Badke, Yvonne M; Bates, Ronald O; Ernst, Catherine W; Fix, Justin; Steibel, Juan P
2014-04-16
Genomic selection has the potential to increase genetic progress. Genotype imputation of high-density single-nucleotide polymorphism (SNP) genotypes can improve the cost efficiency of genomic breeding value (GEBV) prediction for pig breeding. Consequently, the objectives of this work were to: (1) estimate accuracy of genomic evaluation and GEBV for three traits in a Yorkshire population and (2) quantify the loss of accuracy of genomic evaluation and GEBV when genotypes were imputed under two scenarios: a high-cost, high-accuracy scenario in which only selection candidates were imputed from a low-density platform and a low-cost, low-accuracy scenario in which all animals were imputed using a small reference panel of haplotypes. Phenotypes and genotypes obtained with the PorcineSNP60 BeadChip were available for 983 Yorkshire boars. Genotypes of selection candidates were masked and imputed using tagSNP in the GeneSeek Genomic Profiler (10K). Imputation was performed with BEAGLE using 128 or 1800 haplotypes as reference panels. GEBV were obtained through an animal-centric ridge regression model using de-regressed breeding values as response variables. Accuracy of genomic evaluation was estimated as the correlation between estimated breeding values and GEBV in a 10-fold cross validation design. Accuracy of genomic evaluation using observed genotypes was high for all traits (0.65-0.68). Using genotypes imputed from a large reference panel (accuracy: R(2) = 0.95) for genomic evaluation did not significantly decrease accuracy, whereas a scenario with genotypes imputed from a small reference panel (R(2) = 0.88) did show a significant decrease in accuracy. Genomic evaluation based on imputed genotypes in selection candidates can be implemented at a fraction of the cost of a genomic evaluation using observed genotypes and still yield virtually the same accuracy. On the other side, using a very small reference panel of haplotypes to impute training animals and candidates for selection results in lower accuracy of genomic evaluation.
Beaulieu, Jean; Doerksen, Trevor K; MacKay, John; Rainville, André; Bousquet, Jean
2014-12-02
Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested. Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies. Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.
NASA Technical Reports Server (NTRS)
Kranz, David William
2010-01-01
The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.
Derivation of an artificial gene to improve classification accuracy upon gene selection.
Seo, Minseok; Oh, Sejong
2012-02-01
Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.
Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack
2017-06-01
In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.
Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions.
Zhang, Jingji; Pavlov, Michael Y; Ehrenberg, Måns
2018-02-16
We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.
NASA Astrophysics Data System (ADS)
Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore
2017-10-01
This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.
Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi
2016-01-01
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362
Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean
2017-04-28
Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range LD in this population. This study supports the integration of GS models in advanced-generation tree breeding programs, given that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles, much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable to mass vegetative propagation of selected stock, such as spruces.
a Band Selection Method for High Precision Registration of Hyperspectral Image
NASA Astrophysics Data System (ADS)
Yang, H.; Li, X.
2018-04-01
During the registration of hyperspectral images and high spatial resolution images, too much bands in a hyperspectral image make it difficult to select bands with good registration performance. Terrible bands are possible to reduce matching speed and accuracy. To solve this problem, an algorithm based on Cram'er-Rao lower bound theory is proposed to select good matching bands in this paper. The algorithm applies the Cram'er-Rao lower bound theory to the study of registration accuracy, and selects good matching bands by CRLB parameters. Experiments show that the algorithm in this paper can choose good matching bands and provide better data for the registration of hyperspectral image and high spatial resolution image.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-06-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-01-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection. PMID:24518889
Survey to Determine Flight Plan Data and Flight Scheduling Accuracy
DOT National Transportation Integrated Search
1972-01-01
This survey determined Operational Flight Plan Data and Flight schduling accuracy vs. published schedules an/or stored flight plan data. This accuracy was determined by sampling tracer flights of varying lengths, selected terminals, and high altitude...
High Accuracy Fuel Flowmeter, Phase 1
NASA Technical Reports Server (NTRS)
Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.
1983-01-01
Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.
Multiple-input multiple-output causal strategies for gene selection.
Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John
2011-11-25
Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.
NASA Astrophysics Data System (ADS)
Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao
2017-03-01
Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.
OM300 Direction Drilling Module
MacGugan, Doug
2013-08-22
OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process
Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions
Zhang, Jingji
2018-01-01
Abstract We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of ‘monitoring bases’ A1492, A1493 and G530 in 16S rRNA in favor of their ‘activated’ state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the ‘intrinsic selectivity’ of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome. PMID:29267976
Bommert, Andrea; Rahnenführer, Jörg; Lang, Michel
2017-01-01
Finding a good predictive model for a high-dimensional data set can be challenging. For genetic data, it is not only important to find a model with high predictive accuracy, but it is also important that this model uses only few features and that the selection of these features is stable. This is because, in bioinformatics, the models are used not only for prediction but also for drawing biological conclusions which makes the interpretability and reliability of the model crucial. We suggest using three target criteria when fitting a predictive model to a high-dimensional data set: the classification accuracy, the stability of the feature selection, and the number of chosen features. As it is unclear which measure is best for evaluating the stability, we first compare a variety of stability measures. We conclude that the Pearson correlation has the best theoretical and empirical properties. Also, we find that for the stability assessment behaviour it is most important that a measure contains a correction for chance or large numbers of chosen features. Then, we analyse Pareto fronts and conclude that it is possible to find models with a stable selection of few features without losing much predictive accuracy.
Accuracy of genomic selection in European maize elite breeding populations.
Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C
2012-03-01
Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.
Jiang, Y; Zhao, Y; Rodemann, B; Plieske, J; Kollers, S; Korzun, V; Ebmeyer, E; Argillier, O; Hinze, M; Ling, J; Röder, M S; Ganal, M W; Mette, M F; Reif, J C
2015-03-01
Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
High accuracy autonomous navigation using the global positioning system (GPS)
NASA Technical Reports Server (NTRS)
Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul
1997-01-01
The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.
Tagliafico, Alberto Stefano; Bignotti, Bianca; Rossi, Federica; Signori, Alessio; Sormani, Maria Pia; Valdora, Francesca; Calabrese, Massimo; Houssami, Nehmat
2016-08-01
To estimate sensitivity and specificity of CESM for breast cancer diagnosis. Systematic review and meta-analysis of the accuracy of CESM in finding breast cancer in highly selected women. We estimated summary receiver operating characteristic curves, sensitivity and specificity according to quality criteria with QUADAS-2. Six hundred four studies were retrieved, 8 of these reporting on 920 patients with 994 lesions, were eligible for inclusion. Estimated sensitivity from all studies was: 0.98 (95% CI: 0.96-1.00). Specificity was estimated from six studies reporting raw data: 0.58 (95% CI: 0.38-0.77). The majority of studies were scored as at high risk of bias due to the very selected populations. CESM has a high sensitivity but very low specificity. The source studies were based on highly selected case series and prone to selection bias. High-quality studies are required to assess the accuracy of CESM in unselected cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
Regulation of memory accuracy with multiple answers: the plurality option.
Luna, Karlos; Higham, Philip A; Martín-Luengo, Beatriz
2011-06-01
We report two experiments that investigated the regulation of memory accuracy with a new regulatory mechanism: the plurality option. This mechanism is closely related to the grain-size option but involves control over the number of alternatives contained in an answer rather than the quantitative boundaries of a single answer. Participants were presented with a slideshow depicting a robbery (Experiment 1) or a murder (Experiment 2), and their memory was tested with five-alternative multiple-choice questions. For each question, participants were asked to generate two answers: a single answer consisting of one alternative and a plural answer consisting of the single answer and two other alternatives. Each answer was rated for confidence (Experiment 1) or for the likelihood of being correct (Experiment 2), and one of the answers was selected for reporting. Results showed that participants used the plurality option to regulate accuracy, selecting single answers when their accuracy and confidence were high, but opting for plural answers when they were low. Although accuracy was higher for selected plural than for selected single answers, the opposite pattern was evident for confidence or likelihood ratings. This dissociation between confidence and accuracy for selected answers was the result of marked overconfidence in single answers coupled with underconfidence in plural answers. We hypothesize that these results can be attributed to overly dichotomous metacognitive beliefs about personal knowledge states that cause subjective confidence to be extreme.
Alternative evaluation metrics for risk adjustment methods.
Park, Sungchul; Basu, Anirban
2018-06-01
Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.
Realization and performance of cryogenic selection mechanisms
NASA Astrophysics Data System (ADS)
Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels
2014-07-01
Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.
Feature Selection Methods for Zero-Shot Learning of Neural Activity.
Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.
NASA Astrophysics Data System (ADS)
Lestari, A. W.; Rustam, Z.
2017-07-01
In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.
Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities
NASA Astrophysics Data System (ADS)
Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu
Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.
Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.
Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just
2016-01-01
Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.
Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines
Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just
2016-01-01
Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639
A Ranking Approach to Genomic Selection.
Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori
2015-01-01
Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.
Rauniyar, Navin
2015-01-01
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379
Akanno, E C; Schenkel, F S; Sargolzaei, M; Friendship, R M; Robinson, J A B
2014-10-01
Genetic improvement of pigs in tropical developing countries has focused on imported exotic populations which have been subjected to intensive selection with attendant high population-wide linkage disequilibrium (LD). Presently, indigenous pig population with limited selection and low LD are being considered for improvement. Given that the infrastructure for genetic improvement using the conventional BLUP selection methods are lacking, a genome-wide selection (GS) program was proposed for developing countries. A simulation study was conducted to evaluate the option of using 60 K SNP panel and observed amount of LD in the exotic and indigenous pig populations. Several scenarios were evaluated including different size and structure of training and validation populations, different selection methods and long-term accuracy of GS in different population/breeding structures and traits. The training set included previously selected exotic population, unselected indigenous population and their crossbreds. Traits studied included number born alive (NBA), average daily gain (ADG) and back fat thickness (BFT). The ridge regression method was used to train the prediction model. The results showed that accuracies of genomic breeding values (GBVs) in the range of 0.30 (NBA) to 0.86 (BFT) in the validation population are expected if high density marker panels are utilized. The GS method improved accuracy of breeding values better than pedigree-based approach for traits with low heritability and in young animals with no performance data. Crossbred training population performed better than purebreds when validation was in populations with similar or a different structure as in the training set. Genome-wide selection holds promise for genetic improvement of pigs in the tropics. © 2014 Blackwell Verlag GmbH.
Region based Brain Computer Interface for a home control application.
Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan
2015-08-01
Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.
Unbiased feature selection in learning random forests for high-dimensional data.
Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi
2015-01-01
Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.
Accuracy assessment of NLCD 2006 land cover and impervious surface
Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.
2013-01-01
Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.
Feature Selection Methods for Zero-Shot Learning of Neural Activity
Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513
Perrin, Maxine; Robillard, Manon; Roy-Charland, Annie
2017-12-01
This study examined eye movements during a visual search task as well as cognitive abilities within three age groups. The aim was to explore scanning patterns across symbol grids and to better understand the impact of symbol location in AAC displays on speed and accuracy of symbol selection. For the study, 60 students were asked to locate a series of symbols on 16 cell grids. The EyeLink 1000 was used to measure eye movements, accuracy, and response time. Accuracy was high across all cells. Participants had faster response times, longer fixations, and more frequent fixations on symbols located in the middle of the grid. Group comparisons revealed significant differences for accuracy and reaction times. The Leiter-R was used to evaluate cognitive abilities. Sustained attention and cognitive flexibility scores predicted the participants' reaction time and accuracy in symbol selection. Findings suggest that symbol location within AAC devices and individuals' cognitive abilities influence the speed and accuracy of retrieving symbols.
Not looking yourself: The cost of self-selecting photographs for identity verification.
White, David; Burton, Amy L; Kemp, Richard I
2016-05-01
Photo-identification is based on the premise that photographs are representative of facial appearance. However, previous studies show that ratings of likeness vary across different photographs of the same face, suggesting that some images capture identity better than others. Two experiments were designed to examine the relationship between likeness judgments and face matching accuracy. In Experiment 1, we compared unfamiliar face matching accuracy for self-selected and other-selected high-likeness images. Surprisingly, images selected by previously unfamiliar viewers - after very limited exposure to a target face - were more accurately matched than self-selected images chosen by the target identity themselves. Results also revealed extremely low inter-rater agreement in ratings of likeness across participants, suggesting that perceptions of image resemblance are inherently unstable. In Experiment 2, we test whether the cost of self-selection can be explained by this general disagreement in likeness judgments between individual raters. We find that averaging across rankings by multiple raters produces image selections that provide superior identification accuracy. However, benefit of other-selection persisted for single raters, suggesting that inaccurate representations of self interfere with our ability to judge which images faithfully represent our current appearance. © 2015 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Hoisington, Charles M.; Gregg, Watson W.; Coronado, Patrick L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)
1993-01-01
An analysis of orbit propagation models was performed by the Mission Operations element of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Project, which has overall responsibility for the instrument scheduling. The orbit propagators selected for this analysis are widely available general perturbations models. The analysis includes both absolute accuracy determination and comparisons of different versions of the models. The results show that all of the models tested meet accuracy requirements for scheduling and data acquisition purposes. For internal Project use the SGP4 propagator, developed by the North American Air Defense (NORAD) Command, has been selected. This model includes atmospheric drag effects and, therefore, provides better accuracy. For High Resolution Picture Transmission (HRPT) ground stations, which have less stringent accuracy requirements, the publicly available Brouwer-Lyddane models are recommended. The SeaWiFS Project will make available portable source code for a version of this model developed by the Data Capture Facility (DCF).
Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System
NASA Technical Reports Server (NTRS)
Penaloza, Mauel A.; Welch, Ronald M.
1996-01-01
Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.
Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I
2018-06-02
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
Wolc, Anna; Stricker, Chris; Arango, Jesus; Settar, Petek; Fulton, Janet E; O'Sullivan, Neil P; Preisinger, Rudolf; Habier, David; Fernando, Rohan; Garrick, Dorian J; Lamont, Susan J; Dekkers, Jack C M
2011-01-21
Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line. The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records).The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV. Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight.
Han, Xuesong; Zhu, Haihong; Nie, Xiaojia; Wang, Guoqing; Zeng, Xiaoyan
2018-01-01
AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM) using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut. PMID:29518900
Constructing better classifier ensemble based on weighted accuracy and diversity measure.
Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.
Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure
Chao, Lidia S.
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402
Predicting the accuracy of ligand overlay methods with Random Forest models.
Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J
2008-12-01
The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.
The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.
Luan, Tu; Woolliams, John A; Lien, Sigbjørn; Kent, Matthew; Svendsen, Morten; Meuwissen, Theo H E
2009-11-01
Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.
solGS: a web-based tool for genomic selection
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, ana...
Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying
2015-04-30
Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.
Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.
Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin
2017-04-01
As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.
2009-01-01
Background Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle. Methods Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls. Results For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy. All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time. Conclusions The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended. PMID:20043835
Crabtree, Nathaniel M; Moore, Jason H; Bowyer, John F; George, Nysia I
2017-01-01
A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features.
hp-Adaptive time integration based on the BDF for viscous flows
NASA Astrophysics Data System (ADS)
Hay, A.; Etienne, S.; Pelletier, D.; Garon, A.
2015-06-01
This paper presents a procedure based on the Backward Differentiation Formulas of order 1 to 5 to obtain efficient time integration of the incompressible Navier-Stokes equations. The adaptive algorithm performs both stepsize and order selections to control respectively the solution accuracy and the computational efficiency of the time integration process. The stepsize selection (h-adaptivity) is based on a local error estimate and an error controller to guarantee that the numerical solution accuracy is within a user prescribed tolerance. The order selection (p-adaptivity) relies on the idea that low-accuracy solutions can be computed efficiently by low order time integrators while accurate solutions require high order time integrators to keep computational time low. The selection is based on a stability test that detects growing numerical noise and deems a method of order p stable if there is no method of lower order that delivers the same solution accuracy for a larger stepsize. Hence, it guarantees both that (1) the used method of integration operates inside of its stability region and (2) the time integration procedure is computationally efficient. The proposed time integration procedure also features a time-step rejection and quarantine mechanisms, a modified Newton method with a predictor and dense output techniques to compute solution at off-step points.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Ma, Xin; Guo, Jing; Sun, Xiao
2015-01-01
The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.
Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.
Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M
2015-08-01
We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.
Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H
2015-11-17
Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.
Chen, Qiang; Chen, Yunhao; Jiang, Weiguo
2016-07-30
In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.
Genomic selection across multiple breeding cycles in applied bread wheat breeding.
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2016-06-01
We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.
Guo, Xinyu; Dominick, Kelli C; Minai, Ali A; Li, Hailong; Erickson, Craig A; Lu, Long J
2017-01-01
The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t -test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre-defined brain networks including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum. Thirteen of them are statically significant between ASD and TD groups (two sample t -test p < 0.05) while 19 of them are not. The relationship between the statically significant FCs and the corresponding ASD behavior symptoms is discussed based on the literature and clinician's expert knowledge. Meanwhile, the potential reason of obtaining 19 FCs which are not statistically significant is also provided.
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
Research on intrusion detection based on Kohonen network and support vector machine
NASA Astrophysics Data System (ADS)
Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi
2018-05-01
In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.
Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.).
Kumar, Satish; Chagné, David; Bink, Marco C A M; Volz, Richard K; Whitworth, Claire; Carlisle, Charmaine
2012-01-01
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2) = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.
Liabeuf, Debora; Sim, Sung-Chur; Francis, David M
2018-03-01
Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (r g ), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (r g /r p ). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.
NASA Astrophysics Data System (ADS)
Wang, Liping; Jiang, Yao; Li, Tiemin
2014-09-01
Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-01-01
Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-02-16
Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.
Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam
2016-08-01
In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum. Copyright © 2016 Elsevier B.V. All rights reserved.
Mehrban, Hossein; Lee, Deuk Hwan; Moradi, Mohammad Hossein; IlCho, Chung; Naserkheil, Masoumeh; Ibáñez-Escriche, Noelia
2017-01-04
Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms (SNPs). Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) methods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large effects for SNPs on chromosomes 6 and 14 for CW. The predictive performance of the models depended on the trait analyzed. For CW, the results showed a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights into the carcass traits of Hanwoo cattle.
Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A
2012-12-01
Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.
Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Chen, Charles; Porth, Ilga; El-Kassaby, Yousry A
2015-05-09
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3. The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Akgöl, Batuhan; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2017-02-01
Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.
Bolormaa, S; Pryce, J E; Kemper, K; Savin, K; Hayes, B J; Barendse, W; Zhang, Y; Reich, C M; Mason, B A; Bunch, R J; Harrison, B E; Reverter, A; Herd, R M; Tier, B; Graser, H-U; Goddard, M E
2013-07-01
The aim of this study was to assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle. The 10,181 cattle in our study had real or imputed genotypes for 729,068 SNP although not all cattle were measured for all traits. Animals included Bos taurus, Brahman, composite, and crossbred animals. Genomic EBV (GEBV) were calculated using 2 methods of genomic prediction [BayesR and genomic BLUP (GBLUP)] either using a common training dataset for all breeds or using a training dataset comprising only animals of the same breed. Accuracies of GEBV were assessed using 5-fold cross-validation. The accuracy of genomic prediction varied by trait and by method. Traits with a large number of recorded and genotyped animals and with high heritability gave the greatest accuracy of GEBV. Using GBLUP, the average accuracy was 0.27 across traits and breeds, but the accuracies between breeds and between traits varied widely. When the training population was restricted to animals from the same breed as the validation population, GBLUP accuracies declined by an average of 0.04. The greatest decline in accuracy was found for the 4 composite breeds. The BayesR accuracies were greater by an average of 0.03 than GBLUP accuracies, particularly for traits with known genes of moderate to large effect mutations segregating. The accuracies of 0.43 to 0.48 for IGF-I traits were among the greatest in the study. Although accuracies are low compared with those observed in dairy cattle, genomic selection would still be beneficial for traits that are hard to improve by conventional selection, such as tenderness and residual feed intake. BayesR identified many of the same quantitative trait loci as a genomewide association study but appeared to map them more precisely. All traits appear to be highly polygenic with thousands of SNP independently associated with each trait.
USDA-ARS?s Scientific Manuscript database
Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...
Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan
2018-03-01
The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Improving the baking quality of bread wheat by genomic selection in early generations.
Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Güngör, Huseyin; Löschenberger, Franziska; Buerstmayr, Hermann
2018-02-01
Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.
The efficiency of genome-wide selection for genetic improvement of net merit.
Togashi, K; Lin, C Y; Yamazaki, T
2011-10-01
Four methods of selection for net merit comprising 2 correlated traits were compared in this study: 1) EBV-only index (I₁), which consists of the EBV of both traits (i.e., traditional 2-trait BLUP selection); 2) GEBV-only index (I₂), which comprises the genomic EBV (GEBV) of both traits; 3) GEBV-assisted index (I₃), which combines both the EBV and the GEBV of both traits; and 4) GBV-assisted index (I₄), which combines both the EBV and the true genomic breeding value (GBV) of both traits. Comparisons of these indices were based on 3 evaluation criteria [selection accuracy, genetic response (ΔH), and relative efficiency] under 64 scenarios that arise from combining 2 levels of genetic correlation (r(G)), 2 ratios of genetic variances between traits, 2 ratios of the genomic variance to total genetic variances for trait 1, 4 accuracies of EBV, and 2 proportions of r(G) explained by the GBV. Both selection accuracy and genetic responses of the indices I₁, I₃, and I₄ increased as the accuracy of EBV increased, but the efficiency of the indices I₃ and I₄ relative to I₁ decreased as the accuracy of EBV increased. The relative efficiency of both I₃ and I₄ was generally greater when the accuracy of EBV was 0.6 than when it was 0.9, suggesting that the genomic markers are most useful to assist selection when the accuracy of EBV is low. The GBV-assisted index I₄ was superior to the GEBV-assisted I₃ in all 64 cases examined, indicating the importance of improving the accuracy of prediction of genomic breeding values. Other parameters being identical, increasing the genetic variance of a high heritability trait would increase the genetic response of the genomic indices (I₂, I₃, and I₄). The genetic responses to I₂, I₃, and I(4) was greater when the genetic correlation between traits was positive (r(G) = 0.5) than when it was negative (r(G) = -0.5). The results of this study indicate that the effectiveness of the GEBV-assisted index I₃ is affected by heritability of and genetic correlation between traits, the ratio of genetic variances between traits, the genomic-genetic variance ratio of each index trait, the proportion of genetic correlation accounted for by the genomic markers, and the accuracy of predictions of both EBV and GBV. However, most of these affecting factors are genetic characteristics of a population that is beyond the control of the breeders. The key factor subject to manipulation is to maximize both the proportion of the genetic variance explained by GEBV and the accuracy of both GEBV and EBV. The developed procedures provide means to investigate the efficiency of various genomic indices for any given combination of the genetic factors studied.
Feature weight estimation for gene selection: a local hyperlinear learning approach
2014-01-01
Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071
Chen, Qiang; Chen, Yunhao; Jiang, Weiguo
2016-01-01
In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285
Li, Yongkai; Yi, Ming; Zou, Xiufen
2014-01-01
To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292
Calus, M P L; de Haas, Y; Veerkamp, R F
2013-10-01
Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Applications of random forest feature selection for fine-scale genetic population assignment.
Sylvester, Emma V A; Bentzen, Paul; Bradbury, Ian R; Clément, Marie; Pearce, Jon; Horne, John; Beiko, Robert G
2018-02-01
Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with F ST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon ( Salmo salar ) and a published SNP data set for Alaskan Chinook salmon ( Oncorhynchus tshawytscha ). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than F ST -selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using F ST -selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
Guo, Xinyu; Dominick, Kelli C.; Minai, Ali A.; Li, Hailong; Erickson, Craig A.; Lu, Long J.
2017-01-01
The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre-defined brain networks including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum. Thirteen of them are statically significant between ASD and TD groups (two sample t-test p < 0.05) while 19 of them are not. The relationship between the statically significant FCs and the corresponding ASD behavior symptoms is discussed based on the literature and clinician's expert knowledge. Meanwhile, the potential reason of obtaining 19 FCs which are not statistically significant is also provided. PMID:28871217
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Evaluating Methods of Updating Training Data in Long-Term Genomewide Selection
Neyhart, Jeffrey L.; Tiede, Tyler; Lorenz, Aaron J.; Smith, Kevin P.
2017-01-01
Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit time. Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait loci and markers is expected to change as a result of recombination, selection, and drift, leading to a decay in prediction accuracy. Previous research has identified the need to update the training population using data that may capture new LD generated over breeding cycles; however, optimal methods of updating have not been explored. In a barley (Hordeum vulgare L.) breeding simulation experiment, we examined prediction accuracy and response to selection when updating the training population each cycle with the best predicted lines, the worst predicted lines, both the best and worst predicted lines, random lines, criterion-selected lines, or no lines. In the short term, we found that updating with the best predicted lines or the best and worst predicted lines resulted in high prediction accuracy and genetic gain, but in the long term, all methods (besides not updating) performed similarly. We also examined the impact of including all data in the training population or only the most recent data. Though patterns among update methods were similar, using a smaller but more recent training population provided a slight advantage in prediction accuracy and genetic gain. In an actual breeding program, a breeder might desire to gather phenotypic data on lines predicted to be the best, perhaps to evaluate possible cultivars. Therefore, our results suggest that an optimal method of updating the training population is also very practical. PMID:28315831
NASA Astrophysics Data System (ADS)
Yavari, Somayeh; Valadan Zoej, Mohammad Javad; Salehi, Bahram
2018-05-01
The procedure of selecting an optimum number and best distribution of ground control information is important in order to reach accurate and robust registration results. This paper proposes a new general procedure based on Genetic Algorithm (GA) which is applicable for all kinds of features (point, line, and areal features). However, linear features due to their unique characteristics are of interest in this investigation. This method is called Optimum number of Well-Distributed ground control Information Selection (OWDIS) procedure. Using this method, a population of binary chromosomes is randomly initialized. The ones indicate the presence of a pair of conjugate lines as a GCL and zeros specify the absence. The chromosome length is considered equal to the number of all conjugate lines. For each chromosome, the unknown parameters of a proper mathematical model can be calculated using the selected GCLs (ones in each chromosome). Then, a limited number of Check Points (CPs) are used to evaluate the Root Mean Square Error (RMSE) of each chromosome as its fitness value. The procedure continues until reaching a stopping criterion. The number and position of ones in the best chromosome indicate the selected GCLs among all conjugate lines. To evaluate the proposed method, a GeoEye and an Ikonos Images are used over different areas of Iran. Comparing the obtained results by the proposed method in a traditional RFM with conventional methods that use all conjugate lines as GCLs shows five times the accuracy improvement (pixel level accuracy) as well as the strength of the proposed method. To prevent an over-parametrization error in a traditional RFM due to the selection of a high number of improper correlated terms, an optimized line-based RFM is also proposed. The results show the superiority of the combination of the proposed OWDIS method with an optimized line-based RFM in terms of increasing the accuracy to better than 0.7 pixel, reliability, and reducing systematic errors. These results also demonstrate the high potential of linear features as reliable control features to reach sub-pixel accuracy in registration applications.
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
Quality assurance of road roughness measurement.
DOT National Transportation Integrated Search
2000-01-01
This report describes a study designed to establish the accuracy and repeatability of high-speed, road-profiling equipment. This effort focused on a series of roughness validation sites. The study addresses selecting the appropriate sites, determinin...
Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment
NASA Astrophysics Data System (ADS)
Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil
2016-05-01
Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.
van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk
2017-10-01
Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.
Genomic prediction of reproduction traits for Merino sheep.
Bolormaa, S; Brown, D J; Swan, A A; van der Werf, J H J; Hayes, B J; Daetwyler, H D
2017-06-01
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross-validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross-validations. The accuracies of GEBVs from random cross-validations (range 0.17-0.61) were higher than were those from sire family cross-validations (range 0.00-0.51). The GEBV accuracies of 0.41-0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording. © 2017 Stichting International Foundation for Animal Genetics.
Using learning automata to determine proper subset size in high-dimensional spaces
NASA Astrophysics Data System (ADS)
Seyyedi, Seyyed Hossein; Minaei-Bidgoli, Behrouz
2017-03-01
In this paper, we offer a new method called FSLA (Finding the best candidate Subset using Learning Automata), which combines the filter and wrapper approaches for feature selection in high-dimensional spaces. Considering the difficulties of dimension reduction in high-dimensional spaces, FSLA's multi-objective functionality is to determine, in an efficient manner, a feature subset that leads to an appropriate tradeoff between the learning algorithm's accuracy and efficiency. First, using an existing weighting function, the feature list is sorted and selected subsets of the list of different sizes are considered. Then, a learning automaton verifies the performance of each subset when it is used as the input space of the learning algorithm and estimates its fitness upon the algorithm's accuracy and the subset size, which determines the algorithm's efficiency. Finally, FSLA introduces the fittest subset as the best choice. We tested FSLA in the framework of text classification. The results confirm its promising performance of attaining the identified goal.
Research on detecting spot selection and signal pretreatment of four-quadrant detector
NASA Astrophysics Data System (ADS)
Liu, Wenli; Han, Shaokun
2018-01-01
The four-quadrant detector is a photoelectric position sensor based on the photovoltaic effect. It is widely used in many fields such as target azimuth measurement, end-guided weapon and so on. The selection of the spot and the calculation of the center position are one of the main factors that affect the accuracy of the position measurement of the fourquadrant detector. In order to improve the positioning accuracy of the four-quadrant detector, the method of determining the best spot size is obtained from the theoretical research. The output signal of the four-quadrant detector is a weak narrow pulse signal, which needs to be magnified and widened at high magnitudes. The signal preprocessing method is simulated and experimentally studied. Detecting the spot and the signal processing is realized by the four-quadrant detector, which is important for the use of quadrant detectors for high-precision position measurements.
Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes.
Wallén, S E; Lillehammer, M; Meuwissen, T H E
2017-08-01
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Erkol, Şirag; Yücel, Gönenç
In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.
Cleveland, M A; Hickey, J M
2013-08-01
Genomic selection can be implemented in pig breeding at a reduced cost using genotype imputation. Accuracy of imputation and the impact on resulting genomic breeding values (gEBV) was investigated. High-density genotype data was available for 4,763 animals from a single pig line. Three low-density genotype panels were constructed with SNP densities of 450 (L450), 3,071 (L3k) and 5,963 (L6k). Accuracy of imputation was determined using 184 test individuals with no genotyped descendants in the data but with parents and grandparents genotyped using the Illumina PorcineSNP60 Beadchip. Alternative genotyping scenarios were created in which parents, grandparents, and individuals that were not direct ancestors of test animals (Other) were genotyped at high density (S1), grandparents were not genotyped (S2), dams and granddams were not genotyped (S3), and dams and granddams were genotyped at low density (S4). Four additional scenarios were created by excluding Other animal genotypes. Test individuals were always genotyped at low density. Imputation was performed with AlphaImpute. Genomic breeding values were calculated using the single-step genomic evaluation. Test animals were evaluated for the information retained in the gEBV, calculated as the correlation between gEBV using imputed genotypes and gEBV using true genotypes. Accuracy of imputation was high for all scenarios but decreased with fewer SNP on the low-density panel (0.995 to 0.965 for S1) and with reduced genotyping of ancestors, where the largest changes were for L450 (0.965 in S1 to 0.914 in S3). Exclusion of genotypes for Other animals resulted in only small accuracy decreases. Imputation accuracy was not consistent across the genome. Information retained in the gEBV was related to genotyping scenario and thus to imputation accuracy. Reducing the number of SNP on the low-density panel reduced the information retained in the gEBV, with the largest decrease observed from L3k to L450. Excluding Other animal genotypes had little impact on imputation accuracy but caused large decreases in the information retained in the gEBV. These results indicate that accuracy of gEBV from imputed genotypes depends on the level of genotyping in close relatives and the size of the genotyped dataset. Fewer high-density genotyped individuals are needed to obtain accurate imputation than are needed to obtain accurate gEBV. Strategies to optimize development of low-density panels can improve both imputation and gEBV accuracy.
Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Hart, R. C.; Long, A. C.; Lee, T.
1997-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.
de Albuquerque, Priscila Maria Nascimento Martins; de Alencar, Geisa Guimarães; de Oliveira, Daniela Araújo; de Siqueira, Gisela Rocha
2018-01-01
The aim of this study was to examine and interpret the concordance, accuracy, and reliability of photogrammetric protocols available in the literature for evaluating cervical lordosis in an adult population aged 18 to 59 years. A systematic search of 6 electronic databases (MEDLINE via PubMed, LILACS, CINAHL, Scopus, ScienceDirect, and Web of Science) located studies that assessed the reliability and/or concordance and/or accuracy of photogrammetric protocols for evaluating cervical lordosis, compared with radiography. Articles published through April 2016 were selected. Two independent reviewers used a critical appraisal tool (QUADAS and QAREL) to assess the quality of the selected studies. Two studies were included in the review and had high levels of reliability (intraclass correlation coefficient: 0.974-0.98). Only 1 study assessed the concordance between the methods, which was calculated using Pearson's correlation coefficient. To date, the accuracy of photogrammetry has not been investigated thoroughly. We encountered no study in the literature that investigated the accuracy of photogrammetry in diagnosing hyperlordosis of cervical spine. However, both current studies report high levels of intra- and interrater reliability. To increase the level of evidence of photogrammetry in the evaluation of cervical lordosis, it is necessary to conduct further studies using a larger sample to increase the external validity of the findings. Copyright © 2018. Published by Elsevier Inc.
a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Li, J.; Wan, Y.; Gao, X.
2012-07-01
With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.
NASA Technical Reports Server (NTRS)
Poulton, C. E.; Faulkner, D. P.; Johnson, J. R.; Mouat, D. A.; Schrumpf, B. J.
1971-01-01
A high altitude photomosaic resource map of Site 29 was produced which provided an opportunity to test photo interpretation accuracy of natural vegetation resource features when mapped at a small (1:133,400) scale. Helicopter reconnaissance over 144 previously selected test points revealed a highly adequate level of photo interpretation accuracy. In general, the reasons for errors could be accounted for. The same photomosaic resource map enabled construction of interpretive land use overlays. Based on features of the landscape, including natural vegetation types, judgements for land use suitability were made and have been presented for two types of potential land use. These two, agriculture and urbanization, represent potential land use conflicts.
Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy
NASA Astrophysics Data System (ADS)
Dogariu, A.; Goltsov, A.; Pestov, D.; Sokolov, A. V.; Scully, M. O.
2008-02-01
We demonstrate a realistic method for detection of anthrax-type spores in real time based on their chemical fingerprints using coherent anti-Stokes Raman scattering. Specifically, we demonstrate that coherent Raman scattering can be used to successfully identify spores with high accuracy and high selectivity in less than 50ms.
NASA Astrophysics Data System (ADS)
Sun, Li-wei; Ye, Xin; Fang, Wei; He, Zhen-lei; Yi, Xiao-long; Wang, Yu-peng
2017-11-01
Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.
Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents
NASA Astrophysics Data System (ADS)
Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton
2004-08-01
We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Good Practices for Learning to Recognize Actions Using FV and VLAD.
Wu, Jianxin; Zhang, Yu; Lin, Weiyao
2016-12-01
High dimensional representations such as Fisher vectors (FV) and vectors of locally aggregated descriptors (VLAD) have shown state-of-the-art accuracy for action recognition in videos. The high dimensionality, on the other hand, also causes computational difficulties when scaling up to large-scale video data. This paper makes three lines of contributions to learning to recognize actions using high dimensional representations. First, we reviewed several existing techniques that improve upon FV or VLAD in image classification, and performed extensive empirical evaluations to assess their applicability for action recognition. Our analyses of these empirical results show that normality and bimodality are essential to achieve high accuracy. Second, we proposed a new pooling strategy for VLAD and three simple, efficient, and effective transformations for both FV and VLAD. Both proposed methods have shown higher accuracy than the original FV/VLAD method in extensive evaluations. Third, we proposed and evaluated new feature selection and compression methods for the FV and VLAD representations. This strategy uses only 4% of the storage of the original representation, but achieves comparable or even higher accuracy. Based on these contributions, we recommend a set of good practices for action recognition in videos for practitioners in this field.
