain, but a biased value will only introduce a common shift to the data, i.e., it will not affect the internal consistency of the calibration. The new calibration mode will also enable efficient intercalibration between laboratories. Solubility determination and sampling procedures: We shall use the equilibration unit to obtain solubility functions of helium and neon in distilled water and seawater with a projected accuracy of ± 0.2%. One measure to achieve this is to compare the mass spectrometric signals of the water and the air phase directly. In this context, we developed a procedure to sample water into glass ampoules to be flame-sealed. They are filled

  13. Techniques for improving the accuracy of cryogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  14. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency...

  15. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency...

  16. Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  17. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  18. Composite low-coherence interferometer for imaging of immersed tissue with high accuracy

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Wei; Hsu, I.-Jen

    2012-09-01

    Imaging and measurement of the surface profile of an object with high resolution has become essential in both of biological research and industry application. Many samples under investigation such as cultured cells are usually immersed in liquid. Although the techniques such as scanning electron microscope and atomic force microscope can provide imaging or measurement of the surface profile with nanometer resolution, it is difficult for them to image an immersed object with their typical types. Recently, we have proposed and demonstrated a new technique based on composite interferometer which can perform imaging and measurement of the surface profile of an object with accuracy in the axial direction within 5 nm through a self-phase-compensation mechanism. In this research, an optical system based on the concept of combination of optical coherence microscopy (OCM) and composite interferometer was built for imaging of biological tissue immersed in water with axial accuracy at nanometer scale. In the system, a Ti:sapphire laser with center wavelength at 800 nm and spectral width of 140 nm was used as the light source. The composite interferometer comprises two Michelson interferometers sharing common light source, reference arm and photodetector. One of the two interferometers served as a typical OCM system and the other was used to measure the phase shift in the reference arm in each axial scan with the sample being a fixed reflection mirror. The system was used to image the surface profiles of various immersed biological samples with accuracy at nanometer scale through the self-phasecompensation mechanism.

  19. High-accuracy user identification using EEG biometrics.

    PubMed

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  20. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    SciTech Connect

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  1. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  2. Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment

    NASA Astrophysics Data System (ADS)

    Müller, Johann; Gärtner-Roer, Isabelle; Thee, Patrick; Ginzler, Christian

    2014-12-01

    High-resolution digital elevation models (DEMs) generated by airborne remote sensing are frequently used to analyze landform structures (monotemporal) and geomorphological processes (multitemporal) in remote areas or areas of extreme terrain. In order to assess and quantify such structures and processes it is necessary to know the absolute accuracy of the available DEMs. This study assesses the absolute vertical accuracy of DEMs generated by the High Resolution Stereo Camera-Airborne (HRSC-A), the Leica Airborne Digital Sensors 40/80 (ADS40 and ADS80) and the analogue camera system RC30. The study area is located in the Turtmann valley, Valais, Switzerland, a glacially and periglacially formed hanging valley stretching from 2400 m to 3300 m a.s.l. The photogrammetrically derived DEMs are evaluated against geodetic field measurements and an airborne laser scan (ALS). Traditional and robust global and local accuracy measurements are used to describe the vertical quality of the DEMs, which show a non Gaussian distribution of errors. The results show that all four sensor systems produce DEMs with similar accuracy despite their different setups and generations. The ADS40 and ADS80 (both with a ground sampling distance of 0.50 m) generate the most accurate DEMs in complex high mountain areas with a RMSE of 0.8 m and NMAD of 0.6 m They also show the highest accuracy relating to flying height (0.14‰). The pushbroom scanning system HRSC-A produces a RMSE of 1.03 m and a NMAD of 0.83 m (0.21‰ accuracy of the flying height and 10 times the ground sampling distance). The analogue camera system RC30 produces DEMs with a vertical accuracy of 1.30 m RMSE and 0.83 m NMAD (0.17‰ accuracy of the flying height and two times the ground sampling distance). It is also shown that the performance of the DEMs strongly depends on the inclination of the terrain. The RMSE of areas up to an inclination <40° is better than 1 m. In more inclined areas the error and outlier occurrence

  3. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    NASA Astrophysics Data System (ADS)

    Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar

    2017-02-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.

  4. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    NASA Astrophysics Data System (ADS)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  5. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  6. Accuracy improvement of multimodal measurement of speed of sound based on image processing

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu

    2017-07-01

    Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.

