Science.gov

Sample records for high accuracy measurements

  1. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    PubMed Central

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-01-01

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs. PMID:27338408

  2. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-01-01

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs. PMID:27338408

  3. High-accuracy measurements of the normal specular reflectance

    SciTech Connect

    Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

    2008-05-01

    The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 {mu}m. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity.

  4. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  5. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  6. Research on high accuracy diameter measurement system with CCD

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng

    2011-08-01

    Non-touch measurement is an important technology in many domains such as the monitoring of tool breakage and tool wear, et al. Based on the method of curve fitting and demanding inflection point, we present a high accuracy non-touch diameter measurement system. The measurement system comprise linear array CCD, CCD driving circuit, power supply, workseat, light source, data acquisition card and so on. The picture element of the linear array CCD is 2048, and the size of every pixel and the spacing of adjacent pixels have the same size of 14μmx14μm. The stabilized voltage supply has a constant voltage output of 3V. The light is generated by a halogen tungsten lamp, which does not represent any risk to the health of the whole system. The data acquisition card converts the analog signal to digital signal with the accuracy of 12 bit. The error of non-uniform of the CCD pixels in sensitivity and the electrical noise error are indicated in detail. The measurement system has a simple structure, high measuring precision, and can be carried out automatically. Experiment proves that the diameter measurement of the system is within the range of Φ0.5~Φ10mm, and the total measuring unstability of the system is within the range of +/- 1.4μm.

  7. Researching the technology of high-accuracy camshaft measurement

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  8. A High-accuracy Micro-deformation Measurement Method

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    2016-07-01

    The requirement for ever-increasing-resolution space cameras drives focal length and diameter of optical lenses be increasing. High-frequency vibration in the process of launching and complex environmental conditions of the outer space generate micro deformation in components of space cameras. As a result, images from the space cameras are blurred. Therefore, it is necessary to measure the micro deformations in components of space cameras in various experiment conditions. This paper presents a high-accuracy micro deformation measurement method. The method is implemented as follows: (1) fix Tungsten-steel balls onto a space camera being measured and measure the coordinate for each ball under the standard condition; (2) simulate high-frequency vibrations and environmental conditions like the outer space to measure coordinates for each ball under each combination of test conditions; and (3) compute the deviation of a coordinate of a ball under a test condition combination from the coordinate of the ball under the standard condition and the deviation is the micro deformation of the space camera component associated with the ball. This method was applied to micro deformation measurement for space cameras of different models. Measurement data for these space cameras validated the proposed method.

  9. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  10. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  11. Global High-Accuracy Intercomparison of Slope Measuring Instruments

    NASA Astrophysics Data System (ADS)

    Siewert, Frank; Assoufid, Lahsen; Cocco, Daniele; Hignette, Olivier; Irick, Steve; Lammert, Heiner; McKinney, Wayne; Ohashi, Haruhiko; Polack, Francois; Qian, Shinan; Rah, Seungyu; Rommeveaux, Amparo; Schönherr, Veit; Sostero, Giovani; Takacs, Peter; Thomasset, Muriel; Yamauchi, Kazuto; Yashchuk, Valeriy; Zeschke, Thomas

    2007-01-01

    The upcoming generation of high accuracy synchrotron radiation (SR) optics will be characterized by a slope deviation from ideal shape in the range of some 0.05μrad rms at a sampling interval of about 1mm. To certify and improve the measurement capabilities of metrology tools to inspect these stringent specifications, an essential step is a worldwide intercomparison of these measurements based on a set of transfer standards. It is the aim of these cross measurements to verify the "absolute" correctness and comparability of the measurement results obtained by the cooperating partners when measuring the topography of specific reference optics (ROs) using their latest metrology tools and methods. Organized by members of the SR-optics community, new national and international cross measurement comparisons of typical synchrotron radiation mirrors have been realized during the last few years: A round robin test by the European COST-program (BESSY, Elettra, ESRF, Soleil) during the years 2004-2005 and a similar cooperation realized by the APS, ESRF and Spring-8 have proceeded. The first results of both projects were presented at the "Optics & Photonics" conference in San Diego in August 2005. This work build upon earlier work. The participants of both groups and representatives of other SR-laboratories agreed to start a global cooperation bringing together the two round-robin projects and open these activities to other partners from the SR-community, optical manufacturers and other interested parties. This initiative is intended to start an extensive comparison of various measurement principles and tools and will help to push the frontiers in metrology, and hence production, to a precision well below the current state-of-the-art limit of 0.5μrad rms for slope errors.

  12. High-accuracy instrument for measuring high-power laser beams

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Xiong, Limin

    1998-08-01

    Some methods are introduced in the paper, to reduce the damage to the detector as the laser power is high as 10 kw. To measure the high-power laser accurately, several couples of pieces having high transmittance, low thermal effect, and low reflectivity are used to measure the high-power laser mode accurately. The beam cutter with a slit of 0.01 mm width is used to measure the high-power beam divergence, and the reflective method is used to measure the high-power laser polarization. Directness, simplicity and effectiveness, are the designed considerations in the paper, as these factors contribute to advancing the instrument's accuracy.

  13. A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head.

    PubMed

    Idir, Mourad; Kaznatcheev, Konstantine; Dovillaire, Guillaume; Legrand, Jerome; Rungsawang, Rakchanok

    2014-02-10

    We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms. PMID:24663568

  14. Tailoring Inlet Flow to Enable High Accuracy Compressor Performance Measurements

    NASA Astrophysics Data System (ADS)

    Brossman, John R.; Smith, Natalie R.; Talalayev, Anton; Key, Nicole L.

    2011-12-01

    To accomplish the research goals of capturing the effects of blade row interactions on compressor performance, small changes in performance must be measurable. This also requires axi-symmetric flow so that measuring one passage accurately captures the phenomena occurring in all passages. Thus, uniform inlet flow is a necessity. The original front-driven compressor had non-uniform temperature at the inlet. Additional challenges in controlling shaft speed to within tight tolerances were associated with the use of a viscous fluid coupling. Thus, a new electric motor, with variable frequency drive speed control was implemented. To address the issues with the inlet flow, the compressor is now driven from the rear resulting in improved inlet flow uniformity. This paper presents the design choices of the new layout in addition to the preliminary performance data of the compressor and an uncertainty analysis.

  15. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    PubMed

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  16. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  17. Self-mixing digital closed-loop vibrometer for high accuracy vibration measurements

    NASA Astrophysics Data System (ADS)

    Magnani, Alessandro; Melchionni, Dario; Pesatori, Alessandro; Norgia, Michele

    2016-04-01

    The novelty of Self-mixing interferometry is represented by the combination of high accuracy and contactless operation with compact, very-low-cost and user-friendly setup. This paper introduces state of the art techniques to monitor vibrations focusing on a novel digital feedback vibrometer. It exploits a control loop to delete interferometric signal distortion and improve measurement accuracy. A digital implementation is proposed to enhance system performances through a real-time elaboration.

  18. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  19. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  20. Consideration for high accuracy radiation efficiency measurements for the Solar Power Satellite (SPS) subarrays

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.; Ryan, C. E.

    1980-01-01

    The transmit beam and radiation efficiency for 10 metersquare subarray panels were quantified. Measurement performance potential of far field elevated and ground reflection ranges and near field technique were evaluated. The state-of-the-art of critical components and/or unique facilities required was identified. Relative cost, complexity and performance tradeoffs were performed for techniques capable of achieving accuracy objectives. It is considered that because of the large electrical size of the SPS subarray panels and the requirement for high accuracy measurements, specialized measurement facilities are required. Most critical measurement error sources have been identified for both conventional far field and near field techniques. Although the adopted error budget requires advances in state-of-the-art of microwave instrumentation, the requirements appear feasible based on extrapolation from today's technology. Additional performance and cost tradeoffs need to be completed before the choice of the preferred measurement technique is finalized.

  1. Automatic stand for metrological certification of high-accuracy angular measuring devices

    NASA Astrophysics Data System (ADS)

    Parvulyusov, Yuri B.; Ilyuhin, Valery A.; Yakushenkov, Yuri G.

    2003-07-01

    Principles of automatic two-coordinate stand building are discussed. A base of using the stand is direct frequentative high-accuracy measurements of fixed angles for various zenith directions. Results of these measurements are introduced into special microprocessor for composing system of simultaneous error equations. The solution of the system makes it possible for setting both general instrumental errors of horizontal and vertical angular measurements and separate components of these errors. The system of base directions is set by two-coordinate photoelectric autocollimators aiming to special prism standard. The standard is certified beforehand and used then periodically for verification of the spatial stability of the stand. Analysis of an accuracy has illustrated that the error of certification may be not exceeded by 0,3 angular second for frequentative measurements if the error of the autocollimators are less to 0,1 angular second.

  2. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%.

  3. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. PMID:26087881

  4. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement.

    PubMed

    Pan, Bing; Tian, Long

    2016-08-22

    We developed an advanced video extensometer for non-contact, real-time, high-accuracy strain measurement in material testing. In the established video extensometer, a "near perfect and ultra-stable" imaging system, combining the idea of active imaging with a high-quality bilateral telecentric lens, is constructed to acquire high-fidelity video images of the test sample surface, which is invariant to ambient lighting changes and small out-of-plane motions occurred between the object surface and image plane. In addition, an efficient and accurate inverse compositional Gauss-Newton algorithm incorporating a temporal initial guess transfer scheme and a high-accuracy interpolation method is employed to achieve real-time, high-accuracy displacement tracking with negligible bias error. Tensile tests of an aluminum sample and a carbon fiber filament sample were performed to demonstrate the efficiency, repeatability and accuracy of the developed advanced video extensometer. The results indicate that longitudinal and transversal strains can be estimated and plotted at a rate of 117 fps and with a maximum strain error less than 30 microstrains. PMID:27557188

  5. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  6. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  7. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  8. Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc

    2006-01-15

    With highly conformal radiation therapy techniques such as intensity-modulated radiation therapy, radiosurgery, and tomotherapy becoming more common in clinical practice, the use of these narrow beams requires a higher level of precision in quality assurance and dosimetry. Plastic scintillators with their water equivalence, energy independence, and dose rate linearity have been shown to possess excellent qualities that suit the most complex and demanding radiation therapy treatment plans. The primary disadvantage of plastic scintillators is the presence of Cerenkov radiation generated in the light guide, which results in an undesired stem effect. Several techniques have been proposed to minimize this effect. In this study, we compared three such techniques--background subtraction, simple filtering, and chromatic removal--in terms of reproducibility and dose accuracy as gauges of their ability to remove the Cerenkov stem effect from the dose signal. The dosimeter used in this study comprised a 6-mm{sup 3} plastic scintillating fiber probe, an optical fiber, and a color charge-coupled device camera. The whole system was shown to be linear and the total light collected by the camera was reproducible to within 0.31% for 5-s integration time. Background subtraction and chromatic removal were both found to be suitable for precise dose evaluation, with average absolute dose discrepancies of 0.52% and 0.67%, respectively, from ion chamber values. Background subtraction required two optical fibers, but chromatic removal used only one, thereby preventing possible measurement artifacts when a strong dose gradient was perpendicular to the optical fiber. Our findings showed that a plastic scintillation dosimeter could be made free of the effect of Cerenkov radiation.

  9. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method

    SciTech Connect

    Deline, C.; Gilchrist, B. E.; Dobson, C.; Jones, J. E.; Chavers, D. G.

    2007-11-15

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  10. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method.

    PubMed

    Deline, C; Gilchrist, B E; Dobson, C; Jones, J E; Chavers, D G

    2007-11-01

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  11. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    NASA Astrophysics Data System (ADS)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  12. Nanopositioning and nanomeasuring machine for high accuracy measuring procedures of small features in large areas

    NASA Astrophysics Data System (ADS)

    Manske, E.; Hausotte, T.; Mastylo, R.; Hofmann, N.; Jäger, G.

    2005-10-01

    Driven by increasing precision and accuracy requirements due to miniaturization and performance enhancement, measuring technologies need alternative ways of positioning, probing and measurement strategies. The paper describes the operation of the high-precision wide scale three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine) having a resolution of 0.1 nm over the positioning and measuring range of 25 mm x 25 mm x 5 mm. The NPM-Machine has been developed by the Technische Universitat Ilmenau and manufactured by the SIOS Messtechnik GmbH Ilmenau. Three plane-mirror miniature interferometers and two angular sensors are arranged, to realize in all three coordinates zero Abbe offset measurements. Therefore, this device closes a gap in coordinate-measuring technique regarding resolution, accuracy and measuring range. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). The integration of several, optical and tactile probe systems and scanning force microscopes makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and water inspection, circuit testing as well as measuring optical and mechanical precision work pieces such as micro lens arrays, concave lenses, step height standards.

  13. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  14. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements.

    PubMed

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level. PMID:24784633

  15. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    PubMed

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power.

  16. High-accuracy linear and circular polarization measurements at 21 cm

    NASA Technical Reports Server (NTRS)

    De Pater, I.; Weiler, K. W.

    1982-01-01

    New high-accuracy linear and circular polarization measurements have been obtained for 27 small-diameter radio sources, using the Westerbork Synthesis Radio Telescope at 21 cm (1415 MHz). From these and other observed properties of the sources, estimates of the average internal magnetic field strengths in the sources are made by applying the uniform synchrotron emission model to the measured circular polarization and by using equipartition arguments. These two values are compared and found to be in agreement to within an order of magnitude, as was previously found by Weiler and de Pater (1980). Also, the magnetic fields estimated from circular polarization measurements at two different wavelengths (49 and 21 cm) are compared and found to be in rough agreement, but with indications of differences between variable and nonvariable sources. A comparison of the magnitudes of linear and circular polarization in sources shows no correlations.

  17. Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Ku; Hsieh, Pei-Rong; Yuter, Sandra E.; Cheng, Lin-Wen; Tsai, Chia-Lun; Lin, Che-Yu; Chen, Ying

    2016-04-01

    Acquisition of accurate raindrop fall speed measurements outdoors in natural rain by means of moderate-cost and easy-to-use devices represents a long-standing and challenging issue in the meteorological community. Feasibility experiments were conducted to evaluate the indoor accuracy of fall speed measurements made with a high-speed camera and to evaluate its capability for outdoor applications. An indoor experiment operating in calm conditions showed that the high-speed imaging technique can provide fall speed measurements with a mean error of 4.1-9.7 % compared to Gunn and Kinzer's empirical fall-speed-size relationship for typical sizes of rain and drizzle drops. Results obtained using the same apparatus outside in summer afternoon showers indicated larger positive and negative velocity deviations compared to the indoor measurements. These observed deviations suggest that ambient flow and turbulence play a role in modifying drop fall speeds which can be quantified with future outdoor high-speed camera measurements. Because the fall speed measurements, as presented in this article, are analyzed on the basis of tracking individual, specific raindrops, sampling uncertainties commonly found in the widely adopted optical disdrometers can be significantly mitigated.

  18. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  19. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  20. Detailed high-accuracy megavoltage transmission measurements: A sensitive experimental benchmark of EGSnrc

    SciTech Connect

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-10-15

    Purpose: There are three goals for this study: (a) to perform detailed megavoltage transmission measurements in order to identify the factors that affect the measurement accuracy, (b) to use the measured data as a benchmark for the EGSnrc system in order to identify the computational limiting factors, and (c) to provide data for others to benchmark Monte Carlo codes. Methods: Transmission measurements are performed at the National Research Council Canada on a research linac whose incident electron parameters are independently known. Automated transmission measurements are made on-axis, down to a transmission value of {approx}1.7%, for eight beams between 10 MV (the lowest stable MV beam on the linac) and 30 MV, using fully stopping Be, Al, and Pb bremsstrahlung targets and no fattening filters. To diversify energy differentiation, data are acquired for each beam using low-Z and high-Z attenuators (C and Pb) and Farmer chambers with low-Z and high-Z buildup caps. Experimental corrections are applied for beam drifts (2%), polarity (2.5% typical maximum, 6% extreme), ion recombination (0.2%), leakage (0.3%), and room scatter (0.8%)-the values in parentheses are the largest corrections applied. The experimental setup and the detectors are modeled using EGSnrc, with the newly added photonuclear attenuation included (up to a 5.6% effect). A detailed sensitivity analysis is carried out for the measured and calculated transmission data. Results: The developed experimental protocol allows for transmission measurements with 0.4% uncertainty on the smallest signals. Suggestions for accurate transmission measurements are provided. Measurements and EGSnrc calculations agree typically within 0.2% for the sensitivity of the transmission values to the detector details, to the bremsstrahlung target material, and to the incident electron energy. Direct comparison of the measured and calculated transmission data shows agreement better than 2% for C (3.4% for the 10 MV beam) and

  1. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  2. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.

    PubMed

    Kraemer, D; Chen, G

    2014-04-01

    Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials

  3. Considerations for high accuracy radiation efficiency measurements for the Solar Power Satellite (SPS) subarrays

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.; Ryan, C. E.

    1980-01-01

    The relatively large apertures to be used in SPS, small half-power beamwidths, and the desire to accurately quantify antenna performance dictate the requirement for specialized measurements techniques. Objectives include the following: (1) For 10-meter square subarray panels, quantify considerations for measuring power in the transmit beam and radiation efficiency to + or - 1 percent (+ or - 0.04 dB) accuracy. (2) Evaluate measurement performance potential of far-field elevated and ground reflection ranges and near-field techniques. (3) Identify the state-of-the-art of critical components and/or unique facilities required. (4) Perform relative cost, complexity and performance tradeoffs for techniques capable of achieving accuracy objectives. the precision required by the techniques discussed below are not obtained by current methods which are capable of + or - 10 percent (+ or - dB) performance. In virtually every area associated with these planned measurements, advances in state-of-the-art are required.

  4. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  5. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  6. High-accuracy time- and space-resolved Stark shift measurements

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1996-07-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.

  7. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    SciTech Connect

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-04-15

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  8. Accuracy of two-color pyrometry using color high-speed cameras for measurement of luminous flames

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Mitsui, Kenji

    2007-01-01

    By the recent development in electronics, including new solid-state image sensors such as area CCD and C-MOS sensors and the progress of image processing techniques, new imaging radiometers have been developed which two-dimensionally acquire image data of objects moving at a high speed and under high temperature, and (graphically) present the temperature distribution over the object immediately. We successfully measured the temperature distribution and the term KL distribution, which is the absorption strength of combustion in diesel engine cylinders or other luminous flames taking place at a high speed, using single-sensor color high-speed cameras and applying two-color pyrometry introduced by H. C. Hottel and F. P. Btoughton. The measurement accuracy depends on the accuracy of color reproducibility of the high-speed camera being used which is considered a brightness pyrometer, because two-color pyrometry for measuring luminous flames is based on the brightness temperature at two wavelength bands such as red and green. In this paper, we present a method of maintaining the accuracy of measurement using a high-speed camera as a brightness pyrometer and of two-color pyrometry that was developed based on it.

  9. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  10. Algorithms for Low-Cost High Accuracy Geomagnetic Measurements in LEO

    NASA Astrophysics Data System (ADS)

    Beach, T. L.; Zesta, E.; Allen, L.; Chepko, A.; Bonalsky, T.; Wendel, D. E.; Clavier, O.

    2013-12-01

    Geomagnetic field measurements are a fundamental, key parameter measurement for any space weather application, particularly for tracking the electromagnetic energy input in the Ionosphere-Thermosphere system and for high latitude dynamics governed by the large-scale field-aligned currents. The full characterization of the Magnetosphere-Ionosphere-Thermosphere coupled system necessitates measurements with higher spatial/temporal resolution and from multiple locations simultaneously. This becomes extremely challenging in the current state of shrinking budgets. Traditionally, including a science-grade magnetometer in a mission necessitates very costly integration and design (sensor on long boom) and imposes magnetic cleanliness restrictions on all components of the bus and payload. This work presents an innovative algorithm approach that enables high quality magnetic field measurements by one or more high-quality magnetometers mounted on the spacecraft without booms. The algorithm estimates the background field using multiple magnetometers and current telemetry on board a spacecraft. Results of a hardware-in-the-loop simulation showed an order of magnitude reduction in the magnetic effects of spacecraft onboard time-varying currents--from 300 nT to an average residual of 15 nT.

  11. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NASA Astrophysics Data System (ADS)

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-09-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10-8 for a distance of 50 m.

  12. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  13. An updated T-series thermocouple measurement system for high-accuracy temperature measurements of the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Gibson, J. D.

    2012-09-01

    Starting in 2009, MMTO began design and installation of a new set of electronics to measure a set of radiallydistributed type T thermocouples installed after the primary mirror polishing was completed. These thermocouples are arranged in both single measurement points and as thermopiles for differential temperature sensing. Since the goal of the primary mirror temperature control system is to minimize mirror seeing and mirror figure errors induced by temperature variation across the primary mirror, it depends on excellent accuracy from the temperature sensing system. The new electronics encompass on-board cold-junction compensation, real-time ITS-90 curve fitting, and Ethernet connectivity to the data servers running in the MMTO software infrastructure. We describe the hardware design, system wiring, and software used in this system.

  14. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  15. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.

    PubMed

    Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G

    2015-04-15

    In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art.

  16. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.

    PubMed

    Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G

    2015-04-15

    In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art. PMID:25601169

  17. Drawing accuracy measured using polygons

    NASA Astrophysics Data System (ADS)

    Carson, Linda; Millard, Matthew; Quehl, Nadine; Danckert, James

    2013-03-01

    The study of drawing, for its own sake and as a probe into human visual perception, generally depends on ratings by human critics and self-reported expertise of the drawers. To complement those approaches, we have developed a geometric approach to analyzing drawing accuracy, one whose measures are objective, continuous and performance-based. Drawing geometry is represented by polygons formed by landmark points found in the drawing. Drawing accuracy is assessed by comparing the geometric properties of polygons in the drawn image to the equivalent polygon in a ground truth photo. There are four distinct properties of a polygon: its size, its position, its orientation and the proportionality of its shape. We can decompose error into four components and investigate how each contributes to drawing performance. We applied a polygon-based accuracy analysis to a pilot data set of representational drawings and found that an expert drawer outperformed a novice on every dimension of polygon error. The results of the pilot data analysis correspond well with the apparent quality of the drawings, suggesting that the landmark and polygon analysis is a method worthy of further study. Applying this geometric analysis to a within-subjects comparison of accuracy in the positive and negative space suggests there is a trade-off on dimensions of error. The performance-based analysis of geometric deformations will allow the study of drawing accuracy at different levels of organization, in a systematic and quantitative manner. We briefly describe the method and its potential applications to research in drawing education and visual perception.

  18. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  19. High-Accuracy Surface Figure Measurement of Silicon Mirrors at 80 K

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Davila, Pamela; Robinson, F. David

    2004-01-01

    This report describes the equipment, experimental methods, and first results at a new facility for interferometric measurement of cryogenically-cooled spherical mirrors at the Goddard Space Flight Center Optics Branch. The procedure, using standard phase-shifting interferometry, has an standard combined uncertainty of 3.6 nm rms in its representation of the two-dimensional surface figure error at 80, and an uncertainty of plus or minus 1 nm in the rms statistic itself. The first mirror tested was a concave spherical silicon foam-core mirror, with a clear aperture of 120 mm. The optic surface was measured at room temperature using standard absolute techniques; and then the change in surface figure error from room temperature to 80 K was measured. The mirror was cooled within a cryostat. and its surface figure error measured through a fused-silica window. The facility and techniques will be used to measure the surface figure error at 20K of prototype lightweight silicon carbide and Cesic mirrors developed by Galileo Avionica (Italy) for the European Space Agency (ESA).

  20. Intra-cavity fiber laser technique for high accuracy birefringence measurement

    NASA Astrophysics Data System (ADS)

    Li, Ning; Luo, Fei; Unlu, Selim; Morse, T. F.; Hernandez-Cordero, Juan; Battiato, James; Wang, Ding

    2006-08-01

    When a device under test (DUT) with birefringence is placed within a laser cavity two distinct sets of orthogonally polarized longitudinal modes will result. If the output of the laser is sent through a 45o linear polarizer, polarization mode beating (PMB) between these two sets of longitudinal modes can be detected. We demonstrate the relation between PMB and the birefringence of the DUT and show that by tracking the PMB it provides a sensitive measurement of the birefringence of the device. We first examined the birefringence of a Newport PM fiber and then measured the birefringence of a 3M (Austin, TX) Chirped grating 1.0 m in length. For comparison, birefringence measurements were performed using a Hewlett-Packard Polarization Analyzer (HP 8509B).

  1. High-accuracy simultaneous measurement of particle size and location using interferometric out-of-focus imaging.

    PubMed

    Qieni, Lu; Kan, Han; Baozhen, Ge; Xiang, Wang

    2016-07-25

    A method based on unidirectional gradient-matched algorithm and Fourier transform technique is proposed to simultaneously extract the location and the number of fringes/fringe spacing of a particle interferogram. The position coordinate (x,y) of a particle can be determined with high accuracy because of the elimination of the fringe within the particle fringe pattern. Furthermore, the method can be employed to achieve sub-pixel frequency extraction when combined with an improved Rife algorithm. The performance of the method has been verified by numerical simulations and experimental measurements. The results suggest that the method presented here is highly beneficial to applications such as spray, in accurately measuring both the particle size and its location. PMID:27464108

  2. Polarimetric Ku-Band Scatterometer for High Accuracy, Large Swath Global Wind Vector Measurements

    NASA Technical Reports Server (NTRS)

    Tsai, Wu-Yang; Nghiem, Son V.; Huddleston, James; Spencer, Michael; Stiles, Bryan; West, Richard

    2000-01-01

    In the past, wind measurements from space using fan-beam antennas, such as Seasat Scatterometer (SASS-1), ERS-1 &2, and NASA scatterometer (NSCAT), required up to six large stick-like antennas and suffered a nadir gap of up to 400 km. In the near future, a spinning pencil-beam scatterometer system is to be used for the SeaWinds scatterometer on QuikSCAT (QSCAT) and on ADEOS-2 (SeaWinds). This scatterometer, though offering wind measurements in the nadir region, still suffers from degraded performance in the nadir and outer swath. The purpose of this paper is to present an advanced polarimetric spinning pencil-beam scatterometer system, which can significantly improve the wind performance across the entire swath. The polarimetric scatterometer simultaneously measures co-polarized backscatter and the polarimetric correlation of co- and cross-polarized radar returns from the ocean surface. The advantage over the conventional scatterometer system is that, while the co-polarization radar returns are even function of the wind direction, the polarimetric correlation is an odd function of wind direction due to the reflection symmetry of the wind roughened surface. Therefore, this polarimetric scatterometer system can provide additional, equivalent measurements at azimuth angle 45degree away from the corresponding co-polarization measurements. The combined co-polarization and correlation measurements enable good wind performance across the whole swath to be obtained. In this paper, we will first present the theoretical formulation of all of the key components required for designing a polarimetric scatterometer. Then, we show that good wind performance can be achieved by a slight improvement in the signal-to-noise ratio of the current QSCAT/SeaWinds design. We then present the predicated wind performance using computer simulation based on a model function for the co-polarized backscatter obtained from actual spaceborne scatterometer data and an estimated model function for

  3. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  4. Method for high-accuracy reflectance measurements in the 2.5-microm region.

    PubMed

    Richter, Rudolf; Müller, Andreas

    2003-02-20

    Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C. PMID:12617226

  5. Method for high-accuracy reflectance measurements in the 2.5-microm region.

    PubMed

    Richter, Rudolf; Müller, Andreas

    2003-02-20

    Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C.

  6. High-accuracy mass measurements of neutron-rich Kr isotopes

    SciTech Connect

    Delahaye, P.; Kellerbauer, A.; Audi, G.; Lunney, D.; Blaum, K.; George, S.; Carrel, F.; Herfurth, F.; Yazidjian, C.; Herlert, A.; Schweikhard, L.; Kluge, H.-J.

    2006-09-15

    The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  7. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  8. High accuracy time transfer synchronization

    NASA Astrophysics Data System (ADS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-05-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  9. Broadband fully automated digitally assisted coaxial bridge for high accuracy impedance ratio measurements

    NASA Astrophysics Data System (ADS)

    Overney, Frédéric; Lüönd, Felix; Jeanneret, Blaise

    2016-06-01

    This paper describes the principle of a new fully automated digitally assisted coaxial bridge having a large bandwidth ranging from 60 Hz to 50 kHz. The performance of the bridge is evaluated making 1:1 comparisons between calculable ac resistors. The agreement between the calculated and the measured frequency dependence of the resistors is better than 5\\cdot {{10}-8} at frequencies up to 5 kHz, better than 1\\cdot {{10}-7} up to 20 kHz and better than 0.8\\cdot {{10}-6} up to 50 kHz. This bridge is particularly well suited to investigate the ac transport properties of graphene in the quantum Hall regime.

  10. Capillary LC Coupled with High-Mass Measurement Accuracy Mass Spectrometry for Metabolic Profiling

    SciTech Connect

    Ding, Jie; Sorensen, Christina M.; Zhang, Qibin; Jiang, Hongliang; Jaitly, Navdeep; Livesay, Eric A.; Shen, Yufeng; Smith, Richard D.; Metz, Thomas O.

    2007-08-15

    We have developed an efficient and robust high-pressure capillary LC-MS method for the identification of large numbers of metabolites in biological samples using both positive and negative ESI modes. Initial efforts focused on optimizing the separations conditions for metabolite extracts using various LC stationary phases in conjunction with multiple mobile phase systems, as applied to the separation of 45 metabolite standards. The optimal mobile and stationary phases of those tested were determined experimentally (in terms of peak shapes, theoretical plates, retention of small, polar compounds, etc.), and both linear and exponential gradients were applied in the study of metabolite extracts from the cyanobacterium Cyanothece sp. ATCC 51142. Finally, an automated dual-capillary LC system was constructed and evaluated for the effectiveness and reproducibility of the chromatographic separations using the above samples. When coupled with a commercial LTQ-Orbitrap MS, ~900 features were reproducibly detected from Cyanothece sp. ATCC 51142 metabolite extracts. In addition, 12 compounds were tentatively identified, based on accurate mass, isotopic distribution, and MS/MS information.

  11. Research on high-accuracy two-dimensional digital image correlation hardware measurement systems used in the engineering practice

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Ding, Keqin; Feng, Qibo

    2014-11-01

    Digital image correlation (DIC) method is a rapid development of photomechanics technology. The basic principle of the method is calculated the correlation between before and after deformation of the specimen surface speckle images, which is used to determine displacement and deformation. DIC measurement system includes hardware and software system. The former is the speckle image acquisition system, the latter are speckle image analysis algorithm and implementation procedures. Because the software analysis algorithm can achieve sub-pixel accuracy or even more, most of scholars have focused on the speckle image analysis algorithms. The system performance caused by the composition of hardware system has been less introduced. The hardware system mainly included the camera, lenses, lighting and other components. If hardware system is not perfect and stable, it will bring hundreds or even thousands of micro strain measurement error. These unfavorable factors make 2D-DIC inaccurate in small deformation tests. To some extent, it limits the application of 2D-DIC in the engineering practice. This paper analyzed that the various components of DIC hardware system impacted on the system performance, It was given that how to reasonably select the various components in the typical cases, as well as involved that the selection of 2D-DIC measurement system is applied to the actual engineering measurements in high temperature environment. These can provide support that 2D-DIC measurement system is better applied to the engineering practice.

  12. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  13. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    NASA Astrophysics Data System (ADS)

    Esteban Müller, J. F.; Baudrenghien, P.; Mastoridis, T.; Shaposhnikova, E.; Valuch, D.

    2015-11-01

    Electron cloud effects, which include heat load in the cryogenic system, pressure rise, and beam instabilities, are among the main intensity limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was proposed and developed to monitor the e-cloud activity and it has already been used successfully during the LHC run 1 (2010-2012) and it is being intensively used in operation during the start of the LHC run 2 (2015-2018). It is based on the fact that the power loss of each bunch due to e-cloud can be estimated using bunch-by-bunch measurement of the synchronous phase. The measurements were done using the existing beam phase module of the low-level rf control system. In order to achieve the very high accuracy required, corrections for reflection in the cables and for systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud buildup along the bunch trains and its time evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield. The total beam power loss can be computed as a sum of the contributions from all bunches and compared with the heat load deposited in the cryogenic system.

  14. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  15. High accuracy calibration of the fiber spectroradiometer

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Chen, Binhua

    2014-11-01

    Comparing to the big-size scanning spectroradiometer, the compact and convenient fiber spectroradiometer is widely used in various kinds of fields, such as the remote sensing, aerospace monitoring, and solar irradiance measurement. High accuracy calibration should be made before the use, which involves the wavelength accuracy, the background environment noise, the nonlinear effect, the bandwidth, the stray light and et al. The wavelength lamp and tungsten lamp are frequently used to calibration the fiber spectroradiometer. The wavelength difference can be easily reduced through the software or calculation. However, the nonlinear effect and the bandwidth always can affect the measurement accuracy significantly.

  16. On the accuracy of the interdiffusion coefficient measurements of high-temperature binary mixtures under ISS conditions

    NASA Astrophysics Data System (ADS)

    Saez, Núria; Ruiz, Xavier; Pallarés, Jordi; Shevtsova, Valentina

    2013-04-01

    An accelerometric record from the IVIDIL experiment (ESA Columbus module) has exhaustively been studied. The analysis involved the determination of basic statistical properties as, for instance, the auto-correlation and the power spectrum (second-order statistical analyses). Also, and taking into account the shape of the associated histograms, we address another important question, the non-Gaussian nature of the time series using the bispectrum and the bicoherence of the signals. Extrapolating the above-mentioned results, a computational model of a high-temperature shear cell has been performed. A scalar indicator has been used to quantify the accuracy of the diffusion coefficient measurements in the case of binary mixtures involving photovoltaic silicon or liquid Al-Cu binary alloys. Three different initial arrangements have been considered, the so-called interdiffusion, centred thick layer and the lateral thick layer. Results allow us to conclude that, under the conditions of the present work, the diffusion coefficient is insensitive to the environmental conditions, that is to say, accelerometric disturbances and initial shear cell arrangement.

  17. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy: The MISTRAL program at ISOLDE

    SciTech Connect

    Monsanglant, C.; Audi, G.; Conreur, G.; Cousin, R.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Lunney, D.; Saint Simon, M. de; Thibault, C.; Toader, C.; Bollen, G.; Lebee, G.; Scheidenberger, C.; Borcea, C.; Duma, M.; Kluge, H.-J.; Le Scornet, G.