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Estimating Soil Moisture Using Polsar Data: a Machine Learning Approach
NASA Astrophysics Data System (ADS)
Khedri, E.; Hasanlou, M.; Tabatabaeenejad, A.
2017-09-01
Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms.
Selection of USSR foreign similarity regions
NASA Technical Reports Server (NTRS)
Disler, J. M. (Principal Investigator)
1982-01-01
The similarity regions in the United States and Canada were selected to parallel the conditions that affect labeling and classification accuracies in the U.S.S.R. indicator regions. In addition to climate, a significant condition that affects labeling and classification accuracies in the U.S.S.R. is the proportion of barley and wheat grown in a given region (based on sown areas). The following regions in the United States and Canada were determined to be similar to the U.S.S.R. indicator regions: (1) Montana agrophysical unit (APU) 104 corresponds to the Belorussia high barley region; (2) North Dakota and Minnesota APU 20 and secondary region southern Manitoba and Saskatchewan correspond to the Ural RSFSR barley and spring wheat region; (3) Montana APU 23 corresponds to he North Caucasus barley and winter wheat region. Selection criteria included climates, crop type, crop distribution, growth cycles, field sizes, and field shapes.
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
Metacognition for strategy selection during arithmetic problem-solving in young and older adults.
Geurten, Marie; Lemaire, Patrick
2018-04-19
We examined participants' strategy choices and metacognitive judgments during arithmetic problem-solving. Metacognitive judgments were collected either prospectively or retrospectively. We tested whether metacognitive judgments are related to strategy choices on the current problems and on the immediately following problems, and age-related differences in relations between metacognition and strategy choices. Data showed that both young and older adults were able to make accurate retrospective, but not prospective, judgments. Moreover, the accuracy of retrospective judgments was comparable in young and older adults when participants had to select and execute the better strategy. Metacognitive accuracy was even higher in older adults when participants had to only select the better strategy. Finally, low-confidence judgments on current items were more frequently followed by better strategy selection on immediately succeeding items than high-confidence judgments in both young and older adults. Implications of these findings to further our understanding of age-related differences and similarities in adults' metacognitive monitoring and metacognitive regulation for strategy selection in the context of arithmetic problem solving are discussed.
Haberland, A M; König von Borstel, U; Simianer, H; König, S
2012-09-01
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.
Ooi, Chia Huey; Chetty, Madhu; Teng, Shyh Wei
2006-06-23
Due to the large number of genes in a typical microarray dataset, feature selection looks set to play an important role in reducing noise and computational cost in gene expression-based tissue classification while improving accuracy at the same time. Surprisingly, this does not appear to be the case for all multiclass microarray datasets. The reason is that many feature selection techniques applied on microarray datasets are either rank-based and hence do not take into account correlations between genes, or are wrapper-based, which require high computational cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are considered, attempts to establish the merit of the proposed techniques are hampered by evaluation procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy. We present two realistically evaluated correlation-based feature selection techniques which incorporate, in addition to the two existing criteria involved in forming a predictor set (relevance and redundancy), a third criterion called the degree of differential prioritization (DDP). DDP functions as a parameter to strike the balance between relevance and redundancy, providing our techniques with the novel ability to differentially prioritize the optimization of relevance against redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets. For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP enables our filter-based techniques to produce accuracies better than those reported in previous studies which employed similarly realistic evaluation procedures.
Amaral, Jorge L M; Lopes, Agnaldo J; Jansen, José M; Faria, Alvaro C D; Melo, Pedro L
2013-12-01
The purpose of this study was to develop an automatic classifier to increase the accuracy of the forced oscillation technique (FOT) for diagnosing early respiratory abnormalities in smoking patients. The data consisted of FOT parameters obtained from 56 volunteers, 28 healthy and 28 smokers with low tobacco consumption. Many supervised learning techniques were investigated, including logistic linear classifiers, k nearest neighbor (KNN), neural networks and support vector machines (SVM). To evaluate performance, the ROC curve of the most accurate parameter was established as baseline. To determine the best input features and classifier parameters, we used genetic algorithms and a 10-fold cross-validation using the average area under the ROC curve (AUC). In the first experiment, the original FOT parameters were used as input. We observed a significant improvement in accuracy (KNN=0.89 and SVM=0.87) compared with the baseline (0.77). The second experiment performed a feature selection on the original FOT parameters. This selection did not cause any significant improvement in accuracy, but it was useful in identifying more adequate FOT parameters. In the third experiment, we performed a feature selection on the cross products of the FOT parameters. This selection resulted in a further increase in AUC (KNN=SVM=0.91), which allows for high diagnostic accuracy. In conclusion, machine learning classifiers can help identify early smoking-induced respiratory alterations. The use of FOT cross products and the search for the best features and classifier parameters can markedly improve the performance of machine learning classifiers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer
NASA Astrophysics Data System (ADS)
Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad
2017-04-01
Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.
Benitez-Vieyra, S; Ordano, M; Fornoni, J; Boege, K; Domínguez, C A
2010-12-01
Because pollinators are unable to directly assess the amount of rewards offered by flowers, they rely on the information provided by advertising floral traits. Thus, having a lower intra-individual correlation between signal and reward (signal accuracy) than other plants in the population provides the opportunity to reduce investment in rewards and cheat pollinators. However, pollinators' cognitive capacities can impose a limit to the evolution of this plant cheating strategy if they can punish those plants with low signal accuracy. In this study, we examined the opportunity for cheating in the perennial weed Turnera ulmifolia L. evaluating the selective value of signal accuracy, floral display and reward production in a natural population. We found that plant reproductive success was positively related to signal accuracy and floral display, but not to nectar production. The intensity of selection on floral display was more than three times higher than on signal accuracy. The pattern of selection indicated that pollinators can select for signal accuracy provided by plants and suggests that learning abilities of pollinators can limit the evolution of deceptive strategies in T. ulmifolia. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.
SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, T; Ruan, D
2015-06-15
Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is firstmore » roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit in both complexity and performance is expected to be most pronounced with large-scale heterogeneous data.« less
Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita
2014-01-01
Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488
Pedometer accuracy in slow walking older adults.
Martin, Jessica B; Krč, Katarina M; Mitchell, Emily A; Eng, Janice J; Noble, Jeremy W
2012-07-03
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds.
Pedometer accuracy in slow walking older adults
Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.
2013-01-01
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762
Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A
2017-09-15
Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code available at http://insilico.utulsa.edu/software/privateEC . brett-mckinney@utulsa.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A universal deep learning approach for modeling the flow of patients under different severities.
Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L
2018-02-01
The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.
A fast RCS accuracy assessment method for passive radar calibrators
NASA Astrophysics Data System (ADS)
Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI
2016-10-01
In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.
An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.
ERIC Educational Resources Information Center
Caceci, Marco S.
1984-01-01
Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…
Asymmetric bagging and feature selection for activities prediction of drug molecules.
Li, Guo-Zheng; Meng, Hao-Hua; Lu, Wen-Cong; Yang, Jack Y; Yang, Mary Qu
2008-05-28
Activities of drug molecules can be predicted by QSAR (quantitative structure activity relationship) models, which overcomes the disadvantages of high cost and long cycle by employing the traditional experimental method. With the fact that the number of drug molecules with positive activity is rather fewer than that of negatives, it is important to predict molecular activities considering such an unbalanced situation. Here, asymmetric bagging and feature selection are introduced into the problem and asymmetric bagging of support vector machines (asBagging) is proposed on predicting drug activities to treat the unbalanced problem. At the same time, the features extracted from the structures of drug molecules affect prediction accuracy of QSAR models. Therefore, a novel algorithm named PRIFEAB is proposed, which applies an embedded feature selection method to remove redundant and irrelevant features for asBagging. Numerical experimental results on a data set of molecular activities show that asBagging improve the AUC and sensitivity values of molecular activities and PRIFEAB with feature selection further helps to improve the prediction ability. Asymmetric bagging can help to improve prediction accuracy of activities of drug molecules, which can be furthermore improved by performing feature selection to select relevant features from the drug molecules data sets.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong
2018-01-01
The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.
Grinding technoloy of aspheric molds for glass-molding; Technical Digest
NASA Astrophysics Data System (ADS)
Kojima, Yoichi
2005-05-01
We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.
NASA Astrophysics Data System (ADS)
Mo, S.; Lu, D.; Shi, X.; Zhang, G.; Ye, M.; Wu, J.
2016-12-01
Surrogate models have shown remarkable computational efficiency in hydrological simulations involving design space exploration, sensitivity analysis, uncertainty quantification, etc. The central task of constructing a global surrogate models is to achieve a prescribed approximation accuracy with as few original model executions as possible, which requires a good design strategy to optimize the distribution of data points in the parameter domains and an effective stopping criterion to automatically terminate the design process when desired approximation accuracy is achieved. This study proposes a novel adaptive sampling strategy, which starts from a small number of initial samples and adaptively selects additional samples by balancing the collection in unexplored regions and refinement in interesting areas. We define an efficient and effective evaluation metric basing on Taylor expansion to select the most promising potential samples from candidate points, and propose a robust stopping criterion basing on the approximation accuracy at new points to guarantee the achievement of desired accuracy. The numerical results of several benchmark analytical functions indicate that the proposed approach is more computationally efficient and robust than the widely used maximin distance design and two other well-known adaptive sampling strategies. The application to two complicated multiphase flow problems further demonstrates the efficiency and effectiveness of our method in constructing global surrogate models for high-dimensional and highly nonlinear problems. Acknowledgements: This work was financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.
Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai
2017-12-26
Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.
Assessing genomic selection prediction accuracy in a dynamic barley breeding
USDA-ARS?s Scientific Manuscript database
Genomic selection is a method to improve quantitative traits in crops and livestock by estimating breeding values of selection candidates using phenotype and genome-wide marker data sets. Prediction accuracy has been evaluated through simulation and cross-validation, however validation based on prog...
McRobert, Allistair Paul; Causer, Joe; Vassiliadis, John; Watterson, Leonie; Kwan, James; Williams, Mark A
2013-06-01
It is well documented that adaptations in cognitive processes with increasing skill levels support decision making in multiple domains. We examined skill-based differences in cognitive processes in emergency medicine physicians, and whether performance was significantly influenced by the removal of contextual information related to a patient's medical history. Skilled (n=9) and less skilled (n=9) emergency medicine physicians responded to high-fidelity simulated scenarios under high- and low-context information conditions. Skilled physicians demonstrated higher diagnostic accuracy irrespective of condition, and were less affected by the removal of context-specific information compared with less skilled physicians. The skilled physicians generated more options, and selected better quality options during diagnostic reasoning compared with less skilled counterparts. These cognitive processes were active irrespective of the level of context-specific information presented, although high-context information enhanced understanding of the patients' symptoms resulting in higher diagnostic accuracy. Our findings have implications for scenario design and the manipulation of contextual information during simulation training.
Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi
2015-09-01
Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry
NASA Astrophysics Data System (ADS)
Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki
2015-08-01
In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.
Accuracy of nursing diagnoses for identifying domestic violence against children.
Apostólico, Maíra Rosa; Egry, Emiko Yoshikawa; Fornari, Lucimara Fabiana; Gessner, Rafaela
2017-01-01
Objective Identify nursing diagnoses involving a hypothetical situation of domestic violence against a child and the respective degrees of accuracy. Method An exploratory, evaluative, case study was conducted using a quantitative and qualitative approach, with data collected using an online instrument from 26 nurses working in the Municipal Health Network, between June and August 2010, in Curitiba, and also during the first half of 2014 in São Paulo. Both of these cities are in Brazil. Nursing diagnoses and interventions from the International Classification of Nursing Practices in Collective Health were provided, and accuracy was verified using the Nursing Diagnosis Accuracy Scale. Results Thirty-nine nursing diagnoses were identified, 27 of which were common to both cities. Of these, 15 were scored at the null level of accuracy, 11 at high accuracy and 1 at medium accuracy. Conclusion The difficulty the nurses had in defining diagnoses may be associated with the fact that nursing care generally focuses on clinical problems, and signs expressing situations of domestic violence against children go unnoticed. The results demonstrated the difficulty of participants in selecting the appropriate nursing diagnosis for the case in question.
Adaptation and fallibility in experts' judgments of novice performers.
Larson, Jeffrey S; Billeter, Darron M
2017-02-01
Competition judges are often selected for their expertise, under the belief that a high level of performance expertise should enable accurate judgments of the competitors. Contrary to this assumption, we find evidence that expertise can reduce judgment accuracy. Adaptation level theory proposes that discriminatory capacity decreases with greater distance from one's adaptation level. Because experts' learning has produced an adaptation level close to ideal performance standards, they may be less able to discriminate among lower-level competitors. As a result, expertise increases judgment accuracy of high-level competitions but decreases judgment accuracy of low-level competitions. Additionally, we demonstrate that, consistent with an adaptation level theory account of expert judgment, experts systematically give more critical ratings than intermediates or novices. In summary, this work demonstrates a systematic change in human perception that occurs as task learning increases. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bradley, David; Nisbet, Andrew
2012-01-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649
Palmer, Antony; Bradley, David; Nisbet, Andrew
2012-06-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung
2018-01-30
Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.
Decision Support System for Determining Scholarship Selection using an Analytical Hierarchy Process
NASA Astrophysics Data System (ADS)
Puspitasari, T. D.; Sari, E. O.; Destarianto, P.; Riskiawan, H. Y.
2018-01-01
Decision Support System is a computer program application that analyzes data and presents it so that users can make decision more easily. Determining Scholarship Selection study case in Senior High School in east Java wasn’t easy. It needed application to solve the problem, to improve the accuracy of targets for prospective beneficiaries of poor students and to speed up the screening process. This research will build system uses the method of Analytical Hierarchy Process (AHP) is a method that solves a complex and unstructured problem into its group, organizes the groups into a hierarchical order, inputs numerical values instead of human perception in comparing relative and ultimately with a synthesis determined elements that have the highest priority. The accuracy system for this research is 90%.
Kruskal-Wallis-based computationally efficient feature selection for face recognition.
Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz
2014-01-01
Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.
NASA Astrophysics Data System (ADS)
Franceschini, M. H. D.; Demattê, J. A. M.; da Silva Terra, F.; Vicente, L. E.; Bartholomeus, H.; de Souza Filho, C. R.
2015-06-01
Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS - Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.
Detection of artificially ripened mango using spectrometric analysis
NASA Astrophysics Data System (ADS)
Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay
2017-05-01
Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence
Ozcift, Akin
2012-08-01
Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
The evolution of ageing and longevity.
Kirkwood, T B; Holliday, R
1979-09-21
Ageing is not adaptive since it reduces reproductive potential, and the argument that it evolved to provide offspring with living space is hard to sustain for most species. An alternative theory is based on the recognition that the force of natural selection declines with age, since in most environments individuals die from predation, disease or starvation. Ageing could therefore be the combined result of late-expressed deleterious genes which are beyond the reach of effective negative selection. However, this argument is circular, since the concept of 'late expression' itself implies the prior existence of adult age-related physiological processes. Organisms that do not age are essentially in a steady state in which chronologically young and old individuals are physiologically the same. In this situation the synthesis of macromolecules must be sufficiently accurate to prevent error feedback and the development of lethal 'error catastrophes'. This involves the expenditure of energy, which is required for both kinetic proof-reading and other accuracy promoting devices. It may be selectively advantageous for higher organisms to adopt an energy saving strategy of reduced accuracy in somatic cells to accelerate development and reproduction, but the consequence will be eventual deterioration and death. This 'disposable soma' theory of the evolution of ageing also proposes that a high level of accuracy is maintained in immortal germ line cells, or alternatively, that any defective germ cells are eliminated. The evolution of an increase in longevity in mammals may be due to a concomitant reduction in the rates of growth and reproduction and an increase in the accuracy of synthesis of macromolecules. The theory can be tested by measuring accuracy in germ line and somatic cells and also by comparing somatic cells from mammals with different longevities.
Constraints on the Energy Density Content of the Universe Using Only Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark
2003-01-01
We demonstrate that it is possible to constrain the energy content of the Universe with high accuracy using observations of clusters of galaxies only. The degeneracies in the cosmological parameters are lifted by combining constraints from different observables of galaxy clusters. We show that constraints on cosmological parameters from galaxy cluster number counts as a function of redshift and accurate angular diameter distance measurements to clusters are complementary to each other and their combination can constrain the energy density content of the Universe well. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zeldovich effect) surveys, the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect (X-SZ method). In this letter we combine constraints from simulated cluster number counts expected from a 12 deg2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on using the X-SZ method assuming an expected accuracy of 7% in the angular diameter distance determination of 70 clusters with redshifts less than 1.5. We find that R, can be determined within about 25%, A within 20%, and w within 16%. Any cluster survey can be used to select clusters for high accuracy distance measurements, but we assumed accurate angular diameter distance measurements for only 70 clusters since long observations are necessary to achieve high accuracy in distance measurements. Thus the question naturally arises: How to select clusters of galaxies for accurate diameter distance determinations? In this letter, as an example, we demonstrate that it is possible to optimize this selection changing the number of clusters observed, and the upper cut off of their redshift range. We show that constraints on cosmological parameters from combining cluster number counts and angular diameter distance measurements, as opposed to general expectations, will not improve substantially selecting clusters with redshifts higher than one. This important conclusion allow us to restrict our cluster sample to clusters closer than one, in a range where the observational time for accurate distance measurements are more manageable. Subject headings: cosmological parameters - cosmology: theory - galaxies: clusters: general - X-rays: galaxies: clusters
Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers
2010-01-01
Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP. PMID:20950478
Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu
2014-11-01
Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and primary stability. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Plotnikov, Nikolay V
2014-08-12
Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.
2015-01-01
Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force. PMID:25136268
Accuracy and high-speed technique for autoprocessing of Young's fringes
NASA Astrophysics Data System (ADS)
Chen, Wenyi; Tan, Yushan
1991-12-01
In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.