  7. Impact of a highly detailed emission inventory on modeling accuracy

    NASA Astrophysics Data System (ADS)

    Taghavi, M.; Cautenet, S.; Arteta, J.

    2005-03-01

    During Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions (ESCOMPTE) campaign (June 10 to July 14, 2001), two pollution events observed during an intensive measurement period (IOP2a and IOP2b) have been simulated. The comprehensive Regional Atmospheric Modeling Systems (RAMS) model, version 4.3, coupled online with a chemical module including 29 species is used to follow the chemistry of a polluted zone over Southern France. This online method takes advantage of a parallel code and use of the powerful computer SGI 3800. Runs are performed with two emission inventories: the Emission Pre Inventory (EPI) and the Main Emission Inventory (MEI). The latter is more recent and has a high resolution. The redistribution of simulated chemical species (ozone and nitrogen oxides) is compared with aircraft and surface station measurements for both runs at regional scale. We show that the MEI inventory is more efficient than the EPI in retrieving the redistribution of chemical species in space (three-dimensional) and time. In surface stations, MEI is superior especially for primary species, like nitrogen oxides. The ozone pollution peaks obtained from an inventory, such as EPI, have a large uncertainty. To understand the realistic geographical distribution of pollutants and to obtain a good order of magnitude in ozone concentration (in space and time), a high-resolution inventory like MEI is necessary. Coupling RAMS-Chemistry with MEI provides a very efficient tool able to simulate pollution plumes even in a region with complex circulations, such as the ESCOMPTE zone.

  8. Ranging with frequency-shifted feedback lasers: from μm-range accuracy to MHz-range measurement rate

    NASA Astrophysics Data System (ADS)

    Kim, J. I.; Ogurtsov, V. V.; Bonnet, G.; Yatsenko, L. P.; Bergmann, K.

    2016-12-01

    We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 μm, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 μm @ 1 kHz and a limit of the accuracy of ≥10 μm. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency Ω, into the FSF-laser cavity. The frequency Ω_{max} at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting.

  9. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    NASA Astrophysics Data System (ADS)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  10. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  11. Systematic Review: Classification Accuracy of Behavioral Screening Measures for Use in Integrated Primary Care Settings.

    PubMed

    Lavigne, John V; Meyers, Kathryn Mendelsohn; Feldman, Marissa

    2016-11-01

    OBJECTIVE : To examine the classification accuracy of measures of overall psychopathology recommended for pediatric primary care screening.  METHOD : A systematic review identified relevant instruments described in the literature. Subsequent systematic reviews identified studies of sensitivity (SE) and specificity (SP) of each measure for various cutoffs and different criteria for disorder (e.g., caseness determined by structured interview, exceeding a cutoff score, referral for psychiatric evaluation).  RESULTS : Measures include the Child Behavior Checklist (CBCL), Pediatric Symptom Checklist (PSC), Strengths and Difficulties Questionnaire (SDQ), Brief Infant-Toddler Social Emotional Assessment (BITSEA), and the Ages and Stages Questionnaire: Social-Emotional scale (ASQ:SE). For three measures (CBCL, PSC, and SDQ) studied extensively, achieving relatively high SE and SP values (≥ .70) simultaneously occurred in only 30-55% of the studies reviewed. There are relatively few studies of the ASQ:SE and BITSEA, or of relatively new measures.  DISCUSSION : Documented utility of these measures as screening instruments is limited.

  12. Accuracy of a digital skinfold system for measuring skinfold thickness and estimating body fat.

    PubMed

    Amaral, Teresa F; Restivo, Maria Teresa; Guerra, Rita S; Marques, Elisa; Chousal, Maria F; Mota, Jorge

    2011-02-01

    The use of skinfold thickness measurements to evaluate the distribution of subcutaneous adipose tissue and to predict body fat has recognised advantages. However, the different types of skinfold calliper available present limitations that make them unattractive and perhaps less used in daily practice. The purpose of the present study was to evaluate the accuracy and functionality of a new digital skinfold system, the Liposoft 2008+Adipsmeter V0 (LA), for measuring skinfold thickness and determining body fat proportion (%BF). Skinfold thickness measurements made by the LA were compared with those obtained with a Harpenden (H) calliper from two samples of adults (n 45) and older adults (n 56) in a university-based cross-sectional study. A comparison was also conducted between estimated %BF from skinfolds and dual-energy X-ray absorptiometry. Bland and Altman plots show that skinfolds measured by the LA and H calliper are in high agreement, with a mean difference of 0·3 (95% CI -3·1, 3·4) mm. In regard to the %BF estimated from LA and H skinfolds measurement, the LA produced a similar approximation to dual-energy X-ray absorptiometry %BF, with a mean difference of 0·2 (95% CI -0·8, 1·2) %, compared with %BF obtained with the H calliper. The LA system is an accurate instrumentation and represents an innovation in the evaluation of skinfold thickness and body composition based on anthropometric measurement.