    1999-11-16

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na, Mg, Al, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  18. High accuracy flexural hinge development

    NASA Astrophysics Data System (ADS)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  19. Distortion measurement of antennas under space simulation conditions with high accuracy and high resolution by means of holography

    NASA Technical Reports Server (NTRS)

    Frey, H. U.

    1984-01-01

    The use of laser holography for measuring the distortion of antennas under space simulation conditions is described. The subject is the so-called double exposure procedure which allows to measure the distortion in the order of 1 to 30/micrometers + or - 0.5 per hologramme of an area of 4 m diameter max. The method of holography takes into account the constraints of the space simulation facility. The test method, the test set up and the constraints by the space simulation facility are described. The results of the performed tests are presented and compared with the theoretical predictions. The test on the K-Band Antenna e.g., showed a distortion of approximately 140/micrometers + or - 5/micrometers measured during the cool down from -10 C to -120 C.

  20. High-accuracy EUV reflectometer

    NASA Astrophysics Data System (ADS)

    Hinze, U.; Fokoua, M.; Chichkov, B.

    2007-03-01

    Developers and users of EUV-optics need precise tools for the characterization of their products. Often a measurement accuracy of 0.1% or better is desired to detect and study slow-acting aging effect or degradation by organic contaminants. To achieve a measurement accuracy of 0.1% an EUV-source is required which provides an excellent long-time stability, namely power stability, spatial stability and spectral stability. Naturally, it should be free of debris. An EUV-source particularly suitable for this task is an advanced electron-based EUV-tube. This EUV source provides an output of up to 300 μW at 13.5 nm. Reflectometers benefit from the excellent long-time stability of this tool. We design and set up different reflectometers using EUV-tubes for the precise characterisation of EUV-optics, such as debris samples, filters, multilayer mirrors, grazing incidence optics, collectors and masks. Reflectivity measurements from grazing incidence to near normal incidence as well as transmission studies were realised at a precision of down to 0.1%. The reflectometers are computer-controlled and allow varying and scanning all important parameters online. The concepts of a sample reflectometer is discussed and results are presented. The devices can be purchased from the Laser Zentrum Hannover e.V.

  1. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  2. When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?

    PubMed

    Ramnarine, Shelina; Zhang, Juan; Chen, Li-Shiun; Culverhouse, Robert; Duan, Weimin; Hancock, Dana B; Hartz, Sarah M; Johnson, Eric O; Olfson, Emily; Schwantes-An, Tae-Hwi; Saccone, Nancy L

    2015-01-01

    Imputation, the process of inferring genotypes for untyped variants, is used to identify and refine genetic association findings. Inaccuracies in imputed data can distort the observed association between variants and a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped data and others are calculated without reference to true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is based on Cohen's kappa statistic and compares imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement; however, it is not commonly used. To identify differences in accuracy assessment, we compared IQS with concordance rate, squared correlation, and accuracy measures built into imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246 and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP) coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with smoking behaviors. Additional masking and imputation was conducted for sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480 European Americans). Our results offer further evidence that concordance rate inflates accuracy estimates, particularly for rare and low frequency variants. For common variants, squared correlation, BEAGLE R2, IMPUTE2 INFO, and IQS produce similar assessments of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider when evaluating imputation accuracy, particularly for rare and low frequency variants. PMID:26458263

  3. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  4. Measures of Diagnostic Accuracy: Basic Definitions

    PubMed Central

    Šimundić, Ana-Maria

    2009-01-01

    Diagnostic accuracy relates to the ability of a test to discriminate between the target condition and health. This discriminative potential can be quantified by the measures of diagnostic accuracy such as sensitivity and specificity, predictive values, likelihood ratios, the area under the ROC curve, Youden's index and diagnostic odds ratio. Different measures of diagnostic accuracy relate to the different aspects of diagnostic procedure: while some measures are used to assess the discriminative property of the test, others are used to assess its predictive ability. Measures of diagnostic accuracy are not fixed indicators of a test performance, some are very sensitive to the disease prevalence, while others to the spectrum and definition of the disease. Furthermore, measures of diagnostic accuracy are extremely sensitive to the design of the study. Studies not meeting strict methodological standards usually over- or under-estimate the indicators of test performance as well as they limit the applicability of the results of the study. STARD initiative was a very important step toward the improvement the quality of reporting of studies of diagnostic accuracy. STARD statement should be included into the Instructions to authors by scientific journals and authors should be encouraged to use the checklist whenever reporting their studies on diagnostic accuracy. Such efforts could make a substantial difference in the quality of reporting of studies of diagnostic accuracy and serve to provide the best possible evidence to the best for the patient care. This brief review outlines some basic definitions and characteristics of the measures of diagnostic accuracy.

  5. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  6. Measuring the Accuracy of Diagnostic Systems.

    ERIC Educational Resources Information Center

    Swets, John A.

    1988-01-01

    Discusses the relative operating characteristic analysis of signal detection theory as a measure of diagnostic accuracy. Reports representative values of this measure in several fields. Compares how problems in these fields are handled. (CW)

  7. Discrimination in measures of knowledge monitoring accuracy

    PubMed Central

    Was, Christopher A.

    2014-01-01

    Knowledge monitoring predicts academic outcomes in many contexts. However, measures of knowledge monitoring accuracy are often incomplete. In the current study, a measure of students’ ability to discriminate known from unknown information as a component of knowledge monitoring was considered. Undergraduate students’ knowledge monitoring accuracy was assessed and used to predict final exam scores in a specific course. It was found that gamma, a measure commonly used as the measure of knowledge monitoring accuracy, accounted for a small, but significant amount of variance in academic performance whereas the discrimination and bias indexes combined to account for a greater amount of variance in academic performance. PMID:25339979

  8. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  9. First Results Using a New Technology for Measuring Masses of Very Short-Lived Nuclides with Very High Accuracy: the MISTRAL Program at ISOLDE

    SciTech Connect

    C. Monsanglant; C. Toader; G. Audi; G. Bollen; C. Borcea; G. Conreur; R. Cousin; H. Doubre; M. Duma; M. Jacotin; S. Henry; J.-F. Kepinski; H.-J. Kluge; G. Lebee; G. Le Scornet; D. Lunney; M. de Saint Simon; C. Scheidenberger; C. Thibault

    1999-12-31

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na{clubsuit}, Mg, Al{clubsuit}, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  10. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  11. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  12. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  13. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Zhou, Tong; Kuang, Ye

    2016-08-01

    A morphological filter is proposed to obtain a high-accuracy roundness measurement based on the four-parameter roundness measurement model, which takes into account eccentricity, probe offset, probe tip head radius and tilt error. This paper analyses the sample angle deviations caused by the four systematic errors to design a morphological filter based on the distribution of the sample angle. The effectiveness of the proposed method is verified through simulations and experiments performed with a roundness measuring machine. Compared to the morphological filter with the uniform sample angle, the accuracy of the roundness measurement can be increased by approximately 0.09 μm using the morphological filter with a non-uniform sample angle based on the four-parameter roundness measurement model, when eccentricity is above 16 μm, probe offset is approximately 1000 μm, tilt error is approximately 1″, the probe tip head radius is 1 mm and the cylindrical component radius is approximately 37 mm. The accuracy and reliability of roundness measurements are improved by using the proposed method for cylindrical components with a small radius, especially if the eccentricity and probe offset are large, and the tilt error and probe tip head radius are small. The proposed morphological filter method can be used for precision and ultra-precision roundness measurements, especially for functional assessments of roundness profiles.

  14. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  15. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    PubMed

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  16. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    NASA Astrophysics Data System (ADS)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  17. Measurement Accuracy Limitation Analysis on Synchrophasors

    SciTech Connect

    Zhao, Jiecheng; Zhan, Lingwei; Liu, Yilu; Qi, Hairong; Gracia, Jose R; Ewing, Paul D

    2015-01-01

    This paper analyzes the theoretical accuracy limitation of synchrophasors measurements on phase angle and frequency of the power grid. Factors that cause the measurement error are analyzed, including error sources in the instruments and in the power grid signal. Different scenarios of these factors are evaluated according to the normal operation status of power grid measurement. Based on the evaluation and simulation, the errors of phase angle and frequency caused by each factor are calculated and discussed.

  18. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  19. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  20. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  1. Wind velocity measurement accuracy with highly stable 12 mJ/pulse high repetition rate CO2 laser master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.; Johnson, Steven C.; Rothermel, Jeffry

    1987-01-01

    A coherent CO2 lidar operating in a master oscillator power amplifier configuration (MOPA) is described for both ground-based and airborne operation. Representative data taken from measurements against stationary targets in both the ground-based and airborne configurations are shown for the evaluation of the frequency stability of the system. Examples of data are also given which show the results of anomalous system operation. Overall results demonstrate that velocity measurements can be performed consistently to an accuracy of + or - 0.5 m/s and in some cases + or - 0.1 m/s.

  2. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  3. High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru; Matsumoto, Hirokazu

    2009-04-10

    We propose a variable-path interferometric technique for the measurement of the absolute refractive index of optical glasses. We use two interferometers to decide the ratio between changes in the optical path in a prism-shaped sample glass and in air resulting from displacement of the sample. The method allows precise measurements to be made without prior knowledge of the properties of the sample. The combined standard uncertainty of the proposed method is 1.6x10{sup -6}.

  4. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  5. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  6. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  7. Development of a dual-sinker densimeter for high-accuracy fluid P-V-T measurements. Appendix A

    SciTech Connect

    McLinden, M.O.; Frederick, N.V.

    1993-08-01

    A dual-sinker densimeter to very accurately measure the pressure-volume-temperature (P-V-T) properties of fluids over a temperature range of 80 K to 520 K and at pressures up to 35 MPa is in the final stages of development at NIST. The density of a fluid is determined by measuring the difference in the buoyancy forces experienced by two sinkers of identical mass, surface area, and surface material, but very different volumes. The buoyancy forces on the sinkers are transmitted to a semi-microbalance by means of a magnetic suspension coupling. This paper reviews the principle of the measurement and describes the overall design of the system.

  8. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.

    PubMed

    Schaufele, Fred

    2014-03-15

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal.

  9. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  10. Research of measuring accuracy of laser tracker system

    NASA Astrophysics Data System (ADS)

    Ouyang, Jianfei; Liang, Zhiyong; Zhang, Haixin; Yan, Yonggang

    2006-11-01

    This paper presents the achievement of a China NSFC project. The Laser Tracker System (LTS) is a portable 3D large size measuring system. The measuring conditions such as time and temperature can greatly affect the measuring accuracy of LTS. This paper pays a great attention to study how the time and temperature affect the measuring accuracy of LTS. Coordinate Measuring Machine (CMM) is employed as a high-level measuring instrument to validate LTS. The experiments have been done to find how the time and temperature affect the measuring accuracy of LTS. The experiments show the LTS can work well with the highest measuring accuracy just after three-hour warm-up. However, the LTS becomes unstable and the measuring accuracy decreases after 10 hours. The LTS needs calibration and compensation every 10 hours. The experiments show that the measuring error can be up to 29.6μm when the measuring temperature is 30.5°C even if the measuring error is less than 5.9μm while the temperature is between 20°C and 23.8°C. The research provides a very useful guidance for application of LTS.

  11. Measuring the Accuracy of Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Swets, John A.

    1988-06-01

    Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially ``signals'' and ``noise.'' For then, analysis in terms of the ``relative operating characteristic'' of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.

  12. High accuracy measurement line in microwave range for polymer samples weak doped with BaTiO3

    NASA Astrophysics Data System (ADS)

    Hutanu, C.; Tulbure, A.; Ciortea, E. M.

    2016-08-01

    The nowadays tendencies regarding the process of making microprocessors presume architectures that, in the nearby future, it would be possible, to work on a frequency located between the range 5-10 GHz. In this context, it is imperious to know the behaving of the plastic materials that build the microchip in the microwave frequency range, as well as the behaving of the polymeric capsule of the electrical capacitors from the electric circuits. The aim of this contribution is to demonstrate throughout high-level experimental analysis how the main electric parameters of plastic materials, which build the microchip capsule and the one of electric capacitors, depend on the frequencies on which they work from the microwave range.

  13. Accuracy testing of electric groundwater-level measurement tapes

    USGS Publications Warehouse

    Jelinski, Jim; Clayton, Christopher S.; Fulford, Janice M.

    2015-01-01

    The accuracy tests demonstrated that none of the electric-tape models tested consistently met the suggested USGS accuracy of ±0.01 ft. The test data show that the tape models in the study should give a water-level measurement that is accurate to roughly ±0.05 ft per 100 ft without additional calibration. To meet USGS accuracy guidelines, the electric-tape models tested will need to be individually calibrated. Specific conductance also plays a part in tape accuracy. The probes will not work in water with specific conductance values near zero, and the accuracy of one probe was unreliable in very high conductivity water (10,000 microsiemens per centimeter).

  14. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  15. High-accuracy measurements of N2O concentration and isotopic composition of low and high concentration samples with small volume injections using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Palmer, Melissa; Huang, Kuan

    2015-04-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N2O production in various pathways and N2O fluxes across different reservoirs is the key to understanding the role of N2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its associated isotopic ratios (δ 15Nα , δ 15{N}β & δ 18O) is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high-precision measurements of [N2O] and Site-Preference-δ 15N (SP-δ 15N) and δ 18O of a continuous gas flow. However, many N2O samples are discrete with limited volume ( 2 ppm), and are not suitable for direct continuous measurements by CRDS. Here we present results of a small sample introduction and handling device, labelled as Small Sample Isotope Module (SSIM), coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM requires 20 ml of sample volume per analysis at STP, and transfers the sample to the CRDS for high-precision concentration and isotope ratio measurements. When the injected sample is

  16. High-accuracy measurements of N2O concentration and site-specific nitrogen isotopes in small or high concentration samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Arata, C.; Huang, K.

    2014-12-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N­2O production in various pathways and N­2O fluxes across different reservoirs is the key to understanding the role of N­2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its site-specific isotopic composition (SP-δ15N), namely δ15Nα and δ15Nβ, is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high precision measurements of [N2O] and SP-δ15N of a continuous gas flow. However, many N­­2O samples are discrete with limited volume (< 500 ml), and/or high [N2O] (> 2 ppm), and are not suitable for direct measurements by CRDS. Here we present results of a Small Sample Isotope Module 2 (SSIM2) which is coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM2 requires 20 ml of sample per analysis, and transfers the sample to the CRDS for high precision measurement. When the sample injection is < 20 ml, a zero gas is optionally filled to make up the volume. We used the SSIM2 to dilute high [N2O] samples and < 20 ml samples, and tested the effect of dilution on the measured SP-δ15N. In addition, we employed and tested a newly developed double injection method for samples adequate for two 20 ml injections. After the SSIM2 and the CRDS cavity was primed with the first injection, the second injection, which has negligible dilution of the sample, can be accurately measured for both [N2O] and SP-δ15N. Results of these experiments indicate that the precision of SSIM2-CRDS is similar to that of the continuous measurements using the CRDS alone, and that dilution has minimal effect on SP-δ15N, as along as the [N2O] is > 300 ppb after dilution. Overall, the precision of SP-δ15N measured using the SSIM2 is < 0.5 ‰.

  17. EGM improves speed, accuracy in gas measurement

    SciTech Connect

    Sqyres, M.

    1995-07-01

    The natural gas industry`s adoption of electronic gas measurement (EGM) as a way to increase speed and accuracy in obtaining measurement data also has created a need for an electronic data management system. These systems, if not properly designed and implemented, can potentially render the entire process useless. Therefore, it is essential that the system add functionality that complements the power of the hardware. With proper implementation, such a system will not only facilitate operations in today`s fast-paced, post FERC 636 environment, but also will establish a foundation for meeting tomorrow`s measurement challenges. An effective EGM data editing software package can provide a suite of tools to provide accurate, timely data processing. This can be done in a structured, feature-rich, well-designed environment using a user-friendly, graphical user interface (GUI). The program can include functions to perform the following tasks: import data; recognize, review, and correct anomalies; report; export; and provide advanced ad hoc query capabilities. Other considerations can include the developer`s commitment resources, and long-term strategy, vis-a-vis EGM, as well as the industry`s overall acceptance of the package.

  18. Highly Spinning Initial Data: Gauges and Accuracy

    NASA Astrophysics Data System (ADS)

    Zlochower, Yosef; Ruchlin, Ian; Healy, James; Lousto, Carlos

    2016-03-01

    We recently developed a code for solving the 3+1 system of constraints for highly-spinning black-hole binary initial data in the puncture formalism. Here we explore how different choices of gauge for the background metric improve both the efficiency and accuracy of the initial data solver and the subsequent fully nonlinear numerical evolutions of these data.

  19. The accuracy of breast volume measurement methods: A systematic review.

    PubMed

    Choppin, S B; Wheat, J S; Gee, M; Goyal, A

    2016-08-01

    Breast volume is a key metric in breast surgery and there are a number of different methods which measure it. However, a lack of knowledge regarding a method's accuracy and comparability has made it difficult to establish a clinical standard. We have performed a systematic review of the literature to examine the various techniques for measurement of breast volume and to assess their accuracy and usefulness in clinical practice. Each of the fifteen studies we identified had more than ten live participants and assessed volume measurement accuracy using a gold-standard based on the volume, or mass, of a mastectomy specimen. Many of the studies from this review report large (>200 ml) uncertainty in breast volume and many fail to assess measurement accuracy using appropriate statistical tools. Of the methods assessed, MRI scanning consistently demonstrated the highest accuracy with three studies reporting errors lower than 10% for small (250 ml), medium (500 ml) and large (1000 ml) breasts. However, as a high-cost, non-routine assessment other methods may be more appropriate. PMID:27288864

  20. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  1. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  2. High Accuracy Fuel Flowmeter, Phase 1

    NASA Technical Reports Server (NTRS)

    Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.

    1983-01-01

    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.

  3. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration in the calibration curve for which an accuracy of ±2 percent of point has been demonstrated as... measurement must be made to ensure the accuracy of the calibration curve to within ±2 percent of...

  4. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    SciTech Connect

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  5. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement.

    PubMed

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-04-01

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements. PMID:25933902

  6. High accuracy wall thickness loss monitoring

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2014-02-01

    Ultrasonic inspection of wall thickness in pipes is a standard technique applied widely in the petrochemical industry. The potential precision of repeat measurements with permanently installed ultrasonic sensors however significantly surpasses that of handheld sensors as uncertainties associated with coupling fluids and positional offsets are eliminated. With permanently installed sensors the precise evaluation of very small wall loss rates becomes feasible in a matter of hours. The improved accuracy and speed of wall loss rate measurements can be used to evaluate and develop more effective mitigation strategies. This paper presents an overview of factors causing variability in the ultrasonic measurements which are then systematically addressed and an experimental setup with the best achievable stability based on these considerations is presented. In the experimental setup galvanic corrosion is used to induce predictable and very small wall thickness loss. Furthermore, it is shown that the experimental measurements can be used to assess the effect of reduced wall loss that is produced by the injection of corrosion inhibitor. The measurements show an estimated standard deviation of about 20nm, which in turn allows us to evaluate the effect and behaviour of corrosion inhibitors within less than an hour.

  7. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  8. Accuracy and variability of acoustic measures of voicing onset

    NASA Astrophysics Data System (ADS)

    Francis, Alexander L.; Ciocca, Valter; Ching Yu, Jojo Man

    2003-02-01

    Five commonly used methods for determining the onset of voicing of syllable-initial stop consonants were compared. The speech and glottal activity of 16 native speakers of Cantonese with normal voice quality were investigated during the production of consonant vowel (CV) syllables in Cantonese. Syllables consisted of the initial consonants /ph/, /th/, /kh/, /p/, /t/, and /k/ followed by the vowel /a/. All syllables had a high level tone, and were all real words in Cantonese. Measurements of voicing onset were made based on the onset of periodicity in the acoustic waveform, and on spectrographic measures of the onset of a voicing bar (f0), the onset of the first formant (F1), second formant (F2), and third formant (F3). These measurements were then compared against the onset of glottal opening as determined by electroglottography. Both accuracy and variability of each measure were calculated. Results suggest that the presence of aspiration in a syllable decreased the accuracy and increased the variability of spectrogram-based measurements, but did not strongly affect measurements made from the acoustic waveform. Overall, the acoustic waveform provided the most accurate estimate of voicing onset; measurements made from the amplitude waveform were also the least variable of the five measures. These results can be explained as a consequence of differences in spectral tilt of the voicing source in breathy versus modal phonation.

  9. High accuracy wavelength calibration for a scanning visible spectrometer

    SciTech Connect

    Scotti, Filippo; Bell, Ronald E.

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  10. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  11. Guiding Center Equations of High Accuracy

    SciTech Connect

    R.B. White, G. Spizzo and M. Gobbin

    2013-03-29

    Guiding center simulations are an important means of predicting the effect of resistive and ideal magnetohydrodynamic instabilities on particle distributions in toroidal magnetically confined thermonuclear fusion research devices. Because saturated instabilities typically have amplitudes of δ B/B of a few times 10-4 numerical accuracy is of concern in discovering the effect of mode particle resonances. We develop a means of following guiding center orbits which is greatly superior to the methods currently in use. In the presence of ripple or time dependent magnetic perturbations both energy and canonical momentum are conserved to better than one part in 1014, and the relation between changes in canonical momentum and energy is also conserved to very high order.

  12. High accuracy in situ radiometric mapping.

    PubMed

    Tyler, Andrew N

    2004-01-01

    In situ and airborne gamma ray spectrometry have been shown to provide rapid and spatially representative estimates of environmental radioactivity across a range of landscapes. However, one of the principal limitations of this technique has been the influence of changes in the vertical distribution of the source (e.g. 137Cs) on the observed photon fluence resulting in a significant reduction in the accuracy of the in situ activity measurement. A flexible approach for single gamma photon emitting radionuclides is presented, which relies on the quantification of forward scattering (or valley region between the full energy peak and Compton edge) within the gamma ray spectrum to compensate for changes in the 137Cs vertical activity distribution. This novel in situ method lends itself to the mapping of activity concentrations in environments that exhibit systematic changes in the vertical activity distribution. The robustness of this approach has been demonstrated in a salt marsh environment on the Solway coast, SW Scotland, with both a 7.6 cm x 7.6 cm NaI(Tl) detector and a 35% n-type HPGe detector. Application to ploughed field environments has also been demonstrated using HPGe detector, including its application to the estimation of field moist bulk density and soil erosion measurement. Ongoing research work is also outlined.

  13. Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking

    ERIC Educational Resources Information Center

    Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas

    2012-01-01

    This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…

  14. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Emission measurement accuracy. 92.127... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... for calibrating the CO2 analyzer) with a concentration between the two lowest non-zero gas...

  15. SHAPES - Spatial, high-accuracy, position-encoding sensor

    NASA Technical Reports Server (NTRS)

    Nerheim, Noble M.; Blue, Randel C.

    1992-01-01

    Future space systems will require control sensors capable of real-time measurements of position coordinates of many structural locations. Applications for such a sensor include figure and vibration control, rendezvous and docking, and structure assembly verification. The paper discusses an experimental study of SHAPES (spatial, high-accuracy, position-encoding sensor), a 3D position sensor that provides range and two angular positions of laser-illuminated retroreflector targets that mark the locations to be measured. Simultaneous range measurements to multiple targets by a time-of-flight corelation of short laser pulses are made with a CCD-equipped streak tube. Angular positions are measured with a CCD camera. Position measurements of 24 targets with sub-millimeter range accuracy at a 10 Hz update rate have been demonstrated.

  16. Improving Localization Accuracy: Successive Measurements Error Modeling

    PubMed Central

    Abu Ali, Najah; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  17. Improving Localization Accuracy: Successive Measurements Error Modeling.

    PubMed

    Ali, Najah Abu; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle's future position and its past positions, and then propose a -order Gauss-Markov model to predict the future position of a vehicle from its past  positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss-Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle's future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  18. Developing a Weighted Measure of Speech Sound Accuracy

    PubMed Central

    Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.

    2010-01-01

    Purpose The purpose is to develop a system for numerically quantifying a speaker’s phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, we describe a system for differentially weighting speech sound errors based on various levels of phonetic accuracy with a Weighted Speech Sound Accuracy (WSSA) score. We then evaluate the reliability and validity of this measure. Method Phonetic transcriptions are analyzed from several samples of child speech, including preschoolers and young adolescents with and without speech sound disorders and typically developing toddlers. The new measure of phonetic accuracy is compared to existing measures, is used to discriminate typical and disordered speech production, and is evaluated to determine whether it is sensitive to changes in phonetic accuracy over time. Results Initial psychometric data indicate that WSSA scores correlate with other measures of phonetic accuracy as well as listeners’ judgments of severity of a child’s speech disorder. The measure separates children with and without speech sound disorders. WSSA scores also capture growth in phonetic accuracy in toddler’s speech over time. Conclusion Results provide preliminary support for the WSSA as a valid and reliable measure of phonetic accuracy in children’s speech. PMID:20699344

  19. High Mass Measurement Accuracy Determination for Proteomics using Multivariate Regression Fitting: Application to Electrospray Ionization Time-Of-Flight Mass Spectrometry

    SciTech Connect

    Strittmatter, Eric F.; Rodriguez, Nestor; Smith, Richard D.

    2003-02-01

    Important factors that limit the mass measurement accuracy from a mass spectrometer are related to (1) the type of mass analyzer used and (2) the data processing/calibration methods used to obtain mass values from the raw data. Here, two data processing methods are presented that correct for systematic deviations when measuring the mass of ions using a time-of-flight (TOF) mass spectrometer. The first fitting method is one where m/z values are obtained from fitting peak distributions using double Gaussian functions. A second calibration method takes into account the slight non-linear response of the time-of-flight analyzer in addition to the drift in the calibration over time. Using multivariate regression, both of these two effects can be corrected for using a single calibration formula. Achievable performance was evaluated with a trypsin digestion of serum albumin and proteins from the organism D. radiodurans that were analyzed using gradient reverse-phase liquid chromatography combined with electrospray ionization orthogonal TOF mass spectrometer. The root mean square deviation between the theoretical and experimental m/z for serum albumin was found to be 8 ppm using the double Gaussian-multivariate method compared to 29 ppm determined using linear calibration and normal peak centroiding. An advantage of the methods presented here is that no calibrant compounds need to be added to the mobile phase, thereby avoiding interference effects and signal suppression of analytes.

  20. Impact of Digital Panoramic Radiograph Magnification on Vertical Measurement Accuracy

    PubMed Central

    El Hage, Marc; Bernard, Jean-Pierre; Combescure, Christophe; Vazquez, Lydia

    2015-01-01

    Objectives. The purpose of this panoramic radiography study was to assess the impact of image magnification on the accuracy of vertical measurements in the posterior mandible. Methods. Six dental implants, inserted in the posterior segments of a resin model, were used as reference objects. Two observers performed implant length measurements using a proprietary viewer with two preset image magnifications: the low (1.9 : 1) and the medium (3.4 : 1) image magnifications. They also measured the implant lengths in two Digital Imaging Communications in Medicine viewers set at low (1.9 : 1), medium (3.4 : 1), and high (10 : 1) image magnifications. Results. The error between the measured length and the real implant length was close to zero for all three viewers and image magnifications. The percentage of measurements equal to the real implant length was the highest (83.3%) for the high image magnification and below 30% for all viewers with the low image magnification. Conclusions. The high and medium image magnifications used in this study allowed accurate vertical measurements, with all three imaging programs, in the posterior segments of a mandibular model. This study suggests that a low image magnification should not be used for vertical measurements on digital panoramic radiographs when planning an implant in the posterior mandible. PMID:26557851

  1. IRCM spectral signature measurements instrumentation featuring enhanced radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Lantagne, Stéphane; Prel, Florent; Moreau, Louis; Roy, Claude; Willers, Cornelius J.

    2015-10-01

    Hyperspectral Infrared (IR) signature measurements are performed in military applications including aircraft- and -naval vessel stealth characterization, detection/lock-on ranges, and flares efficiency characterization. Numerous military applications require high precision measurement of infrared signature characterization. For instance, Infrared Countermeasure (IRCM) systems and Infrared Counter-Countermeasure (IRCCM) system are continuously evolving. Infrared flares defeated IR guided seekers, IR flares became defeated by intelligent IR guided seekers and Jammers defeated the intelligent IR guided seekers [7]. A precise knowledge of the target infrared signature phenomenology is crucial for the development and improvement of countermeasure and counter-countermeasure systems and so precise quantification of the infrared energy emitted from the targets requires accurate spectral signature measurements. Errors in infrared characterization measurements can lead to weakness in the safety of the countermeasure system and errors in the determination of detection/lock-on range of an aircraft. The infrared signatures are analyzed, modeled, and simulated to provide a good understanding of the signature phenomenology to improve the IRCM and IRCCM technologies efficiency [7,8,9]. There is a growing need for infrared spectral signature measurement technology in order to further improve and validate infrared-based models and simulations. The addition of imagery to Spectroradiometers is improving the measurement capability of complex targets and scenes because all elements in the scene can now be measured simultaneously. However, the limited dynamic range of the Focal Plane Array (FPA) sensors used in these instruments confines the ranges of measurable radiance intensities. This ultimately affects the radiometric accuracy of these complex signatures. We will describe and demonstrate how the ABB hyperspectral imaging spectroradiometer features enhanced the radiometric accuracy

  2. Intelligence: The Speed and Accuracy Tradeoff in High Aptitude Individuals.

    ERIC Educational Resources Information Center

    Lajoie, Suzanne P.; Shore, Bruce M.

    1986-01-01

    The relative contributions of mental speed and accuracy to Primary Mental Ability (PMA) IQ prediction were studied in 52 high ability grade 10 students. Both speed and accuracy independently predicted IQ, but not speed over and above accuracy. Accuracy was demonstrated to be universally advantageous in IQ performance, but speed varied according to…

  3. Prism-pair interferometry by homodyne interferometers with a common light source for high-accuracy measurement of the absolute refractive index of glasses

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru

    2011-03-10

    A prism-pair interferometer comprising two homodyne interferometers with a common light source was developed for high-precision measurements of the refractive index of optical glasses with an uncertainty of the order of 10{sup -6}. The two interferometers measure changes in the optical path length in the glass sample and in air, respectively. Uncertainties in the absolute wavelength of the common light source are cancelled out by calculating a ratio between the results from the interferometers. Uncertainties in phase measurement are suppressed by a quadrature detection system. The combined standard uncertainty of the developed system is evaluated as 1.1x10{sup -6}.

  4. Developing a Weighted Measure of Speech Sound Accuracy

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Ramsdell, Heather L.; Oller, D. Kimbrough; Edwards, Mary Louise; Tobin, Stephen J.

    2011-01-01

    Purpose: To develop a system for numerically quantifying a speaker's phonetic accuracy through transcription-based measures. With a focus on normal and disordered speech in children, the authors describe a system for differentially weighting speech sound errors on the basis of various levels of phonetic accuracy using a Weighted Speech Sound…

  5. A Systematic Investigation of Accuracy and Response Time Based Measures Used to Index ANS Acuity

    PubMed Central

    Dietrich, Julia Felicitas; Huber, Stefan; Klein, Elise; Willmes, Klaus; Pixner, Silvia; Moeller, Korbinian

    2016-01-01

    The approximate number system (ANS) was proposed to be a building block for later mathematical abilities. Several measures have been used interchangeably to assess ANS acuity. Some of these measures were based on accuracy data, whereas others relied on response time (RT) data or combined accuracy and RT data. Previous studies challenged the view that all these measures can be used interchangeably, because low correlations between some of the measures had been observed. These low correlations might be due to poor reliability of some of the measures, since the majority of these measures are mathematically related. Here we systematically investigated the relationship between common ANS measures while avoiding the potential confound of poor reliability. Our first experiment revealed high correlations between all accuracy based measures supporting the assumption that all of them can be used interchangeably. In contrast, not all RT based measures were highly correlated. Additionally, our results revealed a speed-accuracy trade-off. Thus, accuracy and RT based measures provided conflicting conclusions regarding ANS acuity. Therefore, we investigated in two further experiments which type of measure (accuracy or RT) is more informative about the underlying ANS acuity, depending on participants’ preferences for accuracy or speed. To this end, we manipulated participants’ preferences for accuracy or speed both explicitly using different task instructions and implicitly varying presentation duration. Accuracy based measures were more informative about the underlying ANS acuity than RT based measures. Moreover, the influence of the underlying representations on accuracy data was more pronounced when participants preferred accuracy over speed after the accuracy instruction as well as for long or unlimited presentation durations. Implications regarding the diffusion model as a theoretical framework of dot comparison as well as regarding the relationship between ANS acuity and

  6. A Systematic Investigation of Accuracy and Response Time Based Measures Used to Index ANS Acuity.

    PubMed

    Dietrich, Julia Felicitas; Huber, Stefan; Klein, Elise; Willmes, Klaus; Pixner, Silvia; Moeller, Korbinian

    2016-01-01

    The approximate number system (ANS) was proposed to be a building block for later mathematical abilities. Several measures have been used interchangeably to assess ANS acuity. Some of these measures were based on accuracy data, whereas others relied on response time (RT) data or combined accuracy and RT data. Previous studies challenged the view that all these measures can be used interchangeably, because low correlations between some of the measures had been observed. These low correlations might be due to poor reliability of some of the measures, since the majority of these measures are mathematically related. Here we systematically investigated the relationship between common ANS measures while avoiding the potential confound of poor reliability. Our first experiment revealed high correlations between all accuracy based measures supporting the assumption that all of them can be used interchangeably. In contrast, not all RT based measures were highly correlated. Additionally, our results revealed a speed-accuracy trade-off. Thus, accuracy and RT based measures provided conflicting conclusions regarding ANS acuity. Therefore, we investigated in two further experiments which type of measure (accuracy or RT) is more informative about the underlying ANS acuity, depending on participants' preferences for accuracy or speed. To this end, we manipulated participants' preferences for accuracy or speed both explicitly using different task instructions and implicitly varying presentation duration. Accuracy based measures were more informative about the underlying ANS acuity than RT based measures. Moreover, the influence of the underlying representations on accuracy data was more pronounced when participants preferred accuracy over speed after the accuracy instruction as well as for long or unlimited presentation durations. Implications regarding the diffusion model as a theoretical framework of dot comparison as well as regarding the relationship between ANS acuity and

  7. Surface accuracy measurement sensor for deployable reflector antennas

    NASA Technical Reports Server (NTRS)

    Spiers, R. B., Jr.