Gjerde, Hallvard; Verstraete, Alain
2010-02-25
To study several methods for estimating the prevalence of high blood concentrations of tetrahydrocannabinol and amphetamine in a population of drug users by analysing oral fluid (saliva). Five methods were compared, including simple calculation procedures dividing the drug concentrations in oral fluid by average or median oral fluid/blood (OF/B) drug concentration ratios or linear regression coefficients, and more complex Monte Carlo simulations. Populations of 311 cannabis users and 197 amphetamine users from the Rosita-2 Project were studied. The results of a feasibility study suggested that the Monte Carlo simulations might give better accuracies than simple calculations if good data on OF/B ratios is available. If using only 20 randomly selected OF/B ratios, a Monte Carlo simulation gave the best accuracy but not the best precision. Dividing by the OF/B regression coefficient gave acceptable accuracy and precision, and was therefore the best method. None of the methods gave acceptable accuracy if the prevalence of high blood drug concentrations was less than 15%. Dividing the drug concentration in oral fluid by the OF/B regression coefficient gave an acceptable estimation of high blood drug concentrations in a population, and may therefore give valuable additional information on possible drug impairment, e.g. in roadside surveys of drugs and driving. If good data on the distribution of OF/B ratios are available, a Monte Carlo simulation may give better accuracy. 2009 Elsevier Ireland Ltd. All rights reserved.
Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation
Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin
2016-01-01
Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821
Genomic selection in sugar beet breeding populations.
Würschum, Tobias; Reif, Jochen C; Kraft, Thomas; Janssen, Geert; Zhao, Yusheng
2013-09-18
Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.
NASA Astrophysics Data System (ADS)
Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.
2017-12-01
Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.
Torshabi, Ahmad Esmaili; Nankali, Saber
2016-01-01
In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479
2012-01-01
Background Previous studies on tumor classification based on gene expression profiles suggest that gene selection plays a key role in improving the classification performance. Moreover, finding important tumor-related genes with the highest accuracy is a very important task because these genes might serve as tumor biomarkers, which is of great benefit to not only tumor molecular diagnosis but also drug development. Results This paper proposes a novel gene selection method with rich biomedical meaning based on Heuristic Breadth-first Search Algorithm (HBSA) to find as many optimal gene subsets as possible. Due to the curse of dimensionality, this type of method could suffer from over-fitting and selection bias problems. To address these potential problems, a HBSA-based ensemble classifier is constructed using majority voting strategy from individual classifiers constructed by the selected gene subsets, and a novel HBSA-based gene ranking method is designed to find important tumor-related genes by measuring the significance of genes using their occurrence frequencies in the selected gene subsets. The experimental results on nine tumor datasets including three pairs of cross-platform datasets indicate that the proposed method can not only obtain better generalization performance but also find many important tumor-related genes. Conclusions It is found that the frequencies of the selected genes follow a power-law distribution, indicating that only a few top-ranked genes can be used as potential diagnosis biomarkers. Moreover, the top-ranked genes leading to very high prediction accuracy are closely related to specific tumor subtype and even hub genes. Compared with other related methods, the proposed method can achieve higher prediction accuracy with fewer genes. Moreover, they are further justified by analyzing the top-ranked genes in the context of individual gene function, biological pathway, and protein-protein interaction network. PMID:22830977
Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B
2018-05-31
Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.
He, Xingrong; Yang, Yongqiang; Wu, Weihui; Wang, Di; Ding, Huanwen; Huang, Weihong
2010-06-01
In order to simplify the distal femoral comminuted fracture surgery and improve the accuracy of the parts to be reset, a kind of surgery orienting model for the surgery operation was designed according to the scanning data of computer tomography and the three-dimensional reconstruction image. With the use of DiMetal-280 selective laser melting rapid prototyping system, the surgery orienting model of 316L stainless steel was made through orthogonal experiment for processing parameter optimization. The technology of direct manufacturing of surgery orienting model by selective laser melting was noted to have obvious superiority with high speed, precise profile and good accuracy in size when compared with the conventional one. The model was applied in a real surgical operation for thighbone replacement; it worked well. The successful development of the model provides a new method for the automatic manufacture of customized surgery model, thus building a foundation for more clinical applications in the future.
Hash Bit Selection for Nearest Neighbor Search.
Xianglong Liu; Junfeng He; Shih-Fu Chang
2017-11-01
To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
NASA Astrophysics Data System (ADS)
Alfano, R.; Soetemans, D.; Bauman, G. S.; Gibson, E.; Gaed, M.; Moussa, M.; Gomez, J. A.; Chin, J. L.; Pautler, S.; Ward, A. D.
2018-02-01
Multi-parametric MRI (mp-MRI) is becoming a standard in contemporary prostate cancer screening and diagnosis, and has shown to aid physicians in cancer detection. It offers many advantages over traditional systematic biopsy, which has shown to have very high clinical false-negative rates of up to 23% at all stages of the disease. However beneficial, mp-MRI is relatively complex to interpret and suffers from inter-observer variability in lesion localization and grading. Computer-aided diagnosis (CAD) systems have been developed as a solution as they have the power to perform deterministic quantitative image analysis. We measured the accuracy of such a system validated using accurately co-registered whole-mount digitized histology. We trained a logistic linear classifier (LOGLC), support vector machine (SVC), k-nearest neighbour (KNN) and random forest classifier (RFC) in a four part ROI based experiment against: 1) cancer vs. non-cancer, 2) high-grade (Gleason score ≥4+3) vs. low-grade cancer (Gleason score <4+3), 3) high-grade vs. other tissue components and 4) high-grade vs. benign tissue by selecting the classifier with the highest AUC using 1-10 features from forward feature selection. The CAD model was able to classify malignant vs. benign tissue and detect high-grade cancer with high accuracy. Once fully validated, this work will form the basis for a tool that enhances the radiologist's ability to detect malignancies, potentially improving biopsy guidance, treatment selection, and focal therapy for prostate cancer patients, maximizing the potential for cure and increasing quality of life.
Performance of genomic prediction within and across generations in maritime pine.
Bartholomé, Jérôme; Van Heerwaarden, Joost; Isik, Fikret; Boury, Christophe; Vidal, Marjorie; Plomion, Christophe; Bouffier, Laurent
2016-08-11
Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. A reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85. This study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.
Matthews, Kylie L; Palmer, Michelle A; Capra, Sandra M
2017-11-08
Using standardised terminology in acute care has encouraged consistency in patient care and the evaluation of outcomes. As such, the Nutrition Care Process (NCP) and Nutrition Care Process Terminology (NCPT) may assist dietitian nutritionists in the delivery of high quality nutrition care worldwide; however, limited research has been conducted examining the consistency and accuracy of its use. We aimed to examine the NCPT that dietitian nutritionists would use to formulate a diagnostic statement relating to refeeding syndrome (RFS). A multimethod action research approach was used, incorporating two projects. The first was a survey examining Australian dietitian nutritionists' (n = 195) opinions regarding NCPT use in cases of RFS. To establish if results were similar internationally, an interview was then conducted with 22 dietitian nutritionists working within 10 different countries. 'Imbalance of nutrients' was only identified as a correct code by 17% of respondents in project 1. No mention of this term was made in project 2. Also 86% of respondents incorrectly selected more than one diagnostic code. The majority of respondents (80%, n = 52/65) who incorrectly selected 'Malnutrition', without also selecting 'Imbalance of nutrients', selected 'reduce intake' as an intervention, suggesting some misunderstanding in the requirement for interrelated diagnoses, interventions and goals. Our findings demonstrate that there is limited accuracy and consistency in selecting nutritional diagnostic codes in relation to RFS. Respondents also demonstrated limited knowledge regarding appropriate application of the NCP and NCPT. Implementation practices may require further refinement, as accurate and consistent use is required to procure the benefits of standardised terminology. © 2017 Dietitians Association of Australia.
Bush, Hillary H; Eisenhower, Abbey; Briggs-Gowan, Margaret; Carter, Alice S
2015-01-01
Rooted in the theory of attention put forth by Mirsky, Anthony, Duncan, Ahearn, and Kellam (1991), the Structured Attention Module (SAM) is a developmentally sensitive, computer-based performance task designed specifically to assess sustained selective attention among 3- to 6-year-old children. The current study addressed the feasibility and validity of the SAM among 64 economically disadvantaged preschool-age children (mean age = 58 months; 55% female); a population known to be at risk for attention problems and adverse math performance outcomes. Feasibility was demonstrated by high completion rates and strong associations between SAM performance and age. Principal Factor Analysis with rotation produced robust support for a three-factor model (Accuracy, Speed, and Endurance) of SAM performance, which largely corresponded with existing theorized models of selective and sustained attention. Construct validity was evidenced by positive correlations between SAM Composite scores and all three SAM factors and IQ, and between SAM Accuracy and sequential memory. Value-added predictive validity was not confirmed through main effects of SAM on math performance above and beyond age and IQ; however, significant interactions by child sex were observed: Accuracy and Endurance both interacted with child sex to predict math performance. In both cases, the SAM factors predicted math performance more strongly for girls than for boys. There were no overall sex differences in SAM performance. In sum, the current findings suggest that interindividual variation in sustained selective attention, and potentially other aspects of attention and executive function, among young, high-risk children can be captured validly with developmentally sensitive measures.
Effects of shade tab arrangement on the repeatability and accuracy of shade selection.
Yılmaz, Burak; Yuzugullu, Bulem; Cınar, Duygu; Berksun, Semih
2011-06-01
Appropriate and repeatable shade matching using visual shade selection remains a challenge for the restorative dentist. The purpose of this study was to evaluate the effect of different arrangements of a shade guide on the repeatability and accuracy of visual shade selection by restorative dentists. Three Vitapan Classical shade guides were used for shade selection. Seven shade tabs from one shade guide were used as target shades for the testing (A1, A4, B2, B3, C2, C4, and D3); the other 2 guides were used for shade selection by the subjects. One shade guide was arranged according to hue and chroma and the second was arranged according to value. Thirteen male and 22 female restorative dentists were asked to match the target shades using shade guide tabs arranged in the 2 different orders. The sessions were performed twice with each guide in a viewing booth. Collected data were analyzed with Fisher's exact test to compare the accuracy and repeatability of the shade selection (α=.05). There were no significant differences observed in the accuracy or repeatability of the shade selection results obtained with the 2 different arrangements. When the hue/chroma-ordered shade guide was used, 58% of the shade selections were accurate. This ratio was 57.6% when the value-ordered shade guide was used. The observers repeated 55.5% of the selections accurately with the hue/chroma-ordered shade guide and 54.3% with the value-ordered shade guide. The accuracy and repeatability of shade selections by restorative dentists were similar when different arrangements (hue/chroma-ordered and value-ordered) of the Vitapan Classical shade guide were used. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.
1991-01-01
A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.
Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models
NASA Astrophysics Data System (ADS)
Zang, Tianwu
Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.
Feeling Validated Versus Being Correct:A Meta-Analysis of Selective Exposure to Information
Hart, William; Albarracín, Dolores; Eagly, Alice H.; Brechan, Inge; Lindberg, Matthew J.; Merrill, Lisa
2013-01-01
A meta-analysis assessed whether exposure to information is guided by defense or accuracy motives. The studies examined information preferences in relation to attitudes, beliefs, and behaviors in situations that provided choices between congenial information, which supported participants' pre-existing attitudes, beliefs, or behaviors, and uncongenial information, which challenged these tendencies. Analyses indicated a moderate preference for congenial over uncongenial information (d. = 0.36). As predicted, this congeniality bias was moderated by variables that affect the strength of participants' defense motivation and accuracy motivation. In support of the importance of defense motivation, the congeniality bias was weaker when participants' attitudes, beliefs, or behaviors were supported prior to information selection, when participants' attitudes, beliefs, or behaviors were not relevant to their values or not held with conviction, when the available information was low in quality, when participants' closed-mindedness was low, and when their confidence in the attitude, belief, or behavior was high. In support of the importance of accuracy motivation, an uncongeniality bias emerged when uncongenial information was relevant to accomplishing a current goal. PMID:19586162
Feeling validated versus being correct: a meta-analysis of selective exposure to information.
Hart, William; Albarracín, Dolores; Eagly, Alice H; Brechan, Inge; Lindberg, Matthew J; Merrill, Lisa
2009-07-01
A meta-analysis assessed whether exposure to information is guided by defense or accuracy motives. The studies examined information preferences in relation to attitudes, beliefs, and behaviors in situations that provided choices between congenial information, which supported participants' pre-existing attitudes, beliefs, or behaviors, and uncongenial information, which challenged these tendencies. Analyses indicated a moderate preference for congenial over uncongenial information (d=0.36). As predicted, this congeniality bias was moderated by variables that affect the strength of participants' defense motivation and accuracy motivation. In support of the importance of defense motivation, the congeniality bias was weaker when participants' attitudes, beliefs, or behaviors were supported prior to information selection; when participants' attitudes, beliefs, or behaviors were not relevant to their values or not held with conviction; when the available information was low in quality; when participants' closed-mindedness was low; and when their confidence in the attitude, belief, or behavior was high. In support of the importance of accuracy motivation, an uncongeniality bias emerged when uncongenial information was relevant to accomplishing a current goal. Copyright (c) 2009 APA, all rights reserved.
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-01-01
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-09-24
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.
Increased genomic prediction accuracy in wheat breeding using a large Australian panel.
Norman, Adam; Taylor, Julian; Tanaka, Emi; Telfer, Paul; Edwards, James; Martinant, Jean-Pierre; Kuchel, Haydn
2017-12-01
Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom TM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.
A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG
Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng
2017-01-01
In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203
Application of GA-SVM method with parameter optimization for landslide development prediction
NASA Astrophysics Data System (ADS)
Li, X. Z.; Kong, J. M.
2013-10-01
Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.
Tian, Xin; Xin, Mingyuan; Luo, Jian; Liu, Mingyao; Jiang, Zhenran
2017-02-01
The selection of relevant genes for breast cancer metastasis is critical for the treatment and prognosis of cancer patients. Although much effort has been devoted to the gene selection procedures by use of different statistical analysis methods or computational techniques, the interpretation of the variables in the resulting survival models has been limited so far. This article proposes a new Random Forest (RF)-based algorithm to identify important variables highly related with breast cancer metastasis, which is based on the important scores of two variable selection algorithms, including the mean decrease Gini (MDG) criteria of Random Forest and the GeneRank algorithm with protein-protein interaction (PPI) information. The new gene selection algorithm can be called PPIRF. The improved prediction accuracy fully illustrated the reliability and high interpretability of gene list selected by the PPIRF approach.
Adaptation and Fallibility in Experts' Judgments of Novice Performers
ERIC Educational Resources Information Center
Larson, Jeffrey S.; Billeter, Darron M.
2017-01-01
Competition judges are often selected for their expertise, under the belief that a high level of performance expertise should enable accurate judgments of the competitors. Contrary to this assumption, we find evidence that expertise can reduce judgment accuracy. Adaptation level theory proposes that discriminatory capacity decreases with greater…
USDA-ARS?s Scientific Manuscript database
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection is an attractive technology to generate rapid genetic gains in switchgrass and ...
Variable-mesh method of solving differential equations
NASA Technical Reports Server (NTRS)
Van Wyk, R.
1969-01-01
Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.
Behairy, Noha H.; Dorgham, Mohsen A.
2008-01-01
The aim of this study was to detect the accuracy of routine magnetic resonance imaging (MRI) done in different centres and its agreement with arthroscopy in meniscal and ligamentous injuries of the knee. We prospectively examined 70 patients ranging in age between 22 and 59 years. History taking, plain X-ray, clinical examination, routine MRI and arthroscopy were done for all patients. Sensitivity, specificity, accuracy, positive and negative predictive values, P value and kappa agreement measures were calculated. We found a sensitivity of 47 and 100%, specificity of 95 and 75% and accuracy of 73 and 78.5%, respectively, for the medial and lateral meniscus. A sensitivity of 77.8%, specificity of 100% and accuracy of 94% was noted for the anterior cruciate ligament (ACL). We found good kappa agreements (0.43 and 0.45) for both menisci and excellent agreement (0.84) for the ACL. MRI shows high accuracy and should be used as the primary diagnostic tool for selection of candidates for arthroscopy. Level of evidence: 4. PMID:18506445
Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu
2012-11-15
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range
de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander
2016-01-01
Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed. PMID:27137334
Prospects for Genomic Selection in Cassava Breeding.
Wolfe, Marnin D; Del Carpio, Dunia Pino; Alabi, Olumide; Ezenwaka, Lydia C; Ikeogu, Ugochukwu N; Kayondo, Ismail S; Lozano, Roberto; Okeke, Uche G; Ozimati, Alfred A; Williams, Esuma; Egesi, Chiedozie; Kawuki, Robert S; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc
2017-11-01
Cassava ( Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden. Copyright © 2017 Crop Science Society of America.
NASA Astrophysics Data System (ADS)
Smith, J.; Gambacorta, A.; Barnet, C.; Smith, N.; Goldberg, M.; Pierce, B.; Wolf, W.; King, T.
2016-12-01
This work presents an overview of the NPP and J1 CrIS high resolution operational channel selection. Our methodology focuses on the spectral sensitivity characteristics of the available channels in order to maximize information content and spectral purity. These aspects are key to ensure accuracy in the retrieval products, particularly for trace gases. We will provide a demonstration of its global optimality by analyzing different test cases that are of particular interests to our JPSS Proving Ground and Risk Reduction user applications. A focus will be on high resolution trace gas retrieval capability in the context of the Alaska fire initiatives.
Outcome Prediction in Mathematical Models of Immune Response to Infection.
Mai, Manuel; Wang, Kun; Huber, Greg; Kirby, Michael; Shattuck, Mark D; O'Hern, Corey S
2015-01-01
Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs) that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.
Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis.