  13. Improvement in the Accuracy of Flux Measurement of Radio Sources by Exploiting an Arithmetic Pattern in Photon Bunching Noise

    NASA Astrophysics Data System (ADS)

    Lieu, Richard

    2017-07-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.

  14. Verification of Global Assimilation of Ionospheric Measurements Gauss Markov (GAIM-GM) Model Forecast Accuracy

    DTIC Science & Technology

    2011-09-01

    and location measurements , GPS must take into consideration the ionospheric environment and does so by computing the electron content in the path...VERIFICATION OF GLOBAL ASSIMILATION OF IONOSPHERIC MEASUREMENTS GAUSS MARKOV (GAIM-GM) MODEL FORECAST ACCURACY THESIS...United States. AFIT/GAP/ENP/11-S01 VERIFICATION OF GLOBAL ASSIMILATION OF IONOSPHERIC MEASUREMENTS GAUSS MARKOV (GAIM

  15. Accuracy Assessment and Correction of Vaisala RS92 Radiosonde Water Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Miloshevich, Larry M.; Vomel, Holger; Leblanc, Thierry

    2008-01-01

    Relative humidity (RH) measurements from Vaisala RS92 radiosondes are widely used in both research and operational applications, although the measurement accuracy is not well characterized as a function of its known dependences on height, RH, and time of day (or solar altitude angle). This study characterizes RS92 mean bias error as a function of its dependences by comparing simultaneous measurements from RS92 radiosondes and from three reference instruments of known accuracy. The cryogenic frostpoint hygrometer (CFH) gives the RS92 accuracy above the 700 mb level; the ARM microwave radiometer gives the RS92 accuracy in the lower troposphere; and the ARM SurTHref system gives the RS92 accuracy at the surface using 6 RH probes with NIST-traceable calibrations. These RS92 assessments are combined using the principle of Consensus Referencing to yield a detailed estimate of RS92 accuracy from the surface to the lowermost stratosphere. An empirical bias correction is derived to remove the mean bias error, yielding corrected RS92 measurements whose mean accuracy is estimated to be +/-3% of the measured RH value for nighttime soundings and +/-4% for daytime soundings, plus an RH offset uncertainty of +/-0.5%RH that is significant for dry conditions. The accuracy of individual RS92 soundings is further characterized by the 1-sigma "production variability," estimated to be +/-1.5% of the measured RH value. The daytime bias correction should not be applied to cloudy daytime soundings, because clouds affect the solar radiation error in a complicated and uncharacterized way.

  16. A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.

    PubMed

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-07-08

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from -40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10(-5)/°C and 29.5 × 10(-5)/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10(-5)/°C and 2.1 × 10(-5)/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  17. Optical system error analysis and calibration method of high-accuracy star trackers.

    PubMed

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  18. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  19. A novel Tikhonov-based approach for harmonized high-accuracy retrieval of methane columns and profiles from NDACC FTIR network measurements. Application to global validation of ENVISAT/SCIAMACHY biases

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Borsdorff, T.; Buchwitz, M.; Duchatelet, P.; Frankenberg, C.; Hase, F.; Jones, N.; Petersen, K.; Taylor, J.