    1981-01-01

    The breadboard surface accuracy measurement sensor is an optical angle sensor which provides continuous line of sight position measurements of infrared source targets placed strategically about the antenna surface. Measurements of target coordinates define the surface figure relative to a reference frame on the antenna. Sensor operation, tests and test results to date are described.

  8. Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.; Yoon, Howard W.; Jarrett, Dean G.; Larason, Thomas C.

    2013-10-01

    For photocurrent measurements with low uncertainties, wide dynamic range reference current-to-voltage converters and a new converter calibration method have been developed at the National Institute of Standards and Technology (NIST). The high-feedback resistors of a reference converter were in situ calibrated on a high-resistivity, printed circuit board placed in an electrically shielded box electrically isolated from the operational amplifier using jumpers. The feedback resistors, prior to their installation, were characterized, selected and heat treated. The circuit board was cleaned with solvents, and the in situ resistors were calibrated using measurement systems for 10 kΩ to 10 GΩ standard resistors. We demonstrate that dc currents from 1 nA to 100 µA can be measured with uncertainties of 55 × 10-6 (k = 2) or lower, which are lower in uncertainties than any commercial device by factors of 10 to 30 at the same current setting. The internal (NIST) validations of the reference converter are described.

  9. Standardization of radon measurements. 2. Accuracy and proficiency testing

    SciTech Connect

    Matuszek, J.M.

    1990-01-01

    The accuracy of in situ environmental radon measurement techniques is reviewed and new data for charcoal canister, alpha-track (track-etch) and electret detectors are presented. Deficiencies reported at the 1987 meeting in Wurenlingen, Federal Republic of Germany, for measurements using charcoal detectors are confirmed by the new results. Accuracy and precision of the alpha-track measurements laboratory were better than in 1987. Electret detectors appear to provide a convenient, accurate, and precise system for the measurement of radon concentration. The need for a comprehensive, blind proficiency-testing programs is discussed.

  10. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  11. The NASA High Accuracy Fuel Flowmeter (HAFF) Development Program

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1983-01-01

    The high accuracy fuel flowmeter development program is described. A flightworthy meter that measures mass flowrate of aircraft fuels to within + or - 0.25% of reading over a 50:1 range of flow is developed. A study of measurement techniques to achieve this goal yielded three candidates: (1) a dual turbine flowmeter with density and viscosity compensation; (2) an angular momentum flowmeter with a motor-driven, spring-restrained turbine and viscosity shroud; and (3) a vortex precission flowmeter with density and viscosity compensation. An experimental study of each technique was completed and the first two candidates were selected for prototype development.

  12. A direct detection 1.6μm DIAL with three wavelengths for high accuracy measurements of vertical CO2 concentration and temperature profiles

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2013-10-01

    The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. A differential absorption lidar (DIAL) is an attractive method for obtaining vertical CO2 profiles and we have developed an 1.6μm DIAL system to perform simultaneous measurements of CO2 concentration, atmospheric temperature profile and wind profile. The absorption cross sections of gas and air density depends on atmospheric temperature and pressure. Then precise temperature and pressure profiles are necessary for accurate CO2 mixing ratio measurement by DIAL. Laser beams of three wavelengths around a CO2 absorption line are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature. The receiving optics include the near-infrared photomultiplier tube and a fiber Bragg grating (FBG) filter to detect a Doppler shift.

  13. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  14. Measuring trunk orientation with a CMOS camera: feasibility and accuracy.

    PubMed

    Gissot, A-S; Barbieri, G; Iacobelis, M; Paindavoine, M; Pérennou, D

    2007-10-01

    The purpose of this study was to develop and validate a new tool to objectively quantify trunk orientation at the bedside, especially dedicated to the measurement of the lateropulsion in acute and subacute stroke patients. We developed software to analyze 2D movement with a CMOS camera (Logitech Quickcam Pro 4000) and to calculate the orientation of a segment defined by two color markers. First, the accuracy, reproducibility and noise when measuring segment orientations were evaluated with the CMOS camera placed in different positions, and second trunk orientation was measured in static and in dynamic conditions both with a CMOS camera and with a gold standard 3D video system (BTS SMART-e). Results showed that the measurement was accurate (mean error=0.05+/-0.12 degrees), reproducible (S.D. over five measurements=0.005 degrees ) and steady (noise signal=0.02 degrees ). The data obtained with the CMOS camera were highly correlated with those obtained with the 3D video system both in static and in dynamic conditions. However, the CMOS camera must be relatively well centered on the measured segment to avoid error due to image distortion. The parallax error was negligible. In conclusion, this could be an important step in the postural assessment of acute and subacute stroke patients. The CMOS camera, a simple, portable, compact, low-cost, commercially available apparatus is the first tool to objectively quantify lateropulsion at the bedside. This method could also support the development of a rehabilitation program for trunk orientation based on biofeedback using the real-time signal provided by the device.

  15. Free-Standing Zone Plate Optimized for He II 30.4 nm Solar Irradiance Measurements Having High Accuracy and Stability in Space

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; McMullin, D. R.; Vest, R.; Sakdinawat, A.; Chang, C.; Jones, A. R.; Bremer, J.

    2015-12-01

    A zone plate was designed to record the He II 30.4 nm solar irradiance, was fabricated using electron beam lithography, and was absolutely calibrated using the NIST SURF synchrotron. The zone plate has an open support grid identical to those used to successfully launch transmission gratings in previous solar radiometers and is otherwise free-standing with no support membrane that would absorb EUV radiation. The measured efficiency of 3.0 ± 0.1% at 30.4 nm is consistent with detailed modeling of the efficiency and accounting for the geometrical transmittance of the support grid. The binary nature of the zone plate, consisting of opaque gold bars and open spaces with no support membrane, results in excellent long-term stability in space against contamination, radiation damage, and other effects that could alter the efficiency and instrument throughput. The zone plate's focusing property enables the rejection of out-of-band radiation by small apertures and high signal to background values that are superior to previous radiometers. The 4 mm outer diameter of the zone plate and the 25 mm focal length for 30.4 nm radiation enable a compact instrument that is attractive for small CubeSats and other space flight missions where resources are extremely limited.

  16. Improved precision and accuracy for high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometric exact mass measurement of small molecules from the simultaneous and controlled introduction of internal calibrants via a second electrospray nebuliser.

    PubMed

    Herniman, Julie M; Bristow, Tony W T; O'Connor, Gavin; Jarvis, Jackie; Langley, G John

    2004-01-01

    The use of a second electrospray nebuliser has proved to be highly successful for exact mass measurement during high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (HPLC/FTICRMS). Much improved accuracy and precision of mass measurement were afforded by the introduction of the internal calibration solution, thus overcoming space charge issues due to the lack of control over relative ion abundances of the species eluting from the HPLC column. Further, issues of suppression of ionisation, observed when using a T-piece method, are addressed and this simple system has significant benefits over other more elaborate approaches providing data that compares very favourably with these other approaches. The technique is robust, flexible and transferable and can be used in conjunction with HPLC, infusion or flow injection analysis (FIA) to provide constant internal calibration signals to allow routine, accurate and precise mass measurements to be recorded.

  17. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique

    SciTech Connect

    Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z.

    2012-09-25

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  18. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  19. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  20. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  1. A Comparison of Bias in Four Measures of Monitoring Accuracy

    ERIC Educational Resources Information Center

    Kuch, Frederick H.

    2012-01-01

    Typically in calibration research, subjects perform a task and make a judgment about the success of the task. Accurate findings help subjects improve self-calibration. In addition, researchers rely on the accuracy of findings to make inferences about underlying metacognitive processes. Consequently, it is important that the measures used to assess…

  2. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  3. USE OF CHEMICAL INVENTORY ACCURACY MEASUREMENTS AS LEADING INDICATORS

    SciTech Connect

    Kuntamukkula, M.

    2011-02-10

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: what properties make leading indicators effective, how chemical inventories can be used as a leading indicator, how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and what a subpar inventory accuracy measurement portends.

  4. Use of Chemical Inventory Accuracy Measurements as Leading Indicators

    SciTech Connect

    Quigley, David; Freshwater, David; Alnajjar, Mikhail S.; Siegel, Dina; Kuntamukkula, Murty; Simmons, Fred

    2012-05-15

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: (1) what properties make leading indicators effective, (2) how chemical inventories can be used as a leading indicator, (3) how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and (4) what a subpar inventory accuracy measurement portends.

  5. High accuracy deployable antenna for communications satellite

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Misawa, M.; Minomo, M.; Yasaka, T.

    High frequency multi-beam satellite antennas have been studied to realize increased communication capacity, simplified earth stations, and multiple frequency reuse. The satellite antenna needs a highly accurate and large reflector. To overcome the launching vehicle's constraints in size and weight, a solid deployable antenna is under development. A petal antenna (PETAL), composed of solid shell elements, has been studied as a high frequency use deployable antenna. It is an axi-symmetric antenna composed of a fixed central shell and deployable triangular and square shells. During the launch phase, a restraining cable is bound around the periphery of deployable elements stowed in a hexagonal configuration. Deployment is initiated by pyrotechnic cable cutters, and the shells are deployed by spring action.

  6. High accuracy absolute laser powermeter calibrated over the whole range

    SciTech Connect

    Miron, N.; Korony, G.; Velculescu, V.G.

    1994-12-31

    The main contribution to this laser powermeter is the capability of its detector to be electrically calibrated over the whole measuring range (0 ... 100W), with an accuracy better than 1%. This allows an improved accuracy in determining the second-order polynomial coefficients describing thermocouple electric response.

  7. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  8. Multi-Camera and Structured-Light Vision System (MSVS) for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    PubMed Central

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-01-01

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results. PMID:25875190

  9. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    PubMed

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  10. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    PubMed

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-01-01

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results. PMID:25875190

  11. SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large flexible structures

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M

    1987-01-01

    An electro-optical position sensor for precise simultaneous measurement of the 3-D positions of multiple points on large space structures is described. The sensor data rate is sufficient for most control purposes. Range is determined by time-of-flight correlation of short laser pulses returned from retroreflector targets using a streak tube/CCD detector. Angular position is determined from target image locations on a second CCD. Experimental verification of dynamic ranging to multiple targets is discussed.

  12. Portable and autonomous X-ray equipment for in-situ threat materials identification by effective atomic number high-accuracy measurement

    NASA Astrophysics Data System (ADS)

    Iovea, M.; Neagu, M.; Mateiasi, G.; Duliu, O.

    2011-06-01

    A novel portable and autonomous X-ray dual-energy Radioscopy equipment, developed for bomb squad interventions and NDT applications and capable of in-situ digital radiography imaging with measurement of the effective Atomic number of materials (Zeff), is presented. The system consists of a 2D dual-energy X-ray detector based on a rapidly translated linear array, a portable X-ray source and dedicated software running on a laptop or tablet PC. By measurement of the collected x-ray intensities at two different energy spectra, the system can directly compute the material Zeff value for various organic materials contained in the scanned object and then identify them from a database list. The entire system calibration has been obtained using explosive simulants with known Zeff values, the measurement error of Zeffbeing around +/-3.5 % with respect to the reference values. The excellent image resolution and the ability of the automated threat identification algorithm are presented for experiments with a briefcase and a hand-held baggage having various domestic objects and an explosive simulant inside.

  13. The Accuracy of Self-Reported High School Grades

    ERIC Educational Resources Information Center

    Jung, Steven M.; Moore, James C.

    1970-01-01

    In a study to investigate accuracy of self-reported grades, length of time between testing and high school graduation was apparently the reason for a significant loss in accuracy in recalling grade reports of highschool graduates and college applicants who had been out of school for more than one year. (IR)

  14. Effect of temporal resolution on the accuracy of ADCP measurements

    USGS Publications Warehouse

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  15. Diameter measurement by laser at the submicron accuracy level

    NASA Astrophysics Data System (ADS)

    Mainsah, E.; Wong, Cheuk-Mun G.; Stout, Kenneth J.

    1993-09-01

    One important consequence of the " Quality Revolution" that is currently taking place in all sectors of advanced manufacturing industry is the requirement for more systematic and precise measurement. This is a pre-requisite for controlling tolerances on manufactured components and for ensuring that products leaving the factory meet the required specifications. The dramatic increase in computer power coupled with the demands of the space age nanotechnology and customer sophistication have meant that instrumentation is being constantly pushed to the limits in terms of accuracy tolerance and speed. Diameter measurements are carried out on a daily basis in many sectors of manufacturing industry. Due to the emphasis on factors such as speed accuracy and repeatability the current trend is to move away from conventional measurement techniques (metre rule measuring tape Vernier callipers) towards non-contact techniques. One of such techniques involves the use of the laser. This paper discusses at the design of a laser tracer data initiation capture and processing unit that permits diameter measurements to be made on-line and has the capability of carrying out up to 500 measurements per second. The system is non-contact with a measurement range of 2. 0000 mm and a resolution of 0. 5 im. It is demonstraated that by using two of these devices diameters of up to 220. 000 mm can be measured. This is done by incorporating a translational table that provides the

  16. High-accuracy measurements of OH(•) reaction rate constants and IR and UV absorption spectra: ethanol and partially fluorinated ethyl alcohols.

    PubMed

    Orkin, Vladimir L; Khamaganov, Victor G; Martynova, Larissa E; Kurylo, Michael J

    2011-08-11

    Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

  17. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  18. Automated electrostatic probe device of high resolution and accuracy

    SciTech Connect

    Aleiferis, S.

    2014-12-15

    In this work, an automated apparatus for driving single electrostatic probes and acquiring the plasma-related data has been designed and fabricated. The voltage range of the present system is ±110 V with an adjustable voltage step as low as 3 mV. Voltage and current measurements are carried out with high resolution and high accuracy circuits, both based on 16 bit analog-to-digital converters. The code embedded in a micro-controller, schedules the operation of the device and transfers the experimental data to a personal computer. The modular design of the system makes possible its modification and thus increases its adaptability to different plasma setups. Finally, the reliable operation of the entire device is confirmed by tests in Electron Cyclotron Resonance plasma.

  19. Accuracy of portable devices in measuring peak cough flow.

    PubMed

    Kulnik, Stefan Tino; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis; Kalra, Lalit

    2015-02-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini-Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min(-1) when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min(-1). The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. PMID:25582526

  20. High-Accuracy Asteroid Astrometry from Table Mountain Observatory

    NASA Technical Reports Server (NTRS)

    Owen, W. M.; Synnott, S. P.; Null, G. W.

    1998-01-01

    We have installed a large-format CCD camera on the 0.6 meter telescope at JPL's Table Mountain Observatory and used it to obtain high-accuracy astrometric obserations of asteroids and other solar system targets of interest.

  1. Constructing better classifier ensemble based on weighted accuracy and diversity measure.

    PubMed

    Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  2. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  3. Measuring the accuracy of agro-environmental indicators.

    PubMed

    Makowski, David; Tichit, Muriel; Guichard, Laurence; Van Keulen, Herman; Beaudoin, Nicolas

    2009-05-01

    Numerous agro-environmental indicators have been developed by agronomists and ecologists during the last 20 years to assess the environmental impact of farmers' practices, and to monitor effects of agro-environmental policies. The objectives of this paper were (i) to measure the accuracy of a wide range of agro-environmental indicators from experimental data and (ii) to discuss the value of different information typically used by these indicators, i.e. information on farmers' practices, and on plant and soil characteristics. Four series of indicators were considered in this paper: indicators of habitat quality for grassland bird species, indicators of risk of disease in oilseed rape crops, indicators of risk of pollution by nitrogen fertilizer, and indicators of weed infestation. Several datasets were used to measure their accuracy in cultivated plots and in grasslands. The sensitivity, specificity, and probability of correctly ranking plots were estimated for each indicator. Our results showed that the indicators had widely varying levels of accuracy. Some show very poor performance and had no discriminatory ability. Other indicators were informative and performed better than random decisions. Among the tested indicators, the best ones were those using information on plant characteristics such as grass height, fraction of diseased flowers, or crop yield. The statistical method applied in this paper could support researchers, farm advisers, and decision makers in comparing various indicators. PMID:19128870

  4. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  5. Dynamic accuracy of inertial measurement units during simple pendulum motion.

    PubMed

    Brodie, M A; Walmsley, A; Page, W

    2008-06-01

    A motion measurement system based on inertial measurement units (IMUs) has been suggested as an alternative to contemporary video motion capture. This paper reports an investigation into the accuracy of IMUs in estimating 3D orientation during simple pendulum motion. The IMU vendor's (XSens Technologies) accuracy claim of 3 degrees root mean squared (RMS) error is tested. IMUs are integrated electronic devices that contain accelerometers, magnetometers and gyroscopes. The motion of a pendulum swing was measured using both IMUs and video motion capture as a reference. The IMU raw data were processed by the Kalman filter algorithm supplied by the vendor and a custom fusion algorithm developed by the authors. The IMU measurement of pendulum motion using the vendor's Kalman filter algorithm did not compare well with the video motion capture with a RMS error of between 8.5 degrees and 11.7 degrees depending on the length and type of pendulum swing. The maximum orientation error was greater than 30 degrees , occurring approximately eight seconds into the motion. The custom fusion algorithm estimation of orientation compared well with the video motion capture with a RMS error of between 0.8 degrees and 1.3 degrees . Future research should concentrate on developing a general purpose fusion algorithm and vendors of IMUs should provide details about the errors to be expected in different measurement situations, not just those in a 'best case' scenario. PMID:18568821

  6. The construction of high-accuracy schemes for acoustic equations

    NASA Technical Reports Server (NTRS)

    Tang, Lei; Baeder, James D.

    1995-01-01

    An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.

  7. Estimation and filtering techniques for high-accuracy GPS applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1989-01-01

    Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.

  8. Monitoring techniques for high accuracy interference fit assembly processes

    NASA Astrophysics Data System (ADS)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  9. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  10. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  11. Measures of spatio-temporal accuracy for time series land cover data

    NASA Astrophysics Data System (ADS)

    Tsutsumida, Narumasa; Comber, Alexis J.

    2015-09-01

    Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatio-temporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multi-temporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed.

  12. Accuracy of MRI-based Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl

    Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.

  13. Equivalence and Accuracy of MOSFET Channel Length Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay

    1989-02-01

    It is shown that the MOSFET channel length measurement techniques of Terada and Muta, Peng et al., Whitfield, Suciu and Johnston, and De La Moneda et al. are actually equivalent, i.e. merely different expressions of the same formula for channel length in terms of measured resistance, and that some of the transresistance methods of Jain, although not equivalent, are also related to the same formula. The accuracy of this formula is evaluated for the general case and related to the error components due to source and drain resistance asymmetry, short channel geometry effect, and variation of series resistance with bias. No independent error component due to field-induced mobility degradation is found. Finally the errors in the methods of Terada and Muta, Chen et al., Sheu et al., Wordeman et al. and Jain, are determined and compared. The gate transresistance technique is found to be the most accurate method.

  14. Increasing accuracy of high temperature and speed processes micropyrometry

    NASA Astrophysics Data System (ADS)

    Boronenko, M. P.; Gulyaev, P. Yu; Seregin, A. E.; Bebiya, A. G.

    2015-10-01

    The correction factor introduction in the method of measuring the brightness temperature of individual hot particles moving at speeds of 100-1140m/s with diameter above the diffraction limit of the OES, can solve the problem of the moving objects brightness pyrometry, increasing accuracy of at least 2.5%.

  15. [A method for improving measuring accuracy in multi-channel impedance spectroscopy (MIS)].

    PubMed

    Thiel, F; Hartung, C

    2004-08-01

    The use of impedance spectroscopy as a diagnostic tool for the investigation of biological objects involves the consideration of numerous parameters impacting on measuring accuracy. This paper describes a calibration method for multichannel instruments that reduces the non-inconsiderable influence of frequency response variations between the channels, thus significantly increasing measuring accuracy. The method is tested in a recently developed, high-resolution, multi-channel bio-impedance analyser. Reduction of the measuring error is demonstrated, and the magnitude and phase resolution is quantified. The advantage of this method lies in its applicability to existing systems. Furthermore, an additional calibration impedance is not needed. PMID:15481406

  16. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  17. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  18. The Accuracy of Radio Interferometric Measurements of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Spieth, M. A.

    1985-01-01

    The accuracy of very long base interferometry earth rotation (UT1) measurements is examined by intercomparing TEMPO and POLARIS data for 1982 and the first half of 1983. None of these data are simultaneous, and so a proper intercomparison requires accounting for the scatter introduced by the rapid, unpredictable, UT1 variations driven by exchanges of angular momentum with the atmosphere. A statistical model of these variations, based on meteorological estimates of the Atmospheric Angular Momentum is derived, and the optimal linear (Kalman) smoother for this model is constructed. The scatter between smoothed and independent raw data is consistent with the residual formal errors, which do not depend upon the actual scatter of the UT1 data. This represents the first time that an accurate prediction of the scatter between UT1 data sets were possible.

  19. Improvement of Velocity Measurement Accuracy of Leaky Surface Acoustic Waves for Materials with Highly Attenuated Waveform of the V(z) curve by the Line-Focus-Beam Ultrasonic Material Characterization System

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Arakawa, Mototaka; Kushibiki, Jun‑ichi

    2006-05-01

    Measurement accuracies of leaky surface acoustic wave (LSAW) velocities for materials with highly attenuated waveforms of V(z) curves obtained by the line-focus-beam ultrasonic material characterization (LFB-UMC) system are investigated. Theoretical investigations were carried out and experiments were performed for TiO2-SiO2 glass (C-7972), Li2O-Al2O3-SiO2 glass ceramic (Zerodur\\textregistered), and (111) gadolinium gallium garnet (GGG) single crystal as specimens. Waveform attenuations of V(z) curves for C-7972 and Zerodur\\textregistered are greater than those for the (111) GGG single crystal. Frequency dependences of the waveform attenuations were calculated for each specimen by considering the propagation attenuation of LSAWs. The theoretical results revealed that the waveform attenuation dominantly depends upon the acoustic energy loss due to the water loading effect on the specimen surface, and that the waveform attenuation becomes smaller with decreasing frequency. Significant improvement of the measurement precision of LSAW velocities was demonstrated for each specimen using three LFB ultrasonic devices with different curvature radii R of the cylindrical acoustic lenses: R=2.0 mm at 75 MHz, R=1.5 mm at 110 MHz, and R=1.0 mm at 225 MHz; for C-7972, the precisions were improved from ± 0.0053% at 225 MHz to ± 0.0020% at 75 MHz.

  20. Accuracy Improvement on the Measurement of Human-Joint Angles.

    PubMed

    Meng, Dai; Shoepe, Todd; Vejarano, Gustavo

    2016-03-01

    A measurement technique that decreases the root mean square error (RMSE) of measurements of human-joint angles using a personal wireless sensor network is reported. Its operation is based on virtual rotations of wireless sensors worn by the user, and it focuses on the arm, whose position is measured on 5 degree of freedom (DOF). The wireless sensors use inertial magnetic units that measure the alignment of the arm with the earth's gravity and magnetic fields. Due to the biomechanical properties of human tissue (e.g., skin's elasticity), the sensors' orientation is shifted, and this shift affects the accuracy of measurements. In the proposed technique, the change of orientation is first modeled from linear regressions of data collected from 15 participants at different arm positions. Then, out of eight body indices measured with dual-energy X-ray absorptiometry, the percentage of body fat is found to have the greatest correlation with the rate of change in sensors' orientation. This finding enables us to estimate the change in sensors' orientation from the user's body fat percentage. Finally, an algorithm virtually rotates the sensors using quaternion theory with the objective of reducing the error. The proposed technique is validated with experiments on five different participants. In the DOF, whose error decreased the most, the RMSE decreased from 2.20(°) to 0.87(°). This is an improvement of 60%, and in the DOF whose error decreased the least, the RMSE decreased from 1.64(°) to 1.37(°). This is an improvement of 16%. On an average, the RMSE improved by 44%. PMID:25622331

  1. Theoferometer for High Accuracy Optical Alignment and Metrology

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Leviton, Doug; Koterba, Seth

    2004-01-01

    The accurate measurement of the orientation of optical parts and systems is a pressing problem for upcoming space missions, such as stellar interferometers, requiring the knowledge and maintenance of positions to the sub-arcsecond level. Theodolites, the devices commonly used to make these measurements, cannot provide the needed level of accuracy. This paper describes the design, construction, and testing of an interferometer system to fill the widening gap between future requirements and current capabilities. A Twyman-Green interferometer mounted on a 2 degree of freedom rotation stage is able to obtain sub-arcsecond, gravity-referenced tilt measurements of a sample alignment cube. Dubbed a 'theoferometer,' this device offers greater ease-of-use, accuracy, and repeatability than conventional methods, making it a suitable 21st-century replacement for the theodolite.

  2. Inspection of 3D parts using high accuracy range data

    NASA Astrophysics Data System (ADS)

    Prieto, Flavio; Lepage, Richard; Boulanger, Pierre; Redarce, Tanneguy

    2000-03-01

    The use of a laser range sensor in the 3D part digitalization process for inspection tasks allows very significant improvement in acquisition speed and in 3D measurement points density but does not equal the accuracy obtained with a coordinate measuring machine (CMM). Inspection consists in verifying the accuracy of a part related to a given set of tolerances. It is thus necessary that the 3D measurements be accurate. In the 3D capture of a part, several sources of error can alter the measured values. So, we have to find and model the most influent parameters affecting the accuracy of the range sensor in the digitalization process. This model is used to produce a sensing plan to acquire completely and accurately the geometry of a part. The sensing plan is composed of the set of viewpoints which defines the exact position and orientation of the camera relative to the part. The 3D cloud obtained from the sensing plan is registered with the CAD model of the part and then segmented according to the different surfaces. Segmentation results are used to check tolerances of the part. By using the noise model, we introduce a dispersion value for each 3D point acquired according to the sensing plan. This value of dispersion is shown as a weight factor in the inspection results.

  3. Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"

    NASA Astrophysics Data System (ADS)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".

  4. High accuracy fuel flowmeter. Phase 2C and 3: The mass flowrate calibration of high accuracy fuel flowmeters

    NASA Technical Reports Server (NTRS)

    Craft, D. William

    1992-01-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  5. High accuracy fuel flowmeter. Phase 2C and 3: The mass flowrate calibration of high accuracy fuel flowmeters

    NASA Astrophysics Data System (ADS)

    Craft, D. William

    1992-02-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  6. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  7. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  8. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  9. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.

  10. Operating a real time high accuracy positioning system

    NASA Astrophysics Data System (ADS)

    Johnston, G.; Hanley, J.; Russell, D.; Vooght, A.

    2003-04-01

    The paper shall review the history and development of real time DGPS services prior to then describing the design of a high accuracy GPS commercial augmentation system and service currently delivering over a wide area to users of precise positioning products. The infrastructure and system shall be explained in relation to the need for high accuracy and high integrity of positioning for users. A comparison of the different techniques for the delivery of data shall be provided to outline the technical approach taken. Examples of the performance of the real time system shall be shown in various regions and modes to outline the current achievable accuracies. Having described and established the current GPS based situation, a review of the potential of the Galileo system shall be presented. Following brief contextual information relating to the Galileo project, core system and services, the paper will identify possible key applications and the main user communities for sub decimetre level precise positioning. The paper will address the Galileo and modernised GPS signals in space that are relevant to commercial precise positioning for the future and will discuss the implications for precise positioning performance. An outline of the proposed architecture shall be described and associated with pointers towards a successful implementation. Central to this discussion will be an assessment of the likely evolution of system infrastructure and user equipment implementation, prospects for new applications and their effect upon the business case for precise positioning services.

  11. Accuracy and validity of IK4 handheld video keratometer measurements in children

    PubMed Central

    Harvey, Erin M.; Miller, Joseph M.; Schwiegerling, Jim; Clifford-Donaldson, Candice E.; Green, Tina K.; Messer, Dawn H.; Dobson, Velma

    2011-01-01

    The Infant Keratometer (IK4) is a custom handheld instrument that was designed specifically to allow measurement of corneal astigmatism in infants as young as 6 months of age. In this study, accuracy of IK4 measurements using standard toric surfaces was within 0.25 D. Validity measurements obtained in 860 children aged 3–7 years demonstrated slightly higher astigmatism measurements in the IK4 than in the Retinomax K+. Measurement success was 98% using the IK4. The IK4 may prove to be clinically useful for screening children as young as 3 years of age at high risk for corneal astigmatism. PMID:21907130

  12. Accuracy of dilution techniques for access flow measurement during hemodialysis.

    PubMed

    Krivitski, N M; MacGibbon, D; Gleed, R D; Dobson, A

    1998-03-01

    Access flow is now widely measured by creating artificial recirculation with the dialysis lines reversed and using dilution methods that sense either ultrasound velocity, electrical impedance, optical, or thermal changes. This study identifies and quantifies factors that influence the accuracy of access flow measurements and recommends ways to reduce these errors. Two major sources of access flow measurement error are identified, arising firstly from the second pass of the indicator by recirculation through the cardiopulmonary system (cardiopulmonary recirculation, CPR), and secondly from changes in venous line blood flow (Qb) and vascular access flow induced by the pressure of venous bolus injections. These errors are considered from theory, by direct measurement of access flow in a sheep model, and by analysis of clinical data. Two extremes for the venous introduction of indicator can be considered in access flow measurements, a slow infusion, which perturbs neither the venous line flow nor access flow but increases the error attributable to the second pass of the indicator by recirculation through cardiopulmonary system, or rapid injection, which eases separation of the second pass of the indicator signal but generates changes in the venous flow and access flow. If CPR is not eliminated, the area added to that of the first pass of indicator ranges up to 40%. Good time resolution could permit the separation of the areas generated by the first and second passage of the indicator. In sheep experiments, injections of 5 or 10 mL into a venous port close to the vascular access caused Qb to change by 20% to 40%. Both the animal experiments and analysis of raw data collected during routine clinical dialysis showed that moving the injection site sufficiently far from the patient, before or into the venous bubble trap, reduced the increase in Qb to only approximately 5% during the critical time when the concentration curve is changing for most tubing brands (Baxter, Belco

  13. Accuracy of dilution techniques for access flow measurement during hemodialysis.

    PubMed

    Krivitski, N M; MacGibbon, D; Gleed, R D; Dobson, A

    1998-03-01

    Access flow is now widely measured by creating artificial recirculation with the dialysis lines reversed and using dilution methods that sense either ultrasound velocity, electrical impedance, optical, or thermal changes. This study identifies and quantifies factors that influence the accuracy of access flow measurements and recommends ways to reduce these errors. Two major sources of access flow measurement error are identified, arising firstly from the second pass of the indicator by recirculation through the cardiopulmonary system (cardiopulmonary recirculation, CPR), and secondly from changes in venous line blood flow (Qb) and vascular access flow induced by the pressure of venous bolus injections. These errors are considered from theory, by direct measurement of access flow in a sheep model, and by analysis of clinical data. Two extremes for the venous introduction of indicator can be considered in access flow measurements, a slow infusion, which perturbs neither the venous line flow nor access flow but increases the error attributable to the second pass of the indicator by recirculation through cardiopulmonary system, or rapid injection, which eases separation of the second pass of the indicator signal but generates changes in the venous flow and access flow. If CPR is not eliminated, the area added to that of the first pass of indicator ranges up to 40%. Good time resolution could permit the separation of the areas generated by the first and second passage of the indicator. In sheep experiments, injections of 5 or 10 mL into a venous port close to the vascular access caused Qb to change by 20% to 40%. Both the animal experiments and analysis of raw data collected during routine clinical dialysis showed that moving the injection site sufficiently far from the patient, before or into the venous bubble trap, reduced the increase in Qb to only approximately 5% during the critical time when the concentration curve is changing for most tubing brands (Baxter, Belco

  14. [Research on data acquisition of portable uroflowmeter and accuracy of measurement].

    PubMed

    Jiang, Yaojun; Ge, Bin; Yan, Rongguo; Ruan, Hongyu

    2014-02-01

    This paper presents the preliminary design of data acquisition system of a portable uroflowmeter. The system uses double-hole cantilever pressure sensor. The signal is transferred to ATmega644PA microprogrammed control unit (MCU), converted by A/D (analog to digital) convertor. Then the further data are processed and get the corresponding relationship of weight-time and two curves of urine flow and urinary flow rate. In the measurement accuracy of the device about urine flow, two factors about the placement and height of the data acquisition are analyzed to show the accuracy of the equipment through the Origin 8.0 data analysis software. The design is characterized by low cost and high speed of data collection, real-time, high accuracy. PMID:24804487

  15. Magnetic bearing wheels for very high pointing accuracy satellite missions

    NASA Technical Reports Server (NTRS)

    Roland, J. P.

    1992-01-01

    Inertia wheels used as actuators in Attitude Control Systems remain the most frequently encountered solution for all types of scientific or military space missions. The magnetic levitation of the flywheel leads to increased performance, which will be necessary for the high pointing accuracy missions in the next decade. For military and commercial earth observation missions, for optical link telecommunication missions, as well as for metallurgical process missions under microgravity conditions, the need for platform stability will become stronger and stronger. Work in progress on the Magnetic Bearing Reaction Wheel, dedicated to the HELIOS military earth observation satellite, is presented. The HELIOS program is very demanding in terms of pointing accuracy. The main features of this wheel and its overall characteristics are given.

  16. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/. PMID:20385580

  17. Improving the accuracy of smart devices to measure noise exposure.

    PubMed

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  18. 40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Provisions § 91.328 Measurement equipment accuracy/calibration frequency table. (a) The accuracy... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Measurement equipment accuracy/calibration frequency table. 91.328 Section 91.328 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-01

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful.

  20. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-01

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. PMID:25261885

  1. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  2. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-01-01

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  3. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (7) Teflon sample filter, as specified in section 6 of 40 CFR part 50, appendix L (if required). (d... Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and..., measurement accuracy, and cut-off. (a) Overview. This test procedure is designed to evaluate a...

  4. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accuracy requirements of § 92.112. (ii) Generate a calibration curve according to, and meeting the... gas standards, or other standards approved by the Administrator. (iv) Using the calibration curve... calibration points. Fit a calibration curve per §§ 92.118 through 92.122 for the entire analyzer range....