Fallon, Monica; Valero, Oliver; Pazos, Marta; Antón, Alfonso
Imaging devices such as the Heidelberg retinal tomograph-3 (HRT3), scanning laser polarimetry (GDx), and optical coherence tomography (OCT) play an important role in glaucoma diagnosis. A systematic search for evidence-based data was performed for prospective studies evaluating the diagnostic accuracy of HRT3, GDx, and OCT. The diagnostic odds ratio (DOR) was calculated. To compare the accuracy among instruments and parameters, a meta-analysis considering the hierarchical summary receiver-operating characteristic model was performed. The risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Studies in the context of screening programs were used for qualitative analysis. Eighty-six articles were included. The DOR values were 29.5 for OCT, 18.6 for GDx, and 13.9 for HRT. The heterogeneity analysis demonstrated statistically a significant influence of degree of damage and ethnicity. Studies analyzing patients with earlier glaucoma showed poorer results. The risk of bias was high for patient selection. Screening studies showed lower sensitivity values and similar specificity values when compared with those included in the meta-analysis. The classification capabilities of GDx, HRT, and OCT were high and similar across the 3 instruments. The highest estimated DOR was obtained with OCT. Diagnostic accuracy could be overestimated in studies including prediagnosed groups of subjects. Copyright © 2017 Elsevier Inc. All rights reserved.
Hyun, Yil Sik; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo
2013-01-01
Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM. PMID:23678267
Hyun, Yil Sik; Han, Dong Soo; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo
2013-05-01
Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM.
Manufacture of ultra high precision aerostatic bearings based on glass guide
NASA Astrophysics Data System (ADS)
Guo, Meng; Dai, Yifan; Peng, Xiaoqiang; Tie, Guipeng; Lai, Tao
2017-10-01
The aerostatic guide in the traditional three-coordinate measuring machine and profilometer generally use metal or ceramics material. Limited by the guide processing precision, the measurement accuracy of these traditional instruments is around micro-meter level. By selection of optical materials as guide material, optical processing method and laser interference measurement can be introduced to the traditional aerostatic bearings manufacturing field. By using the large aperture wave-front interference measuring equipment , the shape and position error of the glass guide can be obtained in high accuracy and then it can be processed to 0.1μm or even better with the aid of Magnetorheological Finishing(MRF) and Computer Controlled Optical Surfacing (CCOS) process and other modern optical processing method, so the accuracy of aerostatic bearings can be fundamentally improved and ultra high precision coordinate measuring can be achieved. This paper introduces the fabrication and measurement process of the glass guide by K9 with 300mm measuring range, and its working surface accuracy is up to 0.1μm PV, the verticality and parallelism error between the two guide rail face is better than 2μm, and the straightness of the aerostatic bearings by this K9 glass guide is up to 40nm after error compensation.
Spacecraft attitude determination accuracy from mission experience
NASA Technical Reports Server (NTRS)
Brasoveanu, D.; Hashmall, J.
1994-01-01
This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.
Nasir, Muhammad; Attique Khan, Muhammad; Sharif, Muhammad; Lali, Ikram Ullah; Saba, Tanzila; Iqbal, Tassawar
2018-02-21
Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods. © 2018 Wiley Periodicals, Inc.
Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.
Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal
2007-01-01
Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.
Cervical vertebral maturation as a biologic indicator of skeletal maturity.
Santiago, Rodrigo César; de Miranda Costa, Luiz Felipe; Vitral, Robert Willer Farinazzo; Fraga, Marcelo Reis; Bolognese, Ana Maria; Maia, Lucianne Cople
2012-11-01
To identify and review the literature regarding the reliability of cervical vertebrae maturation (CVM) staging to predict the pubertal spurt. The selection criteria included cross-sectional and longitudinal descriptive studies in humans that evaluated qualitatively or quantitatively the accuracy and reproducibility of the CVM method on lateral cephalometric radiographs, as well as the correlation with a standard method established by hand-wrist radiographs. The searches retrieved 343 unique citations. Twenty-three studies met the inclusion criteria. Six articles had moderate to high scores, while 17 of 23 had low scores. Analysis also showed a moderate to high statistically significant correlation between CVM and hand-wrist maturation methods. There was a moderate to high reproducibility of the CVM method, and only one specific study investigated the accuracy of the CVM index in detecting peak pubertal growth. This systematic review has shown that the studies on CVM method for radiographic assessment of skeletal maturation stages suffer from serious methodological failures. Better-designed studies with adequate accuracy, reproducibility, and correlation analysis, including studies with appropriate sensitivity-specificity analysis, should be performed.
Integrated multi-ISE arrays with improved sensitivity, accuracy and precision
NASA Astrophysics Data System (ADS)
Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan
2017-03-01
Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.
Selecting registration schemes in case of interstitial lung disease follow-up in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information),more » four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the range of 1.985–2.156 mm and 1.966–2.234 mm, for NLP and ILD affected regions, respectively, excluding schemes with statistically significant lower performance (Wilcoxon signed-ranks test, p < 0.05), resulting in 13 finally selected registration schemes. Conclusions: Selected registration schemes in case of ILD CT follow-up analysis indicate the significance of adaptive stochastic gradient descent optimizer, as well as the importance of combined rigid and nonrigid schemes providing high accuracy and time efficiency. The selected optimal deformable registration schemes are equivalent in terms of their accuracy and thus compatible in terms of their clinical outcome.« less
Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin
2018-04-01
Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.
A Compact Optical Instrument with Artificial Neural Network for pH Determination
Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin
2012-01-01
The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668
He, Jun; Xu, Jiaqi; Wu, Xiao-Lin; Bauck, Stewart; Lee, Jungjae; Morota, Gota; Kachman, Stephen D; Spangler, Matthew L
2018-04-01
SNP chips are commonly used for genotyping animals in genomic selection but strategies for selecting low-density (LD) SNPs for imputation-mediated genomic selection have not been addressed adequately. The main purpose of the present study was to compare the performance of eight LD (6K) SNP panels, each selected by a different strategy exploiting a combination of three major factors: evenly-spaced SNPs, increased minor allele frequencies, and SNP-trait associations either for single traits independently or for all the three traits jointly. The imputation accuracies from 6K to 80K SNP genotypes were between 96.2 and 98.2%. Genomic prediction accuracies obtained using imputed 80K genotypes were between 0.817 and 0.821 for daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 0.850 and 0.863 for milk yield. The two SNP panels optimized on the three major factors had the highest genomic prediction accuracy (0.821-0.863), and these accuracies were very close to those obtained using observed 80K genotypes (0.825-0.868). Further exploration of the underlying relationships showed that genomic prediction accuracies did not respond linearly to imputation accuracies, but were significantly affected by genotype (imputation) errors of SNPs in association with the traits to be predicted. SNPs optimal for map coverage and MAF were favorable for obtaining accurate imputation of genotypes whereas trait-associated SNPs improved genomic prediction accuracies. Thus, optimal LD SNP panels were the ones that combined both strengths. The present results have practical implications on the design of LD SNP chips for imputation-enabled genomic prediction.
Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)
NASA Technical Reports Server (NTRS)
Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.
2001-01-01
A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.
Note on the chromatographic analyses of marine polyunsaturated fatty acids
Schultz, D.M.; Quinn, J.G.
1977-01-01
Gas-liquid chromatography was used to study the effects of saponification/methylation and thin-layer chromatographic isolation on the analyses of polyunsaturated fatty acids. Using selected procedures, the qualitative and quantitative distribution of these acids in marine organisms can be determined with a high degree of accuracy. ?? 1977 Springer-Verlag.
USDA-ARS?s Scientific Manuscript database
The experiment was designed to validate the use of ultrasound to evaluate body composition in mature beef cows. Both precision and accuracy of measurement were assessed. Cull cows (n = 87) selected for highly variable fatness were used. Two experienced ultrasound technicians scanned and assigned ...
Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas
2015-09-01
Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.
Mall, Jonathan T; Morey, Candice C; Wolff, Michael J; Lehnert, Franziska
2014-10-01
Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.
Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke
2012-01-01
Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
Setford, Steven; Smith, Antony; McColl, David; Grady, Mike; Koria, Krisna; Cameron, Hilary
2015-01-01
Assess laboratory and in-clinic performance of the OneTouch Select(®) Plus test system against ISO 15197:2013 standard for measurement of blood glucose. System performance assessed in laboratory against key patient, environmental and pharmacologic factors. User performance was assessed in clinic by system-naïve lay-users. Healthcare professionals assessed system accuracy on diabetes subjects in clinic. The system demonstrated high levels of performance, meeting ISO 15197:2013 requirements in laboratory testing (precision, linearity, hematocrit, temperature, humidity and altitude). System performance was tested against 28 interferents, with an adverse interfering effect only being recorded for pralidoxime iodide. Clinic user performance results fulfilled ISO 15197:2013 accuracy criteria. Subjects agreed that the color range indicator clearly showed if they were low, in-range or high and helped them better understand glucose results. The system evaluated is accurate and meets all ISO 15197:2013 requirements as per the tests described. The color range indicator helped subjects understand glucose results and supports patients in following healthcare professional recommendations on glucose targets.
Le Guellec, C; Gaudet, M L; Breteau, M
1998-11-20
We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.
Powerful Voter Selection for Making Multistep Delegate Ballot Fair
NASA Astrophysics Data System (ADS)
Yamakawa, Hiroshi
For decision by majority, each voter often exercises his right by delegating to trustable other voters. Multi-step delegates rule allows indirect delegating through more than one voter, and this helps each voter finding his delegate voters. In this paper, we propose powerful voter selection method depending on the multi-step delegate rule. This method sequentially selects voters who is most delegated indirectly. Multi-agent simulation demonstrate that we can achieve highly fair poll results from small number of vote by using proposed method. Here, fairness is prediction accuracy to sum of all voters preferences for choices. In simulation, each voter selects choices arranged on one dimensional preference axis for voting. Acquaintance relationships among voters were generated as a random network, and each voter delegates some of his acquaintances who has similar preferences. We obtained simulation results from various acquaintance networks, and then averaged these results. Firstly, if each voter has enough acquaintances in average, proposed method can help predicting sum of all voters' preferences of choices from small number of vote. Secondly, if the number of each voter's acquaintances increases corresponding to an increase in the number of voters, prediction accuracy (fairness) from small number of vote can be kept in appropriate level.
Lashkari, AmirEhsan; Pak, Fatemeh; Firouzmand, Mohammad
2016-01-01
Breast cancer is the most common type of cancer among women. The important key to treat the breast cancer is early detection of it because according to many pathological studies more than 75% – 80% of all abnormalities are still benign at primary stages; so in recent years, many studies and extensive research done to early detection of breast cancer with higher precision and accuracy. Infra-red breast thermography is an imaging technique based on recording temperature distribution patterns of breast tissue. Compared with breast mammography technique, thermography is more suitable technique because it is noninvasive, non-contact, passive and free ionizing radiation. In this paper, a full automatic high accuracy technique for classification of suspicious areas in thermogram images with the aim of assisting physicians in early detection of breast cancer has been presented. Proposed algorithm consists of four main steps: pre-processing & segmentation, feature extraction, feature selection and classification. At the first step, using full automatic operation, region of interest (ROI) determined and the quality of image improved. Using thresholding and edge detection techniques, both right and left breasts separated from each other. Then relative suspected areas become segmented and image matrix normalized due to the uniqueness of each person's body temperature. At feature extraction stage, 23 features, including statistical, morphological, frequency domain, histogram and Gray Level Co-occurrence Matrix (GLCM) based features are extracted from segmented right and left breast obtained from step 1. To achieve the best features, feature selection methods such as minimum Redundancy and Maximum Relevance (mRMR), Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS) and Genetic Algorithm (GA) have been used at step 3. Finally to classify and TH labeling procedures, different classifiers such as AdaBoost, Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naïve Bayes (NB) and probability Neural Network (PNN) are assessed to find the best suitable one. These steps are applied on different thermogram images degrees. The results obtained on native database showed the best and significant performance of the proposed algorithm in comprise to the similar studies. According to experimental results, GA combined with AdaBoost with the mean accuracy of 85.33% and 87.42% on the left and right breast images with 0 degree, GA combined with AdaBoost with mean accuracy of 85.17% on the left breast images with 45 degree and mRMR combined with AdaBoost with mean accuracy of 85.15% on the right breast images with 45 degree, and also GA combined with AdaBoost with a mean accuracy of 84.67% and 86.21%, on the left and right breast images with 90 degree, are the best combinations of feature selection and classifier for evaluation of breast images. PMID:27014608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov
2015-06-21
Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less
Genomic selection in sugar beet breeding populations
2013-01-01
Background Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. Results We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. Conclusions The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding. PMID:24047500
A Study of the Accuracy and Reliability of Articles about Alopecia in Newspapers.
Kim, Hyojin; Park, In Ho; Kim, Do Hyeong; Park, So Hee; Cho, Gyeong Je; Seol, Jung Eun
2018-06-01
There is growing interest in alopecia among the general population. Many people obtain information from easily accessible media rather than from doctors; thus, the media can play an important role in shaping public opinion. The goal of this study was to evaluate the content and reliability of newspaper articles on alopecia. Newspapers were categorized into three groups: one group of print newspapers and two groups of online newspapers. Online newspapers were further divided into two groups according to type of publishing company; one publishes both print and online newspapers and the other publishes online newspapers only. The most frequently subscribed or circulated newspaper in each group was selected. Articles containing information on alopecia were selected from 3 years of each newspaper and evaluated for reliability. Most articles in each group used the general term "alopecia" instead of naming a specific hair loss disease. The majority of articles were based on consultation with experts. Assessment of the accuracy of articles with three grade scales showed that the percentage with high accuracy was 38.9%, 47.2%, and 23.3%. Assessment of reliability scores for five selected articles in each group showed that there were statistically significant differences between common readers and dermatologists ( p <0.05). The results of this study suggest that closer monitoring of the media is required to supply easily accessible, balanced, and trustworthy information regarding alopecia.
Jensen, Pamela K; Wujcik, Chad E; McGuire, Michelle K; McGuire, Mark A
2016-01-01
Simple high-throughput procedures were developed for the direct analysis of glyphosate [N-(phosphonomethyl)glycine] and aminomethylphosphonic acid (AMPA) in human and bovine milk and human urine matrices. Samples were extracted with an acidified aqueous solution on a high-speed shaker. Stable isotope labeled internal standards were added with the extraction solvent to ensure accurate tracking and quantitation. An additional cleanup procedure using partitioning with methylene chloride was required for milk matrices to minimize the presence of matrix components that can impact the longevity of the analytical column. Both analytes were analyzed directly, without derivatization, by liquid chromatography tandem mass spectrometry using two separate precursor-to-product transitions that ensure and confirm the accuracy of the measured results. Method performance was evaluated during validation through a series of assessments that included linearity, accuracy, precision, selectivity, ionization effects and carryover. Limits of quantitation (LOQ) were determined to be 0.1 and 10 µg/L (ppb) for urine and milk, respectively, for both glyphosate and AMPA. Mean recoveries for all matrices were within 89-107% at three separate fortification levels including the LOQ. Precision for replicates was ≤ 7.4% relative standard deviation (RSD) for milk and ≤ 11.4% RSD for urine across all fortification levels. All human and bovine milk samples used for selectivity and ionization effects assessments were free of any detectable levels of glyphosate and AMPA. Some of the human urine samples contained trace levels of glyphosate and AMPA, which were background subtracted for accuracy assessments. Ionization effects testing showed no significant biases from the matrix. A successful independent external validation was conducted using the more complicated milk matrices to demonstrate method transferability.
Torres, F E; Teodoro, P E; Rodrigues, E V; Santos, A; Corrêa, A M; Ceccon, G
2016-04-29
The aim of this study was to select erect cowpea (Vigna unguiculata L.) genotypes simultaneously for high adaptability, stability, and yield grain in Mato Grosso do Sul, Brazil using mixed models. We conducted six trials of different cowpea genotypes in 2005 and 2006 in Aquidauana, Chapadão do Sul, Dourados, and Primavera do Leste. The experimental design was randomized complete blocks with four replications and 20 genotypes. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction, and selection was based on the harmonic mean of the relative performance of genetic values method using three strategies: selection based on the predicted breeding value, having considered the performance mean of the genotypes in all environments (no interaction effect); the performance in each environment (with an interaction effect); and the simultaneous selection for grain yield, stability, and adaptability. The MNC99542F-5 and MNC99-537F-4 genotypes could be grown in various environments, as they exhibited high grain yield, adaptability, and stability. The average heritability of the genotypes was moderate to high and the selective accuracy was 82%, indicating an excellent potential for selection.
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2012-01-27
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.
Ihmaid, Saleh K; Ahmed, Hany E A; Zayed, Mohamed F; Abadleh, Mohammed M
2016-01-30
The main step in a successful drug discovery pipeline is the identification of small potent compounds that selectively bind to the target of interest with high affinity. However, there is still a shortage of efficient and accurate computational methods with powerful capability to study and hence predict compound selectivity properties. In this work, we propose an affordable machine learning method to perform compound selectivity classification and prediction. For this purpose, we have collected compounds with reported activity and built a selectivity database formed of 153 cathepsin K and S inhibitors that are considered of medicinal interest. This database has three compound sets, two K/S and S/K selective ones and one non-selective KS one. We have subjected this database to the selectivity classification tool 'Emergent Self-Organizing Maps' for exploring its capability to differentiate selective cathepsin inhibitors for one target over the other. The method exhibited good clustering performance for selective ligands with high accuracy (up to 100 %). Among the possibilites, BAPs and MACCS molecular structural fingerprints were used for such a classification. The results exhibited the ability of the method for structure-selectivity relationship interpretation and selectivity markers were identified for the design of further novel inhibitors with high activity and target selectivity.
NASA Astrophysics Data System (ADS)
Laura, J. R.; Miller, D.; Paul, M. V.
2012-03-01
An accuracy assessment of AMES Stereo Pipeline derived DEMs for lunar site selection using weighted spatial dependence simulation and a call for outside AMES derived DEMs to facilitate a statistical precision analysis.
Psychology Textbooks: Examining Their Accuracy
ERIC Educational Resources Information Center
Steuer, Faye B.; Ham, K. Whitfield, II
2008-01-01
Sales figures and recollections of psychologists indicate textbooks play a central role in psychology students' education, yet instructors typically must select texts under time pressure and with incomplete information. Although selection aids are available, none adequately address the accuracy of texts. We describe a technique for sampling…
Men's Sexual Faithfulness Judgments May Contain a Kernel of Truth.