    2009-04-01

    for deriving dry air columns. Furthermore, a geophysically consistent set of priori profiles for the retrievals at all stations was established. Global satellite measurements of column-averaged methane have recently shown a step forward in data quality via year 2003 and 2004 retrievals from two different processors, namely IMAP-DOAS ver. 49 and WFM-DOAS ver. 1.0 (Frankenberg et al., 2008; Buchwitz et al., 2008). Accuracy and precision have approached the order of 1 %, and can be considered for inverse modelling of sources and sinks. This means at the same time that the quality requirements for ground-based validation data have become higher. This has been addressed by our harmonization effort described above. Our network validation study utilizes the validation strategy developed during the first validation of ENVISAT/SCIAMACHY column-averaged methane by FTIR (Sussmann et al., 2005). The outcome of the new study is the accurate determination of the satellite-ground station biases as a function of latitude on global scale. Acknowledgments Funding by the EC-project HYMN (contract GOCE 037048) and the DLR project SATVAL-A (DLR 50EE 0702) is gratefully acknowledged. We thank for valuable contributions of T. Blumenstock (FZK/IMK-ASF), J.P. Burrows (Univ. Bremen), B. Dils (BIRA), J. Hannigan (NCAR), J. Klyft (Chalmers), E. Mahieu (Univ. Liege), M. De Mazière (BIRA), J. Mellqvist (Chalmers), J. Notholt (Univ. Bremen), M. Rettinger (FZK/IMK-IFU), O. Schneising (Univ. Bremen), K. Strong (Univ. Toronto), and C. Vigouroux (BIRA). References Frankenberg C., Bergamaschi. P., Butz, A., Houweling, S., Meirink, J.F., Notholt, J., Petersen, A.K., Schrijver, H., Warneke, T., Aben, I.: Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT, Geophys. Res. Lett., 35, L15811, doi:10.1029/2008GL034300, 2008. Schneising, O., Buchwitz, M., Burrows, J. P., Bovensmann, H., Bergamaschi, P., and Peters, W., Three years of greenhouse gas column-averaged dry air mole fractions

  20. Design and performance of a new high accuracy combined small sample neutron/gamma detector

    SciTech Connect

    Menlove, H.; Davidson, D.; Verplancke, J.; Vermeulen, P.; Wagner, H.G.; Wellum, R.; Brandelise, B.; Mayer, K.

    1993-08-01

    This paper describes the design of an optimized combined neutron and gamma detector installed around a measurement well protruding from the floor of a glove box. The objective of this design was to achieve an overall accuracy for the plutonium element concentration in gram-sized samples of plutonium oxide powder approaching the {approximately}0.1--0.2% accuracies routinely achieved by inspectors` chemical analysis. The efficiency of the clam-shell neutron detector was increased and the flat response zone extended in axial and radial directions. The sample holder introduced from within the glove box was designed to form the upper reflector, while two graphite half-shells fitted around the thin neck of the high-resolution LEGE detector replaced the lower plug. The Institute for Reference Materials and Measurements (IRMM) in Geel prepared special plutonium oxide test samples whose plutonium concentration was determined to better than 0.05%. During a three week initial performance test in July 1992 at ITU Karlsruhe and in long term tests, it was established that the target accuracy can be achieved provided sufficient care is taken to assure the reproducibility of sample bottling and sample positioning. The paper presents and discusses the results of all test measurements.

  1. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  2. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  3. A new accuracy measure based on bounded relative error for time series forecasting

    PubMed Central

    Twycross, Jamie; Garibaldi, Jonathan M.

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480

  4. A new accuracy measure based on bounded relative error for time series forecasting.

    PubMed

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  5. The research on the effect of atmospheric transmittance for the measuring accuracy of infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-cun; Chen, Yi-ming; Fu, Xian-bin; Luo, Cheng

    2016-07-01

    The effect of atmospheric transmittance on infrared thermal imager temperature measuring accuracy cannot be ignored when the object is far from infrared thermal imager. In this paper, a method of reducing the influence of atmospheric transmittance is proposed for the infrared thermal imager. Firstly, the temperature measuring formula of infrared thermal imager and the effect of atmospheric transmittance on temperature measuring accuracy is analyzed. According to the composition of the atmosphere, the main factors influencing the atmosphere transmittance are determined. Secondly, the temperature measuring model of infrared thermal imager in sea level is established according to the absorption of water vapor and carbon dioxide, the scattering of air molecules and aerosol particulate, and the attenuation effects of weather conditions such as rain and snow. Finally, the correctness and feasibility of the proposed model is verified by the comparison experiments of four different environmental conditions. According to the experiments, the temperature measuring accuracy of the infrared thermal imager is improved.

  6. A Method to Improve the Accuracy of Particle Diameter Measurements from Shadowgraph Images

    NASA Astrophysics Data System (ADS)

    Erinin, Martin A.; Wang, Dan; Liu, Xinan; Duncan, James H.