  5. A high-accuracy Eulerian gyrokinetic solver for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Candy, J.; Belli, E. A.; Bravenec, R. V.

    2016-11-01

    We describe a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker-Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k⊥ → 0. To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.

  6. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  7. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions. PMID:20530821

  8. Design and analysis of a high-accuracy flexure hinge.

    PubMed

    Liu, Min; Zhang, Xianmin; Fatikow, Sergej

    2016-05-01

    This paper designs and analyzes a new kind of flexure hinge obtained by using a topology optimization approach, namely, a quasi-V-shaped flexure hinge (QVFH). Flexure hinges are formed by three segments: the left and right segments with convex shapes and the middle segment with straight line. According to the results of topology optimization, the curve equations of profiles of the flexure hinges are developed by numerical fitting. The in-plane dimensionless compliance equations of the flexure hinges are derived based on Castigliano's second theorem. The accuracy of rotation, which is denoted by the compliance of the center of rotation that deviates from the midpoint, is derived. The equations for evaluating the maximum stresses are also provided. These dimensionless equations are verified by finite element analysis and experimentation. The analytical results are within 8% uncertainty compared to the finite element analysis results and within 9% uncertainty compared to the experimental measurement data. Compared with the filleted V-shaped flexure hinge, the QVFH has a higher accuracy of rotation and better ability of preserving the center of rotation position but smaller compliance. PMID:27250469

  9. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of...

  10. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of...

  11. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedure: (i) Span the full analyzer range using a top range calibration gas meeting the calibration gas... applicable requirements of §§ 92.118 through 92.122. (iii) Select a calibration gas (a span gas may be used... increments. This gas must be “named” to an accuracy of ±1.0 percent (±2.0 percent for CO2 span gas) of...

  12. Positioning Accuracy in Otosurgery Measured with Optical Tracking

    PubMed Central

    Óvári, Attila; Neményi, Dóra; Just, Tino; Schuldt, Tobias; Buhr, Anne; Mlynski, Robert; Csókay, András; Pau, Hans-Wilhelm; Valálik, István

    2016-01-01

    Objectives To assess positioning accuracy in otosurgery and to test the impact of the two-handed instrument holding technique and the instrument support technique on surgical precision. To test an otologic training model with optical tracking. Study Design In total, 14 ENT surgeons in the same department with different levels of surgical experience performed static and dynamic tasks with otologic microinstruments under simulated otosurgical conditions. Methods Tip motion of the microinstrument was registered in three dimensions by optical tracking during 10 different tasks simulating surgical steps such as prosthesis crimping and dissection of the middle ear using formalin-fixed temporal bone. Instrument marker trajectories were compared within groups of experienced and less experienced surgeons performing uncompensated or compensated exercises. Results Experienced surgeons have significantly better positioning accuracy than novice ear surgeons in terms of mean displacement values of marker trajectories. The instrument support and the two-handed instrument holding techniques significantly reduce surgeons’ tremor. The laboratory set-up presented in this study provides precise feedback for otosurgeons about their surgical skills and proved to be a useful device for otosurgical training. Conclusions Simple tremor compensation techniques may offer trainees the potential to improve their positioning accuracy to the level of more experienced surgeons. Training in an experimental otologic environment with optical tracking may aid acquisition of technical skills in middle ear surgery and potentially shorten the learning curve. Thus, simulated exercises of surgical steps should be integrated into the training of otosurgeons. PMID:27027500

  13. Realtime and High Accuracy VLBI in Chinese Lunar Exploration Project

    NASA Astrophysics Data System (ADS)

    Weimin, Zheng

    The Chinese VLBI (Very Long Baseline Interferometry) Network - CVN consists of five radio telescopes and one data processing center. CVN is a powerful tracking and navigation tool in the Chinese lunar exploration projects. To meet the quick response of the CE lunar probes navigation requirements, station observation data must be sent to the VLBI center and processed in the real time mode. CVN has demonstrated its ability in the CE -1 and CE-2 missions. In December 2013, the CE-3 lander was successfully sent to the lunar surface and the Yutu rover was released. The new VLBI center and Tianma antenna came into use. During the mission, the lander carried the special Differential Oneway Range (DOR) beacon instead of the normal continuous spectrum VLBI signals. To get the high-precision result, CVN used the delta-DOR technique to track the lander with very extreme accuracy. VLBI delay residuals after orbit determination was nearly 0.5ns. The accuracy of landing position is better than 100 meters. The e-VLBI technique made the observable turnover time as short as 20~40 seconds. The same beam VLBI was used to determine the relative position between the lander and rover with meter accuracy. In the subsequent lunar missions, the new deep stations will join CVN and extend the baseline length. After the soft landing and sampling, the lander will be launched from the lunar surface and finish rendezvous and docking with the orbiter. The VLBI synthesis mapping method and the same beam VLBI can get the accurate lander location and support the rendezvous and docking procedure.

  14. Accuracy Analysis on Large Blocks of High Resolution Images

    NASA Technical Reports Server (NTRS)

    Passini, Richardo M.

    2007-01-01

    Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.

  15. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  16. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  17. Heterodyne Interferometric System with Subnanometer Accuracy for Measurement of Straightness

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Ming

    2004-07-01

    A generalized laser interferometer system based on three design principles, i.e., heterodyne frequency, prevention of mixing, and perfect symmetry, is described. These design principles give rise to an interferometer in a highly stable system with no periodic nonlinearity. A novel straightness sensor, consisting of a straightness prism and a straightness reflector, is incorporated into the generalized system to form a straightness interferometer. A Hewlett-Packard commercial linear interferometer was used to validate the interferometer's parameters. Based on the present design, the interferometer has a gain of 0.348, a periodic nonlinearity of less than 40 pm, and a displacement noise of 12 pm/Hz at a bandwidth of 7.8 kHz. This system is useful for precision straightness measurements.

  18. High Accuracy 3D Processing of Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Gruen, A.; Zhang, L.; Kocaman, S.

    2007-01-01

    Automatic DSM/DTM generation reproduces not only general features, but also detailed features of the terrain relief. Height accuracy of around 1 pixel in cooperative terrain. RMSE values of 1.3-1.5 m (1.0-2.0 pixels) for IKONOS and RMSE values of 2.9-4.6 m (0.5-1.0 pixels) for SPOT5 HRS. For 3D city modeling, the manual and semi-automatic feature extraction capability of SAT-PP provides a good basis. The tools of SAT-PP allowed the stereo-measurements of points on the roofs in order to generate a 3D city model with CCM The results show that building models with main roof structures can be successfully extracted by HRSI. As expected, with Quickbird more details are visible.

  19. Measuring physicians' performance in clinical practice: reliability, classification accuracy, and validity.

    PubMed

    Weifeng Weng; Hess, Brian J; Lynn, Lorna A; Holmboe, Eric S; Lipner, Rebecca S

    2010-09-01

    Much research has been devoted to addressing challenges in achieving reliable assessments of physicians' clinical performance but less work has focused on whether valid and accurate classification decisions are feasible. This study used 957 physicians certified in internal medicine (IM) or a subspecialty, who completed the American Board of Internal Medicine (ABIM) Diabetes Practice Improvement Module (PIM). Ten clinical and two patient-experience measures were aggregated into a composite measure. The composite measure score was highly reliable (r = .91) and classification accuracy was high across the entire score scale (>0.90), which indicated that it is possible to differentiate high-performing and low-performing physicians. Physicians certified in endocrinology and those who scored higher on their IM certification examination had higher composite scores, providing some validity evidence. In summary, it is feasible to create a psychometrically robust composite measure of physicians' clinical performance, specifically for the quality of care they provide to patients with diabetes.

  20. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio

    2011-04-01

    To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

  1. Accuracy of Transcutaneous Carbon Dioxide Measurement in Premature Infants.

    PubMed

    Janaillac, Marie; Labarinas, Sonia; Pfister, Riccardo E; Karam, Oliver

    2016-01-01

    Background. In premature infants, maintaining blood partial pressure of carbon dioxide (pCO2) value within a narrow range is important to avoid cerebral lesions. The aim of this study was to assess the accuracy of a noninvasive transcutaneous method (TcpCO2), compared to blood partial pressure of carbon dioxide (pCO2). Methods. Retrospective observational study in a tertiary neonatal intensive care unit. We analyzed the correlation between blood pCO2 and transcutaneous values and the accuracy between the trends of blood pCO2 and TcpCO2 in all consecutive premature infants born at <33 weeks' gestational age. Results. 248 infants were included (median gestational age: 29 + 5 weeks and median birth weight: 1250 g), providing 1365 pairs of TcpCO2 and blood pCO2 values. Pearson's R correlation between these values was 0.58. The mean bias was -0.93 kPa with a 95% confidence limit of agreement of -4.05 to +2.16 kPa. Correlation between the trends of TcpCO2 and blood pCO2 values was good in only 39.6%. Conclusions. In premature infants, TcpCO2 was poorly correlated to blood pCO2, with a wide limit of agreement. Furthermore, concordance between trends was equally low. We warn about clinical decision-making on TcpCO2 alone when used as continuous monitoring. PMID:27375901

  2. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  3. On the accuracy of bore reconstruction from input impedance measurements: application to bassoon crook measurements.

    PubMed

    Dalmont, Jean-Pierre; Curtit, Marthe; Yahaya, Ahmad Fazli

    2012-01-01

    The determination of a pipe bore from the measured reflection function is a technique that has reached a certain maturity. However, the measurement of the reflection function in the time domain (pulse reflectometry) requires equipment that is rather difficult to operate. On the other hand, the techniques for measuring the input impedance have reached an unquestionable maturity with respect to measurement setup and to calibration. It is thus likely that impedance measurements might be able to give the same information. By doing simulations, it is first shown that the reflection function deduced from the input impedance gives access to the bore with a precision comparable with that obtained with pulse reflectometry. It is then shown that the accuracy obtained with measurements is of the same order as that obtained from simulations. The technique is then used for the dimensional inspection of bassoon crooks.

  4. [Measurement accuracy of granier calibration based on transpiration of Platycladus orientalis].

    PubMed

    Liu, Qing-Xin; Meng, Ping; Zhang, Jin-Song; Gao, Jun; Sun, Shou-Jia; Jia, Chang-Rong

    2012-06-01

    In order to understand the accuracy of Granier' s thermal dissipation method in measuring tree water consumption, a comparative study was made from May to June, 2010. The sap flow density of potted Platycladus orientalis was measured with thermal dissipation probe, which was compared with the whole-plant gravimetric measurement. There were significant linear relationships (R2 > 0.825) between the sap flow velocity in both north and south directions of P. orientalis measured by thermal dissipation probe and the transpiration rate measured by gravimetric method. The average daily sap flux in the north and south directions of P. orientalis were 10.6% and 15.1% lower than the daily average transpiration of P. orientalis, respectively, but the differences were not significant. Therefore, Granier's method had high reliability in the measurement of P. orientalis transpiration at daily scale, though the large temperature fluctuation between day and night could result in a lower daily sap flux than daily transpiration.

  5. Computer-aided high-accuracy testing of reflective surface with reverse Hartmann test.

    PubMed

    Wang, Daodang; Zhang, Sen; Wu, Rengmao; Huang, Chih Yu; Cheng, Hsiang-Nan; Liang, Rongguang

    2016-08-22

    The deflectometry provides a feasible way for surface testing with a high dynamic range, and the calibration is a key issue in the testing. A computer-aided testing method based on reverse Hartmann test, a fringe-illumination deflectometry, is proposed for high-accuracy testing of reflective surfaces. The virtual "null" testing of surface error is achieved based on ray tracing of the modeled test system. Due to the off-axis configuration in the test system, it places ultra-high requirement on the calibration of system geometry. The system modeling error can introduce significant residual systematic error in the testing results, especially in the cases of convex surface and small working distance. A calibration method based on the computer-aided reverse optimization with iterative ray tracing is proposed for the high-accuracy testing of reflective surface. Both the computer simulation and experiments have been carried out to demonstrate the feasibility of the proposed measurement method, and good measurement accuracy has been achieved. The proposed method can achieve the measurement accuracy comparable to the interferometric method, even with the large system geometry calibration error, providing a feasible way to address the uncertainty on the calibration of system geometry. PMID:27557245

  6. Computer-aided high-accuracy testing of reflective surface with reverse Hartmann test.

    PubMed

    Wang, Daodang; Zhang, Sen; Wu, Rengmao; Huang, Chih Yu; Cheng, Hsiang-Nan; Liang, Rongguang

    2016-08-22

    The deflectometry provides a feasible way for surface testing with a high dynamic range, and the calibration is a key issue in the testing. A computer-aided testing method based on reverse Hartmann test, a fringe-illumination deflectometry, is proposed for high-accuracy testing of reflective surfaces. The virtual "null" testing of surface error is achieved based on ray tracing of the modeled test system. Due to the off-axis configuration in the test system, it places ultra-high requirement on the calibration of system geometry. The system modeling error can introduce significant residual systematic error in the testing results, especially in the cases of convex surface and small working distance. A calibration method based on the computer-aided reverse optimization with iterative ray tracing is proposed for the high-accuracy testing of reflective surface. Both the computer simulation and experiments have been carried out to demonstrate the feasibility of the proposed measurement method, and good measurement accuracy has been achieved. The proposed method can achieve the measurement accuracy comparable to the interferometric method, even with the large system geometry calibration error, providing a feasible way to address the uncertainty on the calibration of system geometry.

  7. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  8. Evaluation of diagnostic accuracy and dimensional measurements by using CBCT in mandibular first molars

    PubMed Central

    Asgary, Saeed; Nikneshan, Sima; Akbarzadeh-Bagheban, Alireza

    2016-01-01

    Background This study aimed to assess the diagnostic accuracy of cone beam computed tomography (CBCT) and quantitatively evaluate the morphology of mandibular first molars using CBCT. Material and Methods Twenty-four double-rooted mandibular first molars were evaluated by NewTom VGi CBCT. The distance from the furcation and apex to the cementoenamel junction (CEJ), diameter and thickness of canal walls, the buccolingual (BL) to mesiodistal (MD) ratio (ΔD), prevalence of oval canals at different sections and taper of the canals were all determined. In order to assess the diagnostic accuracy of CBCT, distance from the furcation and apex to the CEJ and thickness of canal walls at the CEJ and apex were compared with the gold standard values (caliper and stereomicroscope). Statistical analyses were carried out using intraclass correlation coefficient (ICC), paired t-test and repeated measures ANOVA. Results A high correlation existed between the CBCT and gold standard measurements (P<0.001). In dimensional measurements, length of mesial root was higher than the distal root and lingual furcation was farther from the CEJ than the buccal furcation (P<0.001). An important finding of this study was the mesiodistal taper of the mesiobuccal (MB) and mesiolingual (ML) canals; which was equal to 0.02. Conclusions CBCT has acceptable diagnostic accuracy for measurement of canal wall thickness. Cleaning and shaping of the canals should be performed based on the unique anatomy of the respective canal; which necessitates the use of advanced imaging techniques for thorough assessment of root canal anatomy in a clinical setting. Key words:Permanent mandibular first molar, accuracy, cone-beam computed tomography, dimensional measurement. PMID:26855697

  9. Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Feipeng; Bai, Pengxiang; Shi, Hongjian; Jiang, Zhencheng; Lei, Dong; He, Xiaoyuan

    2016-06-01

    At present, the accuracy of strain measurement using a common optical extensometer with 2D digital image correlation is not sufficient for experimental applications due to the effect of out-of-plane motion. Therefore, this paper proposes a dual-reflector imaging method to improve the accuracy of strain measurement when using a common optical extensometer, with which the front and rear surfaces of a specimen can be simultaneously recorded in the sensor plane of a digital camera. By averaging the strain in two optical extensometers formed on the front and rear surfaces of a specimen, the effect of any slight out-of-plane motion can be eliminated and therefore the strain measurement accuracy can also be improved. Uniaxial tensile tests with an Al-alloy specimen, including static loading and continuous loading, were conducted to validate the feasibility and reliability of the proposed method. The strain measurement results obtained with the proposed method and those obtained with an electrical-resistance strain gauge were found to be in good agreement. The average errors of the proposed method for the two continuous loading tests were found to be 8  ±  10 με and  ‑6  ±  8 με. Given that no correction sheet or compensation specimen is required, the proposed method is easy to implement and thus especially suitable for determining the mechanical properties of brittle materials due to the high level of accuracy with which strain can be measured.

  10. Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Feipeng; Bai, Pengxiang; Shi, Hongjian; Jiang, Zhencheng; Lei, Dong; He, Xiaoyuan

    2016-06-01

    At present, the accuracy of strain measurement using a common optical extensometer with 2D digital image correlation is not sufficient for experimental applications due to the effect of out-of-plane motion. Therefore, this paper proposes a dual-reflector imaging method to improve the accuracy of strain measurement when using a common optical extensometer, with which the front and rear surfaces of a specimen can be simultaneously recorded in the sensor plane of a digital camera. By averaging the strain in two optical extensometers formed on the front and rear surfaces of a specimen, the effect of any slight out-of-plane motion can be eliminated and therefore the strain measurement accuracy can also be improved. Uniaxial tensile tests with an Al-alloy specimen, including static loading and continuous loading, were conducted to validate the feasibility and reliability of the proposed method. The strain measurement results obtained with the proposed method and those obtained with an electrical-resistance strain gauge were found to be in good agreement. The average errors of the proposed method for the two continuous loading tests were found to be 8  ±  10 μɛ and  -6  ±  8 μɛ. Given that no correction sheet or compensation specimen is required, the proposed method is easy to implement and thus especially suitable for determining the mechanical properties of brittle materials due to the high level of accuracy with which strain can be measured.

  11. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the variation in density, composition, size distribution of respirable coal mine dust particles, and... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative... between the mean of the distribution of measurements and the true dust concentration being measured...

  12. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the variation in density, composition, size distribution of respirable coal mine dust particles, and... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative... between the mean of the distribution of measurements and the true dust concentration being measured...

  13. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the variation in density, composition, size distribution of respirable coal mine dust particles, and... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative... between the mean of the distribution of measurements and the true dust concentration being measured...

  14. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the variation in density, composition, size distribution of respirable coal mine dust particles, and... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative... between the mean of the distribution of measurements and the true dust concentration being measured...

  15. Measuring Intuition: Nonconscious Emotional Information Boosts Decision Accuracy and Confidence.

    PubMed

    Lufityanto, Galang; Donkin, Chris; Pearson, Joel

    2016-05-01

    The long-held popular notion of intuition has garnered much attention both academically and popularly. Although most people agree that there is such a phenomenon as intuition, involving emotionally charged, rapid, unconscious processes, little compelling evidence supports this notion. Here, we introduce a technique in which subliminal emotional information is presented to subjects while they make fully conscious sensory decisions. Our behavioral and physiological data, along with evidence-accumulator models, show that nonconscious emotional information can boost accuracy and confidence in a concurrent emotion-free decision task, while also speeding up response times. Moreover, these effects were contingent on the specific predictive arrangement of the nonconscious emotional valence and motion direction in the decisional stimulus. A model that simultaneously accumulates evidence from both physiological skin conductance and conscious decisional information provides an accurate description of the data. These findings support the notion that nonconscious emotions can bias concurrent nonemotional behavior-a process of intuition.

  16. Accuracy of Transcutaneous Carbon Dioxide Measurement in Premature Infants

    PubMed Central

    Janaillac, Marie; Labarinas, Sonia

    2016-01-01

    Background. In premature infants, maintaining blood partial pressure of carbon dioxide (pCO2) value within a narrow range is important to avoid cerebral lesions. The aim of this study was to assess the accuracy of a noninvasive transcutaneous method (TcpCO2), compared to blood partial pressure of carbon dioxide (pCO2). Methods. Retrospective observational study in a tertiary neonatal intensive care unit. We analyzed the correlation between blood pCO2 and transcutaneous values and the accuracy between the trends of blood pCO2 and TcpCO2 in all consecutive premature infants born at <33 weeks' gestational age. Results. 248 infants were included (median gestational age: 29 + 5 weeks and median birth weight: 1250 g), providing 1365 pairs of TcpCO2 and blood pCO2 values. Pearson's R correlation between these values was 0.58. The mean bias was −0.93 kPa with a 95% confidence limit of agreement of −4.05 to +2.16 kPa. Correlation between the trends of TcpCO2 and blood pCO2 values was good in only 39.6%. Conclusions. In premature infants, TcpCO2 was poorly correlated to blood pCO2, with a wide limit of agreement. Furthermore, concordance between trends was equally low. We warn about clinical decision-making on TcpCO2 alone when used as continuous monitoring. PMID:27375901

  17. Accuracy of magnetic resonance imaging for measuring maturing cartilage: A phantom study

    PubMed Central

    McKinney, Jennifer R; Sussman, Marshall S; Moineddin, Rahim; Amirabadi, Afsaneh; Rayner, Tammy; Doria, Andrea S

    2016-01-01

    OBJECTIVES: To evaluate the accuracy of magnetic resonance imaging measurements of cartilage tissue-mimicking phantoms and to determine a combination of magnetic resonance imaging parameters to optimize accuracy while minimizing scan time. METHOD: Edge dimensions from 4 rectangular agar phantoms ranging from 10.5 to 14.5 mm in length and 1.25 to 5.5 mm in width were independently measured by two readers using a steel ruler. Coronal T1 spin echo (T1 SE), fast spoiled gradient-recalled echo (FSPGR) and multiplanar gradient-recalled echo (GRE MPGR) sequences were used to obtain phantom images on a 1.5-T scanner. RESULTS: Inter- and intra-reader reliability were high for both direct measurements and for magnetic resonance imaging measurements of phantoms. Statistically significant differences were noted between the mean direct measurements and the mean magnetic resonance imaging measurements for phantom 1 when using a GRE MPGR sequence (512x512 pixels, 1.5-mm slice thickness, 5:49 min scan time), while borderline differences were noted for T1 SE sequences with the following parameters: 320x320 pixels, 1.5-mm slice thickness, 6:11 min scan time; 320x320 pixels, 4-mm slice thickness, 6:11 min scan time; and 512x512 pixels, 1.5-mm slice thickness, 9:48 min scan time. Borderline differences were also noted when using a FSPGR sequence with 512x512 pixels, a 1.5-mm slice thickness and a 3:36 min scan time. CONCLUSIONS: FSPGR sequences, regardless of the magnetic resonance imaging parameter combination used, provided accurate measurements. The GRE MPGR sequence using 512x512 pixels, a 1.5-mm slice thickness and a 5:49 min scan time and, to a lesser degree, all tested T1 SE sequences produced suboptimal accuracy when measuring the widest phantom. PMID:27464298

  18. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  19. New way for accuracy measurement of fine-pitch gears in batch production

    NASA Astrophysics Data System (ADS)

    Xie, Huakun; Fu, Ying; Feng, Gang; Ye, Yong; Huang, Wenliang

    2011-05-01

    Fine-pitch gears with module ranging from 0.05 to 0.5 are widely used in the fields of dial indicators, aeronautic gauges and instruments, timers and watches and so on; but because of their small size and weak rigidity and small aount of inertia, so far there are few methods in practice being able to meet the requirements of their reliable, precise and efficient accuracy measurements, especially in batch production. Based on the gear integrated error measuring technology and the gear single flank rolling tester, a differential type of gear single flank point rolling scan measuring technique and a prototype of the gear differential single flank rolling tester have been developed to explore a new way to solve the problem. By using a special made master gear, the tester can perform not only the measurement of the gear tangential composite deviations but also the measurement of the gear elementary deviations, including profile deviations and pitch deviations, and also integrated deviatons of fine-pitch gears in batch production with high efficiency and accuracy. The conception of "Two spindles be driven in synchronization, and one differential measurement be in closed loop" and the design structure of "spindle on spindle" adopted by the prototype are introduced in the paper. Some practical measurement results in factory and a few discussions are also presented.

  20. New way for accuracy measurement of fine-pitch gears in batch production

    NASA Astrophysics Data System (ADS)

    Xie, Huakun; Fu, Ying; Feng, Gang; Ye, Yong; Huang, Wenliang

    2010-12-01

    Fine-pitch gears with module ranging from 0.05 to 0.5 are widely used in the fields of dial indicators, aeronautic gauges and instruments, timers and watches and so on; but because of their small size and weak rigidity and small aount of inertia, so far there are few methods in practice being able to meet the requirements of their reliable, precise and efficient accuracy measurements, especially in batch production. Based on the gear integrated error measuring technology and the gear single flank rolling tester, a differential type of gear single flank point rolling scan measuring technique and a prototype of the gear differential single flank rolling tester have been developed to explore a new way to solve the problem. By using a special made master gear, the tester can perform not only the measurement of the gear tangential composite deviations but also the measurement of the gear elementary deviations, including profile deviations and pitch deviations, and also integrated deviatons of fine-pitch gears in batch production with high efficiency and accuracy. The conception of "Two spindles be driven in synchronization, and one differential measurement be in closed loop" and the design structure of "spindle on spindle" adopted by the prototype are introduced in the paper. Some practical measurement results in factory and a few discussions are also presented.

  1. Ultrasonic thickness structural health monitoring photoelastic visualization and measurement accuracy for internal pipe corrosion

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Oil refinery production of fuels is becoming more challenging as a result of the changing world supply of crude oil towards properties of higher density, higher sulfur concentration, and higher acidity. One such production challenge is an increased risk of naphthenic acid corrosion that can result in various surface degradation profiles of uniform corrosion, non-uniform corrosion, and localized pitting in piping systems at temperatures between 150°C and 400°C. The irregular internal surface topology and high external surface temperature leads to a challenging in-service monitoring application for accurate pipe wall thickness measurements. Improved measurement technology is needed to continuously profile the local minimum thickness points of a non-uniformly corroding surface. The measurement accuracy and precision must be sufficient to provide a better understanding of the integrity risk associated with refining crude oils of higher acid concentration. This paper discusses potential technologies for measuring localized internal corrosion in high temperature steel piping and describes the approach under investigation to apply flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process. Next, the elastic wave beam profile of a sol-gel transducer is characterized via photoelastic visualization. Finally, the variables that impact measurement accuracy and precision are discussed and a maximum likelihood statistical method is presented and demonstrated to quantify the measurement accuracy and precision of various time-of-flight thickness calculation methods in an ideal environment. The statistical method results in confidence values analogous to the a90 and a90/95 terminology used in Probability-of-Detection (POD) assessments.

  2. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.

    PubMed

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  3. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.

    PubMed

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L; Rodríguez-Lizana, Antonio

    2015-01-28

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate.

  4. Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements

    PubMed Central

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  5. Accuracy and precision in measurements of biomass oxidative ratios

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.

    2005-12-01

    One fundamental property of the Earth system is the oxidative ratio (OR) of the terrestrial biosphere, or the mols CO2 fixed per mols O2 released via photosynthesis. This is also an essential, poorly constrained parameter in the calculation of the size of the terrestrial and oceanic carbon sinks via atmospheric O2 and CO2 measurements. We are pursuing a number of techniques to accurately measure natural variations in above- and below-ground OR. For aboveground biomass, OR can be calculated directly from percent C, H, N, and O data measured via elemental analysis; however, the precision of this technique is a function of 4 measurements, resulting in increased data variability. It is also possible to measure OR via bomb calorimetry and percent C, using relationships between the heat of combustion of a sample and its OR. These measurements hold the potential for generation of more precise data, as error depends only on 2 measurements instead of 4. We present data comparing these two OR measurement techniques.

  6. Accuracy of Estimations of Measurements by Students with Visual Impairments

    ERIC Educational Resources Information Center

    Jones, M. Gail; Forrester, Jennifer H.; Robertson, Laura E.; Gardner, Grant E.; Taylor, Amy R.

    2012-01-01

    There is a dearth of information about how students with visual impairments learn science-process skills. This study investigated students' concepts and skills in one science area: the estimation of measurements. The estimation of measurements is one of the fundamental concepts that connects all science disciplines that provide the necessary…

  7. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  8. Global positioning system measurements for crustal deformation: precision and accuracy.

    PubMed

    Prescott, W H; Davis, J L; Svarc, J L

    1989-06-16

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million. PMID:17820661

  9. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    PubMed Central

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    Introduction An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001). Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient’s body temperature in the intensive care units because of high accuracy and acceptable precision.

  10. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    PubMed Central

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    Introduction An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001). Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient’s body temperature in the intensive care units because of high accuracy and acceptable precision. PMID:27621673

  11. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... measured by the oxides of nitrogen analyzer following the analyzer's monthly periodic calibration....

  12. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... measured by the oxides of nitrogen analyzer following the analyzer's monthly periodic calibration....

  13. 40 CFR 86.1338-2007 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... measured by the oxides of nitrogen analyzer following the analyzer's monthly periodic calibration....

  14. Impact of soil texture on soil moisture measurement accuracy by TDR in Sistan plain of Iran

    NASA Astrophysics Data System (ADS)

    sarani, noushin; Afrasiab, Peyman

    2014-05-01

    In the recent past, many researchers have developed various techniques for determining moisture content of soil. Among the various methods of estimating soil moisture, Time Domain Reflectometry (TDR) method is a relatively new method. TDR has been widely used in water system investigation in Agriculture, Geosciences, etc. The purpose of this study is determination of moisture measurement accuracy by TDR in various soil textures in Sistan plain. For this purpose, six textures and for each of them three Iteration were used. The studied textures were clay, loam, sandy loam, sandy clay loam, clay loam and sandy. The experiments were carried out at the laboratory of water engineering department of Zabol University in Iran. The provided textures were laid in the PVC cylinder with 50 cm height and 30 cm diameter. After 24 h of saturation, the soil water content of the samples was measured by oven-dry gravimetric and TDR methods. In each day the moisture measurement of each texture was carried out by these two methods until a moisture range was determined. For comparison between measured moisture values by TDR and gravimetric method, two statistical parameters include coefficient of determination (R2) and root mean square error (RMSE) were applied here. The results showed that by using SPSS, statistically significant at probably level of 1% indicated no difference between the measured value of moisture by TDR device and gravimetric method. For heavy textures consist of sandy clay loam, clay loam, and clay with increasing clay content when the moisture was low, TDR measured the moisture values less than the gravimetric method. Furthermore for light textures consist of sandy loam and sand, the TDR device measured the moisture values more than the gravimetric method. Also for clay loam and sandy clay at high moisture values, data measured by TDR was close to the gravimetric method. For all studied textures with increasing of clay content, the fitted lines slope and RMSE

  15. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Equipment measurement accuracy/calibration frequency. 89.305 Section 89.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration...

  16. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Equipment measurement accuracy/calibration frequency. 89.305 Section 89.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration...

  17. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Equipment measurement accuracy/calibration frequency. 89.305 Section 89.305 Protection of Environment ENVIRONMENTAL PROTECTION...

  18. 40 CFR 90.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... KILOWATTS Emission Test Equipment Provisions § 90.328 Measurement equipment accuracy/calibration frequency... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Measurement equipment accuracy/calibration frequency table. 90.328 Section 90.328 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Equipment measurement accuracy/calibration frequency. 89.305 Section 89.305 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 89.305 - Equipment measurement accuracy/calibration frequency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINES Emission Test Equipment Provisions § 89.305 Equipment measurement accuracy/calibration frequency... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Equipment measurement accuracy/calibration frequency. 89.305 Section 89.305 Protection of Environment ENVIRONMENTAL PROTECTION...

  1. Ultracompact vibrometry measurement with nanometric accuracy using optical feedback

    NASA Astrophysics Data System (ADS)

    Jha, Ajit; Azcona, Francisco; Royo, Santiago

    2015-05-01

    The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.

  2. Accuracy Advances in Measuring Earth Emission Spectra for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Best, F. A.; Tobin, D. C.; Knuteson, R. O.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.

    2011-12-01

    Launch of the first component of the Joint Polar Satellite System (JPSS) in late October is expected to initiate a new series of US afternoon satellites to complement the EUMETSAT MetOp EPS morning observations. A key component is the Cross-track Infrared Sounder (CrIS) designed for advanced temperature and water vapor profiling for weather and climate applications. We have worked on getting this operational capability in space ever since conducting a Phase A instrument design in 1990, and will report on what is expected to be its highly accurate radiometric and spectral performance post launch. The expectation from thermal/vacuum testing is that the accuracy will exceed 0.2 K (k=3) brightness temperature at scene temperature for all three bands in the region from 3.5 to 15 microns. CrIS is expected to offer further confirmation of techniques that have proven to offer significant accuracy improvements for the new family of advanced sounding instruments including AIRS on NASA Aqua platform and IASI on MetOp A and that are needed in the new IR Decadal Survey measurements. CrIS and these other advanced sounders help set the stage for a new era in establishing spectrally resolved IR climate benchmark measurements from space. Here we report on being able to achieve even higher accuracy with instruments designed specifically for climate missions similar to the Decadal Survey Climate Absolute Radiance and Refractivity Observatory (CLARREO). Results will be presented from our NASA Instrument Incubator Program (IIP) effort for which a new concept for on-orbit verification and test has been developed. This system is capable of performing fundamental radiometric calibration, spectral characterization and calibration, and other key performance tests that are normally only performed prior to launch in thermal/vacuum testing. By verifying accuracy directly on-orbit, this capability should provide the ultra-high confidence in data sets needed for societal decision making.

  3. The ultimate quantum limits on the accuracy of measurements

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1992-01-01

    A quantum generalization of rate-distortion theory from standard communication and information theory is developed for application to determining the ultimate performance limit of measurement systems in physics. For the estimation of a real or a phase parameter, it is shown that the root-mean-square error obtained in a measurement with a single-mode photon level N cannot do better than approximately N exp -1, while approximately exp(-N) may be obtained for multi-mode fields with the same photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

  4. High-accuracy simulation-based optical proximity correction

    NASA Astrophysics Data System (ADS)

    Keck, Martin C.; Henkel, Thomas; Ziebold, Ralf; Crell, Christian; Thiele, J.÷rg

    2003-12-01

    In times of continuing aggressive shrinking of chip layouts a thorough understanding of the pattern transfer process from layout to silicon is indispensable. We analyzed the most prominent effects limiting the control of this process for a contact layer like process, printing 140nm features of variable length and different proximity using 248nm lithography. Deviations of the photo mask from the ideal layout, in particular mask off-target and corner rounding have been identified as clearly contributing to the printing behavior. In the next step, these deviations from ideal behavior have been incorporated into the optical proximity correction (OPC) modeling process. The degree of accuracy for describing experimental data by simulation, using an OPC model modified in that manner could be increased significantly. Further improvement in modeling the optical imaging process could be accomplished by taking into account lens aberrations of the exposure tool. This suggests a high potential to improve OPC by considering the effects mentioned, delivering a significant contribution to extending the application of OPC techniques beyond current limits.