Leivers, Samantha; Simmons, Leigh W; Rhodes, Gillian
2015-01-01
Mechanisms enabling men to identify women likely to engage in extra-pair copulations (EPCs) would be advantageous in avoiding cuckoldry. Men's judgments of female sexual faithfulness often show high consensus, but accuracy appears poor. We examined whether accuracy of these judgments made to images of women could be improved through i) employing a forced choice task, in which men were asked to select the more faithful of two women and/or ii) providing men with full person images. In Experiment 1, men rated 34 women, for whom we had self-reported EPC behavior, on faithfulness, trustworthiness or attractiveness from either face or full person photographs. They then completed a forced choice task, selecting the more faithful of two woman from 17 pairs of images, each containing one woman who had reported no EPCs and one who had reported two or more EPCs. Men were unable to rate faithfulness with any accuracy, replicating previous findings. However, when asked to choose the more faithful of two women, they performed significantly above chance, although the ability to judge faithfulness at above-chance levels did not generalize to all pairs of women. Although there was no significant difference in accuracy for face and full person image pairs, only judgments from faces were significantly above chance. In Experiment 2, we showed that this accuracy for faces was repeatable in a new sample of men. We also showed that individual variation in accuracy was unrelated to variation in preferences for faithfulness in a long-term partner. Overall, these results show that men's judgments of faithfulness made from faces of unfamiliar women may contain a kernel of truth.
Variable Selection for Support Vector Machines in Moderately High Dimensions
Zhang, Xiang; Wu, Yichao; Wang, Lan; Li, Runze
2015-01-01
Summary The support vector machine (SVM) is a powerful binary classification tool with high accuracy and great flexibility. It has achieved great success, but its performance can be seriously impaired if many redundant covariates are included. Some efforts have been devoted to studying variable selection for SVMs, but asymptotic properties, such as variable selection consistency, are largely unknown when the number of predictors diverges to infinity. In this work, we establish a unified theory for a general class of nonconvex penalized SVMs. We first prove that in ultra-high dimensions, there exists one local minimizer to the objective function of nonconvex penalized SVMs possessing the desired oracle property. We further address the problem of nonunique local minimizers by showing that the local linear approximation algorithm is guaranteed to converge to the oracle estimator even in the ultra-high dimensional setting if an appropriate initial estimator is available. This condition on initial estimator is verified to be automatically valid as long as the dimensions are moderately high. Numerical examples provide supportive evidence. PMID:26778916
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding. PMID:29619035
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-01-01
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059
Predicting metabolic syndrome using decision tree and support vector machine methods.
Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh
2016-05-01
Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-11-03
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.
NASA Astrophysics Data System (ADS)
Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk
2016-07-01
Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.
de Ruiter, C. M.; van der Veer, C.; Leeflang, M. M. G.; Deborggraeve, S.; Lucas, C.
2014-01-01
Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. PMID:24829226
Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-01-01
Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. PMID:26863276
NASA Astrophysics Data System (ADS)
Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-04-01
Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
Tracing Asian Seabass Individuals to Single Fish Farms Using Microsatellites
Yue, Gen Hua; Xia, Jun Hong; Liu, Peng; Liu, Feng; Sun, Fei; Lin, Grace
2012-01-01
Traceability through physical labels is well established, but it is not highly reliable as physical labels can be easily changed or lost. Application of DNA markers to the traceability of food plays an increasingly important role for consumer protection and confidence building. In this study, we tested the efficiency of 16 polymorphic microsatellites and their combinations for tracing 368 fish to four populations where they originated. Using the maximum likelihood and Bayesian methods, three most efficient microsatellites were required to assign over 95% of fish to the correct populations. Selection of markers based on the assignment score estimated with the software WHICHLOCI was most effective in choosing markers for individual assignment, followed by the selection based on the allele number of individual markers. By combining rapid DNA extraction, and high-throughput genotyping of selected microsatellites, it is possible to conduct routine genetic traceability with high accuracy in Asian seabass. PMID:23285169
Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.
2010-01-01
Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions. ?? 2010 Elsevier B.V.
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
Erickson, Lucy C; Thiessen, Erik D; Godwin, Karrie E; Dickerson, John P; Fisher, Anna V
2015-10-01
Selective sustained attention is vital for higher order cognition. Although endogenous and exogenous factors influence selective sustained attention, assessment of the degree to which these factors influence performance and learning is often challenging. We report findings from the Track-It task, a paradigm that aims to assess the contribution of endogenous and exogenous factors to selective sustained attention within the same task. Behavioral accuracy and eye-tracking data on the Track-It task were correlated with performance on an explicit learning task. Behavioral accuracy and fixations to distractors during the Track-It task did not predict learning when exogenous factors supported selective sustained attention. In contrast, when endogenous factors supported selective sustained attention, fixations to distractors were negatively correlated with learning. Similarly, when endogenous factors supported selective sustained attention, higher behavioral accuracy was correlated with greater learning. These findings suggest that endogenously and exogenously driven selective sustained attention, as measured through different conditions of the Track-It task, may support different kinds of learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Camera system considerations for geomorphic applications of SfM photogrammetry
Mosbrucker, Adam; Major, Jon J.; Spicer, Kurt R.; Pitlick, John
2017-01-01
The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. This article is protected by copyright. All rights reserved.A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM- and lidar-derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. This article is protected by copyright. All rights reserved.Greater information capacity of source imagery was found to increase pixel matching quality, which produced 8 times greater point density and 6 times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100,000 m3) on an unvegetated fluvial surface; change detection determined from repeat lidar and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by 5–25% and decreased processing time by 10–30%. This article is protected by copyright. All rights reserved.Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error.
Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean
2015-01-01
At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.
Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean
2015-01-01
At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148
Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.
Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F
2016-03-01
Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.
The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy
Devillé, Walter LJM; Yzermans, Joris C; van Duijn, Nico P; Bezemer, P Dick; van der Windt, Daniëlle AWM; Bouter, Lex M
2004-01-01
Background Many studies have evaluated the accuracy of dipstick tests as rapid detectors of bacteriuria and urinary tract infections (UTI). The lack of an adequate explanation for the heterogeneity of the dipstick accuracy stimulates an ongoing debate. The objective of the present meta-analysis was to summarise the available evidence on the diagnostic accuracy of the urine dipstick test, taking into account various pre-defined potential sources of heterogeneity. Methods Literature from 1990 through 1999 was searched in Medline and Embase, and by reference tracking. Selected publications should be concerned with the diagnosis of bacteriuria or urinary tract infections, investigate the use of dipstick tests for nitrites and/or leukocyte esterase, and present empirical data. A checklist was used to assess methodological quality. Results 70 publications were included. Accuracy of nitrites was high in pregnant women (Diagnostic Odds Ratio = 165) and elderly people (DOR = 108). Positive predictive values were ≥80% in elderly and in family medicine. Accuracy of leukocyte-esterase was high in studies in urology patients (DOR = 276). Sensitivities were highest in family medicine (86%). Negative predictive values were high in both tests in all patient groups and settings, except for in family medicine. The combination of both test results showed an important increase in sensitivity. Accuracy was high in studies in urology patients (DOR = 52), in children (DOR = 46), and if clinical information was present (DOR = 28). Sensitivity was highest in studies carried out in family medicine (90%). Predictive values of combinations of positive test results were low in all other situations. Conclusions Overall, this review demonstrates that the urine dipstick test alone seems to be useful in all populations to exclude the presence of infection if the results of both nitrites and leukocyte-esterase are negative. Sensitivities of the combination of both tests vary between 68 and 88% in different patient groups, but positive test results have to be confirmed. Although the combination of positive test results is very sensitive in family practice, the usefulness of the dipstick test alone to rule in infection remains doubtful, even with high pre-test probabilities. PMID:15175113
Zhang, Dake; Stecker, Pamela; Huckabee, Sloan; Miller, Rhonda
2016-09-01
Research has suggested that different strategies used when solving fraction problems are highly correlated with students' problem-solving accuracy. This study (a) utilized latent profile modeling to classify students into three different strategic developmental levels in solving fraction comparison problems and (b) accordingly provided differentiated strategic training for students starting from two different strategic developmental levels. In Study 1 we assessed 49 middle school students' performance on fraction comparison problems and categorized students into three clusters of strategic developmental clusters: a cross-multiplication cluster with the highest accuracy, a representation strategy cluster with medium accuracy, and a whole-number strategy cluster with the lowest accuracy. Based on the strategic developmental levels identified in Study 1, in Study 2 we selected three students from the whole-number strategy cluster and another three students from the representation strategy cluster and implemented a differentiated strategic training intervention within a multiple-baseline design. Results showed that both groups of students transitioned from less advanced to more advanced strategies and improved their problem-solving accuracy during the posttest, the maintenance test, and the generalization test. © Hammill Institute on Disabilities 2014.
Enhancing the Performance of LibSVM Classifier by Kernel F-Score Feature Selection
NASA Astrophysics Data System (ADS)
Sarojini, Balakrishnan; Ramaraj, Narayanasamy; Nickolas, Savarimuthu
Medical Data mining is the search for relationships and patterns within the medical datasets that could provide useful knowledge for effective clinical decisions. The inclusion of irrelevant, redundant and noisy features in the process model results in poor predictive accuracy. Much research work in data mining has gone into improving the predictive accuracy of the classifiers by applying the techniques of feature selection. Feature selection in medical data mining is appreciable as the diagnosis of the disease could be done in this patient-care activity with minimum number of significant features. The objective of this work is to show that selecting the more significant features would improve the performance of the classifier. We empirically evaluate the classification effectiveness of LibSVM classifier on the reduced feature subset of diabetes dataset. The evaluations suggest that the feature subset selected improves the predictive accuracy of the classifier and reduce false negatives and false positives.
Gimenes, Fernanda Raphael Escobar; Motta, Ana Paula Gobbo; da Silva, Patrícia Costa dos Santos; Gobbo, Ana Flora Fogaça; Atila, Elisabeth; de Carvalho, Emilia Campos
2017-01-01
ABSTRACT Objective: to identify the nursing interventions associated with the most accurate and frequently used NANDA International, Inc. (NANDA-I) nursing diagnoses for patients with liver cirrhosis. Method: this is a descriptive, quantitative, cross-sectional study. Results: a total of 12 nursing diagnoses were evaluated, seven of which showed high accuracy (IVC ≥ 0.8); 70 interventions were identified and 23 (32.86%) were common to more than one diagnosis. Conclusion: in general, nurses often perform nursing interventions suggested in the NIC for the seven highly accurate nursing diagnoses identified in this study to care patients with liver cirrhosis. Accurate and valid nursing diagnoses guide the selection of appropriate interventions that nurses can perform to enhance patient safety and thus improve patient health outcomes.
Optical integration of SPO mirror modules in the ATHENA telescope
NASA Astrophysics Data System (ADS)
Valsecchi, G.; Marioni, F.; Bianucci, G.; Zocchi, F. E.; Gallieni, D.; Parodi, G.; Ottolini, M.; Collon, M.; Civitani, M.; Pareschi, G.; Spiga, D.; Bavdaz, M.; Wille, E.
2017-08-01
ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase.
NASA Astrophysics Data System (ADS)
Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain
2017-12-01
Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.
Aphinyanaphongs, Yin; Fu, Lawrence D; Aliferis, Constantin F
2013-01-01
Building machine learning models that identify unproven cancer treatments on the Health Web is a promising approach for dealing with the dissemination of false and dangerous information to vulnerable health consumers. Aside from the obvious requirement of accuracy, two issues are of practical importance in deploying these models in real world applications. (a) Generalizability: The models must generalize to all treatments (not just the ones used in the training of the models). (b) Scalability: The models can be applied efficiently to billions of documents on the Health Web. First, we provide methods and related empirical data demonstrating strong accuracy and generalizability. Second, by combining the MapReduce distributed architecture and high dimensionality compression via Markov Boundary feature selection, we show how to scale the application of the models to WWW-scale corpora. The present work provides evidence that (a) a very small subset of unproven cancer treatments is sufficient to build a model to identify unproven treatments on the web; (b) unproven treatments use distinct language to market their claims and this language is learnable; (c) through distributed parallelization and state of the art feature selection, it is possible to prepare the corpora and build and apply models with large scalability.
Cortical reinstatement and the confidence and accuracy of source memory.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2015-04-01
Cortical reinstatement refers to the overlap between neural activity elicited during the encoding and the subsequent retrieval of an episode, and is held to reflect retrieved mnemonic content. Previous findings have demonstrated that reinstatement effects reflect the quality of retrieved episodic information as this is operationalized by the accuracy of source memory judgments. The present functional magnetic resonance imaging (fMRI) study investigated whether reinstatement-related activity also co-varies with the confidence of accurate source judgments. Participants studied pictures of objects along with their visual or spoken names. At test, they first discriminated between studied and unstudied pictures and then, for each picture judged as studied, they also judged whether it had been paired with a visual or auditory name, using a three-point confidence scale. Accuracy of source memory judgments- and hence the quality of the source-specifying information--was greater for high than for low confidence judgments. Modality-selective retrieval-related activity (reinstatement effects) also co-varied with the confidence of the corresponding source memory judgment. The findings indicate that the quality of the information supporting accurate judgments of source memory is indexed by the relative magnitude of content-selective, retrieval-related neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P
2005-04-01
The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A QTL explaining 5% of the additive genetic variance allowed a 35% reduction in the number of progeny tested bulls, while maintaining genetic response at the level of the base scheme. Genetic progress was up to 31.3% higher for schemes with increased embryo production and selection of embryos based on QTL information. The challenge for breeding organizations is to find the optimum breeding program with regard to additional genetic progress and additional (or reduced) cost.
Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.
Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua
2011-05-15
High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.
[THE VERIFICATION OF ANALYTICAL CHARACTERISTICS OF THREE MODELS OF GLUCOMETERS].
Timofeev, A V; Khaibulina, E T; Mamonov, R A; Gorst, K A
2016-01-01
The individual portable systems of control of glucose level in blood commonly known as glucometers permit to patients with diabetes mellitus to independently correct pharmaceutical therapy. The effectiveness of this correction depends on accuracy of control of glucose level. The evaluation was implemented concerning minimal admissible accuracy and clinical accuracy of control of glucose level of devices Contour TC, Satellite Express and One Touch Select according standards expounded in GOST 15197-2011 and international standard ISO 15197-2013. It is demonstrated that Contour TC and One Touch Select meet the requirements of these standards in part of accuracy while Satellite Express does not.
Cost and accuracy of advanced breeding trial designs in apple
Harshman, Julia M; Evans, Kate M; Hardner, Craig M
2016-01-01
Trialing advanced candidates in tree fruit crops is expensive due to the long-term nature of the planting and labor-intensive evaluations required to make selection decisions. How closely the trait evaluations approximate the true trait value needs balancing with the cost of the program. Designs of field trials of advanced apple candidates in which reduced number of locations, the number of years and the number of harvests per year were modeled to investigate the effect on the cost and accuracy in an operational breeding program. The aim was to find designs that would allow evaluation of the most additional candidates while sacrificing the least accuracy. Critical percentage difference, response to selection, and correlated response were used to examine changes in accuracy of trait evaluations. For the quality traits evaluated, accuracy and response to selection were not substantially reduced for most trial designs. Risk management influences the decision to change trial design, and some designs had greater risk associated with them. Balancing cost and accuracy with risk yields valuable insight into advanced breeding trial design. The methods outlined in this analysis would be well suited to other horticultural crop breeding programs. PMID:27019717
Du, Wei; Sun, Min; Guo, Pengqi; Chang, Chun; Fu, Qiang
2018-09-01
Nowadays, the abuse of antibiotics in aquaculture has generated considerable problems for food safety. Therefore, it is imperative to develop a simple and selective method for monitoring illegal use of antibiotics in aquatic products. In this study, a method combined molecularly imprinted membranes (MIMs) extraction and liquid chromatography was developed for the selective analysis of cloxacillin from shrimp samples. The MIMs was synthesized by UV photopolymerization, and characterized by scanning electron microscope, Fourier transform infrared spectra, thermo-gravimetric analysis and swelling test. The results showed that the MIMs exhibited excellent permselectivity, high adsorption capacity and fast adsorption rate for cloxacillin. Finally, the method was utilized to determine cloxacillin from shrimp samples, with good accuracies and acceptable relative standard deviation values for precision. The proposed method was a promising alternative for selective analysis of cloxacillin in shrimp samples, due to the easy-operation and excellent selectivity. Copyright © 2018. Published by Elsevier Ltd.
Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey
NASA Astrophysics Data System (ADS)
Bektas Balcik, F.
2012-12-01
Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.
Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
Qiao, Pengwei; Lei, Mei; Yang, Sucai; Yang, Jun; Guo, Guanghui; Zhou, Xiaoyong
2018-06-01
Spatial interpolation method is the basis of soil heavy metal pollution assessment and remediation. The existing evaluation index for interpolation accuracy did not combine with actual situation. The selection of interpolation methods needs to be based on specific research purposes and research object characteristics. In this paper, As pollution in soils of Beijing was taken as an example. The prediction accuracy of ordinary kriging (OK) and inverse distance weighted (IDW) were evaluated based on the cross validation results and spatial distribution characteristics of influencing factors. The results showed that, under the condition of specific spatial correlation, the cross validation results of OK and IDW for every soil point and the prediction accuracy of spatial distribution trend are similar. But the prediction accuracy of OK for the maximum and minimum is less than IDW, while the number of high pollution areas identified by OK are less than IDW. It is difficult to identify the high pollution areas fully by OK, which shows that the smoothing effect of OK is obvious. In addition, with increasing of the spatial correlation of As concentration, the cross validation error of OK and IDW decreases, and the high pollution area identified by OK is approaching the result of IDW, which can identify the high pollution areas more comprehensively. However, because the semivariogram constructed by OK interpolation method is more subjective and requires larger number of soil samples, IDW is more suitable for spatial prediction of heavy metal pollution in soils.
Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).
Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Yeoh, Suat Hui; Appleton, David Ross; Harikrishna, Jennifer Ann
2017-12-11
Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.
Slip, David J.; Hocking, David P.; Harcourt, Robert G.