    2015-11-01

    A method to improve the accuracy of the measurement of the diameter of particles using shadowgraph images is discussed. To obtain data for analysis, a transparent glass calibration reticle, marked with black circular dots of known diameters, is imaged with a high-resolution digital camera using backlighting separately from both a collimated laser beam and diffuse white light. The diameter and intensity of each dot is measured by fitting an inverse hyperbolic tangent function to the particle image intensity map. Using these calibration measurements, a relationship between the apparent diameter and intensity of the dot and its actual diameter and position relative to the focal plane of the lens is determined. It is found that the intensity decreases and apparent diameter increases/decreases (for collimated/diffuse light) with increasing distance from the focal plane. Using the relationships between the measured properties of each dot and its actual size and position, an experimental calibration method has been developed to increase the particle-diameter-dependent range of distances from the focal plane for which accurate particle diameter measurements can be made. The support of the National Science Foundation under grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  7. Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.

    2015-11-01

    There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.

  8. Accuracy of High-Rate GPS for Seismology

    NASA Technical Reports Server (NTRS)

    Elosegui, P.; Davis, J. L.; Oberlander, D.; Baena, R.; Ekstrom, G.

    2006-01-01

    We built a device for translating a GPS antenna on a positioning table to simulate the ground motions caused by an earthquake. The earthquake simulator is accurate to better than 0.1 mm in position, and provides the "ground truth" displacements for assessing the technique of high-rate GPS. We found that the root-mean-square error of the 1-Hz GPS position estimates over the 15-min duration of the simulated seismic event was 2.5 mm, with approximately 96% of the observations in error by less than 5 mm, and is independent of GPS antenna motion. The error spectrum of the GPS estimates is approximately flicker noise, with a 50% decorrelation time for the position error of approx.1.6 s. We that, for the particular event simulated, the spectrum of dependent error in the GPS measurements. surface deformations exceeds the GPS error spectrum within a finite band. More studies are required to determine whether a generally optimal bandwidth exists for a target group of seismic events.

  9. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  10. Accuracy of cutoff probe for measuring electron density: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Woong; You, Shin-Jae; Kim, Si-June; Lee, Jang-Jae; Kim, Jung-Hyung; Oh, Wang-Yuhl

    2016-09-01

    The electron density has been used for characterizing the plasma for basic research as well as industrial application. To measure the exact electron density, various type of microwave probe has been developed and improved. The cutoff probe is a promising technique inferring the electron density from the plasma resonance peak on the transmission spectrum. In this study, we present the accuracy of electron density inferred from cutoff probe. The accuracy was investigated by electromagnetic simulation and experiment. The discrepancy between the electron densities from the cutoff probe and other sophisticated microwave probes were investigated and discussed. We found that the cutoff probe has good accuracy in inferred electron density. corresponding author.

  11. Coding for quality measurement: the relationship between hospital structural characteristics and coding accuracy from the perspective of quality measurement.

    PubMed

    Rangachari, Pavani

    2007-04-16

    This study examines the relationship between hospital structural characteristics and coding accuracy from the perspective of quality measurement. To measure coding accuracy for quality measurement, the study utilizes the "present on admission" indicator, a data element in the New York state hospital administrative database. This data element is used by hospitals across New York state to indicate if a particular secondary diagnosis is "present on admission," "not present on admission," or "uncertain." Since the accurate distinction between comorbidities (present at admission) and complications (not present at admission,) is critical for risk adjustment in comparative hospital quality reports, this study uses the occurrence of the value "uncertain" in the "present on admission" indicator as the primary measure of coding accuracy. A lower occurrence of the value "uncertain" is considered to be reflective of better coding accuracy. Moreover, since coding accuracy of the "present on admission" indicator links back to the accuracy of physician documentation, a focus on the occurrence of the value "uncertain," also helps gain insight into physician documentation efficacy within the facility. By utilizing this approach, therefore, the study serves the twin purpose of 1) addressing the gap in the literature with respect to large-scale studies of "coding for quality," and 2) providing insight into the structural characteristics of institutions that are likely facing organizational challenges of physician documentation from the perspective of quality measurement.