  5. The effect of clock, media, and station location errors on Doppler measurement accuracy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1993-01-01

    Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

  6. 40 CFR 86.338-79 - Exhaust measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) (Secs. 206, 301(a), Clean Air Act as amended (42 U.S.C. 7525, 7601(a))) ... percent of full-scale chart deflection during the measurement of the emissions for each mode. The... percent of full-scale if the full-scale value is 155 ppm (or ppm C) or less. (2) Option. For CO...

  7. 40 CFR 86.1338-84 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the calibration curve is maintained below 15 percent; or (B) The full scale value of the range is 155... using the calibration data obtained with both calibration gases. (b) Measurement accuracy—Continuous... according to the procedures contained in (a) and (b) of this section....

  8. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the variation in density, composition, size distribution of respirable coal mine dust particles, and... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative... Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part...

  9. Development of high-accuracy pointing verification for ALMA antenna

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Ayumu; Saito, Masao; Iguchi, Satoru; Nakanishi, Kouichiro; Saito, Hiro

    2014-07-01

    Pointing performance of a radio telescope antenna is important in radio astronomical observations to obtain accurate intensity of a target source. The pointing errors of the ALMA ACA antenna are required to be better than 0.6 arcsec rss, which corresponds to 1/10 and 1/20 of the field of view of the ALMA ACA 12-m and 7-m antenna at 950 GHz, respectively. The pointing verification measurements of the ACA antenna were performed using an Optical pointing telescope (OPT) mounted on the antenna backup structure at the ALMA Operations Site Facility at 2900m above the sea level. Pointing errors of these OPT measurements contain three different origins; originated from antenna, originated of atmosphere (optical seeing), and originated of OPT itself. In order to estimate pointing errors of the antenna origin, we need to subtract the components of optical seeing and OPT itself accurately, while we need to add components that cannot be measured in the OPT measurements. The ACA antenna verification test report demonstrated that all the ACA 7-m antenna meets pointing specification of ALMA. However, about one-third of datasets, values of estimated optical seeing is larger than measured pointing errors. We re-examined a procedure to estimate optical seeing, by investigating the property of optical seeing from the high-sampling OPT pointing measurements of long tracking a bright star for 15 minutes. Particularly, we examined the relation between optical seeing and sampling rate derived from Kolmogorov PSD. Our analysis indicated that the optical seeing at ALMA site may have been overestimated in the verification test. We present a new relation between optical seeing and sampling rate proportional to average wind velocity during measurement. We used this new relation to derive the optical seeing and as a result the number of datasets becomes half in which the optical seeing is larger than measured pointing errors. As a result, we successfully develop a new verification method of

  10. Evaluation of the Aurora Application Shade Measurement Accuracy

    SciTech Connect

    2015-12-01

    Aurora is an integrated, Web-based application that helps solar installers perform sales, engineering design, and financial analysis. One of Aurora's key features is its high-resolution remote shading analysis.

  11. Improving the accuracy of mirror measurements by removing noise and lens distortion

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhou

    2016-11-01

    Telescope mirrors determine the imaging quality and observation ability of telescopes. Unfortunately, manufacturing highly accurate mirrors remains a bottleneck problem in space optics. One main factor is the lack of a technique for measuring the 3D shapes of mirrors accurately for inverse engineering. Researchers have studied and developed techniques for testing the quality of telescope mirrors and methods for measuring the 3D shapes of mirrors for centuries. Among these, interferometers have become popular in evaluating the surface errors of manufactured mirrors. However, interferometers are unable to measure some important mirror parameters directly and accurately, e.g. the paraxial radius, geometry dimension and eccentric errors, and these parameters are essential for mirror manufacturing. In this paper, we aim to remove the noise and lens distortion inherent in the system to improve the accuracy of a previously proposed one-shot projection mirror measurement method. To this end, we propose a ray modeling and a pattern modeling method. The experimental results show that the proposed ray modeling and pattern modeling method can improve the accuracy of the one-shot projection method significantly, making it feasible as a commercial device to measure the shapes of mirrors quantitatively and accurately.

  12. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  13. Theoretical Accuracy of Along-Track Displacement Measurements from Multiple-Aperture Interferometry (MAI)

    PubMed Central

    Jung, Hyung-Sup; Lee, Won-Jin; Zhang, Lei

    2014-01-01

    The measurement of precise along-track displacements has been made with the multiple-aperture interferometry (MAI). The empirical accuracies of the MAI measurements are about 6.3 and 3.57 cm for ERS and ALOS data, respectively. However, the estimated empirical accuracies cannot be generalized to any interferometric pair because they largely depend on the processing parameters and coherence of the used SAR data. A theoretical formula is given to calculate an expected MAI measurement accuracy according to the system and processing parameters and interferometric coherence. In this paper, we have investigated the expected MAI measurement accuracy on the basis of the theoretical formula for the existing X-, C- and L-band satellite SAR systems. The similarity between the expected and empirical MAI measurement accuracies has been tested as well. The expected accuracies of about 2–3 cm and 3–4 cm (γ = 0.8) are calculated for the X- and L-band SAR systems, respectively. For the C-band systems, the expected accuracy of Radarsat-2 ultra-fine is about 3–4 cm and that of Sentinel-1 IW is about 27 cm (γ = 0.8). The results indicate that the expected MAI measurement accuracy of a given interferometric pair can be easily calculated by using the theoretical formula. PMID:25251408

  14. High-accuracy determination of the neutron flux at n_TOF

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Guerrero, C.; Tsinganis, A.; Tarrío, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Göbel, K.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martınez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Papaevangelou, T.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sabate-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Steinegger, P.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2013-12-01

    The neutron flux of the n_TOF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n_TOF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n_TOF. An unexpected anomaly in the neutron-induced fission cross section of 235U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties.

  15. High-Accuracy Potentials for Van Der Waals Systems

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Wang, Xiao-Gang; Brown, James; Carrington, Tucker; , Jr.

    2012-06-01

    Recent experimental studies of vdWs systems including those by Moazzen-Ahmadi and McKellar,1,2 as well as microwave studies by Minei and Novick3,4 have observed previously unknown stable polar isomers for systems such as (NNO)2 and (OCS)2. The multi-welled floppy nature of the PESs and the small barriers between minima place stringent requirements on the PES for a successful theoretical description of these states. An automated method of generating accurate PESs for vdW systems has been developed and is demonstrated here.5,6 A limited number of ab initio data at the explicitly correlated CCSD(T)-F12b level are interpolated into analytic PESs with negligible fitting error. High-accuracy PESs were developed for a number of systems including (NNO)2, (OCS)2, (CO)2, CO2:CS2 and (NH3)2. Using the PESs, the rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All inter-monomer coordinates are included in the calculations. Calculated transition frequencies are in very close agreement with experiment. References (1) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 164310 (2007). (2) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 071102 (2007). (3) N. R. Walker, R. Nicholas, A. J. Minei, S. E. Novick, A. C. Legon, J. Mol. Spec. 251, 153 (2008). (4) A. J. Minei and S. E. Novick, J. Chem. Phys. 126, 101101 (2007). (5) R. Dawes, X.-G. Wang, A. W. Jasper, T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010). (6) X.-G. Wang, T. Carrington Jr., R. Dawes and A. W. Jasper, J. Mol. Spec. 268, 53 (2011).

  16. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    NASA Astrophysics Data System (ADS)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5–500 nmol mol‑1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  17. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  18. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    SciTech Connect

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  19. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  20. The ADI-FDTD method for high accuracy electrophysics applications

    NASA Astrophysics Data System (ADS)

    Haeri Kermani, Mohammad

    The Finite-Difference Time-Domain (FDTD) is a dependable method to simulate a wide range of problems from acoustics, to electromagnetics, and to photonics, amongst others. The execution time of an FDTD simulation is inversely proportional to the time-step size. Since the FDTD method is explicit, its time-step size is limited by the well-known Courant-Friedrich-Levy (CFL) stability limit. The CFL stability limit can render the simulation inefficient for very fine structures. The Alternating Direction Implicit FDTD (ADI-FDTD) method has been introduced as an unconditionally stable implicit method. Numerous works have shown that the ADI-FDTD method is stable even when the CFL stability limit is exceeded. Therefore, the ADI-FDTD method can be considered an efficient method for special classes of problems with very fine structures or high gradient fields. Whenever the ADI-FDTD method is used to simulate open-region radiation or scattering problems, the implementation of a mesh-truncation scheme or absorbing boundary condition becomes an integral part of the simulation. These truncation techniques represent, in essence, differential operators that are discretized using a distinct differencing scheme which can potentially affect the stability of the scheme used for the interior region. In this work, we show that the ADI-FDTD method can be rendered unstable when higher-order mesh truncation techniques such as Higdon's Absorbing Boundary Condition (ABC) or Complementary Derivatives Method (COM) are used. When having large field gradients within a limited volume, a non-uniform grid can reduce the computational domain and, therefore, it decreases the computational cost of the FDTD method. However, for high-accuracy problems, different grid sizes increase the truncation error at the boundary of domains having different grid sizes. To address this problem, we introduce the Complementary Derivatives Method (CDM), a second-order accurate interpolation scheme. The CDM theory is

  1. Estimation of measurement accuracy of track point coordinates in nuclear photoemulsion

    NASA Astrophysics Data System (ADS)

    Shamanov, V. V.

    1995-03-01

    A simple method for an estimation of the measurement accuracy of track point coordinates in nuclear photoemulsion is described. The method is based on analysis of residual deviations of measured track points from a straight line approximating the track. Reliability of the algorithm is illustrated by Monte Carlo simulation. Examples of using the method for an estimation of the accuracy of track point coordinates measured with the microscope KSM-1 (VEB Carl Zeiss Jena) are given.

  2. Effect of measurement site on the dimensional accuracy of die-forming materials and techniques.

    PubMed

    Petrie, Cynthia S; Walker, Mary P; Theodotou, Nicholas; Glaros, Alan G; Williams, Karen

    2004-01-01

    To date, the comparisons of dimensional accuracy of various die materials has been investigated primarily by using a one-dimensional measurement on one die. However, a single measurement may not adequately represent the complex preparations that are encountered frequently in clinical dentistry. This investigation utilized a standardized model with two identical dies to measure die accuracy at four sites, using five different die-forming materials/techniques.

  3. Effect of measurement site on the dimensional accuracy of die-forming materials and techniques.

    PubMed

    Petrie, Cynthia S; Walker, Mary P; Theodotou, Nicholas; Glaros, Alan G; Williams, Karen

    2004-01-01

    To date, the comparisons of dimensional accuracy of various die materials has been investigated primarily by using a one-dimensional measurement on one die. However, a single measurement may not adequately represent the complex preparations that are encountered frequently in clinical dentistry. This investigation utilized a standardized model with two identical dies to measure die accuracy at four sites, using five different die-forming materials/techniques. PMID:15206253

  4. High-accuracy x-ray line standards in the 3-keV region

    NASA Astrophysics Data System (ADS)

    Schlesser, S.; Boucard, S.; Covita, D. S.; dos Santos, J. M. F.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Hirtl, A.; Indelicato, P.; Le Bigot, E.-O.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J. F. C. A.; Wasser, A.; Zmeskal, J.

    2013-08-01

    A set of 14 high-accuracy x-ray transition energies in the 2.4-3.1 keV range is presented, which can be used as x-ray standards. They were measured in two- to four-electron sulfur, chlorine, and argon ions produced in an electron-cyclotron resonance ion source, using a single spherically bent crystal spectrometer. The results include the first measurement of six transitions and improve the accuracy of six other experimental values. These measurements considerably extend the set of high-accuracy x-ray energies reported for highly charged ions. Their relative uncertainties range from 1 to 10 ppm. Theory only reaches such a precision in one- and two-electron ions. Our results thus have two distinct applications. On the one hand, they test predictions in two-electron ions [Artemyev, Shabaev, Yerokhin, Plunien, and Soff, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.71.062104 71, 062104 (2005)], at the precision level of some two-photon QED contributions. We observe an agreement with theory for most of the transitions. On the other hand, the three- and four-electron ion transitions provide new benchmark energies for the calculation of missing theoretical contributions, such as Auger shifts or electronic correlations. Spectra were analyzed with an x-ray tracing simulation that contains all the relevant physics of the spectrometer.

  5. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics.

    PubMed

    Tusting, Lucy S; Bousema, Teun; Smith, David L; Drakeley, Chris

    2014-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review 11 metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs and presenting an overall critique. We also review the nonlinear scaling relationships between five metrics of malaria transmission: the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our chapter highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, seroconversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection.

  6. Evaluation of accuracy of cone beam computed tomography for measurement of periodontal defects: A clinical study

    PubMed Central

    Banodkar, Akshaya Bhupesh; Gaikwad, Rajesh Prabhakar; Gunjikar, Tanay Udayrao; Lobo, Tanya Arthur

    2015-01-01

    Aims: The aim of the present study was to evaluate the accuracy of Cone Beam Computed Tomography (CBCT) measurements of alveolar bone defects caused due to periodontal disease, by comparing it with actual surgical measurements which is the gold standard. Materials and Methods: Hundred periodontal bone defects in fifteen patients suffering from periodontitis and scheduled for flap surgery were included in the study. On the day of surgery prior to anesthesia, CBCT of the quadrant to be operated was taken. After reflection of the flap, clinical measurements of periodontal defect were made using a reamer and digital vernier caliper. The measurements taken during surgery were then compared to the measurements done with CBCT and subjected to statistical analysis using the Pearson's correlation test. Results: Overall there was a very high correlation of 0.988 between the surgical and CBCT measurements. In case of type of defects the correlation was higher in horizontal defects as compared to vertical defects. Conclusions: CBCT is highly accurate in measurement of periodontal defects and proves to be a very useful tool in periodontal diagnosis and treatment assessment. PMID:26229268

  7. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  8. The Discriminant Accuracy of a Grammatical Measure with Latino English-Speaking Children

    ERIC Educational Resources Information Center

    Gutierrez-Clellen, Vera F.; Simon-Cereijido, Gabriela

    2007-01-01

    Purpose: To evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment (LI) in Latino English-speaking children. Specifically, the study examined the diagnostic accuracy of the Test of English Morphosyntax (E-MST; Pena, Gutierrez-Clellen, Iglesias, Goldstein, & Bedore (n.d.) to determine (a) whether…

  9. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  10. Military applications of high accuracy frequency standards and clocks.

    PubMed

    Vig, J R

    1993-01-01

    The application of frequency control and timing devices in modern military electronics systems is reviewed. The manner in which the stability and accuracy of these devices impact the performance of military communication, navigation, surveillance, electronic warfare, missile guidance, and identification-friend-or-foe (IFF) systems is discussed.

  11. Key technologies for high-accuracy large mesh antenna reflectors

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  12. The optimal design for measurement systems based on uniform accuracy life

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen-Ying; Chen, Xiao-Huai; Li, Rui-jun; Jiang, Min-lan; Fei, Ye-tai

    2013-10-01

    The accuracy lives of a measurement system and its components are generally different and it will lead to a waste of resources. In order to make full use of the system's resources and improve its accuracy life, a novel design method based on uniform accuracy life for measurement systems is proposed in this paper. According to the theory of error decomposition and tracing, Hilbert-Huang transform (HHT) method is employed to decompose the total errors of an error test system for a dial gauge and then the accuracy loss functions for the total system and some error parameters are obtained. Based on the analysis of the transfer function for the accuracy loss between the different parts of the measurement system, a constraint model consisting with the uniform accuracy life principle is set up. Taking the maximum life of the measurement system as the objective function, the uniform design model has been solved by means of the optimization methods. The uniform design method can be used to promote the accuracy life of the measurement system.

  13. One high-accuracy camera calibration algorithm based on computer vision images

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    Camera calibration is the first step of computer vision and one of the most active research fields nowadays. In order to improve the measurement precision, the internal parameters of the camera should be accurately calibrated. So one high-accuracy camera calibration algorithm is proposed based on the images of planar targets or tridimensional targets. By using the algorithm, the internal parameters of the camera are calibrated based on the existing planar target at the vision-based navigation experiment. The experimental results show that the accuracy of the proposed algorithm is obviously improved compared with the conventional linear algorithm, Tsai general algorithm, and Zhang Zhengyou calibration algorithm. The algorithm proposed by the article can satisfy the need of computer vision and provide reference for precise measurement of the relative position and attitude.

  14. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography

    PubMed Central

    Marino, Miguel; Li, Yi; Rueschman, Michael N.; Winkelman, J. W.; Ellenbogen, J. M.; Solet, J. M.; Dulin, Hilary; Berkman, Lisa F.; Buxton, Orfeu M.

    2013-01-01

    Objectives: We validated actigraphy for detecting sleep and wakefulness versus polysomnography (PSG). Design: Actigraphy and polysomnography were simultaneously collected during sleep laboratory admissions. All studies involved 8.5 h time in bed, except for sleep restriction studies. Epochs (30-sec; n = 232,849) were characterized for sensitivity (actigraphy = sleep when PSG = sleep), specificity (actigraphy = wake when PSG = wake), and accuracy (total proportion correct); the amount of wakefulness after sleep onset (WASO) was also assessed. A generalized estimating equation (GEE) model included age, gender, insomnia diagnosis, and daytime/nighttime sleep timing factors. Setting: Controlled sleep laboratory conditions. Participants: Young and older adults, healthy or chronic primary insomniac (PI) patients, and daytime sleep of 23 night-workers (n = 77, age 35.0 ± 12.5, 30F, mean nights = 3.2). Interventions: N/A. Measurements and Results: Overall, sensitivity (0.965) and accuracy (0.863) were high, whereas specificity (0.329) was low; each was only slightly modified by gender, insomnia, day/night sleep timing (magnitude of change < 0.04). Increasing age slightly reduced specificity. Mean WASO/night was 49.1 min by PSG compared to 36.8 min/night by actigraphy (β = 0.81; CI = 0.42, 1.21), unbiased when WASO < 30 min/night, and overestimated when WASO > 30 min/night. Conclusions: This validation quantifies strengths and weaknesses of actigraphy as a tool measuring sleep in clinical and population studies. Overall, the participant-specific accuracy is relatively high, and for most participants, above 80%. We validate this finding across multiple nights and a variety of adults across much of the young to midlife years, in both men and women, in those with and without insomnia, and in 77 participants. We conclude that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with

  15. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  16. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  17. [A model of blood pressure measurement which based on NN with raised accuracy].

    PubMed

    Zhang, Weiqi

    2011-07-01

    To address the accuracy problem of the oscillometric method in electronic blood pressure monitor, this paper introduces a more accurate new blood pressure measurement model, which based on ANN. And simulation checking method is put forward.

  18. Composite low-coherence interferometer for imaging of immersed tissue with high accuracy

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Wei; Hsu, I.-Jen

    2012-09-01

    Imaging and measurement of the surface profile of an object with high resolution has become essential in both of biological research and industry application. Many samples under investigation such as cultured cells are usually immersed in liquid. Although the techniques such as scanning electron microscope and atomic force microscope can provide imaging or measurement of the surface profile with nanometer resolution, it is difficult for them to image an immersed object with their typical types. Recently, we have proposed and demonstrated a new technique based on composite interferometer which can perform imaging and measurement of the surface profile of an object with accuracy in the axial direction within 5 nm through a self-phase-compensation mechanism. In this research, an optical system based on the concept of combination of optical coherence microscopy (OCM) and composite interferometer was built for imaging of biological tissue immersed in water with axial accuracy at nanometer scale. In the system, a Ti:sapphire laser with center wavelength at 800 nm and spectral width of 140 nm was used as the light source. The composite interferometer comprises two Michelson interferometers sharing common light source, reference arm and photodetector. One of the two interferometers served as a typical OCM system and the other was used to measure the phase shift in the reference arm in each axial scan with the sample being a fixed reflection mirror. The system was used to image the surface profiles of various immersed biological samples with accuracy at nanometer scale through the self-phasecompensation mechanism.

  19. Determination of accuracy of measurements by NREL's Scanning Hartmann Optical Test instrument

    SciTech Connect

    Jorgensen, G.; Wendelin, T.; Carasso, M.

    1991-04-01

    NREL's Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

  20. Determination of accuracy of measurements by NREL`s Scanning Hartmann Optical Test instrument

    SciTech Connect

    Jorgensen, G.; Wendelin, T.; Carasso, M.

    1991-04-01

    NREL`s Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

  1. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    SciTech Connect

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  2. Impaired cognitive empathy in criminal psychopathy: evidence from a laboratory measure of empathic accuracy.

    PubMed

    Brook, Michael; Kosson, David S

    2013-02-01

    Empathy deficits feature prominently in theoretical accounts of psychopathy, yet studies that have examined various aspects of emotional processing related to empathy have produced a mixed body of findings. We created a laboratory measure of cognitive empathy based on the empathic accuracy paradigm (i.e., the ability to accurately infer others' emotions in a simulated interpersonal interaction) and used it to examine relationships between psychopathy (assessed with the Psychopathy Checklist-Revised) and cognitive empathy in a sample of incarcerated male offenders. Psychopathy was inversely associated with empathic accuracy performance, as well as with the number of responses when rating the emotional states of others. Empathic accuracy performance was most strongly associated with the behavioral/antisocial and lifestyle features of psychopathy. When the emotional content of target vignettes was examined, psychopathy was associated with poorer empathic accuracy for negatively valenced emotions only (fear and sadness), although nonsignificant moderate effect sizes were also observed for joy. Whereas the interpersonal/affective factor of psychopathy was associated with poor empathic accuracy for joy, the behavioral/antisocial factor was associated with poor overall empathic accuracy for negatively valenced emotions. At the psychopathy facet level, the interpersonal and lifestyle features of psychopathy were associated with poor empathic accuracy for positively valenced emotions, whereas the affective and antisocial features of psychopathy were inversely associated with empathic accuracy for negatively valenced emotions. In contrast to its association with poor empathic accuracy performance, psychopathy was not associated with ratings of perceived task difficulty. PMID:23067260

  3. Investigation of the accuracy of M2 measurement of CO2 laser beams

    NASA Astrophysics Data System (ADS)

    Ward, Brooke A.; Assa, Shlomo; Davis, Brian W.; Edwards, Christopher B.; Muys, Peter F.

    1995-04-01

    The propagation parameters of CO2 laser beams have been investigated using second moment and knife-edge width measurement techniques. The characteristics of two laser types have been measured: a low power stabilized single frequency instrument and a prototype 3 kW laser. The propagation parameters have been estimated by using two commercial beam analyzing instruments: a rotating drum knife-edge device and a 2D array scanner. The propagation of errors through the analysis procedures has been investigated. The experiments were designed to assess the viability of the draft ISO standard for the measurement of beam width and propagation characteristics of real laser beams. Uncertainties in the estimated beam parameters, resulting from the propagation of errors, are taken into account when assessing the relative merits of the width measurement procedures. It was found that, for the high quality laser beam investigated, there were some small but systematic variations in estimating the width of waists of subject laser beams. In the case of the lower quality, high power laser beam, both the knife-edge and second moment techniques produced estimates of the input beam waist properties that were within the experimental uncertainty limits but again some inconsistency was displayed. It is suggested that the source of the inconsistency is diffraction by hard-edge apertures in the beam path. Nevertheless, the ISO standard procedures are judged to be suitable for the measurement of important beam parameters with an accuracy that is sufficient for the majority of industrial applications.

  4. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  5. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  6. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    NASA Astrophysics Data System (ADS)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  7. Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment

    NASA Astrophysics Data System (ADS)

    Müller, Johann; Gärtner-Roer, Isabelle; Thee, Patrick; Ginzler, Christian

    2014-12-01

    High-resolution digital elevation models (DEMs) generated by airborne remote sensing are frequently used to analyze landform structures (monotemporal) and geomorphological processes (multitemporal) in remote areas or areas of extreme terrain. In order to assess and quantify such structures and processes it is necessary to know the absolute accuracy of the available DEMs. This study assesses the absolute vertical accuracy of DEMs generated by the High Resolution Stereo Camera-Airborne (HRSC-A), the Leica Airborne Digital Sensors 40/80 (ADS40 and ADS80) and the analogue camera system RC30. The study area is located in the Turtmann valley, Valais, Switzerland, a glacially and periglacially formed hanging valley stretching from 2400 m to 3300 m a.s.l. The photogrammetrically derived DEMs are evaluated against geodetic field measurements and an airborne laser scan (ALS). Traditional and robust global and local accuracy measurements are used to describe the vertical quality of the DEMs, which show a non Gaussian distribution of errors. The results show that all four sensor systems produce DEMs with similar accuracy despite their different setups and generations. The ADS40 and ADS80 (both with a ground sampling distance of 0.50 m) generate the most accurate DEMs in complex high mountain areas with a RMSE of 0.8 m and NMAD of 0.6 m They also show the highest accuracy relating to flying height (0.14‰). The pushbroom scanning system HRSC-A produces a RMSE of 1.03 m and a NMAD of 0.83 m (0.21‰ accuracy of the flying height and 10 times the ground sampling distance). The analogue camera system RC30 produces DEMs with a vertical accuracy of 1.30 m RMSE and 0.83 m NMAD (0.17‰ accuracy of the flying height and two times the ground sampling distance). It is also shown that the performance of the DEMs strongly depends on the inclination of the terrain. The RMSE of areas up to an inclination <40° is better than 1 m. In more inclined areas the error and outlier occurrence

  8. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    NASA Astrophysics Data System (ADS)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  9. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  10. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux.

    PubMed

    Barnes, C; Tibbitts, T; Sager, J; Deitzer, G; Bubenheim, D; Koerner, G; Bugbee, B

    1993-12-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  11. Accuracy of Computerized Vertical Measurements on Digital Orthopantomographs: Posterior Mandibular Region

    PubMed Central

    Assaf, Mohammad; Gharbyah, Alaa’ Z. Abu

    2014-01-01

    Objectives: Orthopantomographs are commonly used for diagnosis in clinical dentistry. Although the manufacturers claim a constant magnification effect, the reliability of measuring dimensions on the panoramic radiographs is not clear. The aim of this study was to evaluate the accuracy of measuring vertical dimensions in the posterior mandibular area on digital orthopantomographs. Materials and Methods: A retrospective survey of 20 orthopantomographs with unrestored implants (only with cover screw) in the mandibular posterior region (molars and premolars) was conducted. All radiographs were taken using the same machine by skilled technicians. Two examiners were asked to measure the vertical dimension of the implants seen on the radiographs viewed using two differently sized display screens. Inter-examiner and intra-examiner reliability tests were performed. Differences between the measured length and the actual length using each screen type were compared. Results: High coefficients of reliability were observed on intra- and inter-examiner correlation. The overall reliability of measuring the vertical dimensions of implants between both examiners for the large screen and the small screen were 97.4% (Cronbach's alpha 0.993) and 94.0% (Cronbach's alpha 0.984), respectively. There were no significant differences between the errors seen with either the large screen or the small screen, when each of them was compared to the original length (P = 0.146). Conclusion: This study shows that vertical dimensions in the posterior mandibular region (molar and premolars) can be reliably measured on an orthopantomograph using a calibrated machine and special software. PMID:25806135

  12. Accuracy of a digital skinfold system for measuring skinfold thickness and estimating body fat.

    PubMed

    Amaral, Teresa F; Restivo, Maria Teresa; Guerra, Rita S; Marques, Elisa; Chousal, Maria F; Mota, Jorge

    2011-02-01

    The use of skinfold thickness measurements to evaluate the distribution of subcutaneous adipose tissue and to predict body fat has recognised advantages. However, the different types of skinfold calliper available present limitations that make them unattractive and perhaps less used in daily practice. The purpose of the present study was to evaluate the accuracy and functionality of a new digital skinfold system, the Liposoft 2008+Adipsmeter V0 (LA), for measuring skinfold thickness and determining body fat proportion (%BF). Skinfold thickness measurements made by the LA were compared with those obtained with a Harpenden (H) calliper from two samples of adults (n 45) and older adults (n 56) in a university-based cross-sectional study. A comparison was also conducted between estimated %BF from skinfolds and dual-energy X-ray absorptiometry. Bland and Altman plots show that skinfolds measured by the LA and H calliper are in high agreement, with a mean difference of 0·3 (95% CI -3·1, 3·4) mm. In regard to the %BF estimated from LA and H skinfolds measurement, the LA produced a similar approximation to dual-energy X-ray absorptiometry %BF, with a mean difference of 0·2 (95% CI -0·8, 1·2) %, compared with %BF obtained with the H calliper. The LA system is an accurate instrumentation and represents an innovation in the evaluation of skinfold thickness and body composition based on anthropometric measurement.

  13. A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.

    PubMed

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from -40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10(-5)/°C and 29.5 × 10(-5)/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10(-5)/°C and 2.1 × 10(-5)/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  14. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  15. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  16. Design and performance of a new high accuracy combined small sample neutron/gamma detector

    SciTech Connect

    Menlove, H.; Davidson, D.; Verplancke, J.; Vermeulen, P.; Wagner, H.G.; Wellum, R.; Brandelise, B.; Mayer, K.

    1993-08-01

    This paper describes the design of an optimized combined neutron and gamma detector installed around a measurement well protruding from the floor of a glove box. The objective of this design was to achieve an overall accuracy for the plutonium element concentration in gram-sized samples of plutonium oxide powder approaching the {approximately}0.1--0.2% accuracies routinely achieved by inspectors` chemical analysis. The efficiency of the clam-shell neutron detector was increased and the flat response zone extended in axial and radial directions. The sample holder introduced from within the glove box was designed to form the upper reflector, while two graphite half-shells fitted around the thin neck of the high-resolution LEGE detector replaced the lower plug. The Institute for Reference Materials and Measurements (IRMM) in Geel prepared special plutonium oxide test samples whose plutonium concentration was determined to better than 0.05%. During a three week initial performance test in July 1992 at ITU Karlsruhe and in long term tests, it was established that the target accuracy can be achieved provided sufficient care is taken to assure the reproducibility of sample bottling and sample positioning. The paper presents and discusses the results of all test measurements.

  17. Design and performance of a new high accuracy combined small sample neutron/gamma detector

    SciTech Connect

    Menlove, H.; Davidson, D.; Verplancke, J.; Vermeulen, P.; Wagner, H.G.; Wellum, R.; Brandelise, B.; Mayer, K.

    1993-12-31

    This paper describes the design of an optimized combined neutron and gamma detector installed around a measurement well protruding from the floor of a glove box. The objective of this design was to achieve an overall accuracy for the plutonium element concentration in gram-sized samples of plutonium oxide powder approaching the {approximately}0.1--0.2% accuracies routinely achieved by inspectors` chemical analysis. The efficiency of the clam-shell neutron detector was increased and the flat response zone extended in axial and radial directions. The sample holder introduced from within the glove box was designed to form the upper reflector, while two graphite half-shells fitted around the thin neck of the high-resolution LEGe detector replaced the lower plug. The Institute for Reference Materials and Measurements (IRMM) in Geel prepared special plutonium oxide test samples whose plutonium concentration was determined to better than 0.05%. During a three week initial performance test in July 1992 at ITU Karlsruhe and in long term tests, it was established that the target accuracy can be achieved provided sufficient care is taken to assure the reproducibility of sample bottling and sample positioning. The paper presents and discusses the results of all test measurements.

  18. Accuracy Assessment and Correction of Vaisala RS92 Radiosonde Water Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Miloshevich, Larry M.; Vomel, Holger; Leblanc, Thierry

    2008-01-01

    Relative humidity (RH) measurements from Vaisala RS92 radiosondes are widely used in both research and operational applications, although the measurement accuracy is not well characterized as a function of its known dependences on height, RH, and time of day (or solar altitude angle). This study characterizes RS92 mean bias error as a function of its dependences by comparing simultaneous measurements from RS92 radiosondes and from three reference instruments of known accuracy. The cryogenic frostpoint hygrometer (CFH) gives the RS92 accuracy above the 700 mb level; the ARM microwave radiometer gives the RS92 accuracy in the lower troposphere; and the ARM SurTHref system gives the RS92 accuracy at the surface using 6 RH probes with NIST-traceable calibrations. These RS92 assessments are combined using the principle of Consensus Referencing to yield a detailed estimate of RS92 accuracy from the surface to the lowermost stratosphere. An empirical bias correction is derived to remove the mean bias error, yielding corrected RS92 measurements whose mean accuracy is estimated to be +/-3% of the measured RH value for nighttime soundings and +/-4% for daytime soundings, plus an RH offset uncertainty of +/-0.5%RH that is significant for dry conditions. The accuracy of individual RS92 soundings is further characterized by the 1-sigma "production variability," estimated to be +/-1.5% of the measured RH value. The daytime bias correction should not be applied to cloudy daytime soundings, because clouds affect the solar radiation error in a complicated and uncharacterized way.

  19. The static accuracy and calibration of inertial measurement units for 3D orientation.

    PubMed

    Brodie, M A; Walmsley, A; Page, W

    2008-12-01

    Inertial measurement units (IMUs) are integrated electronic devices that contain accelerometers, magnetometers and gyroscopes. Wearable motion capture systems based on IMUs have been advertised as alternatives to optical motion capture. In this paper, the accuracy of five different IMUs of the same type in measuring 3D orientation in static situations, as well as the calibration of the accelerometers and magnetometers within the IMUs, has been investigated. The maximum absolute static orientation error was 5.2 degrees , higher than the 1 degrees claimed by the vendor. If the IMUs are re-calibrated at the time of measurement with the re-calibration procedure described in this paper, it is possible to obtain an error of less than 1 degrees , in agreement with the vendor's specifications (XSens Technologies B.V. 2005. Motion tracker technical documentation Mtx-B. Version 1.03. Available from: www.xsens.com). The new calibration appears to be valid for at least 22 days providing the sensor is not exposed to high impacts. However, if several sensors are 'daisy chained' together changes to the magnetometer bias can cause heading errors of up to 15 degrees . The results demonstrate the non-linear relationship between the vendor's orthogonality claim of < 0.1 degrees and the accuracy of 3D orientation obtained from factory calibrated IMUs in static situations. The authors hypothesise that the high magnetic dip (64 degrees ) in our laboratory may have exacerbated the errors reported. For biomechanical research, small relative movements of a body segment from a calibrated position are likely to be more accurate than large scale global motion that may have an error of up to 9.8 degrees . PMID:18688763

  20. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  1. Influence of data acquisition environment on accuracy of acoustic voice quality measurements.