2016-01-01
Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns of acceleration. However, when analysing data derived from accelerometers, there are many statistical techniques available which when applied to different data sets produce different classification accuracies. We investigated a selection of supervised machine learning methods for interpreting behavioural data from captive otariids (fur seals and sea lions). We conducted controlled experiments with 12 seals, where their behaviours were filmed while they were wearing 3-axis accelerometers. From video we identified 26 behaviours that could be grouped into one of four categories (foraging, resting, travelling and grooming) representing key behaviour states for wild seals. We used data from 10 seals to train four predictive classification models: stochastic gradient boosting (GBM), random forests, support vector machine using four different kernels and a baseline model: penalised logistic regression. We then took the best parameters from each model and cross-validated the results on the two seals unseen so far. We also investigated the influence of feature statistics (describing some characteristic of the seal), testing the models both with and without these. Cross-validation accuracies were lower than training accuracy, but the SVM with a polynomial kernel was still able to classify seal behaviour with high accuracy (>70%). Adding feature statistics improved accuracies across all models tested. Most categories of behaviour -resting, grooming and feeding—were all predicted with reasonable accuracy (52–81%) by the SVM while travelling was poorly categorised (31–41%). These results show that model selection is important when classifying behaviour and that by using animal characteristics we can strengthen the overall accuracy. PMID:28002450
Seeing and Being Seen: Predictors of Accurate Perceptions about Classmates’ Relationships
Neal, Jennifer Watling; Neal, Zachary P.; Cappella, Elise
2015-01-01
This study examines predictors of observer accuracy (i.e. seeing) and target accuracy (i.e. being seen) in perceptions of classmates’ relationships in a predominantly African American sample of 420 second through fourth graders (ages 7 – 11). Girls, children in higher grades, and children in smaller classrooms were more accurate observers. Targets (i.e. pairs of children) were more accurately observed when they occurred in smaller classrooms of higher grades and involved same-sex, high-popularity, and similar-popularity children. Moreover, relationships between pairs of girls were more accurately observed than relationships between pairs of boys. As a set, these findings suggest the importance of both observer and target characteristics for children’s accurate perceptions of classroom relationships. Moreover, the substantial variation in observer accuracy and target accuracy has methodological implications for both peer-reported assessments of classroom relationships and the use of stochastic actor-based models to understand peer selection and socialization processes. PMID:26347582
NASA Technical Reports Server (NTRS)
Mulligan, P. J.; Gervin, J. C.; Lu, Y. C.
1985-01-01
An area bordering the Eastern Shore of the Chesapeake Bay was selected for study and classified using unsupervised techniques applied to LANDSAT-2 MSS data and several band combinations of LANDSAT-4 TM data. The accuracies of these Level I land cover classifications were verified using the Taylor's Island USGS 7.5 minute topographic map which was photointerpreted, digitized and rasterized. The the Taylor's Island map, comparing the MSS and TM three band (2 3 4) classifications, the increased resolution of TM produced a small improvement in overall accuracy of 1% correct due primarily to a small improvement, and 1% and 3%, in areas such as water and woodland. This was expected as the MSS data typically produce high accuracies for categories which cover large contiguous areas. However, in the categories covering smaller areas within the map there was generally an improvement of at least 10%. Classification of the important residential category improved 12%, and wetlands were mapped with 11% greater accuracy.
Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.
Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet
2018-05-01
Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genotyping by sequencing for genomic prediction in a soybean breeding population.
Jarquín, Diego; Kocak, Kyle; Posadas, Luis; Hyma, Katie; Jedlicka, Joseph; Graef, George; Lorenz, Aaron
2014-08-29
Advances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations. Genotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller. Using GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.
Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin
2015-01-01
Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666
Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test
Jiang, Chuanjin; Zhang, Jing; Song, Fugen
2014-01-01
Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061
Selecting single model in combination forecasting based on cointegration test and encompassing test.
Jiang, Chuanjin; Zhang, Jing; Song, Fugen
2014-01-01
Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.
Polar cloud and surface classification using AVHRR imagery - An intercomparison of methods
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Goroch, A. K.; Rabindra, P.; Rangaraj, N.; Navar, M. S.
1992-01-01
Six Advanced Very High-Resolution Radiometer local area coverage (AVHRR LAC) arctic scenes are classified into ten classes. Three different classifiers are examined: (1) the traditional stepwise discriminant analysis (SDA) method; (2) the feed-forward back-propagation (FFBP) neural network; and (3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6 percent, 87.6 percent, and 87.0 percent for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1 percent.
Image enhancement and advanced information extraction techniques for ERTS-1 data
NASA Technical Reports Server (NTRS)
Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.
1975-01-01
The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
Advances in metaheuristics for gene selection and classification of microarray data.
Duval, Béatrice; Hao, Jin-Kao
2010-01-01
Gene selection aims at identifying a (small) subset of informative genes from the initial data in order to obtain high predictive accuracy for classification. Gene selection can be considered as a combinatorial search problem and thus be conveniently handled with optimization methods. In this article, we summarize some recent developments of using metaheuristic-based methods within an embedded approach for gene selection. In particular, we put forward the importance and usefulness of integrating problem-specific knowledge into the search operators of such a method. To illustrate the point, we explain how ranking coefficients of a linear classifier such as support vector machine (SVM) can be profitably used to reinforce the search efficiency of Local Search and Evolutionary Search metaheuristic algorithms for gene selection and classification.
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; Mitchell, Robert B.; Vogel, Kenneth P.; Buell, C. Robin; Casler, Michael D.
2016-01-01
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. PMID:26869619
Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C
2018-01-01
An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines three selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Method validation resulted in a linearity range of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a reliable software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. PMID:28415015
Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C
2017-05-15
An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines multiple selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Calibration showed linearity ranges of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E
2017-07-01
The leaf spotting diseases in wheat that include Septoria tritici blotch (STB) caused by , Stagonospora nodorum blotch (SNB) caused by , and tan spot (TS) caused by pose challenges to breeding programs in selecting for resistance. A promising approach that could enable selection prior to phenotyping is genomic selection that uses genome-wide markers to estimate breeding values (BVs) for quantitative traits. To evaluate this approach for seedling and/or adult plant resistance (APR) to STB, SNB, and TS, we compared the predictive ability of least-squares (LS) approach with genomic-enabled prediction models including genomic best linear unbiased predictor (GBLUP), Bayesian ridge regression (BRR), Bayes A (BA), Bayes B (BB), Bayes Cπ (BC), Bayesian least absolute shrinkage and selection operator (BL), and reproducing kernel Hilbert spaces markers (RKHS-M), a pedigree-based model (RKHS-P) and RKHS markers and pedigree (RKHS-MP). We observed that LS gave the lowest prediction accuracies and RKHS-MP, the highest. The genomic-enabled prediction models and RKHS-P gave similar accuracies. The increase in accuracy using genomic prediction models over LS was 48%. The mean genomic prediction accuracies were 0.45 for STB (APR), 0.55 for SNB (seedling), 0.66 for TS (seedling) and 0.48 for TS (APR). We also compared markers from two whole-genome profiling approaches: genotyping by sequencing (GBS) and diversity arrays technology sequencing (DArTseq) for prediction. While, GBS markers performed slightly better than DArTseq, combining markers from the two approaches did not improve accuracies. We conclude that implementing GS in breeding for these diseases would help to achieve higher accuracies and rapid gains from selection. Copyright © 2017 Crop Science Society of America.
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
Accuracy of genomic selection for BCWD resistance in rainbow trout
USDA-ARS?s Scientific Manuscript database
Bacterial cold water disease (BCWD) causes significant economic losses in salmonids. In this study, we aimed to (1) predict genomic breeding values (GEBV) by genotyping training (n=583) and validation samples (n=53) with a SNP50K chip; and (2) assess the accuracy of genomic selection (GS) for BCWD r...
Deformation Measurement In The Hayward Fault Zone Using Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2013-12-01
Interferometric synthetic aperture radar (InSAR) is an effective tool for measuring temporal changes in the Earth's surface. By combining SAR phase data collected at varying times and orbit geometries, with InSAR we can produce high accuracy, wide coverage images of crustal deformation fields. Changes in the radar imaging geometry, scatterer positions, or scattering behavior between radar passes causes the measured radar return to differ, leading to a decorrelation phase term that obscures the deformation signal and prevents the use of large baseline data. Here we present a new physically-based method of modeling decorrelation from the subset of pixels with the highest intrinsic signal-to-noise ratio, the so-called persistent scatters (PS). This more complete formulation, which includes both phase and amplitude scintillations, better describes the scattering behavior of partially correlated PS pixels and leads to a more reliable selection algorithm. The new method identifies PS pixels using maximum likelihood signal-to-clutter ratio (SCR) estimation based on the joint interferometric stack phase-amplitude distribution. Our PS selection method is unique in that it considers both phase and amplitude; accounts for correlation between all possible pairs of interferometric observations; and models the effect of spatial and temporal baselines on the stack. We use the resulting maximum likelihood SCR estimate as a criterion for PS selection. We implement the partially correlated persistent scatterer technique to analyze a stack of C-band European Remote Sensing (ERS-1/2) interferometric radar data imaging the Hayward Fault Zone from 1995 to 2000. We show that our technique achieves a better trade-off between PS pixel selection accuracy and network density compared to other PS identification methods, particularly in areas of natural terrain. We then present deformation measurements obtained by the selected PS network. Our results demonstrate that the partially correlated persistent scatterer technique can attain accurate deformation measurements even in areas that suffer decorrelation due to natural terrain. The accuracy of phase unwrapping and subsequent deformation estimation on the spatially sparse PS network depends on both pixel selection accuracy and the density of the network. We find that many additional pixels can be added to the PS list if we are able to correctly identify and add those in which the scattering mechanism exhibits partial, rather than complete, correlation across all radar scenes.
Zweigenbaum, J; Henion, J
2000-06-01
The high-throughput determination of small molecules in biological matrixes has become an important part of drug discovery. This work shows that increased throughput LC/MS/MS techniques can be used for the analysis of selected estrogen receptor modulators in human plasma where more than 2000 samples may be analyzed in a 24-h period. The compounds used to demonstrate the high-throughput methodology include tamoxifen, raloxifene, 4-hydroxytamoxifen, nafoxidine, and idoxifene. Tamoxifen and raloxifene are used in both breast cancer therapy and osteoporosis and have shown prophylactic potential for the reduction of the risk of breast cancer. The described strategy provides LC/MS/MS separation and quantitation for each of the five test articles in control human plasma. The method includes sample preparation employing liquid-liquid extraction in the 96-well format, an LC separation of the five compounds in less than 30 s, and selected reaction monitoring detection from low nano- to microgram per milliter levels. Precision and accuracy are determined where each 96-well plate is considered a typical "tray" having calibration standards and quality control (QC) samples dispersed through each plate. A concept is introduced where 24 96-well plates analyzed in 1 day is considered a "grand tray", and the method is cross-validated with standards placed only at the beginning of the first plate and the end of the last plate. Using idoxifene-d5 as an internal standard, the results obtained for idoxifene and tamoxifen satisfy current bioanalytical method validation criteria on two separate days where 2112 and 2304 samples were run, respectively. Method validation included 24-h autosampler stability and one freeze-thaw cycle stability for the extracts. Idoxifene showed acceptable results with accuracy ranging from 0.3% for the high quality control (QC) to 15.4% for the low QC and precision of 3.6%-13.9% relative standard deviation. Tamoxifen showed accuracy ranging from 1.6% to 13.8% and precision from 7.8% to 15.2%. The linear dynamic range for these compounds was 3 orders of magnitude. The limit of quantification was 5 and 50 ng/ mL for tamoxifen and idoxifene, respectively. The other compounds in this study in general satisfy the more relaxed bioanalytical acceptance criteria for modern drug discovery. It is suggested that the quantification levels reported in this high-throughput analysis example are adequate for many drug discovery and related early pharmaceutical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritz, Steve; Jeltema, Tesla
One of the greatest mysteries in modern cosmology is the fact that the expansion of the universe is observed to be accelerating. This acceleration may stem from dark energy, an additional energy component of the universe, or may indicate that the theory of general relativity is incomplete on cosmological scales. The growth rate of large-scale structure in the universe and particularly the largest collapsed structures, clusters of galaxies, is highly sensitive to the underlying cosmology. Clusters will provide one of the single most precise methods of constraining dark energy with the ongoing Dark Energy Survey (DES). The accuracy of themore » cosmological constraints derived from DES clusters necessarily depends on having an optimized and well-calibrated algorithm for selecting clusters as well as an optical richness estimator whose mean relation and scatter compared to cluster mass are precisely known. Calibrating the galaxy cluster richness-mass relation and its scatter was the focus of the funded work. Specifically, we employ X-ray observations and optical spectroscopy with the Keck telescopes of optically-selected clusters to calibrate the relationship between optical richness (the number of galaxies in a cluster) and underlying mass. This work also probes aspects of cluster selection like the accuracy of cluster centering which are critical to weak lensing cluster studies.« less
Information Gain Based Dimensionality Selection for Classifying Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic; Miles McQueen
2013-06-01
Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less
Diagnostic potential of Raman spectroscopy in Barrett's esophagus
NASA Astrophysics Data System (ADS)
Wong Kee Song, Louis-Michel; Molckovsky, Andrea; Wang, Kenneth K.; Burgart, Lawrence J.; Dolenko, Brion; Somorjai, Rajmund L.; Wilson, Brian C.
2005-04-01
Patients with Barrett's esophagus (BE) undergo periodic endoscopic surveillance with random biopsies in an effort to detect dysplastic or early cancerous lesions. Surveillance may be enhanced by near-infrared Raman spectroscopy (NIRS), which has the potential to identify endoscopically-occult dysplastic lesions within the Barrett's segment and allow for targeted biopsies. The aim of this study was to assess the diagnostic performance of NIRS for identifying dysplastic lesions in BE in vivo. Raman spectra (Pexc=70 mW; t=5 s) were collected from Barrett's mucosa at endoscopy using a custom-built NIRS system (λexc=785 nm) equipped with a filtered fiber-optic probe. Each probed site was biopsied for matching histological diagnosis as assessed by an expert pathologist. Diagnostic algorithms were developed using genetic algorithm-based feature selection and linear discriminant analysis, and classification was performed on all spectra with a bootstrap-based cross-validation scheme. The analysis comprised 192 samples (112 non-dysplastic, 54 low-grade dysplasia and 26 high-grade dysplasia/early adenocarcinoma) from 65 patients. Compared with histology, NIRS differentiated dysplastic from non-dysplastic Barrett's samples with 86% sensitivity, 88% specificity and 87% accuracy. NIRS identified 'high-risk' lesions (high-grade dysplasia/early adenocarcinoma) with 88% sensitivity, 89% specificity and 89% accuracy. In the present study, NIRS classified Barrett's epithelia with high and clinically-useful diagnostic accuracy.
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
Misawa, Masashi; Kudo, Shin-Ei; Mori, Yuichi; Takeda, Kenichi; Maeda, Yasuharu; Kataoka, Shinichi; Nakamura, Hiroki; Kudo, Toyoki; Wakamura, Kunihiko; Hayashi, Takemasa; Katagiri, Atsushi; Baba, Toshiyuki; Ishida, Fumio; Inoue, Haruhiro; Nimura, Yukitaka; Oda, Msahiro; Mori, Kensaku
2017-05-01
Real-time characterization of colorectal lesions during colonoscopy is important for reducing medical costs, given that the need for a pathological diagnosis can be omitted if the accuracy of the diagnostic modality is sufficiently high. However, it is sometimes difficult for community-based gastroenterologists to achieve the required level of diagnostic accuracy. In this regard, we developed a computer-aided diagnosis (CAD) system based on endocytoscopy (EC) to evaluate cellular, glandular, and vessel structure atypia in vivo. The purpose of this study was to compare the diagnostic ability and efficacy of this CAD system with the performances of human expert and trainee endoscopists. We developed a CAD system based on EC with narrow-band imaging that allowed microvascular evaluation without dye (ECV-CAD). The CAD algorithm was programmed based on texture analysis and provided a two-class diagnosis of neoplastic or non-neoplastic, with probabilities. We validated the diagnostic ability of the ECV-CAD system using 173 randomly selected EC images (49 non-neoplasms, 124 neoplasms). The images were evaluated by the CAD and by four expert endoscopists and three trainees. The diagnostic accuracies for distinguishing between neoplasms and non-neoplasms were calculated. ECV-CAD had higher overall diagnostic accuracy than trainees (87.8 vs 63.4%; [Formula: see text]), but similar to experts (87.8 vs 84.2%; [Formula: see text]). With regard to high-confidence cases, the overall accuracy of ECV-CAD was also higher than trainees (93.5 vs 71.7%; [Formula: see text]) and comparable to experts (93.5 vs 90.8%; [Formula: see text]). ECV-CAD showed better diagnostic accuracy than trainee endoscopists and was comparable to that of experts. ECV-CAD could thus be a powerful decision-making tool for less-experienced endoscopists.
Roy, Jean-Sébastien; Braën, Caroline; Leblond, Jean; Desmeules, François; Dionne, Clermont E; MacDermid, Joy C; Bureau, Nathalie J; Frémont, Pierre
2015-01-01
Background Different diagnostic imaging modalities, such as ultrasonography (US), MRI, MR arthrography (MRA) are commonly used for the characterisation of rotator cuff (RC) disorders. Since the most recent systematic reviews on medical imaging, multiple diagnostic studies have been published, most using more advanced technological characteristics. The first objective was to perform a meta-analysis on the diagnostic accuracy of medical imaging for characterisation of RC disorders. Since US is used at the point of care in environments such as sports medicine, a secondary analysis assessed accuracy by radiologists and non-radiologists. Methods A systematic search in three databases was conducted. Two raters performed data extraction and evaluation of risk of bias independently, and agreement was achieved by consensus. Hierarchical summary receiver-operating characteristic package was used to calculate pooled estimates of included diagnostic studies. Results Diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears was high with overall estimates of sensitivity and specificity over 0.90. As for partial RC tears and tendinopathy, overall estimates of specificity were also high (>0.90), while sensitivity was lower (0.67–0.83). Diagnostic accuracy of US was similar whether a trained radiologist, sonographer or orthopaedist performed it. Conclusions Our results show the diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears. Since full thickness tear constitutes a key consideration for surgical repair, this is an important characteristic when selecting an imaging modality for RC disorder. When considering accuracy, cost, and safety, US is the best option. PMID:25677796
AVNM: A Voting based Novel Mathematical Rule for Image Classification.