  12. The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.

    2013-12-01

    Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate

  13. Reliability and accuracy analysis of a new semiautomatic radiographic measurement software in adult scoliosis.

    PubMed

    Aubin, Carl-Eric; Bellefleur, Christian; Joncas, Julie; de Lanauze, Dominic; Kadoury, Samuel; Blanke, Kathy; Parent, Stefan; Labelle, Hubert

    2011-05-20

    Radiographic software measurement analysis in adult scoliosis. To assess the accuracy as well as the intra- and interobserver reliability of measuring different indices on preoperative adult scoliosis radiographs using a novel measurement software that includes a calibration procedure and semiautomatic features to facilitate the measurement process. Scoliosis requires a careful radiographic evaluation to assess the deformity. Manual and computer radiographic process measures have been studied extensively to determine the reliability and reproducibility in adolescent idiopathic scoliosis. Most studies rely on comparing given measurements, which are repeated by the same user or by an expert user. A given measure with a small intra- or interobserver error might be deemed as good repeatability, but all measurements might not be truly accurate because the ground-truth value is often unknown. Thorough accuracy assessment of radiographic measures is necessary to assess scoliotic deformities, compare these measures at different stages or to permit valid multicenter studies. Thirty-four sets of adult scoliosis digital radiographs were measured two times by three independent observers using a novel radiographic measurement software that includes semiautomatic features to facilitate the measurement process. Twenty different measures taken from the Spinal Deformity Study Group radiographic measurement manual were performed on the coronal and sagittal images. Intra- and intermeasurer reliability for each measure was assessed. The accuracy of the measurement software was also assessed using a physical spine model in six different scoliotic configurations as a true reference. The majority of the measures demonstrated good to excellent intra- and intermeasurer reliability, except for sacral obliquity. The standard variation of all the measures was very small: ≤ 4.2° for Cobb angles, ≤ 4.2° for the kyphosis, ≤ 5.7° for the lordosis, ≤ 3.9° for the pelvic angles, and

  14. Automatic digital filtering for the accuracy improving of a digital holographic measurement system

    NASA Astrophysics Data System (ADS)

    Matrecano, Marcella; Miccio, Lisa; Persano, Anna; Quaranta, Fabio; Siciliano, Pietro; Ferraro, Pietro

    2014-05-01

    Digital holography (DH) is a well-established interferometric tool in optical metrology allowing the investigation of engineered surface shapes with microscale lateral resolution and nanoscale axial precision. With the advent of charged coupled devices (CCDs) with smaller pixel sizes, high speed computers and greater pixel numbers, DH became a very feasible technology which offers new possibilities for a large variety of applications. DH presents numerous advantages such as the direct access to the phase information, numerical correction of optical aberrations and the ability of a numerical refocusing from a single hologram. Furthermore, as an interferometric method, DH offers both a nodestructive and no-contact approach to very fragile objects combined with flexibility and a high sensitivity to geometric quantities such as thicknesses and displacements. These features recommend it for the solution of many imaging and measurements problems, such as microelectro-optomechanical systems (MEMS/MEOMS) inspection and characterization. In this work, we propose to improve the performance of a DH measurement on MEMS devices, through digital filters. We have developed an automatic procedure, inserted in the hologram reconstruction process, to selectively filter the hologram spectrum. The purpose is to provide very few noisy reconstructed images, thus increasing the accuracy of the conveyed information and measures performed on images. Furthermore, improving the image quality, we aim to make this technique application as simple and as accurate as possible.

  15. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  16. Inter-arch digital model vs. manual cast measurements: Accuracy and reliability.

    PubMed

    Kiviahde, Heikki; Bukovac, Lea; Jussila, Päivi; Pesonen, Paula; Sipilä, Kirsi; Raustia, Aune; Pirttiniemi, Pertti

    2017-06-28

    The purpose of this study was to evaluate the accuracy and reliability of inter-arch measurements using digital dental models and conventional dental casts. Thirty sets of dental casts with permanent dentition were examined. Manual measurements were done with a digital caliper directly on the dental casts, and digital measurements were made on 3D models by two independent examiners. Intra-class correlation coefficients (ICC), a paired sample t-test or Wilcoxon signed-rank test, and Bland-Altman plots were used to evaluate intra- and inter-examiner error and to determine the accuracy and reliability of the measurements. The ICC values were generally good for manual and excellent for digital measurements. The Bland-Altman plots of all the measurements showed good agreement between the manual and digital methods and excellent inter-examiner agreement using the digital method. Inter-arch occlusal measurements on digital models are accurate and reliable and are superior to manual measurements.