    PubMed

    Deliyski, Dimitar D; Evans, Maegan K; Shaw, Heather S

    2005-06-01

    Accuracy of acoustic voice analysis is influenced by the quality of recording. Lately, articles have suggested that soundcards perform equivalently to specialized professional-grade data acquisition (DA) systems. The purpose of this study was to investigate the influence of DA environment (DA system and microphone) on acoustic voice quality measurement (VQM) while balancing for gender, age, intersubject and intrasubject variability, and analysis software. More specifically, the relative performance of different hardware environments and the relationship between their technical characteristics and VQM performance was investigated. The discretization error and the effective dynamic range of the different DA environments were measured. We used 3 software systems to record and measure separately 2000 acoustic samples of sustained phonation for fundamental frequency, jitter, and shimmer. Analyses of variance (ANOVA) were performed with these parameters as the dependent variables. The results of the study suggested that professional-grade DA hardware is strongly recommended to provide accurate and valid voice assessment. The fundamental frequency measurement differences across DA environments were highly correlated to the discretization error (r=1.00), whereas jitter and shimmer were highly correlated to the effective dynamic range of the DA environments (r=-0.68 and r=-0.86, respectively).

  2. Accuracy of High-Rate GPS for Seismology

    NASA Technical Reports Server (NTRS)

    Elosegui, P.; Davis, J. L.; Oberlander, D.; Baena, R.; Ekstrom, G.

    2006-01-01

    We built a device for translating a GPS antenna on a positioning table to simulate the ground motions caused by an earthquake. The earthquake simulator is accurate to better than 0.1 mm in position, and provides the "ground truth" displacements for assessing the technique of high-rate GPS. We found that the root-mean-square error of the 1-Hz GPS position estimates over the 15-min duration of the simulated seismic event was 2.5 mm, with approximately 96% of the observations in error by less than 5 mm, and is independent of GPS antenna motion. The error spectrum of the GPS estimates is approximately flicker noise, with a 50% decorrelation time for the position error of approx.1.6 s. We that, for the particular event simulated, the spectrum of dependent error in the GPS measurements. surface deformations exceeds the GPS error spectrum within a finite band. More studies are required to determine whether a generally optimal bandwidth exists for a target group of seismic events.

  3. The research on the effect of atmospheric transmittance for the measuring accuracy of infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-cun; Chen, Yi-ming; Fu, Xian-bin; Luo, Cheng

    2016-07-01

    The effect of atmospheric transmittance on infrared thermal imager temperature measuring accuracy cannot be ignored when the object is far from infrared thermal imager. In this paper, a method of reducing the influence of atmospheric transmittance is proposed for the infrared thermal imager. Firstly, the temperature measuring formula of infrared thermal imager and the effect of atmospheric transmittance on temperature measuring accuracy is analyzed. According to the composition of the atmosphere, the main factors influencing the atmosphere transmittance are determined. Secondly, the temperature measuring model of infrared thermal imager in sea level is established according to the absorption of water vapor and carbon dioxide, the scattering of air molecules and aerosol particulate, and the attenuation effects of weather conditions such as rain and snow. Finally, the correctness and feasibility of the proposed model is verified by the comparison experiments of four different environmental conditions. According to the experiments, the temperature measuring accuracy of the infrared thermal imager is improved.

  4. A Method to Improve the Accuracy of Particle Diameter Measurements from Shadowgraph Images

    NASA Astrophysics Data System (ADS)

    Erinin, Martin A.; Wang, Dan; Liu, Xinan; Duncan, James H.

    2015-11-01

    A method to improve the accuracy of the measurement of the diameter of particles using shadowgraph images is discussed. To obtain data for analysis, a transparent glass calibration reticle, marked with black circular dots of known diameters, is imaged with a high-resolution digital camera using backlighting separately from both a collimated laser beam and diffuse white light. The diameter and intensity of each dot is measured by fitting an inverse hyperbolic tangent function to the particle image intensity map. Using these calibration measurements, a relationship between the apparent diameter and intensity of the dot and its actual diameter and position relative to the focal plane of the lens is determined. It is found that the intensity decreases and apparent diameter increases/decreases (for collimated/diffuse light) with increasing distance from the focal plane. Using the relationships between the measured properties of each dot and its actual size and position, an experimental calibration method has been developed to increase the particle-diameter-dependent range of distances from the focal plane for which accurate particle diameter measurements can be made. The support of the National Science Foundation under grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  5. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  6. In vitro determination of accuracy of cardiac output measurements by thermal dilution.

    PubMed

    Bilfinger, T V; Lin, C Y; Anagnostopoulos, C E

    1982-11-01

    The accuracy of cardiac output (C.O.) measurements by the thermodilution method was evaluated in an in vitro model within a flow range from 1 to 5 liters/min. For C.O. determinations, a 5F Swan-Ganz balloon-tipped thermodilution catheter and a 9520 Edwards computer were used. We made 420 measurements at known flow rates. In serial determinations, we achieved an overall accuracy of 86 to 93% compared to the reference flow; for single determinations, the accuracy ranged from 75 to 85%. The indicator volume (3, 5, or 10 cc) had no influence on the results. The thermodilution determinations at each flow rate were reproducible at between 2.5 and 8.5%. There was no difference in accuracy or reproducibility when ice-cold or room temperature saline was used. Caution in the interpretation of single C.O. determinations in low-flow states, i.e., in pediatric patients, is recommended.

  7. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays

    NASA Astrophysics Data System (ADS)

    Beecken, B. P.; Fossum, E. R.

    1996-07-01

    Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement depends on the number of samples. During the development of a theoretical basis for this calculation, a model is developed that predicts how the noise levels from different elements of an ideal detector array are distributed. The model can also be used to determine what dependence the accuracy of measured noise has on the size of the sample. These features have been confirmed by experiment, thus enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain. detector-array uniformity, charge coupled device, active pixel sensor.

  8. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  9. Surface accuracy measurement of a deployable mesh reflector by planar near-field scanning

    NASA Astrophysics Data System (ADS)

    Chujo, Wataru; Ito, Takeo; Hori, Yoshiaki; Teshirogi, Tasuku

    1988-06-01

    Using a near-field antenna measurement facility, it is possible to simultaneously evaluate the surface accuracy of a reflector antenna as well as the far-field pattern of the antenna for a short time. The surface errors of a 2-m deployable mesh reflector for satellite use were measured by a planar near-field system. As a result, the influence of periodic structures, due to the antenna ribs, has been clearly observed. Also, the surface accuracy obtained with the near-field scanning technique has coincided well with that obtained by an optical measurement technique.

  10. A new technique to improve the accuracy of LDA tracker measurements

    NASA Astrophysics Data System (ADS)

    Vonka, V.; Hoornstra, J.; Oldengarm, J.

    1981-08-01

    A new technique that improves the measurement accuracy of a tracker type laser Doppler anemometer for time averaged velocity measurements in a stationary flow is presented. It is shown that the accuracy of the demodulation system is affected by a systematic error, which can be eliminated. The principle of the technique is based on taking two independent but coupled measurements such that the error appears in both results but with opposite sign. This is achieved by up- and down-shifting the Doppler frequency using a bidirectional optical frequency shifting device.

  11. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  12. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  13. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong.

  14. An Accuracy--Response Time Capacity Assessment Function that Measures Performance against Standard Parallel Predictions

    ERIC Educational Resources Information Center

    Townsend, James T.; Altieri, Nicholas

    2012-01-01

    Measures of human efficiency under increases in mental workload or attentional limitations are vital in studying human perception, cognition, and action. Assays of efficiency as workload changes have typically been confined to either reaction times (RTs) or accuracy alone. Within the realm of RTs, a nonparametric measure called the "workload…

  15. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    ERIC Educational Resources Information Center

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  16. A hyperspectral imager for high radiometric accuracy Earth climate studies

    NASA Astrophysics Data System (ADS)

    Espejo, Joey; Drake, Ginger; Heuerman, Karl; Kopp, Greg; Lieber, Alex; Smith, Paul; Vermeer, Bill

    2011-10-01

    We demonstrate a visible and near-infrared prototype pushbroom hyperspectral imager for Earth climate studies that is capable of using direct solar viewing for on-orbit cross calibration and degradation tracking. Direct calibration to solar spectral irradiances allow the Earth-viewing instrument to achieve required climate-driven absolute radiometric accuracies of <0.2% (1σ). A solar calibration requires viewing scenes having radiances 105 higher than typical Earth scenes. To facilitate this calibration, the instrument features an attenuation system that uses an optimized combination of different precision aperture sizes, neutral density filters, and variable integration timing for Earth and solar viewing. The optical system consists of a three-mirror anastigmat telescope and an Offner spectrometer. The as-built system has a 12.2° cross track field of view with 3 arcmin spatial resolution and covers a 350-1050 nm spectral range with 10 nm resolution. A polarization compensated configuration using the Offner in an out of plane alignment is demonstrated as a viable approach to minimizing polarization sensitivity. The mechanical design takes advantage of relaxed tolerances in the optical design by using rigid, non-adjustable diamond-turned tabs for optical mount locating surfaces. We show that this approach achieves the required optical performance. A prototype spaceflight unit is also demonstrated to prove the applicability of these solar cross calibration methods to on-orbit environments. This unit is evaluated for optical performance prior to and after GEVS shake, thermal vacuum, and lifecycle tests.

  17. Sensitivity analysis for high accuracy proximity effect correction

    NASA Astrophysics Data System (ADS)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  18. New High-Accuracy Methods for Automatically Detecting & Tracking CMEs

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, H.; Habbal, S. R.

    2012-05-01

    With the large amounts of CME image data available from the SOHO and STEREO coronagraphs, manual cataloguing of events can be tedious and subject to user bias. Therefore automated catalogues, such as CACTus and SEEDS, have been developed in an effort to produce a robust method of detection and analysis of events. Here we present the development of a new CORIMP (coronal image processing) CME detection and tracking technique that overcomes many of the drawbacks of previous methods. It works by first employing a dynamic CME separation technique to remove the static background, and then characterizing CMEs via a multiscale edge-detection algorithm. This allows the inherent structure of the CMEs to be revealed in each image, which is usually prone to spatiotemporal crosstalk as a result of traditional image-differencing techniques. Thus the kinematic and morphological information on each event is resolved with higher accuracy than previous catalogues, revealing CME acceleration and expansion profiles otherwise undetected, and enabling a determination of the varying speeds attained across the span of the CME. The potential for a 3D characterization of the internal structure of CMEs is also demonstrated.

  19. Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods.

    PubMed

    Chromy, Adam; Zalud, Ludek; Dobsak, Petr; Suskevic, Igor; Mrkvicova, Veronika

    2015-01-01

    Limb volume measurements are used for evaluating growth of muscle mass and effectivity of strength training. Beside sport sciences, it is used e.g. for detection of oedemas, lymphedemas or carcinomas or for examinations of muscle atrophy. There are several commonly used methods, but there is a lack of clear comparison, which shows their advantages and limits. The accuracy of each method is uncertainly estimated only. The aim of this paper is to determine and experimentally verify their accuracy and compare them among each other. Water Displacement Method (WD), three methods based on circumferential measures-Frustum Sign Model (FSM), Disc Model (DM), Partial Frustum Model (PFM) and two 3D scan based methods Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) were compared. Precise reference cylinders and limbs of two human subjects were measured 10 times by each method. Personal dependency of methods was also tested by measuring 10 times the same object by 3 different people. Accuracies: WD 0.3 %, FSM 2-8 % according person, DM, PFM 1-8 %, MRI 2 % (hand) or 8 % (finger), CT 0.5 % (hand) or 2 % (finger);times: FSM 1 min, CT 7 min, WD, DM, PFM 15 min, MRI 19 min; and more. WD was found as the best method for most of uses with best accuracy. The CT disposes with almost the same accuracy and allows measurements of specific regions (e.g. particular muscles), as same as MRI, which accuracy is worse though, but it is not harmful. Frustum Sign Model is usable for very fast estimation of limb volume, but with lower accuracy, Disc Model and Partial Frustum Model is useful in cases when Water Displacement cannot be used. PMID:26618096

  20. Evaluation of a CT-based technique to measure the transfer accuracy of a virtually planned osteotomy.

    PubMed

    Dobbe, J G G; Kievit, A J; Schafroth, M U; Blankevoort, L; Streekstra, G J

    2014-08-01

    Accurate transfer of a preoperatively planned osteotomy plane to the bone is of significance for corrective surgery, tumor resection, implant positioning and evaluation of new osteotomy techniques. Methods for comparing a preoperatively planned osteotomy plane with a surgical cut exist but the accuracy of these techniques are either limited or unknown. This paper proposes and evaluates a CT-based technique that enables comparing virtual with actual osteotomy planes. The methodological accuracy and reproducibility of the technique is evaluated using CT-derived volume data of a cadaver limb, which serves to plan TKA osteotomies in 3-D space and to simulate perfect osteotomies not hampered by surgical errors. The methodological variability of the technique is further investigated with repeated CT scans after actual osteotomy surgery of the same cadaver specimen. Plane displacement (derr) and angulation errors in the sagittal and coronal plane (βerr, γerr) are measured with high accuracy and reproducibility (derr=-0.11±0.06mm; βerr=0.08±0.04°, γerr=-0.03±0.03°). The proposed method for evaluating an osteotomy plane position and orientation has a high intrinsic accuracy and reproducibility. The method can be of great value for measuring the transfer accuracy of new techniques for positioning and orienting a surgical cut in 3-D space.

  1. Testing of the High Accuracy Inertial Navigation System in the Shuttle Avionics Integration Laboratory

    NASA Astrophysics Data System (ADS)

    Strachan, Russell L.; Evans, James M.

    The authors present a description, results, and interpretation of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and the KT-70 Inertial Measurement Unit (IMU). The objective of the tests was to demonstrate that the HAINS can replace the KT-70 IMU in the Space Shuttle Orbiter, both singularly and totally. The most significant improvement of performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4-hour specification requirement. The performance of the HAINS demonstrated the transparency of operation with respect to the KT-70 IMU. In addition, an internally compensated INS is compatible with the Orbiter avionics and flight software.

  2. An angle encoder for super-high resolution and super-high accuracy using SelfA

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  3. Accuracy of Point-of-Care Blood Glucose Measurements in Critically Ill Patients in Shock

    PubMed Central

    Buenaluz-Sedurante, Myrna; Jimeno, Cecilia Alegado

    2014-01-01

    A widely used method in monitoring glycemic status of ICU patients is point-of-care (POC) monitoring devices. A possible limitation to this method is altered peripheral blood flow in patients in shock, which may result in over/underestimations of their true glycemic status. This study aims to determine the accuracy of blood glucose measurements with a POC meter compared to laboratory methods in critically ill patients in shock. POC blood glucose was measured with a glucose-1-dehydrogenase-based reflectometric meter. The reference method was venous plasma glucose measured by a clinical chemistry analyzer (glucose oxidase-based). Outcomes assessed were concordance to ISO 15197:2003 minimum accuracy criteria for glucose meters, bias in glucose measurements obtained by the 2 methods using Bland–Altman analysis, and clinical accuracy through modified error grid analysis. A total of 186 paired glucose measurements were obtained. ISO 2003 accuracy criteria were met in 95.7% and 79.8% of POC glucose values in the normotensive and hypotensive group, respectively. Mean bias for the normotensive group was –12.4 mg/dL, while mean bias in the hypotensive group was –34.9 mg/dL. POC glucose measurements within the target zone for clinical accuracy were 90.2% and 79.8% for the normotensive and hypotensive group, respectively. POC blood glucose measurements were significantly less accurate in the hypotensive subgroup of ICU patients compared to the normotensive group. We recommend a lower threshold in confirming POC blood glucose with a central laboratory method if clinically incompatible. In light of recently updated accuracy standards, we also recommend alternative methods of glucose monitoring for the ICU population as a whole regardless of blood pressure status. PMID:25172876

  4. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    SciTech Connect

    J. Denard; A. Saha; G. Lavessiere

    2001-07-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 {micro}A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 {micro}A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 {micro}A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described.

  5. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images

    PubMed Central

    Ludlow, John B.; Laster, William Stewart; See, Meit; Bailey, L’Tanya J.; Hershey, H. Garland

    2013-01-01

    Objectives Cone beam computed tomography (CBCT) images of ideally positioned and systematically mispositioned dry skulls were measured using two-dimensional and three-dimensional software measurement techniques. Image measurements were compared with caliper measurements of the skulls. Study design Cone beam computed tomography volumes of 28 skulls in ideal, shifted, and rotated positions were assessed by measuring distances between anatomic points and reference wires by using panoramic reconstructions (two-dimensional) and direct measurements from axial slices (three-dimensional). Differences between caliper measurements on skulls and software measurements in images were assessed with paired t tests and analysis of variance (ANOVA). Results Accuracy of measurement was not significantly affected by alterations in skull position or measurement of right or left sides. For easily visualized orthodontic wires, measurement accuracy was expressed by average errors less than 1.2% for two-dimensional measurement techniques and less than 0.6% for three-dimensional measurement techniques. Anatomic measurements were significantly more variable regardless of measurement technique. Conclusions Both two-dimensional and three-dimensional techniques provide acceptably accurate measurement of mandibular anatomy. Cone beam computed tomography measurement was not significantly influenced by variation in skull orientation during image acquisition. PMID:17395068

  6. Higher Accuracy Measurements of Photochemical Properties of Very Short-Lived Substances.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Kurylo, M. J., III

    2015-12-01

    atmospheric modeling. High accuracy IR and UV absorption spectra were measured to allow the estimation of GWP and ODPs of candidate replacement compounds and their detection in the atmosphere.

  7. Measurement accuracy of articulated arm CMMs with circular grating eccentricity errors

    NASA Astrophysics Data System (ADS)

    Zheng, Dateng; Yin, Sanfeng; Luo, Zhiyang; Zhang, Jing; Zhou, Taiping

    2016-11-01

    The 6 circular grating eccentricity errors model attempts to improve the measurement accuracy of an articulated arm coordinate measuring machine (AACMM) without increasing the corresponding hardware cost. We analyzed the AACMM’s circular grating eccentricity and obtained the 6 joints’ circular grating eccentricity error model parameters by conducting circular grating eccentricity error experiments. We completed the calibration operations for the measurement models by using home-made standard bar components. Our results show that the measurement errors from the AACMM’s measurement model without and with circular grating eccentricity errors are 0.0834 mm and 0.0462 mm, respectively. Significantly, we determined that measurement accuracy increased by about 44.6% when the circular grating eccentricity errors were corrected. This study is significant because it promotes wider applications of AACMMs both in theory and in practice.

  8. Influence of measurement accuracy on the application of the 1991 NIOSH equation.

    PubMed

    Dempsey, P G; Burdorf, A; Fathallah, F A; Sorock, G S; Hashemi, L

    2001-02-01

    A relatively neglected topic in manual materials handling (MMH) research is the impact of the accuracy of task parameter measurements on the application of various assessment methods. A laboratory experiment was conducted to investigate the accuracy of NIOSH equation parameter measurements made by eight subjects following a 4-h training session. Five individual tasks were measured; two were single tasks and three were part of a multiple-component simulated palletizing operation. Significant differences between reference parameter measurements and average measurements made by subjects were found. The sensitivity analysis showed that frequency and horizontal location are the most important parameters. These parameters also tended to have the highest measurement errors. Recommendations for increasing the effectiveness of training programs for NIOSH equation users based on the results of the study are presented. PMID:11209836

  9. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  10. High accuracy particle analysis using sheathless microfluidic impedance cytometry.

    PubMed

    Spencer, Daniel; Caselli, Federica; Bisegna, Paolo; Morgan, Hywel

    2016-07-01

    This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration.

  11. In-flight quality and accuracy of attitude measurements from the CHAMP advanced stellar compass

    NASA Astrophysics Data System (ADS)

    Jørgensen, Peter S.; Jørgensen, John L.; Denver, Troelz; Betto, Maurizio

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute attitude with accuracy in the arc second range. In order to investigate the in-flight accuracy of the ASC, the terminology to characterize noise and biases is introduced. Relative instrument accuracy (RIA) and absolute instrument accuracy (AIA) can in principle be determined in-flight. However problems with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle.

  12. Maximum Measurement Range and Accuracy of SAW Reflective Delay Line Sensors

    PubMed Central

    Zheng, Zehua; Han, Tao; Qin, Peng

    2015-01-01

    In a surface acoustic wave (SAW) wireless sensor with a reflective delay line structure, three reflectors are often used to eliminate 2π ambiguity of phase measurement. The maximum range of the measured parameter and the maximum accuracy have recently been attracting much research attention. In this paper, an analytical formula for all the factors influencing the measurement range and accuracy of the delay line SAW sensor are deduced for the first time. The factors include: the sensor sensitivity, the topology of the delay line, the available wireless bandwidth and the allowed maximum phase measuring error of the reading system, which is easier to retrieve and more fully describes the possible noises than SNR. Additionally, many designers believe that increasing the reflector could improve accuracy continuously or realize multi-resolution measurement. However, they ignore some certain criteria that the reflector location must satisfy. The reachable maximum accuracy by every increase of a reflector is also presented. A SAW temperature sensor system using 128° YX-LiNbO3 is designed to verify the above theoretical analysis. PMID:26492251

  13. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  14. Assessing the impact of measurement frequency on accuracy and uncertainty of water quality data

    NASA Astrophysics Data System (ADS)

    Helm, Björn; Schiffner, Stefanie; Krebs, Peter

    2014-05-01

    Physico-chemical water quality is a major objective for the evaluation of the ecological state of a river water body. Physical and chemical water properties are measured to assess the river state, identify prevalent pressures and develop mitigating measures. Regularly water quality is assessed based on weekly to quarterly grab samples. The increasing availability of online-sensor data measured at a high frequency allows for an enhanced understanding of emission and transport dynamics, as well as the identification of typical and critical states. In this study we present a systematic approach to assess the impact of measurement frequency on the accuracy and uncertainty of derived aggregate indicators of environmental quality. High frequency measured (10 min-1 and 15 min-1) data on water temperature, pH, turbidity, electric conductivity and concentrations of dissolved oxygen nitrate, ammonia and phosphate are assessed in resampling experiments. The data is collected at 14 sites in eastern and northern Germany representing catchments between 40 km2 and 140 000 km2 of varying properties. Resampling is performed to create series of hourly to quarterly frequency, including special restrictions like sampling at working hours or discharge compensation. Statistical properties and their confidence intervals are determined in a bootstrapping procedure and evaluated along a gradient of sampling frequency. For all variables the range of the aggregate indicators increases largely in the bootstrapping realizations with decreasing sampling frequency. Mean values of electric conductivity, pH and water temperature obtained with monthly frequency differ in average less than five percent from the original data. Mean dissolved oxygen, nitrate and phosphate had in most stations less than 15 % bias. Ammonia and turbidity are most sensitive to the increase of sampling frequency with up to 30 % in average and 250 % maximum bias at monthly sampling frequency. A systematic bias is recognized

  15. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  16. High-accuracy and robust localization of large control markers for geometric camera calibration.

    PubMed

    Douxchamps, Damien; Chihara, Kunihiro

    2009-02-01

    Accurate measurement of the position of features in an image is subject to a fundamental compromise: The features must be both small, to limit the effect of nonlinear distortions, and large, to limit the effect of noise and discretization. This constrains both the accuracy and the robustness of image measurements, which play an important role in geometric camera calibration as well as in all subsequent measurements based on that calibration. In this paper, we present a new geometric camera calibration technique that exploits the complete camera model during the localization of control markers, thereby abolishing the marker size compromise. Large markers allow a dense pattern to be used instead of a simple disc, resulting in a significant increase in accuracy and robustness. When highly planar markers are used, geometric camera calibration based on synthetic images leads to true errors of 0.002 pixels, even in the presence of artifacts such as noise, illumination gradients, compression, blurring, and limited dynamic range. The camera parameters are also accurately recovered, even for complex camera models.

  17. High-accuracy registration of intraoperative CT imaging

    NASA Astrophysics Data System (ADS)

    Oentoro, A.; Ellis, R. E.

    2010-02-01

    Image-guided interventions using intraoperative 3D imaging can be less cumbersome than systems dependent on preoperative images, especially by needing neither potentially invasive image-to-patient registration nor a lengthy process of segmenting and generating a 3D surface model. In this study, a method for computer-assisted surgery using direct navigation on intraoperative imaging is presented. In this system the registration step of a navigated procedure was divided into two stages: preoperative calibration of images to a ceiling-mounted optical tracking system, and intraoperative tracking during acquisition of the 3D medical image volume. The preoperative stage used a custom-made multi-modal calibrator that could be optically tracked and also contained fiducial spheres for radiological detection; a robust registration algorithm was used to compensate for the very high false-detection rate that was due to the high physical density of the optical light-emitting diodes. Intraoperatively, a tracking device was attached to plastic bone models that were also instrumented with radio-opaque spheres; A calibrated pointer was used to contact the latter spheres as a validation of the registration. Experiments showed that the fiducial registration error of the preoperative calibration stage was approximately 0.1 mm. The target registration error in the validation stage was approximately 1.2 mm. This study suggests that direct registration, coupled with procedure-specific graphical rendering, is potentially a highly accurate means of performing image-guided interventions in a fast, simple manner.

  18. TU-A-12A-12: Improved Airway Measurement Accuracy for Low Dose Quantitative CT (qCT) Using Statistical (ASIR), at Reduced DFOV, and High Resolution Kernels in a Phantom and Swine Model

    SciTech Connect

    Yadava, G; Imai, Y; Hsieh, J

    2014-06-15

    Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammex Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of

  19. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study. PMID:24822441

  20. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  1. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  2. Precision and accuracy of 3D lower extremity residua measurement systems

    NASA Astrophysics Data System (ADS)

    Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.; Hildebolt, Charles F.; Pilgram, Thomas K.

    1996-04-01

    Accurate and reproducible geometric measurement of lower extremity residua is required for custom prosthetic socket design. We compared spiral x-ray computed tomography (SXCT) and 3D optical surface scanning (OSS) with caliper measurements and evaluated the precision and accuracy of each system. Spiral volumetric CT scanned surface and subsurface information was used to make external and internal measurements, and finite element models (FEMs). SXCT and OSS were used to measure lower limb residuum geometry of 13 below knee (BK) adult amputees. Six markers were placed on each subject's BK residuum and corresponding plaster casts and distance measurements were taken to determine precision and accuracy for each system. Solid models were created from spiral CT scan data sets with the prosthesis in situ under different loads using p-version finite element analysis (FEA). Tissue properties of the residuum were estimated iteratively and compared with values taken from the biomechanics literature. The OSS and SXCT measurements were precise within 1% in vivo and 0.5% on plaster casts, and accuracy was within 3.5% in vivo and 1% on plaster casts compared with caliper measures. Three-dimensional optical surface and SXCT imaging systems are feasible for capturing the comprehensive 3D surface geometry of BK residua, and provide distance measurements statistically equivalent to calipers. In addition, SXCT can readily distinguish internal soft tissue and bony structure of the residuum. FEM can be applied to determine tissue material properties interactively using inverse methods.

  3. SpaceNav - A high accuracy navigation system for space applications

    NASA Astrophysics Data System (ADS)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  4. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  5. A High Accuracy Method for Semi-supervised Information Extraction

    SciTech Connect

    Tratz, Stephen C.; Sanfilippo, Antonio P.

    2007-04-22

    Customization to specific domains of dis-course and/or user requirements is one of the greatest challenges for today’s Information Extraction (IE) systems. While demonstrably effective, both rule-based and supervised machine learning approaches to IE customization pose too high a burden on the user. Semi-supervised learning approaches may in principle offer a more resource effective solution but are still insufficiently accurate to grant realistic application. We demonstrate that this limitation can be overcome by integrating fully-supervised learning techniques within a semi-supervised IE approach, without increasing resource requirements.

  6. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running.

    PubMed

    Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2016-07-01

    Ammann, R, Taube, W, and Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res 30(7): 2057-2063, 2016-The aim of this study was to validate the detection of ground contact time (GCT) during running in 2 differently working systems: a small inertial measurement sensor, PARTwear (PW), worn on the shoe laces, and the optical measurement system, Optojump (OJ), placed on the track. Twelve well-trained subjects performed 12 runs each on an indoor track at speeds ranging from 3.0 to 9.0 m·s. GCT of one step per run (total 144) was simultaneously obtained by the PW, the OJ, and a high-speed video camera (HSC), whereby the latter served as reference system. The sampling rate was 1,000 Hz for all methods. Compared with the HSC, the PW and the OJ systems underestimated GCT by -1.3 ± 6.1% and -16.5 ± 6.7% (p-values ≤ 0.05), respectively. The intraclass correlation coefficients between PW and HSC and between OJ and HSC were 0.984 and 0.853 (p-values < 0.001), respectively. Despite the constant systematic underestimation of GCT, analyses indicated that PW successfully recorded GCT over a wide range of speeds. However, results showed only moderate validity for the OJ system, with increasing errors when speed decreased. In conclusion, the PW proved to be a highly useful and valid application, and its use can be recommended not only for laboratory settings but also for field applications. In contrast, data on GCT obtained by OJ during running must be treated with caution, specifically when running speed changes or when comparisons are made with GCT data collected by other measurement systems.

  7. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.53 Test for flow rate accuracy,...

  8. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.53 Test for flow rate accuracy,...

  9. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    ERIC Educational Resources Information Center

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  10. 40 CFR 90.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... KILOWATTS Emission Test Equipment Provisions § 90.328 Measurement equipment accuracy/calibration frequency... calibration, perform the following calibrations and checks. (1) Leak check the vacuum side of the system (see... that the dynamometer test stand and power output instrumentation meet the specifications in table 2...

  11. 40 CFR 90.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... KILOWATTS Emission Test Equipment Provisions § 90.328 Measurement equipment accuracy/calibration frequency... calibration, perform the following calibrations and checks. (1) Leak check the vacuum side of the system (see... that the dynamometer test stand and power output instrumentation meet the specifications in Table 2...

  12. 40 CFR 90.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... KILOWATTS Emission Test Equipment Provisions § 90.328 Measurement equipment accuracy/calibration frequency... calibration, perform the following calibrations and checks. (1) Leak check the vacuum side of the system (see... that the dynamometer test stand and power output instrumentation meet the specifications in Table 2...

  13. Examining the Classification Accuracy of a Vocabulary Screening Measure with Preschool Children

    ERIC Educational Resources Information Center

    Marcotte, Amanda M.; Clemens, Nathan H.; Parker, Christopher; Whitcomb, Sara A.

    2016-01-01

    This study investigated the classification accuracy of the "Dynamic Indicators of Vocabulary Skills" (DIVS) as a preschool vocabulary screening measure. With a sample of 240 preschoolers, fall and winter DIVS scores were used to predict year-end vocabulary risk using the 25th percentile on the "Peabody Picture Vocabulary Test--Third…

  14. Classification Accuracy of Brief Parent Report Measures of Language Development in Spanish-Speaking Toddlers

    ERIC Educational Resources Information Center

    Guiberson, Mark; Rodriguez, Barbara L.; Dale, Philip S.

    2011-01-01

    Purpose: The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Method: Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as…

  15. 40 CFR 90.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../calibration frequency table. 90.328 Section 90.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... table. (a) The accuracy of measurements must be such that the maximum tolerances shown in Table 2 in... to the frequencies shown in Table 2 in Appendix A of this subpart. (c) Prior to initial use and...

  16. 40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automatic data collection system (if used) meets the requirements found in Table 2 in appendix A to this.../calibration frequency table. 91.328 Section 91.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Equipment Provisions § 91.328 Measurement equipment accuracy/calibration frequency table. (a) The...

  17. Evaluating the Discriminant Accuracy of a Grammatical Measure with Spanish-Speaking Children

    ERIC Educational Resources Information Center

    Gutierrez-Clellen, Vera F.; Restrepo, M. Adelaida; Simon-Cereijido, Gabriela

    2006-01-01

    Purpose: The purpose of this study was to evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment in Latino Spanish-speaking children. The authors hypothesized that if exposure to and use of English as a second language have an effect on the first language, bilingual children might exhibit lower…

  18. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    ERIC Educational Resources Information Center

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  19. A High Accuracy Hybrid Navigation System for Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kumagai, Hideo; Numajima, Toru; Sugimoto, Sueo

    The development of small, light weight, low power navigation system for guidance of both tethered and autonomous Unmanned Underwater Vehicle (UUV) is required in applications such as deep salvage, oil and gas well head and pipe line laying and maintenance, etc. All have stringent position requirements in order to define target locations followings the initial find, minimize search time for return missions, as well as support of autopilot functions. In these applications mainly an accurate Sonar Doppler Velocity Log (DVL) was used for Inertial Navigation System (INS) error corrections. But the settlement of DVL is not affordable to various UUV so that not convenient to low cost and small UUV. In this paper we propose a new algorithm for combining the low cost but highly accurate INS with Water Screw Speed (WSS) of the UUV efficiently. In order to evaluate our algorithm we produced the data acquisition system and after several experimental run, we simulated this algorithm searching the error correlation time and noise variance of these estimations.

  20. Surface accuracy measurement sensor test on a 50-meter antenna surface model

    NASA Technical Reports Server (NTRS)

    Spiers, R. B.; Burcher, E. E.; Stump, C. W.; Saunders, C. G.; Brooks, G. F.

    1984-01-01

    The Surface Accuracy Measurement Sensor (SAMS) is a telescope with a focal plane photo electric detector that senses the lateral position of light source targets in its field of view. After extensive laboratory testing the engineering breadboard sensor system was installed and tested on a 30 degree segment of a 50-meter diameter, mesh surface, antenna model. Test results correlated well with the laboratory tests and indicated accuracies of approximately 0.59 arc seconds at 21 meters range. Test results are presented and recommendations given for sensor improvements.

  1. An experimental study of the accuracy in measurement of modulation transfer function using an edge method

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Ye-seul; Park, Hye-Suk; Lee, Young-Jin; Kim, Hee-Joung

    2015-03-01

    Image evaluation is necessary in digital radiography (DR) which is widely used in medical imaging. Among parameters of image evaluation, modulation transfer function (MTF) is the important factor in the field of medical imaging and necessary to obtain detective quantum efficiency (DQE) which represents overall performance of the detector signal-to-noise ratio. However, the accurate measurement of MTF is still not easy because of geometric effect, electric noise, quantum noise, and truncation error. Therefore, in order to improve accuracy of MTF, four experimental methods were tested in this study such as changing the tube current, applying smoothing method in edge spread function (ESF), adjusting line spread function (LSF) range, and changing tube angle. Our results showed that MTF's fluctuation was decreased by high tube current and smoothing method. However, tube current should not exceed detector saturation and smoothing in ESF causes a distortion in ESF and MTF. In addition, decreasing LSF range diminished fluctuation and the number of sampling in MTF and high tube angle generates degradation in MTF. Based on these results, excessively low tube current and the smoothing method should be avoided. Also, optimal range of LSF considering reduction of fluctuation and the number of sampling in MTF was necessary and precise tube angle is essential to obtain an accurate MTF. In conclusion, our results demonstrated that accurate MTF can be acquired.

  2. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    NASA Astrophysics Data System (ADS)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  3. Comparison between predicted and actual accuracies for an Ultra-Precision CNC measuring machine

    SciTech Connect

    Thompson, D.C.; Fix, B.L.

    1995-05-30

    At the 1989 CIRP annual meeting, we reported on the design of a specialized, ultra-precision CNC measuring machine, and on the error budget that was developed to guide the design process. In our paper we proposed a combinatorial rule for merging estimated and/or calculated values for all known sources of error, to yield a single overall predicted accuracy for the machine. In this paper we compare our original predictions with measured performance of the completed instrument.

  4. Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology

    NASA Technical Reports Server (NTRS)

    Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)

    2002-01-01

    The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.

  5. Current issues on 3D volumetric positioning accuracy: measurement, compensation, and definition

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2008-10-01

    Traditionally, manufacturers have ensured part accuracy by linear calibration of each machine tool axis. The conventional definition of the 3-D volumetric positioning error is the root mean square of the three-axis displacement error. 20 years ago, the dominate error is the lead screw pitch error of 3 axes. This definition is adequate. However, now the machine accuracy has been improved with better lead screw, linear encoder and compensation, the dominate errors become the squareness errors and straightness errors. Hence the above definition is inadequate. During the past years, the industry has seen demand emerge for the "volumetric accuracy" specification on machine tools. One hurdle remains: a standard definition so that everyone measures volumetric accuracy with the same yardstick. The issue has been discussed in many Standards Committees, machine tool builders and the metrology community. Reported here are, a new 3D volumetric positioning error measurement and compensation technique, proposed definitions or measures of 3 D volumetric positioning errors of a CNC machine tool, and its verification.

  6. Accuracy of Telehealth-Administered Measures to Screen Language in Spanish-Speaking Preschoolers

    PubMed Central

    Rodríguez, Barbara L.; Zajacova, Anna

    2015-01-01

    Abstract Introduction: There is a critical need for telehealth language screening measures for use with Spanish-speaking children because of the shortage of bilingual providers and the current lack of psychometrically sound measures that can be administered via telehealth. The purpose of the current study was to describe the classification accuracy of individual telehealth language screening measures as well as the accuracy of combinations of measures used with Spanish-speaking preschoolers from rural and underserved areas of the country. Materials and Methods: This study applied a hybrid telehealth approach that implemented synchronous videoconferencing, videocasting, and traditional pen and paper measures. Screening measures included a processing efficiency measure (Spanish nonword repetition [NWR]), language sampling, and a developmental language questionnaire. Eighty-two mostly Spanish-speaking preschool-age children and their parents participated. Thirty-four children had language impairment (LI), and 48 had typical language development. Results: Although many of the individual measures were significantly associated with standardized language scores (r=0.27–0.55), not one of the measures had classification values of 0.8 or higher, which is recommended when screening for LI. However, when NWR scores were combined with language sample or parent survey measures, promising classification accuracy values that approached or were higher than 0.8 were obtained. Conclusions: This research provides preliminary evidence showing the effectiveness of a hybrid telehealth model in screening the language development of Spanish-speaking children. A processing efficiency measure, NWR, combined with a parent survey or language sample measure can provide informative and accurate diagnostic information when screening Spanish-speaking preschool-age children for LI. PMID:25942401

  7. High-accuracy fuel flowmeter. Phase 2C and 3: The mass flow-rate calibration of high-accuracy fuel flowmeters. Final Report

    SciTech Connect

    Craft, D.W.

    1992-02-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  8. Quantitative Proteomics using Nano-LC with High Accuracy Mass Spectrometry

    SciTech Connect

    Pasa-Tolic, Liljiana; Jacobs, Jon M.; Qian, Weijun; Smith, Richard D.

    2008-01-29

    Despite significant advances in LC-MS based technologies, challenges remain in implementing a proteomics platform for routine clinical applications. These include the needed robustness as well as the sensitivity and dynamic range of detection to both effectively address extremely small tissue samples, for example microdissected or biopsy tissues, or high dynamic range samples, such as blood plasma. Other key components include providing the needed throughput to enable statistically meaningful number of analyses for clinical setting within a robust platform that utilizes effective quantitative approaches for high accuracy and reproducibility. This chapter describes the key components of a nanoLC- MS based technological approach that is designed to target these challenges by virtue of enhancing sensitivity, dynamic range coverage, and throughput, for the generation of robust quantitative measurements in support of clinical studies.

  9. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  10. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  11. Assessing the Accuracy of Cone-Beam Computerized Tomography in Measuring Thinning Oral and Buccal Bone.

    PubMed

    Raskó, Zoltán; Nagy, Lili; Radnai, Márta; Piffkó, József; Baráth, Zoltán

    2016-06-01

    The aim of this study was to assess the accuracy and reliability of cone-beam computerized tomography (CBCT) in measuring thinning bone surrounding dental implants. Three implants were inserted into the mandible of a domestic pig at 6 different bone thicknesses on the vestibular and the lingual sides, and measurements were recorded using CBCT. The results were obtained, analyzed, and compared with areas without implants. Our results indicated that the bone thickness and the neighboring implants decreased the accuracy and reliability of CBCT for measuring bone volume around dental implants. We concluded that CBCT slightly undermeasured the bone thickness around the implant, both buccally and orally, compared with the same thickness without the implant. These results support that using the i-CAT NG with a 0.2 voxel size is not accurate for either qualitative or quantitative bone evaluations, especially when the bone is thinner than 0.72 mm in the horizontal dimension.

  12. Lens distortion elimination for improving measurement accuracy of fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Li, Kai; Bu, Jingjie; Zhang, Dongsheng

    2016-10-01

    Fringe projection profilometry (FPP) is a powerful method for three-dimensional (3D) shape measurement. However, the measurement accuracy of the existing FPP is often hindered by the distortion of the lens used in FPP. In this paper, a simple and efficient method is presented to overcome this problem. First, the FPP system is calibrated as a stereovision system. Then, the camera lens distortion is eliminated by correcting the captured images. For the projector lens distortion, distorted fringe patterns are generated according to the lens distortion model. With these distorted fringe patterns, the projector can project undistorted fringe patterns, which means that the projector lens distortion is eliminated. Experimental results show that the proposed method can successfully eliminate the lens distortions of FPP and therefore improves its measurement accuracy.

  13. A high accuracy multi-image registration method for tracking MRI-guided robots

    NASA Astrophysics Data System (ADS)

    Shang, Weijian; Fischer, Gregory S.

    2012-02-01

    Recent studies have demonstrated an increasing number of functional surgical robots and other devices operating in the Magnetic Resonance Imaging (MRI) environment. Calibration and tracking of the robotic device is essential during such MRI-guided procedures. A fiducial tracking module is placed on the base or the end effector of the robot to localize it within the scanner, and thus the patient coordinate system. The fiducial frame represents a Z shape and is made of seven tubes filled with high contrast fluid. The frame is highlighted in the MR images and is used in localization. Compared to the former single image registration method, multiple images are used in this algorithm to calculate the position and orientation of the frame, and thus the robot. By using multiple images together, measurement error is reduced and the rigid requirement of slow to acquire high quality of images is not required. Accuracy and performance were evaluated in experiments which were operated with a Philips 3T MRI scanner. Presented is an accuracy comparison of the new method with varied number of images, and a comparison to more traditional single image registration techniques.

  14. Simple technique for the fabrication of a penta prism with high accuracy right angle deviation.

    PubMed

    Chatterjee, Sanjib; Pavan Kumar, Y

    2007-09-10

    What we believe to be a new technique for the fabrication of a penta prism (PP) with high accuracy right angle deviation of the incident beam is presented. We derive simple formulas relating to the error in right angle deviation with the errors in 45 degrees (beta) and 90 degrees (delta) angles of a PP, and we determine error in right angle deviation from the angle ((error in right angle deviation)r) between the plane wavefronts reflected from the right angled surfaces (external Fresnel reflection on the entrance surface and internal Fresnel reflection on the exit surface) of a PP and the angular error (delta) between the same surfaces. The error in right angle deviation is determined from the measurement of (error in right angle deviation)r using an autocollimator and a Fizeau interferometer, and error in right angle deviation is corrected to a high order of accuracy during the final stage of polishing one of the slanted surfaces of the PP. A new technique to determine the magnitude and direction of the small values of (error in right angle deviation)r is proposed and verified. The result for a PP is presented.

  15. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  16. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  17. Improving the accuracy of MTF measurement at low frequencies based on oversampled edge spread function deconvolution.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Ren, Liqiang; Li, Zheng; Ghani, Muhammad U; Hao, Ting; Liu, Hong

    2015-01-01

    The modulation transfer function (MTF) of a radiographic system is often evaluated by measuring the system's edge spread function (ESF) using edge device. However, the numerical differentiation procedure of the traditional slanted edge method amplifies noises in the line spread function (LSF) and limits the accuracy of the MTF measurement at low frequencies. The purpose of this study is to improve the accuracy of low-frequency MTF measurement for digital x-ray imaging systems. An edge spread function (ESF) deconvolution technique was developed for MTF measurement based on the degradation model of slanted edge images. Specifically, symmetric oversampled ESFs were constructed by subtracting a shifted version of the ESF from the original one. For validation, the proposed MTF technique was compared with conventional slanted edge method through computer simulations as well as experiments on two digital radiography systems. The simulation results show that the average errors of the proposed ESF deconvolution technique were 0.11% ± 0.09% and 0.23% ± 0.14%, and they outperformed the conventional edge method (0.64% ± 0.57% and 1.04% ± 0.82% respectively) at low-frequencies. On the experimental edge images, the proposed technique achieved better uncertainty performance than the conventional method. As a result, both computer simulation and experiments have demonstrated that the accuracy of MTF measurement at low frequencies can be improved by using the proposed ESF deconvolution technique. PMID:26410662

  18. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    PubMed Central

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  19. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions

    PubMed Central

    Ganguly, R; Ruprecht, A; Vincent, S; Hellstein, J; Timmons, S; Qian, F

    2011-01-01

    Objectives The aim of this study was to determine the geometric accuracy of cone beam CT (CBCT)-based linear measurements of bone height obtained with the Galileos CBCT (Sirona Dental Systems Inc., Bensheim, Hessen, Germany) in the presence of soft tissues. Methods Six embalmed cadaver heads were imaged with the Galileos CBCT unit subsequent to placement of radiopaque fiduciary markers over the buccal and lingual cortical plates. Electronic linear measurements of bone height were obtained using the Sirona software. Physical measurements were obtained with digital calipers at the same location. This distance was compared on all six specimens bilaterally to determine accuracy of the image measurements. Results The findings showed no statistically significant difference between the imaging and physical measurements (P > 0.05) as determined by a paired sample t-test. The intraclass correlation was used to measure the intrarater reliability of repeated measures and there was no statistically significant difference between measurements performed at the same location (P > 0.05). Conclusions The Galileos CBCT image-based linear measurement between anatomical structures within the mandible in the presence of soft tissues is sufficiently accurate for clinical use. PMID:21697155

  20. High accuracy localization of long term evolution based on a new multiple carrier noise model.

    PubMed

    Lee, Wah Ching; Hung, Faan Hei; Tsang, Kim Fung; Wu, Chung Kit; Chi, Hao Ran; Chui, Kwok Tai; Lau, Wing Hong

    2014-11-27

    A high accuracy localization technique using Long Term Evolution (LTE) based on a new and accurate multiple carrier noise model has been developed. In the noise consideration, the LTE multiple carriers phase noise has been incorporated so that a new and accurate noise model is achieved. An experiment was performed to characterize the phase noise of carriers at 2 GHz. The developed noise model was incorporated into LTE localization analysis in a high traffic area in Hong Kong to evaluate the accuracy of localization. The evaluation and analysis reveals that the new localization method achieves an improvement of about 10% accuracy comparing to existing widely adopted schemes.

  1. Development of distance accuracy measurement program for quality control of diagnostic ultrasound system

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min; Kim, Moon-Chan; Han, Dong-Kyoon; Cho, Jae-Hwan; Kim, Sang-Hyun

    2013-12-01

    Evaluating the performance of a diagnostic ultrasound system is important. Above all, establishing standards for such evaluations in an objective and systematic way is critical. However, quality control is currently measured based on subjective judgment of an observer. Against this background, this study intended to suggest quantified and objective data that would enable inter-observer variation to be overcome. Five radiological technologists used an ATS-539 multi-purpose ultrasound phantom to conduct measurements in the predetermined method. A digital imaging and communications in medicine (DICOM) standard image was obtained in an ultrasound system by using a self-developed software to measure the accuracy of the distance before the 95% confidence interval was calculated. In order to examine the accuracy of the distance in longitudinal and transverse measurements, we conducted t-tests to evaluate the significance for the results of quality control that was performed manually for the past one year and for the results of quality control that was performed by using software with the same equipment. For the longitudinal and the transverse measurements, the 95% confidence intervals were 100.96-101.29 mm and 83.18-84.26 mm, respectively. The computerized longitudinal measurement showed no significant difference from the manual measurement ( p > 0.05). The results of measurements using of software showed a higher reproducibility.

  2. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    USGS Publications Warehouse

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  3. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  4. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references.

    PubMed

    Li, Wenzhi; Xu, Wei; He, Shaohua; Ma, Li; Song, Qing

    2016-09-01

    The data presented in this article is related to the research article entitled "High-accuracy haplotype imputation using unphased genotype data as the references" which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C) and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies. PMID:27595130

  5. Quantitative displacement measurement of a nanotube cantilever with nanometer accuracy using epifluorescence microscopy

    SciTech Connect

    Park, Hyojun; Kwon, Soongeun; Kim, Soohyun

    2009-05-15

    A method to measure the deflection of a nanotube cantilever with nanometer accuracy in an air or liquid environment is presented. We attached fluorescent dyes at the end of a nanotube to detect its deflection. The nanotube cantilever was fabricated with a multiwalled carbon nanotube that is attached to the end of an electrochemically etched tungsten tip, and it was imaged in an epifluorescence microscope system. The fluorescence intensity distribution of the fluorescent particles at the end of the nanotube was approximated with a Gaussian and fitted by least-squares method. Finally, we were able to measure the displacement of the nanotube cantilever during electrostatic actuation with positional accuracy of a few nanometers. This technique can be applied to a manipulator or a force transducer on related a few piconewton forces.

  6. Dynamic displacement measurement accuracy of GPS for monitoring large civil engineering structures

    NASA Astrophysics Data System (ADS)

    Chan, W. S.; Xu, Y. L.; Ding, X. L.; Xiong, Y. L.; Dai, W. J.

    2005-05-01

    Accelerometer and displacement transducer are two common sensors used for structural displacement measurement. Due to their incapability of measuring static deflection of a structure, Global Positioning System (GPS) is developed as a novel sensor for measuring and monitoring both static and dynamic displacement responses of large civil engineering structures under gust winds. However, the accuracy of dynamic displacement measurement with GPS at the sub-centimeter to millimeter level depends on many factors such as required data update rate, satellite coverage, atmospheric effect, multi-path effect, and GPS data processing methods. Therefore, this paper focuses on the assessment of dynamic displacement measurement accuracy of GPS in two orthogonal directions. A 2-D motion simulation table is first developed as a test bed simulating various types of two perpendicular translational motions of tall buildings. The 2-D motion simulation table was then used to assess the performance of GPS through a series of field measurements in an open area. A band-pass filtering scheme is finally designed and applied to the table motion data recorded by the GPS. The comparison of the table motion recorded by the GPS with the original motion generated by the table shows that the GPS can measure sinusoidal or circular dynamic displacements accurately within certain amplitude and frequency ranges. The comparative results also demonstrate that the GPS can trace wind-induced dynamic responses of tall buildings satisfactorily.

  7. Superior accuracy of model-based radiostereometric analysis for measurement of polyethylene wear

    PubMed Central

    Stilling, M.; Kold, S.; de Raedt, S.; Andersen, N. T.; Rahbek, O.; Søballe, K.

    2012-01-01

    Objectives The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size. PMID:23610688

  8. High Accuracy Decoding of User Intentions Using EEG to Control a Lower-Body Exoskeleton*

    PubMed Central

    Kilicarslan, Atilla; Prasad, Saurabh; Grossman, Robert G.; Contreras-Vidal, Jose L.

    2013-01-01

    Brain-Machine Interface (BMI) systems allow users to control external mechanical systems using their thoughts. Commonly used in literature are invasive techniques to acquire brain signals and decode user’s attempted motions to drive these systems (e.g. a robotic manipulator). In this work we use a lower-body exoskeleton and measure the users brain activity using non-invasive electroencephalography (EEG). The main focus of this study is to decode a paraplegic subject’s motion intentions and provide him with the ability of walking with a lower-body exoskeleton accordingly. We present our novel method of decoding with high offline evaluation accuracies (around 98%), our closed loop implementation structure with considerably short on-site training time (around 38 sec), and preliminary results from the real-time closed loop implementation (NeuroRex) with a paraplegic test subject. PMID:24111008

  9. Accuracy and Validation of Measured and Modeled Data for Distributed PV Interconnection and Control

    SciTech Connect

    Stewart, Emma; Kiliccote, Sila; Arnold, Daniel; von Meier, Alexandra; Arghandeh, R.

    2015-07-27

    The distribution grid is changing to become an active resource with complex modeling needs. The new active distribution grid will, within the next ten years, contain a complex mix of load, generation, storage and automated resources all operating with different objectives on different time scales from each other and requiring detailed analysis. Electrical analysis tools that are used to perform capacity and stability studies have been used for transmission system planning for many years. In these tools, the distribution grid was considered a load and its details and physical components were not modeled. The increase in measured data sources can be utilized for better modeling, but also control of distributed energy resources (DER). The utilization of these sources and advanced modeling tools will require data management, and knowledgeable users. Each of these measurement and modeling devices have accuracy constraints, which will ultimately define their future ability to be planned and controlled. This paper discusses the importance of measured data accuracy for inverter control, interconnection and planning tools and proposes ranges of control accuracy needed to satisfy all concerns based on the present grid infrastructure.

  10. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  11. Accuracy of surface tension measurement from drop shapes: the role of image analysis.

    PubMed

    Kalantarian, Ali; Saad, Sameh M I; Neumann, A Wilhelm

    2013-11-01

    Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01mJ/m(2) is achievable for the surface tension determination by careful fine tuning of edge detection algorithms.

  12. Processing data, for improved, accuracy, from device for measuring speed of sound in a gas

    DOEpatents

    Owen, Thomas E.

    2006-09-19

    A method, used in connection with a pulse-echo type sensor for determining the speed of sound in a gas, for improving the accuracy of speed of sound measurements. The sensor operates on the principle that speed of sound can be derived from the difference between the two-way travel time of signals reflected from two different target faces of the sensor. This time difference is derived by computing the cross correlation between the two reflections. The cross correlation function may be fitted to a parabola whose vertex represents the optimum time coordinate of the coherence peak, thereby providing an accurate measure of the two-way time diffference.

  13. Assessment of accuracy of in-situ methods for measuring building-envelope thermal resistance

    SciTech Connect

    Fang, J.B.; Grot, R.A.; Park, H.S.

    1986-03-01

    A series of field and laboratory tests were conducted to evaluate the accuracy of in-situ thermal-resistance-measurement techniques. The results of thermal-performance evaluation of the exterior walls of six thermal mass test houses situated in Gaithersburg, Maryland are presented. The wall construction of these one-room houses includes insulated light-weight wood frame, uninsulated light-weight wood frame, insulated masonry with outside mass, uninsulated masonry, log, and insulated masonry with inside mass. In-situ measurements of heat transfer through building envelopes were made with heat flux transducers and portable calorimeters.

  14. Machining Error Compensation Based on 3D Surface Model Modified by Measured Accuracy

    NASA Astrophysics Data System (ADS)

    Abe, Go; Aritoshi, Masatoshi; Tomita, Tomoki; Shirase, Keiichi

    Recently, a demand for precision machining of dies and molds with complex shapes has been increasing. Although CNC machine tools are utilized widely for machining, still machining error compensation is required to meet the increasing demand of machining accuracy. However, the machining error compensation is an operation which takes huge amount of skill, time and cost. This paper deals with a new method of the machining error compensation. The 3D surface data of the machined part is modified according to the machining error measured by CMM (Coordinate Measuring Machine). A compensated NC program is generated from the modified 3D surface data for the machining error compensation.

  15. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  16. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks. PMID:23215265

  17. Highly Charged Ions as a Basis of Optical Atomic Clockwork of Exceptional Accuracy

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Dzuba, V. A.; Flambaum, V. V.

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f12 ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  18. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recording at intervals not to exceed 5 minutes. (4) Flow measurement adaptor (40 CFR part 50, appendix L.... (5) Valve or other means to restrict or reduce the sample flow rate to a value at least 10 percent below the design flow rate (16.67 L/min). If appropriate, the valve of the flow measurement adaptor...

  19. Wound Area Measurement with Digital Planimetry: Improved Accuracy and Precision with Calibration Based on 2 Rulers

    PubMed Central

    Foltynski, Piotr

    2015-01-01

    Introduction In the treatment of chronic wounds the wound surface area change over time is useful parameter in assessment of the applied therapy plan. The more precise the method of wound area measurement the earlier may be identified and changed inappropriate treatment plan. Digital planimetry may be used in wound area measurement and therapy assessment when it is properly used, but the common problem is the camera lens orientation during the taking of a picture. The camera lens axis should be perpendicular to the wound plane, and if it is not, the measured area differ from the true area. Results Current study shows that the use of 2 rulers placed in parallel below and above the wound for the calibration increases on average 3.8 times the precision of area measurement in comparison to the measurement with one ruler used for calibration. The proposed procedure of calibration increases also 4 times accuracy of area measurement. It was also showed that wound area range and camera type do not influence the precision of area measurement with digital planimetry based on two ruler calibration, however the measurements based on smartphone camera were significantly less accurate than these based on D-SLR or compact cameras. Area measurement on flat surface was more precise with the digital planimetry with 2 rulers than performed with the Visitrak device, the Silhouette Mobile device or the AreaMe software-based method. Conclusion The calibration in digital planimetry with using 2 rulers remarkably increases precision and accuracy of measurement and therefore should be recommended instead of calibration based on single ruler. PMID:26252747

  20. A new procedure to measure children's reading speed and accuracy in Italian.

    PubMed

    Morlini, Isabella; Stella, Giacomo; Scorza, Maristella

    2014-02-01

    Impaired readers in primary school should be early recognized, in order to asses a targeted intervention within the school and to start a teaching that respects the difficulties in learning to read, to write and to perform calculations. Screening procedures, inside the primary schools aimed at detecting children with difficulties in reading, are of fundamental importance for guaranteeing an early identification of dyslexic children and reducing both the primary negative effects--on learning--and the secondary negative effects--on the development of the personality--of this disturbance. In this study, we propose a new screening procedure measuring reading speed and accuracy. This procedure is very fast (it is exactly 1 min long), simple, cheap and can be provided by teachers without technical knowledge. On the contrary, most of the currently used diagnostic tests are about 10 min long and must be provided by experts. These two major flaws prevent the widespread use of these tests. On the basis of the results obtained in a survey on about 1500 students attending primary school in Italy, we investigate the relationships between variables used in the screening procedure and variables measuring speed and accuracy in the currently used diagnostic tests in Italy. Then, we analyse the validity of the screening procedure from a statistical point of view, and with an explorative factor analysis, we show that reading speed and accuracy seem to be two separate symptoms of the dyslexia phenomenon.

  1. Accuracy analysis of measurements on a stable power-law distributed series of events

    NASA Astrophysics Data System (ADS)

    Matthews, J. O.; Hopcraft, K. I.; Jakeman, E.; Siviour, G. B.

    2006-11-01

    We investigate how finite measurement time limits the accuracy with which the parameters of a stably distributed random series of events can be determined. The model process is generated by timing the emigration of individuals from a population that is subject to deaths and a particular choice of multiple immigration events. This leads to a scale-free discrete random process where customary measures, such as mean value and variance, do not exist. However, converting the number of events occurring in fixed time intervals to a 1-bit 'clipped' process allows the construction of well-behaved statistics that still retain vestiges of the original power-law and fluctuation properties. These statistics include the clipped mean and correlation function, from measurements of which both the power-law index of the distribution of events and the time constant of its fluctuations can be deduced. We report here a theoretical analysis of the accuracy of measurements of the mean of the clipped process. This indicates that, for a fixed experiment time, the error on measurements of the sample mean is minimized by an optimum choice of the number of samples. It is shown furthermore that this choice is sensitive to the power-law index and that the approach to Poisson statistics is dominated by rare events or 'outliers'. Our results are supported by numerical simulation.

  2. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.

    PubMed

    Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi

    2015-07-01

    The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. PMID:26002604

  3. Study on Improving the Accuracy of Satellite Measurement in Urban Areas

    NASA Astrophysics Data System (ADS)

    Matsushita, Takashi; Tanaka, Toshiyuki

    GPS/GNSS (Global Positioning System/Global Navigation Satellite System) is a 3D positioning system using space satellites for measuring a receiver's current position. Recently, many people use GPS as the navigation system in car and cellular phone, so the positioning accuracy of several meters is required to satisfy the user's need. However the measurement error reaches hundreds of meters in urban areas. One of the reasons is that the receiver fails to measure pseudo range accurately due to multipath from the buildings and so on. The other reason is that the satellite constellation is biased because of the decreasing number of observable satellites. Therefore, we proposed methods for reducing the multipath error and the lack of visible satellites. At the present day, although multipath error is reduced by the choke ring antenna and the correlators, this method has a problem that the antenna is expensive, big or complex. We devise methods to reduce the multipath error by only using measurement data. By these methods, we can reduce the size of the receiver and to use the satellite that contains the multipath error for the measurement. We achieved the improvement from 35.3m to 30.5m in 2drms by this method. We achieved about 69% improvement in 2drms and about 5% increase in measurement rate. We can describe that we succeeded not only in improving the measurement accuracy but also in increasing the measurement rate in urban area. The results show that our proposed method is effective in urban areas measurement.

  4. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  5. Craniofacial skeletal measurements based on computed tomography: Part I. Accuracy and reproducibility.

    PubMed

    Waitzman, A A; Posnick, J C; Armstrong, D C; Pron, G E

    1992-03-01

    Computed tomography (CT) is a useful modality for the management of craniofacial anomalies. A study was undertaken to assess whether CT measurements of the upper craniofacial skeleton accurately represent the bony region imaged. Measurements taken directly from five dry skulls (approximate ages: adults, over 18 years; child, 4 years; infant, 6 months) were compared to those from axial CT scans of these skulls. Excellent agreement was found between the direct (dry skull) and indirect (CT) measurements. The effect of head tilt on the accuracy of these measurements was investigated. The error was within clinically acceptable limits (less than 5 percent) if the angle was no more than +/- 4 degrees from baseline (0 degrees). Objective standardized information gained from CT should complement the subjective clinical data usually collected for the treatment of craniofacial deformities. PMID:1571344

  6. Accuracy of plasma turbidity measurement for determining fat intolerance during total parenteral nutrition.

    PubMed

    Nordenström, J; Thörne, A; Lindholm, M

    1990-06-01

    The accuracy of plasma turbidity measurements in predicting ability to metabolise intravenous fat emulsions during total parenteral nutrition was studied in 35 adult surgical patients. Plasma turbidity, expressed as a light scattering index (LSI), was determined by nephelometry and compared with measured triglyceride (TG) concentrations. A poor coefficient of correlation was found between LSI and TG (r = 0.52). The sensitivity and specificity of LSI in predicting TG concentration were 19% and 96% respectively. This indicates that the measurement of LSI is more useful in ruling out hypertriglyceridaemia than in detecting it. Consequently, clinical tolerance of intravenous fat emulsion cannot be monitored by measuring plasma turbidity. In order to avoid metabolic complications which may occasionally occur during intravenous nutritional therapy including fat emulsion, determination of plasma TG levels at timed intervals are recommended.

  7. Evaluating dosimetric accuracy of flattening filter free compensator-based IMRT: Measurements with diode arrays

    SciTech Connect

    Robinson, Joshua; Opp, Daniel; Zhang, Geoffrey; Cashon, Ken; Kozelka, Jakub; Hunt, Dylan; Walker, Luke; Hoffe, Sarah; Shridhar, Ravi; Feygelman, Vladimir

    2012-01-15

    Purpose: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. Methods: A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18 deg. brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report--3%/3 mm with global dose normalization--as well as with the more stringent combinations of the gamma analysis criteria. Results: The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths ({>=}5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 x 10 cm{sup 2}, and up to 3.8% for the 5 x 5 cm{sup 2} field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab

  8. Accuracy of hands v. household measures as portion size estimation aids.

    PubMed

    Gibson, Alice A; Hsu, Michelle S H; Rangan, Anna M; Seimon, Radhika V; Lee, Crystal M Y; Das, Arpita; Finch, Charles H; Sainsbury, Amanda

    2016-01-01

    Accurate estimation of food portion size is critical in dietary studies. Hands are potentially useful as portion size estimation aids; however, their accuracy has not been tested. The aim of the present study was to test the accuracy of a novel portion size estimation method using the width of the fingers as a 'ruler' to measure the dimensions of foods ('finger width method'), as well as fists and thumb or finger tips. These hand measures were also compared with household measures (cups and spoons). A total of sixty-seven participants (70 % female; age 32·7 (sd 13·7) years; BMI 23·2 (sd  3·5) kg/m(2)) attended a 1·5 h session in which they estimated the portion sizes of forty-two pre-weighed foods and liquids. Hand measurements were used in conjunction with geometric formulas to convert estimations to volumes. Volumes determined with hand and household methods were converted to estimated weights using density factors. Estimated weights were compared with true weights, and the percentage difference from the true weight was used to compare accuracy between the hand and household methods. Of geometrically shaped foods and liquids estimated with the finger width method, 80 % were within ±25 % of the true weight of the food, and 13 % were within ±10 %, in contrast to 29 % of those estimated with the household method being within ±25 % of the true weight of the food, and 8 % being within ±10 %. For foods that closely resemble a geometric shape, the finger width method provides a novel and acceptably accurate method of estimating portion size. PMID:27547392

  9. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  10. Nonsinusoidal electrical measurement accuracy in adjustable-speed motors and drives

    SciTech Connect

    Domijan, A.; Czarkowski, D.; Johnson, J.H.

    1998-11-01

    Accurate measurements of voltage, current, and power under nonsinusoidal conditions are essential for determining the efficiency of a drive system and performing separation of losses between an adjustable-speed drive (ASD) and an electric motor. That information is invaluable for equipment designers, manufacturers, and users. Three modern power meters and analyzers were tested to determine their accuracy with various nonsinusoidal waveforms applied. The meters were subjected to waveforms that are characteristic to the three most common fractional and integral horsepower ASD technologies, namely, pulsewidth modulation induction, brushless dc, and switched-reluctance drives. The tests were performed under field conditions and in a computer-controlled laboratory environment. The obtained results show that some meters are able to measure accurately electric power at the input to ASD`s. However, the output power of ASD`s for brushless dc and switched-reluctance technology was not measured with acceptable accuracy by any of the tested meters. Possible reasons of meters inaccuracies and suggestions for performance improvement are presented. Conclusions on the present state of ASD electric power measurements and recommendations for further research are given.

  11. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the flow rate cut-off test, download the archived data from the test sampler and verify that the... recording at intervals not to exceed 5 minutes. (4) Flow measurement adaptor (40 CFR part 50, appendix L.... (7) Teflon sample filter, as specified in section 6 of 40 CFR part 50, appendix L (if required)....

  12. Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs

    PubMed Central

    Sorokin, Dmitry V.; Matula, Petr; Ortiz-de-Solórzano, Carlos; Kozubek, Michal

    2015-01-01

    Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs. PMID:26683608

  13. Electron Microprobe Analysis of Hf in Zircon: Suggestions for Improved Accuracy of a Difficult Measurement

    NASA Astrophysics Data System (ADS)

    Fournelle, J.; Hanchar, J. M.