  17. Accuracy of tablet splitting and liquid measurements: an examination of who, what and how.

    PubMed

    Abu-Geras, Dana; Hadziomerovic, Dunja; Leau, Andrew; Khan, Ramzan Nazim; Gudka, Sajni; Locher, Cornelia; Razaghikashani, Maryam; Lim, Lee Yong

    2017-05-01

    To examine factors that might affect the ability of patients to accurately halve tablets or measure a 5-ml liquid dose. Eighty-eight participants split four different placebo tablets by hand and using a tablet splitter, while 85 participants measured 5 ml of water, 0.5% methylcellulose (MC) and 1% MC using a syringe and dosing cup. Accuracy of manipulation was determined by mass measurements. The general population was less able than pharmacy students to break tablets into equal parts, although age, gender and prior experience were insignificant factors. Greater accuracy of tablet halving was observed with tablet splitter, with scored tablets split more equally than unscored tablets. Tablet size did not affect the accuracy of splitting. However, >25% of small scored tablets failed to be split by hand, and 41% of large unscored tablets were split into >2 portions in the tablet splitter. In liquid measurement, the syringe provided more accurate volume measurements than the dosing cup, with higher accuracy observed for the more viscous MC solutions than water. Formulation characteristics and manipulation technique have greater influences on the accuracy of medication modification and should be considered in off-label drug use in vulnerable populations. © 2016 Royal Pharmaceutical Society.

  18. Evaluation of 12 blood glucose monitoring systems for self-testing: system accuracy and measurement reproducibility.

    PubMed

    Freckmann, Guido; Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Link, Manuela; Haug, Cornelia

    2014-02-01

    Systems for self-monitoring of blood glucose (SMBG) have to provide accurate and reproducible blood glucose (BG) values in order to ensure adequate therapeutic decisions by people with diabetes. Twelve SMBG systems were compared in a standardized manner under controlled laboratory conditions: nine systems were available on the German market and were purchased from a local pharmacy, and three systems were obtained from the manufacturer (two systems were available on the U.S. market, and one system was not yet introduced to the German market). System accuracy was evaluated following DIN EN ISO (International Organization for Standardization) 15197:2003. In addition, measurement reproducibility was assessed following a modified TNO (Netherlands Organization for Applied Scientific Research) procedure. Comparison measurements were performed with either the glucose oxidase method (YSI 2300 STAT Plus™ glucose analyzer; YSI Life Sciences, Yellow Springs, OH) or the hexokinase method (cobas(®) c111; Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer's measurement procedure. The 12 evaluated systems showed between 71.5% and 100% of the measurement results within the required system accuracy limits. Ten systems fulfilled with the evaluated test strip lot minimum accuracy requirements specified by DIN EN ISO 15197:2003. In addition, accuracy limits of the recently published revision ISO 15197:2013 were applied and showed between 54.5% and 100% of the systems' measurement results within the required accuracy limits. Regarding measurement reproducibility, each of the 12 tested systems met the applied performance criteria. In summary, 83% of the systems fulfilled with the evaluated test strip lot minimum system accuracy requirements of DIN EN ISO 15197:2003. Each of the tested systems showed acceptable measurement reproducibility. In order to ensure sufficient measurement quality of each distributed test strip lot, regular evaluations are required.

  19. Evaluation of a CT-based technique to measure the transfer accuracy of a virtually planned osteotomy.

    PubMed

    Dobbe, J G G; Kievit, A J; Schafroth, M U; Blankevoort, L; Streekstra, G J

    2014-08-01

    Accurate transfer of a preoperatively planned osteotomy plane to the bone is of significance for corrective surgery, tumor resection, implant positioning and evaluation of new osteotomy techniques. Methods for comparing a preoperatively planned osteotomy plane with a surgical cut exist but the accuracy of these techniques are either limited or unknown. This paper proposes and evaluates a CT-based technique that enables comparing virtual with actual osteotomy planes. The methodological accuracy and reproducibility of the technique is evaluated using CT-derived volume data of a cadaver limb, which serves to plan TKA osteotomies in 3-D space and to simulate perfect osteotomies not hampered by surgical errors. The methodological variability of the technique is further investigated with repeated CT scans after actual osteotomy surgery of the same cadaver specimen. Plane displacement (derr) and angulation errors in the sagittal and coronal plane (βerr, γerr) are measured with high accuracy and reproducibility (derr=-0.11±0.06mm; βerr=0.08±0.04°, γerr=-0.03±0.03°). The proposed method for evaluating an osteotomy plane position and orientation has a high intrinsic accuracy and reproducibility. The method can be of great value for measuring the transfer accuracy of new techniques for positioning and orienting a surgical cut in 3-D space.

  20. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194