    2013-12-01

    It is not commonly recognized as such, but the accurate measurement of Hf in zircon is not a trivial analytical issue. This is important to assess because Hf is often used as an internal standard for trace element analyses of zircon by LA-ICPMS. The issues pertaining to accuracy revolve around: (1) whether the Hf Ma or the La line is used; (2) what accelerating voltage is applied if Zr La is also measured, and (3) what standard for Hf is used. Weidenbach, et al.'s (2004) study of the 91500 zircon demonstrated the spread (in accuracy) of possible EPMA values for six EPMA labs, 2 of which used Hf Ma, 3 used Hf La, and one used Hf Lb, and standards ranged from HfO2, a ZrO2-HfO2 compound, Hf metal, and hafnon. Weidenbach, et al., used the ID-TIMS values as the correct value (0.695 wt.% Hf.), for which not one of the EPMA labs came close to that value (3 were low and 3 were high). Those data suggest: (1) that there is a systematic underestimation error of the 0.695 wt% Hf (ID-TIMS Hf) value if Hf Ma is used; most likely an issue with the matrix correction, as the analytical lines and absorption edges of Zr La, Si Ka and Hf Ma are rather tightly packed in the electromagnetic spectrum. Mass absorption coefficients are easily in error (e.g., Donovan's determination of the MAC of Hf by Si Ka of 5061 differs from the typically used Henke value of 5449 (Donovan et al, 2002); and (2) For utilization of the Hf La line, however, the second order Zr Ka line interferes with Hf La if the accelerating voltage is greater than 17.99 keV. If this higher keV is used and differential mode PHA is applied, only a portion of the interference is removed (e.g., removal of escape peaks), causing an overestimation of Hf content. Unfortunately, it is virtually impossible to apply an interference correction in this case, as it is impossible to locate Hf-free Zr probe standard. We have examined many of the combinations used by those six EPMA labs and concluded that the optimal EPMA is done with Hf

  14. A Design of Experiments (DOE) approach to optimise temperature measurement accuracy in Solid Oxide Fuel Cell (SOFC)

    NASA Astrophysics Data System (ADS)

    Barari, F.; Morgan, R.; Barnard, P.

    2014-11-01

    In SOFC, accurately measuring the hot-gas temperature is challenging due to low gas velocity, high wall temperature, complex flow geometries and relatively small pipe diameter. Improper use of low cost thermometry system such as standard Type K thermocouples (TC) may introduce large measurement error. The error could have a negative effect on the thermal management of the SOFC systems and consequential reduction in efficiency. In order to study the factors affecting the accuracy of the temperature measurement system, a mathematical model of a TC inside a pipe was defined and numerically solved. The model calculated the difference between the actual and the measured gas temperature inside the pipe. A statistical Design of Experiment (DOE) approach was applied to the modelling data to compute the interaction effect between variables and investigate the significance of each variable on the measurement errors. In this study a full factorial DOE design with six variables (wall temperature, gas temperature, TC length, TC diameter and TC emissivity) at two levels was carried out. Four different scenarios, two sets of TC length (6 - 10.5 mm and 17 - 22 mm) and two different sets of temperature range (550 - 650 °C and 750 - 850 °C), were proposed. DOE analysis was done for each scenario and results were compared to identify key parameters affecting the accuracy of a particular temperature reading.

  15. Optimizing stepwise rotation of dodecahedron sound source to improve the accuracy of room acoustic measures.

    PubMed

    Martellotta, Francesco

    2013-09-01

    Dodecahedron sound sources are widely used for acoustical measurement purposes as they produce a good approximation of omnidirectional radiation. Evidence shows that such an assumption is acceptable only in the low-frequency range (namely below 1 kHz), while at higher frequencies sound radiation is far from being uniform. In order to improve the accuracy of acoustical measurements obtained from dodecahedron sources, international standard ISO 3382 suggests an averaging of results after a source rotation. This paper investigates the effects of such rotations, both in terms of variations in acoustical parameters and spatial distribution of sound reflections. Taking advantage of a spherical microphone array, the different reflection patterns were mapped as a function of source rotation, showing that some reflections may be considerably attenuated for different aiming directions. This paper investigates the concept of averaging results while changing rotation angles and the minimum number of rotations required to improve the accuracy of the average value. Results show that averages of three measurements carried out at 30° angular steps are closer to actual values and show much less fluctuation. In addition, an averaging of the directional intensity components of the selected responses stabilizes the spatial distribution of the reflections.

  16. Calibration and accuracy of optical slope measurements for short wind waves

    NASA Astrophysics Data System (ADS)

    Jaehne, Bernd; Schultz, Howard J.

    1992-12-01

    A thorough understanding of the hydrodynamics of short ocean wave is important for interpreting measurements made by active microwave remote sensing instruments. However, conventional methods for studying the structure of a water surface are not capable of resolving the fine scale structure of the surface, especially in the ultra-gravity and capillary wavelengths. Optical instruments have the potential for resolving the fine-scale structure of the ocean surface, however, methods for calibrating these instruments and verifying the accuracy of the measurements have not been developed. In this paper we describe a multi-faceted approach for verifying the accuracy and calibration of an imaging wave slope gauge (ISG). The first step is a thorough theoretical analysis of the geometrical optics and photometry. A detailed discussion on the relationship between surface slope and observed pixel intensity is presented. This discussion includes second order effects which may tend to bias the results. Secondly, calibration objects formed from thin transparent Perspex sheets with known slope and height profiles are retrieved. The results show that the measurements of the water surface shape are accurate enough to compute 2-D wave number spectra.

  17. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  18. Demonstrating the accuracy of an in-hospital ambulatory patient monitoring solution in measuring respiratory rate.

    PubMed

    Donnelly, N; Hunniford, T; Harper, R; Flynn, A; Kennedy, A; Branagh, D; McLaughlin, J

    2013-01-01

    This paper presents clinical testing conducted to evaluate the accuracy of Aingeal, a wireless in-hospital patient monitor, in measuring respiration rate via impedance pneumography. Healthy volunteers were invited to simultaneously wear a CE Marked Aingeal vital signs monitor and a capnograph, the current gold standard in respiration rate measurement. During the test, participants were asked to undergo a series of defined breathing protocols which included normal breathing, paced breathing between 8-23 breaths per minute (bpm) and a recovery period following moderate exercise. Statistical analysis of the data collected shows a mean difference of -0.73, a standard deviation of 1.61, limits of agreement of -3.88 and +2.42 bpm and a P-value of 0.22. This testing demonstrates comparable performance of the Aingeal device in measuring respiration rate with a well-accepted and widely used alternative method. PMID:24111283

  19. Dynamic measurement for the solution concentration variation using digital holographic interferometry and discussion for the measuring accuracy

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Yanyan; Jiang, Hongzhen; Di, Jianglei

    2013-06-01

    Based on digital holographic interferometry (DHI), a method for dynamically measuring the solution concentration variation is introduced. Firstly, a series of digital holograms containing the information of the solution concentration variation is recorded by CCD. Then, according to the relationship between the phase change of the reconstructed object wave and the solution concentration, the two-dimensional (2D) solution concentration distributions in different time are figured out. Taking the measurement of the solution concentration in crystallization process as a sample, the experimental results turn out that it is feasible to in situ, full-field and dynamically monitor the solution concentration variation with the proposed method. We also discuss how to assure the measurement accuracy in following aspects: (1) implementation of the phase correction to eliminate the influence of the environment for the measurement process; (2) determination of the phase calibration base in the space-domain phase unwrapping process according to the time-domain phase unwrapping result of the arbitrary point in solution; (3) the experimental approaches and analysis for improving the measurement accuracy.

  20. [Accuracy of complete dental arch impressions and stone casts using a three-dimensional measurement system. Effect on accuracy of rubber impression materials and trays].

    PubMed

    Ishida, K

    1989-08-01

    The purpose of this study was to investigate and compare the accuracy of complete dental arch impressions and stone casts made from two kinds of impression materials (addition type silicone and polysulfide rubber) and trays (custom tray and modified custom tray). In addition, the effect of quantity of gypsum was examined. Impressions were made from a metallic model of a simplified maxillary dentition. Impressions and stone casts were measured respectively using the three-dimensional measuring microscope. The results were as follows: 1. Distortion of impressions was so small that the reproducibility of impressions was superior three-dimensionally. 2. These kinds of impressions and trays did not influence the accuracy of impressions but had an effect on the accuracy of the stone casts. 3. Generally, the setting expansion of gypsum in the impression occurred in all directions. 4. Arch widths and lengths on the stone casts tended to increase in number. 5. Stone casts made from an addition/type silicone impression material and a custom tray were the most accurate because the combination of the impression material and tray effectively suppressed the setting expansion of gypsum. 6. By controlling the quantity of gypsum, the accuracy of stone casts could be improved.

  1. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units

    NASA Astrophysics Data System (ADS)

    Depuydt, Tom; Penne, Rudi; Verellen, Dirk; Hrbacek, Jan; Lang, Stephanie; Leysen, Katrien; Vandevondel, Iwein; Poels, Kenneth; Reynders, Truus; Gevaert, Thierry; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Cosentino, Dorian; Garibaldi, Cristina; Solberg, Timothy; De Ridder, Mark

    2012-05-01

    As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system

  2. Flavor identification of astronomical high energy neutrinos and the accuracy of mixing angles

    SciTech Connect

    Hwang, Ggyoung-Riun; Siyeon, Kim

    2008-11-23

    Typical initial neutrino fluxes from pion decays may be different depending on energy, since the muon decays can be excluded due to the electromagnetic energy loss. However, the specification of the initial flux ratio is limited by the accuracy of neutrino mixing parameters. We will discuss the expected measurement of relative flavors at future neutrino telescopes, focusing on the ambiguity in current neutrino parameters.

  3. Portable oil bath for high-accuracy resistance transfer and maintenance

    NASA Astrophysics Data System (ADS)

    Shiota, Fuyuhiko

    1999-10-01

    A portable oil bath containing one standard resistor for high-accuracy resistance transfer and maintenance was developed and operated for seven years in the National Research Laboratory of Metrology. The aim of the bath is to save labor and apparatus for high-accuracy resistance transfer and maintenance by consistently keeping the standard resistor in an optimum environmental condition. The details of the prototype system, including its performance, are described together with some suggestions for a more practical bath design, which adopts the same concept.

  4. Accuracy of Continuous Glucose Monitoring Measurements in Normo-Glycemic Individuals

    PubMed Central

    Akintola, Abimbola A.; Noordam, Raymond; Jansen, Steffy W.; de Craen, Anton J.; Ballieux, Bart E.; Cobbaert, Christa M.; Mooijaart, Simon P.; Pijl, Hanno; Westendorp, Rudi G.; van Heemst, Diana

    2015-01-01

    Background The validity of continuous glucose monitoring (CGM) is well established in diabetic patients. CGM is also increasingly used for research purposes in normo-glycemic individuals, but the CGM validity in such individuals is unknown. We studied the accuracy of CGM measurements in normo-glycemic individuals by comparing CGM-derived versus venous blood-derived glucose levels and measures of glycemia and glycemic variability. Methods In 34 healthy participants (mean age 65.7 years), glucose was simultaneously measured every 10 minutes, via both an Enlite® CGM sensor, and in venous blood sampled over a 24-hour period. Validity of CGM-derived individual glucose measurements, calculated measures of glycemia over daytime (09:00h-23:00h) and nighttime (23:00h-09:00h), and calculated measures of glycemic variability (e.g. 24h standard deviation [SD]) were assessed by Pearson correlation coefficients, mean absolute relative difference (MARD) and paired t-tests. Results The median correlation coefficient between CGM and venous glucose measurements per participant was 0.68 (interquartile range: 0.40–0.78), and the MARD was 17.6% (SD = 17%). Compared with venous sampling, the calculated measure of glycemia during daytime was 0.22 mmol/L higher when derived from CGM, but no difference was observed during nighttime. Most measures of glycemic variability were lower with CGM than with venous blood sampling (e.g., 24h SD: 1.07 with CGM and 1.26 with venous blood; p-value = 0.004). Conclusion In normo-glycemic individuals, CGM-derived glucose measurements had good agreement with venous glucose levels. However, the measure of glycemia was higher during the day and most measures of glycemic variability were lower when derived from CGM. PMID:26445499

  5. Relative Accuracy Evaluation

    PubMed Central

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  6. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    NASA Astrophysics Data System (ADS)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of <1 % between both fitting algorithms. The properties of the AI fitting algorithm make it an interesting alternative if robustness and speed are crucial in an application and if the restriction to a single absorption line is possible. These conditions are fulfilled for the 1,370 nm TDLAS hygrometry at the

  7. Brief inhalation method to measure cerebral oxygen extraction fraction with PET: Accuracy determination under pathologic conditions

    SciTech Connect

    Altman, D.I.; Lich, L.L.; Powers, W.J. )

    1991-09-01

    The initial validation of the brief inhalation method to measure cerebral oxygen extraction fraction (OEF) with positron emission tomography (PET) was performed in non-human primates with predominantly normal cerebral oxygen metabolism (CMRO2). Sensitivity analysis by computer simulation, however, indicated that this method may be subject to increasing error as CMRO2 decreases. Accuracy of the method under pathologic conditions of reduced CMRO2 has not been determined. Since reduced CMRO2 values are observed frequently in newborn infants and in regions of ischemia and infarction in adults, we determined the accuracy of the brief inhalation method in non-human primates by comparing OEF measured with PET to OEF measured by arteriovenous oxygen difference (A-VO2) under pathologic conditions of reduced CMRO2 (0.27-2.68 ml 100g-1 min-1). A regression equation of OEF (PET) = 1.07 {times} OEF (A-VO2) + 0.017 (r = 0.99, n = 12) was obtained. The absolute error in oxygen extraction measured with PET was small (mean 0.03 {plus minus} 0.04, range -0.03 to 0.12) and was independent of cerebral blood flow, cerebral blood volume, CMRO2, or OEF. The percent error was higher (19 {plus minus} 37), particularly when OEF is below 0.15. These data indicate that the brief inhalation method can be used for measurement of cerebral oxygen extraction and cerebral oxygen metabolism under pathologic conditions of reduced cerebral oxygen metabolism, with these limitations borne in mind.

  8. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  9. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  10. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  11. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    PubMed Central

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  12. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  13. Evaluating the Discriminant Accuracy of a Grammatical Measure With Spanish-Speaking Children

    PubMed Central

    Gutiérrez-Clellen, Vera F.; Restrepo, M. Adelaida; Simón-Cereijido, Gabriela

    2012-01-01

    Purpose The purpose of this study was to evaluate the discriminant accuracy of a grammatical measure for the identification of language impairment in Latino Spanish-speaking children. The authors hypothesized that if exposure to and use of English as a second language have an effect on the first language, bilingual children might exhibit lower rates of grammatical accuracy than their peers and be more likely to be misclassified. Method Eighty children with typical language development and 80 with language impairment were sampled from 4 different geographical regions and compared using linear discriminant function analysis. Results Results indicated fair-to-good sensitivity from 4;0 to 5;1 years, good sensitivity from 5;2 to 5;11 years, and poor sensitivity above age 6 years. The discriminant functions derived from the exploratory studies were able to predict group membership in confirmatory analyses with fair-to-excellent sensitivity up to age 6 years. Children who were bilingual did not show lower scores and were not more likely to be misclassified compared with their Spanish-only peers. Conclusions The measure seems to be appropriate for identifying language impairment in either Spanish-dominant or Spanish-only speakers between 4 and 6 years of age. However, for older children, supplemental testing is necessary. PMID:17197491

  14. Improving the accuracy of skin elasticity measurement by using Q-parameters in Cutometer.

    PubMed

    Qu, Di; Seehra, G Paul

    2016-01-01

    The skin elasticity parameters (Ue, Uv, Uf, Ur, Ua, and R0 through R9) in the Cutometer are widely used for in vivo measurement of skin elasticity. Their accuracy, however, is impaired by the inadequacy of the definition of a key parameter, the time point of 0.1 s, which separates the elastic and viscoelastic responses of human skin. This study shows why an inflection point (t(IP)) should be calculated from each individual response curve to define skin elasticity, and how the Q-parameters are defined in the Cutometer. By analyzing the strain versus time curves of some pure elastic standards and of a population of 746 human volunteers, a method of determining the t(IP) from each mode 1 response curve was established. The results showed a wide distribution of this parameter ranging from 0.11 to 0.19 s, demonstrating that the current single-valued empirical parameter of 0.1 s was not adequate to represent this property of skin. A set of area-based skin viscoelastic parameters were also defined. The biological elasticity thus obtained correlated well with the study volunteers' chronological age which was statistically significant. We conclude that the Q-parameters are more accurate than the U and R parameters and should be used to improve measurement accuracy of human skin elasticity. PMID:27319059

  15. Accuracy of the Welch Allyn Suresight for measurement of magnitude of astigmatism in 3- to 7-year-old children

    PubMed Central

    Harvey, Erin M.; Dobson, Velma; Miller, Joseph M.; Clifford-Donaldson, Candice E.; Green, Tina K.; Messer, Dawn H.; Garvey, Katherine A.

    2009-01-01

    Purpose To evaluate the accuracy of the Welch Allyn SureSight in noncycloplegic measurements of astigmatism as compared to cycloplegic Retinomax K+ autorefractor measurements of astigmatism in children from a Native American population with a high prevalence of high astigmatism. Methods Data are reported for 825 3- to 7-year-old children with no ocular abnormalities. Each child had a Retinomax K+ cycloplegic measurement of right eye astigmatism with a confidence rating ≥8 and 3 attempts to obtain a SureSight measurement on the right eye. Results SureSight measurement success rates did not differ significantly across age or measurement confidence rating (<6 vs ≥6). Ninety-six percent of children had at least 1 measurement (any confidence), and 89% had at least 1 measurement with confidence at the manufacturer's recommended value (≥6). Overall, the SureSight tended to overestimate astigmatism. If the SureSight measurement had any dioptric value (0.00 D to 3.00 D), astigmatism of 2.00 D or less was likely to be present. If the SureSight showed astigmatism beyond the instrument's dioptric range (>3.00 D), Retinomax K+ measurements indicated that >2.00 D of astigmatism was present in 136 of 157 (86.6%). In cooperative children for whom the SureSight would not give a reading, 32 of 34 (94%) had >3.00 D of astigmatism. Conclusions The SureSight does not provide an accurate, quantitative measure of amount of astigmatism. However, it does allow accurate categorization of amount of astigmatism as ≤2.00 D, >2.00 D, or >3.00 D, and it has high measurement success rate in young children. PMID:19840726

  16. Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling

    PubMed Central

    Kundrotas, Petras J.; Vakser, Ilya A.

    2010-01-01

    The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Åaccuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes. PMID:20369011

  17. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  18. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  19. Accuracy of Corneal Power Measurements for Intraocular Lens Power Calculation after Myopic Laser In situ Keratomileusis

    PubMed Central

    Helaly, Hany A.; El-Hifnawy, Mohammad A. M.; Shaheen, Mohamed Shafik; Abou El-Kheir, Amr F.

    2016-01-01

    Purpose: To evaluate the accuracy of corneal power measurements for intraocular lens (IOL) power calculation after myopic laser in situ keratomileusis (LASIK). Methods: The study evaluated 45 eyes with a history of myopic LASIK. Corneal power was measured using manual keratometry, automated keratometry, optical biometry, and Scheimflug tomography. Different hypothetical IOL power calculation formulas were performed for each case. Results: The steepest mean K value was measured with manual keratometry (37.48 ± 2.86 D) followed by automated keratometry (37.31 ± 2.83 D) then optical biometry (37.06 ± 2.98 D) followed by Scheimflug tomography (36.55 ± 3.08). None of the K values generated by Scheimflug tomography were steeper than the measurements from the other 3 instruments. Using equivalent K reading (EKR) 4 mm with the Double-K SRK/T formula, the refractive outcome generated 97.8% of cases within ± 2 D, 80.0% of cases within ± 1 D, and 42.2% of cases within ± 0.5 D. The best combination of formulas was “Shammas-PL + Double-K SRK/T formula using EKR 4 mm.” Conclusion: Scheimflug tomography imaging using the Holladay EKR 4 mm improved the accuracy of IOL power calculation in post-LASIK eyes. The best option is a combination of formulas. We recommended the use the combined “Shammas-PL ± Double-K SRK/T formula using EKR 4 mm”h for optical outcomes. PMID:26957851

  20. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  1. Severity of Carpal Tunnel Syndrome and Diagnostic Accuracy of Hand and Body Anthropometric Measures

    PubMed Central

    Mondelli, Mauro; Farioli, Andrea; Mattioli, Stefano; Aretini, Alessandro; Ginanneschi, Federica; Greco, Giuseppe; Curti, Stefania

    2016-01-01

    Objective To study the diagnostic properties of hand/wrist and body measures according to validated clinical and electrophysiological carpal tunnel syndrome (CTS) severity scales. Methods We performed a prospective case-control study. For each case, two controls were enrolled. Two five-stage clinical and electrophysiological scales were used to evaluate CTS severity. Anthropometric measurements were collected and obesity indicators and hand/wrist ratios were calculated. Area under the receiver operating characteristic curves (AUC), sensitivity, specificity, and likelihood ratios were calculated separately by gender. Results We consecutively enrolled 370 cases and 747 controls. The wrist-palm ratio, waist-hip-height ratio and waist-stature ratio showed the highest proportion of cases with abnormal values in the severe stages of CTS for clinical and electrophysiological severity scales in both genders. Accuracy tended to increase with CTS severity for females and males. In severe stage, most of the indexes presented moderate accuracy in both genders. Among subjects with severe CTS, the wrist-palm ratio presented the highest AUC for hand measures in the clinical and electrophysiological severity scales both in females (AUC 0.83 and 0.76, respectively) and males (AUC 0.91 and 0.82, respectively). Among subjects with severe CTS, the waist-stature ratio showed the highest AUC for body measures in the clinical and electrophysiological severity scales both in females (AUC 0.78 and 0.77, respectively) and males (AUC 0.84 and 0.76, respectively). The results of waist-hip-height ratio AUC were similar. Conclusions Wrist-palm ratio, waist-hip-height ratio and waist-stature ratio could contribute to support the diagnostic hypothesis of severe CTS that however has to be confirmed by nerve conduction study. PMID:27768728

  2. Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive

    PubMed Central

    Potere, David

    2008-01-01

    Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary high-resolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01). The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01). These findings indicate that Google Earth high-resolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

  3. Parallelizing a High Accuracy Hardware-Assisted Volume Renderer for Meshes with Arbitrary Polyhedra

    SciTech Connect

    Bennett,J; Cook,R; Max,N; May,D; Williams,P

    2001-07-23

    This paper discusses our efforts to improve the performance of the high-accuracy (HIAC) volume rendering system, based on cell projection, which is used to display unstructured, scientific data sets for analysis. The parallelization of HIAC, using the pthreads and MPI API's, resulted in significant speedup, but interactive frame rates are not yet attainable for very large data sets.

  4. Accuracy and versatility of the NIST M48 coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Stoup, John R.; Doiron, Theodore D.

    2001-10-01

    The NIST Is continuing to develop the ability to perform accurate, traceable measurements on a wide range of artifacts using a very precise, error-mapped coordinate measuring machine (CMM). The NIST M48 CMM has promised accuracy and versatility for many ears. Recently, these promises have been realized in a reliable, reproducible way for many types of 1D, 2D, and 3D engineering metrology artifacts. The versatility of the machine has permitted state-of-the-art, accurate measurements of one meter step gages and precision ball plates as well as 500 micrometer holes and small precision parts made of aluminum or glass. To accomplish this wide range of measurements the CMM has required extensive assessment of machine positioning and straightness errors, probe response, machine motion control and speed, environmental stability, and measurement procedures. The CMM has been used as an absolute instrument and as a very complicated comparator. The data collection techniques have been designed to acquire statistical information on the machine and probe performance and to evaluate and remove any potential thermal drift in the machine coordinate system during operation. This paper will present the data collection and measurement techniques used by NIST to achieve excellent measurement results for gage blocks, long end standards, step gages, ring and plug gages, small holes, ball plates, and angular artifacts. Comparison data with existing independent primary measuring instruments will also be presented to show agreement and correlation with those historical methods. Current plans for incorporating the CMM into existing measurement services, such as plain ring gages, large plug gages, and long end standards, will be presented along with other proposed development of this CMM.

  5. [Accuracy evaluation of the TRMM satellite-based precipitation data over the mid-high latitudes].

    PubMed

    Cai, Yan-Cong; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui; Xu, Lei-Lei; Bu, Chang-Qian

    2014-11-01

    Satellite-based precipitation product plays a significant role in analyzing spatial pattern of precipitation. TRMM 3B42 (3B42), as one of important precipitation products, is a key forcing factor for ecological, climate and hydrological models with its sufficient spatial and temporal scales. At present, there is still limited knowledge of accuracy and error structure of new version 3B42 V7, especially the lack of evaluating its accuracy in regions of mid-high latitudes, which restricts its application in the field of ecology, climate and hydrology. Based on 3B42 V7 product and data obtained from 53 weather stations in the period of 1998-2012 over Inner Mongolia, the paper evaluated the accuracy of 3B42 and revealed the spatial distribution of accuracy evaluation indices and its influencing factors. The result of overall accuracy evaluation indicated that there was overestimation of the amount of precipitation by 3B42 at daily, monthly and annual timescales. Error of 3B42 increased with the increasing timescale, and mean error and mean absolute error of daily precipitation were just -0.06 and 0.88 mm, respectively. It showed good performance for detecting the occurrence of rain events with equitable threat score (ETS) of 0.23, but slightly overestimated the frequency of rainy events. Moreover, altitude and average annual precipitation had impacts on data accuracy. The absolute error of precipitation decreased and yet the ability of detecting rain events be- came weak with the increasing altitude, while the effect of average annual precipitation on data accuracy was opposite.

  6. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  7. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  8. Accuracy of plantar electrodes compared with hand and foot electrodes in fat-free-mass measurement.

    PubMed

    Jaffrin, Michel Y; Bousbiat, Sana

    2014-01-01

    This paper investigates the measurement of fat-free mass (FFM) by bioimpedance using foot-to-foot impedancemeters (FFI) with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA). Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.

  9. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  10. Patient positioning and the accuracy of pulmonary artery pressure measurements (180f).

    PubMed

    Shih, F J

    1999-12-01

    The measurement of pulmonary artery pressure (PAP) is a common nursing practice in hemodynamic monitoring of patients in the emergency room and intensive care unit. Several researchers have proposed that PAP should be measured with the patient in a supine position with legs horizontal in order to promote a relaxed state. The most widely used reference point is the phlebostatic axis, which is located at the intersection of the fourth intercostal space and the midchest level. However, this positioning requirement is in conflict with one of the goals of nursing care, which is to achieve comfortable positioning of the patient without compromising respiratory or cardiovascular function. In addition, since frequent readings are necessary, critically ill patients can lose valuable sleep time. The existing literature still fails to justify the validity of the phlebostatic axis as an external reference point for leveling the pressure transducer. In addition, findings on the accuracy of readings obtained in the supine, Fowler's and lateral recumbent positions are also in conflict. This paper reviewed research related to measurement of PAP in the supine, various Fowler's, and lateral positions in order to clarify the major factors which might have resulted in the conflicts in data on PAP measurements. Suggestions are also provided for nurse clinicians to obtain more accurate PAP measurements. PMID:10576120

  11. Temperature measurement and accuracy of bi-colored radiometer applying pseudo gray-body approximation

    SciTech Connect

    Inagaki, Terumi; Okamoto, Yoshizo; Fan, Z.; Kurokawa, Katashi

    1994-12-31

    It is necessary to obtain a true surface radiation temperature not including reflection energy, because the influence of reflection energy on measured images of a surface radiation temperature is comparatively large on a metal surface. In general, there are two ways to eliminate reflection energy and to specify a true temperature. One of the most typical methods is the analytical method obtaining a true surface temperature after measuring a true emissivity using infrared radiometer. Another one is on the basis of the bi-colored method applying pseudo gray-body approximation, in which a true surface temperature can be acquired after eliminating emissivity on a surface with the aid of radiation energy possessing various detection wave lengths. The surface temperature measurement using bi-colored radiometer combined with pseudo gray-body approximation has not been discussed yet. Therefore, in the present study, the authors will propose and investigate its bi-colored temperature measurement based on a power law description of energy for various detection wave lengths. And then its applicability and accuracy on temperature measurement will also be estimated as follows.

  12. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  13. Two-channel high-accuracy Holoimage technique for three-dimensional data compression

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Zhang, Lianxin; Yang, Sheng; Ji, Fang

    2016-10-01

    Three-dimensional (3D) shape data sizes can be substantially reduced using the Holoimage technique which converts the 3D shape data into regular 24-bit 2D images. However, the Holoimage technique generally takes up all the three standard image channels (RGB) and leave no room in an image to store other information, such as a texture or a normal map. Meanwhile, the recovered 3D accuracy is not very high due to the rounding process of image storage. To overcome these problems, this paper first proposes a two-channel Holoimage technique to compress 3D data and thus leave one more channel for storing other information. In addition, a novel phase-error compensation approach is also presented to enhance the recovered accuracy for Holoimage techniques. Without adding anymore bits, the error compensation approach can greatly improve the 3D recovered accuracy. Experimental results are presented to verify the performance of the proposed methods.

  14. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    PubMed

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  15. On the use of mobile phones and wearable microphones for noise exposure measurements: Calibration and measurement accuracy

    NASA Astrophysics Data System (ADS)

    Dumoulin, Romain

    Despite the fact that noise-induced hearing loss remains the number one occupational disease in developed countries, individual noise exposure levels are still rarely known and infrequently tracked. Indeed, efforts to standardize noise exposure levels present disadvantages such as costly instrumentation and difficulties associated with on site implementation. Given their advanced technical capabilities and widespread daily usage, mobile phones could be used to measure noise levels and make noise monitoring more accessible. However, the use of mobile phones for measuring noise exposure is currently limited due to the lack of formal procedures for their calibration and challenges regarding the measurement procedure. Our research investigated the calibration of mobile phone-based solutions for measuring noise exposure using a mobile phone's built-in microphones and wearable external microphones. The proposed calibration approach integrated corrections that took into account microphone placement error. The corrections were of two types: frequency-dependent, using a digital filter and noise level-dependent, based on the difference between the C-weighted noise level minus A-weighted noise level of the noise measured by the phone. The electro-acoustical limitations and measurement calibration procedure of the mobile phone were investigated. The study also sought to quantify the effect of noise exposure characteristics on the accuracy of calibrated mobile phone measurements. Measurements were carried out in reverberant and semi-anechoic chambers with several mobiles phone units of the same model, two types of external devices (an earpiece and a headset with an in-line microphone) and an acoustical test fixture (ATF). The proposed calibration approach significantly improved the accuracy of the noise level measurements in diffuse and free fields, with better results in the diffuse field and with ATF positions causing little or no acoustic shadowing. Several sources of errors

  16. The accuracy of three methods of age estimation using radiographic measurements of developing teeth.

    PubMed

    Liversidge, H M; Lyons, F; Hector, M P

    2003-01-01

    The accuracy of age estimation using three quantitative methods of developing permanent teeth was investigated. These were Mörnstad et al. [Scand. J. Dent. Res. 102 (1994) 137], Liversidge and Molleson [J. For. Sci. 44 (1999) 917] and Carels et al. [J. Biol. Bucc. 19 (1991) 297]. The sample consisted of 145 white Caucasian children (75 girls, 70 boys) aged between 8 and 13 years. Tooth length and apex width of mandibular canine, premolars and first and second molars were measured from orthopantomographs using a digitiser. These data were substituted into equations from the three methods and estimated age was calculated and compared to chronological age. Age was under-estimated in boys and girls using all the three methods; the mean difference between chronological and estimated ages for method I was -0.83 (standard deviation +/-0.96) years for boys and -0.67 (+/-0.76) years for girls; method II -0.79 (+/-0.93) and -0.63 (+/-0.92); method III -1.03 (+/-1.48) and -1.35 (+/-1.11) for boys and girls, respectively. Further analysis of age cohorts, found the most accurate method to be method I for the age group 8.00-8.99 years where age could be predicted to 0.14+/-0.44 years (boys) and 0.10+/-0.32 years (girls). Accuracy was greater for younger children compared to older children and this decreased with age.

  17. Accuracy of complete dental arch impressions and stone casts using a three-dimensional measurement system. Effects on accuracy of rubber impression materials and trays.

    PubMed

    Ishida, K

    1990-01-01

    The purpose of this study was to investigate and compare the accuracy of complete dental arch impressions and stone casts made with two kinds of impression materials (addition-type silicone and polysulfide rubber) and trays (custom tray and modified custom tray). In addition, the effect of the quantity of stone was examined. Impressions were made from a metallic model of a simplified maxillary dentition. Impressions and stone casts were measured respectively with a three-dimensional measuring microscope. The results were as follows: 1. Distortions of impressions were so small that the reproducibilities of impressions were superior three-dimensionally. These kinds of impressions and trays did not influence the accuracy of impressions. 2. The setting expansion of the stone in the impression occurred in the outward direction and was affected by the kinds of impressions and trays. 3. The arch widths and lengths of the stone casts tended to increase in number. 4. Stone casts made with addition-type silicone impression material and a custom tray were the most accurate because the combination of the impression material and tray effectively suppressed the setting expansion of stone. 5. The accuracy of stone casts could be improved by controlling the quantity of stone.

  18. Accuracy Assessment of GPS Buoy Sea Level Measurements for Coastal Applications

    NASA Astrophysics Data System (ADS)

    Chiu, S.; Cheng, K.

    2008-12-01

    The GPS buoy in this study contains a geodetic antenna and a compact floater with the GPS receiver and power supply tethered to a boat. The coastal applications using GPS include monitoring of sea level and its change, calibration of satellite altimeters, hydrological or geophysical parameters modeling, seafloor geodesy, and others. Among these applications, in order to understand the overall data or model quality, it is required to gain the knowledge of position accuracy of GPS buoys or GPS-equipped vessels. Despite different new GPS data processing techniques, e.g., Precise Point Positioning (PPP) and virtual reference station (VRS), that require a prioir information obtained from the a regional GPS network. While the required a prioir information can be implemented on land, it may not be available on the sea. Hence, in this study, the GPS buoy was positioned with respect to a onshore GPS reference station using the traditional double- difference technique. Since the atmosphere starts to decorrelate as the baseline, the distance between the buoy and the reference station, increases, the positioning accuracy consequently decreases. Therefore, this study aims to assess the buoy position accuracy as the baseline increases and in order to quantify the upper limit of sea level measured by the GPS buoy. A GPS buoy campaign was conducted by National Chung Cheng University in An Ping, Taiwan with a 8- hour GPS buoy data collection. In addition, a GPS network contains 4 Continuous GPS (CGPS) stations in Taiwan was established with the goal to enable baselines in different range for buoy data processing. A vector relation from the network was utilized in order to find the correct ambiguities, which were applied to the long-baseline solution to eliminate the position error caused by incorrect ambiguities. After this procedure, a 3.6-cm discrepancy was found in the mean sea level solution between the long (~80 km) and the short (~1.5 km) baselines. The discrepancy between a

  19. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.

    PubMed

    Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

    2013-06-01

    This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets.

  20. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.

    PubMed

    Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

    2013-06-01

    This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets. PMID:23822369