Vidyarthi, Ankit; Mittal, Namita
2016-12-01
In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2014-07-01
Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.
Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.
Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran
2018-06-15
Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.
A Study of the Accuracy and Reliability of Articles about Alopecia in Newspapers
Park, In Ho; Kim, Do Hyeong; Park, So Hee; Cho, Gyeong Je; Seol, Jung Eun
2018-01-01
Background There is growing interest in alopecia among the general population. Many people obtain information from easily accessible media rather than from doctors; thus, the media can play an important role in shaping public opinion. Objective The goal of this study was to evaluate the content and reliability of newspaper articles on alopecia. Methods Newspapers were categorized into three groups: one group of print newspapers and two groups of online newspapers. Online newspapers were further divided into two groups according to type of publishing company; one publishes both print and online newspapers and the other publishes online newspapers only. The most frequently subscribed or circulated newspaper in each group was selected. Articles containing information on alopecia were selected from 3 years of each newspaper and evaluated for reliability. Results Most articles in each group used the general term “alopecia” instead of naming a specific hair loss disease. The majority of articles were based on consultation with experts. Assessment of the accuracy of articles with three grade scales showed that the percentage with high accuracy was 38.9%, 47.2%, and 23.3%. Assessment of reliability scores for five selected articles in each group showed that there were statistically significant differences between common readers and dermatologists (p<0.05). Conclusion The results of this study suggest that closer monitoring of the media is required to supply easily accessible, balanced, and trustworthy information regarding alopecia. PMID:29853745
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.
Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle.
Magnabosco, C U; Lopes, F B; Fragoso, R C; Eifert, E C; Valente, B D; Rosa, G J M; Sainz, R D
2016-07-01
Zebu () cattle, mostly of the Nellore breed, comprise more than 80% of the beef cattle in Brazil, given their tolerance of the tropical climate and high resistance to ectoparasites. Despite their advantages for production in tropical environments, zebu cattle tend to produce tougher meat than Bos taurus breeds. Traditional genetic selection to improve meat tenderness is constrained by the difficulty and cost of phenotypic evaluation for meat quality. Therefore, genomic selection may be the best strategy to improve meat quality traits. This study was performed to compare the accuracies of different Bayesian regression models in predicting molecular breeding values for meat tenderness in Polled Nellore cattle. The data set was composed of Warner-Bratzler shear force (WBSF) of longissimus muscle from 205, 141, and 81 animals slaughtered in 2005, 2010, and 2012, respectively, which were selected and mated so as to create extreme segregation for WBSF. The animals were genotyped with either the Illumina BovineHD (HD; 777,000 from 90 samples) chip or the GeneSeek Genomic Profiler (GGP Indicus HD; 77,000 from 337 samples). The quality controls of SNP were Hard-Weinberg Proportion -value ≥ 0.1%, minor allele frequency > 1%, and call rate > 90%. The FImpute program was used for imputation from the GGP Indicus HD chip to the HD chip. The effect of each SNP was estimated using ridge regression, least absolute shrinkage and selection operator (LASSO), Bayes A, Bayes B, and Bayes Cπ methods. Different numbers of SNP were used, with 1, 2, 3, 4, 5, 7, 10, 20, 40, 60, 80, or 100% of the markers preselected based on their significance test (-value from genomewide association studies [GWAS]) or randomly sampled. The prediction accuracy was assessed by the correlation between genomic breeding value and the observed WBSF phenotype, using a leave-one-out cross-validation methodology. The prediction accuracies using all markers were all very similar for all models, ranging from 0.22 (Bayes Cπ) to 0.25 (Bayes B). When preselecting SNP based on GWAS results, the highest correlation (0.27) between WBSF and the genomic breeding value was achieved using the Bayesian LASSO model with 15,030 (3%) markers. Although this study used relatively few animals, the design of the segregating population ensured wide genetic variability for meat tenderness, which was important to achieve acceptable accuracy of genomic prediction. Although all models showed similar levels of prediction accuracy, some small advantages were observed with the Bayes B approach when higher numbers of markers were preselected based on their -values resulting from a GWAS analysis.
Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo
2017-01-01
Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.
Selection Index in the Study of Adaptability and Stability in Maize
Lunezzo de Oliveira, Rogério; Garcia Von Pinho, Renzo; Furtado Ferreira, Daniel; Costa Melo, Wagner Mateus
2014-01-01
This paper proposes an alternative method for evaluating the stability and adaptability of maize hybrids using a genotype-ideotype distance index (GIDI) for selection. Data from seven variables were used, obtained through evaluation of 25 maize hybrids at six sites in southern Brazil. The GIDI was estimated by means of the generalized Mahalanobis distance for each plot of the test. We then proceeded to GGE biplot analysis in order to compare the predictive accuracy of the GGE models and the grouping of environments and to select the best five hybrids. The G × E interaction was significant for both variables assessed. The GGE model with two principal components obtained a predictive accuracy (PRECORR) of 0.8913 for the GIDI and 0.8709 for yield (t ha−1). Two groups of environments were obtained upon analyzing the GIDI, whereas all the environments remained in the same group upon analyzing yield. Coincidence occurred in only two hybrids considering evaluation of the two features. The GIDI assessment provided for selection of hybrids that combine adaptability and stability in most of the variables assessed, making its use more highly recommended than analyzing each variable separately. Not all the higher-yielding hybrids were the best in the other variables assessed. PMID:24696641
de Ruiter, C M; van der Veer, C; Leeflang, M M G; Deborggraeve, S; Lucas, C; Adams, E R
2014-09-01
Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The utility of low-density genotyping for imputation in the Thoroughbred horse
2014-01-01
Background Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. Results Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. Conclusions Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy. PMID:24495673
Absolute flux density calibrations of radio sources: 2.3 GHz
NASA Technical Reports Server (NTRS)
Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.
1977-01-01
A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Accuracy of electronic implant torque controllers following time in clinical service.
Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T
2001-01-01
Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.
Diagnostic Accuracy of Obstructive Airway Adult Test for Diagnosis of Obstructive Sleep Apnea.
Gasparini, Giulio; Vicini, Claudio; De Benedetto, Michele; Salamanca, Fabrizio; Sorrenti, Giovanni; Romandini, Mario; Bosi, Marcello; Saponaro, Gianmarco; Foresta, Enrico; Laforì, Andreina; Meccariello, Giuseppe; Bianchi, Alessandro; Toraldo, Domenico Maurizio; Campanini, Aldo; Montevecchi, Filippo; Rizzotto, Grazia; Cervelli, Daniele; Moro, Alessandro; Arigliani, Michele; Gobbi, Riccardo; Pelo, Sandro
2015-01-01
The gold standard for the diagnosis of Obstructive Sleep Apnea (OSA) is polysomnography, whose access is however reduced by costs and limited availability, so that additional diagnostic tests are needed. To analyze the diagnostic accuracy of the Obstructive Airway Adult Test (OAAT) compared to polysomnography for the diagnosis of OSA in adult patients. Ninety patients affected by OSA verified with polysomnography (AHI ≥ 5) and ten healthy patients, randomly selected, were included and all were interviewed by one blind examiner with OAAT questions. The Spearman rho, evaluated to measure the correlation between OAAT and polysomnography, was 0.72 (p < 0.01). The area under the ROC curve (95% CI) was the parameter to evaluate the accuracy of the OAAT: it was 0.91 (0.81-1.00) for the diagnosis of OSA (AHI ≥ 5), 0.90 (0.82-0.98) for moderate OSA (AHI ≥ 15), and 0.84 (0.76-0.92) for severe OSA (AHI ≥ 30). The OAAT has shown a high correlation with polysomnography and also a high diagnostic accuracy for the diagnosis of OSA. It has also been shown to be able to discriminate among the different degrees of severity of OSA. Additional large studies aiming to validate this questionnaire as a screening or diagnostic test are needed.
Leidinger, Petra; Keller, Andreas; Milchram, Lisa; Harz, Christian; Hart, Martin; Werth, Angelika; Lenhof, Hans-Peter; Weinhäusel, Andreas; Keck, Bastian; Wullich, Bernd; Ludwig, Nicole; Meese, Eckart
2015-01-01
Although an increased level of the prostate-specific antigen can be an indication for prostate cancer, other reasons often lead to a high rate of false positive results. Therefore, an additional serological screening of autoantibodies in patients' sera could improve the detection of prostate cancer. We performed protein macroarray screening with sera from 49 prostate cancer patients, 70 patients with benign prostatic hyperplasia and 28 healthy controls and compared the autoimmune response in those groups. We were able to distinguish prostate cancer patients from normal controls with an accuracy of 83.2%, patients with benign prostatic hyperplasia from normal controls with an accuracy of 86.0% and prostate cancer patients from patients with benign prostatic hyperplasia with an accuracy of 70.3%. Combining seroreactivity pattern with a PSA level of higher than 4.0 ng/ml this classification could be improved to an accuracy of 84.1%. For selected proteins we were able to confirm the differential expression by using luminex on 84 samples. We provide a minimally invasive serological method to reduce false positive results in detection of prostate cancer and according to PSA screening to distinguish men with prostate cancer from men with benign prostatic hyperplasia.
Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng
2016-01-01
A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033
Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien
2016-01-01
A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali; Menon, Geetha; Sloboda, Ron
Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque centralmore » axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.« less
Muleta, Kebede T; Bulli, Peter; Zhang, Zhiwu; Chen, Xianming; Pumphrey, Michael
2017-11-01
Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm collections through predicting the genomic estimated breeding values (GEBVs) for all traits that have been measured. Here, we evaluated the effects of various scenarios of population genetic properties and marker density on the accuracy of GEBVs in the context of applying GS for wheat ( L.) germplasm use. Empirical data for adult plant resistance to stripe rust ( f. sp. ) collected on 1163 spring wheat accessions and genotypic data based on the wheat 9K single nucleotide polymorphism (SNP) iSelect assay were used for various genomic prediction tests. Unsurprisingly, the results of the cross-validation tests demonstrated that prediction accuracy increased with an increase in training population size and marker density. It was evident that using all the available markers (5619) was unnecessary for capturing the trait variation in the germplasm collection, with no further gain in prediction accuracy beyond 1 SNP per 3.2 cM (∼1850 markers), which is close to the linkage disequilibrium decay rate in this population. Collectively, our results suggest that larger germplasm collections may be efficiently sampled via lower-density genotyping methods, whereas genetic relationships between the training and validation populations remain critical when exploiting GS to select from germplasm collections. Copyright © 2017 Crop Science Society of America.
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Sands, O. Scott; Huang, John; Bassily, Samir
2006-01-01
Improved surface accuracy for deployable reflectors has brought with it the possibility of Ka-band reflector antennas with extents on the order of 1000 wavelengths. Such antennas are being considered for high-rate data delivery from planetary distances. To maintain losses at reasonable levels requires a sufficiently capable Attitude Determination and Control System (ADCS) onboard the spacecraft. This paper provides an assessment of currently available ADCS strategies and performance levels. In addition to other issues, specific factors considered include: (1) use of "beaconless" or open loop tracking versus use of a beacon on the Earth side of the link, and (2) selection of fine pointing strategy (body-fixed/spacecraft pointing, reflector pointing or various forms of electronic beam steering). Capabilities of recent spacecraft are discussed.
Reliability Assessment for COTS Components in Space Flight Applications
NASA Technical Reports Server (NTRS)
Krishnan, G. S.; Mazzuchi, Thomas A.
2001-01-01
Systems built for space flight applications usually demand very high degree of performance and a very high level of accuracy. Hence, the design engineers are often prone to selecting state-of-art technologies for inclusion in their system design. The shrinking budgets also necessitate use of COTS (Commercial Off-The-Shelf) components, which are construed as being less expensive. The performance and accuracy requirements for space flight applications are much more stringent than those for the commercial applications. The quantity of systems designed and developed for space applications are much lower in number than those produced for the commercial applications. With a given set of requirements, are these COTS components reliable? This paper presents a model for assessing the reliability of COTS components in space applications and the associated affect on the system reliability. We illustrate the method with a real application.
Classification of urban features using airborne hyperspectral data
NASA Astrophysics Data System (ADS)
Ganesh Babu, Bharath
Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the potential for using the visible and near infrared (VNIR) bands from AISA+ hyperspectral data in urban LULC classification. Based on their performance, the need for further research using ECHO and SAM is underscored. The importance incorporating imaging spectrometer data in high resolution urban feature mapping is emphasized.
Accuracy and training population design for genomic selection in elite north american oats
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) is a method to estimate the breeding values of individuals by using markers throughout the genome. We evaluated the accuracies of GS using data from five traits on 446 oat lines genotyped with 1005 Diversity Array Technology (DArT) markers and two GS methods (RR-BLUP and Bayes...
Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin
2016-11-01
Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.
Fang, Xingang; Bagui, Sikha; Bagui, Subhash
2017-08-01
The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang
2014-01-01
Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272
Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
NASA Astrophysics Data System (ADS)
Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad
2016-04-01
Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
Prediction of drug synergy in cancer using ensemble-based machine learning techniques
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder
2018-04-01
Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.
Genomic Prediction Accounting for Residual Heteroskedasticity
Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.
2015-01-01
Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
NASA Astrophysics Data System (ADS)
Hu, Yan-Yan; Li, Dong-Sheng
2016-01-01
The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.
Welch, Leslie; Dong, Xiao; Hewitt, Daniel; Irwin, Michelle; McCarty, Luke; Tsai, Christina; Baginski, Tomasz
2018-06-02
Free thiol content, and its consistency, is one of the product quality attributes of interest during technical development of manufactured recombinant monoclonal antibodies (mAbs). We describe a new, mid/high-throughput reversed-phase-high performance liquid chromatography (RP-HPLC) method coupled with derivatization of free thiols, for the determination of total free thiol content in an E. coli-expressed therapeutic monovalent monoclonal antibody mAb1. Initial selection of the derivatization reagent used an hydrophobicity-tailored approach. Maleimide-based thiol-reactive reagents with varying degrees of hydrophobicity were assessed to identify and select one that provided adequate chromatographic resolution and robust quantitation of free thiol-containing mAb1 forms. The method relies on covalent derivatization of free thiols in denatured mAb1 with N-tert-butylmaleimide (NtBM) label, followed by RP-HPLC separation with UV-based quantitation of native (disulfide containing) and labeled (free thiol containing) forms. The method demonstrated good specificity, precision, linearity, accuracy and robustness. Accuracy of the method, for samples with a wide range of free thiol content, was demonstrated using admixtures as well as by comparison to an orthogonal LC-MS peptide mapping method with isotope tagging of free thiols. The developed method has a facile workflow which fits well into both R&D characterization and quality control (QC) testing environments. The hydrophobicity-tailored approach to the selection of free thiol derivatization reagent is easily applied to the rapid development of free thiol quantitation methods for full-length recombinant antibodies. Copyright © 2018 Elsevier B.V. All rights reserved.
Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.
2001-01-01
A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between cross sections, and can generate working maps across a broad range of scales, for any selected area, and overlayed with easily updated cultural features. Local governments are aggressively collecting very-high-accuracy elevation data for numerous reasons; this not only lowers the cost and increases accuracy of flood maps, but also inherently boosts the level of community involvement in the mapping process. These elevation data are also ideal for hydraulic modeling, should an existing model be judged inadequate.
Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof
2016-05-01
Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (<4.1°). High accuracy and precision of model-based RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Improving zero-training brain-computer interfaces by mixing model estimators
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.
2017-06-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.
Karuppiah Ramachandran, Vignesh Raja; Alblas, Huibert J; Le, Duc V; Meratnia, Nirvana
2018-05-24
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
A Global Optimization Methodology for Rocket Propulsion Applications
NASA Technical Reports Server (NTRS)
2001-01-01
While the response surface method is an effective method in engineering optimization, its accuracy is often affected by the use of limited amount of data points for model construction. In this chapter, the issues related to the accuracy of the RS approximations and possible ways of improving the RS model using appropriate treatments, including the iteratively re-weighted least square (IRLS) technique and the radial-basis neural networks, are investigated. A main interest is to identify ways to offer added capabilities for the RS method to be able to at least selectively improve the accuracy in regions of importance. An example is to target the high efficiency region of a fluid machinery design space so that the predictive power of the RS can be maximized when it matters most. Analytical models based on polynomials, with controlled level of noise, are used to assess the performance of these techniques.
Karnowski, Thomas P [Knoxville, TN; Tobin, Jr., Kenneth W.; Muthusamy Govindasamy, Vijaya Priya [Knoxville, TN; Chaum, Edward [Memphis, TN
2012-07-10
A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Liquid electrolyte informatics using an exhaustive search with linear regression.
Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato
2018-06-14
Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin
2016-01-01
In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358
Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin
2016-01-08
In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.
Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G
2016-08-19
The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.
Developing collaborative classifiers using an expert-based model
Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan
2009-01-01
This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Sirait, Kamson; Tulus; Budhiarti Nababan, Erna
2017-12-01
Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Does filler database size influence identification accuracy?
Bergold, Amanda N; Heaton, Paul
2018-06-01
Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Monitoring Building Deformation with InSAR: Experiments and Validation.
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-12-20
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.
El-Naby, Eman H; Kamel, Ayman H
2015-09-01
A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective attention skills in differentiating between Alzheimer's disease and normal aging.
Solfrizzi, Vincenzo; Panza, Francesco; Torres, Francesco; Capurso, Cristiano; D'Introno, Alessia; Colacicco, Anna Maria; Capurso, Antonio
2002-01-01
We determined the reliability and validity of a cancellation test of symbols (Symbol Cancellation Test [SCT]), designed to assess visual selective attention deficits in the elderly, on 34 Alzheimer's disease (AD) patients from Bari University Hospital Center, Bari, Italy, and 232 nondemented elderly subjects, aged 68 to 87 years, from the second prevalence survey (1995 through 1996) of the Italian Longitudinal Study on Aging (Casamassima, Bari, Italy). To assess convergent and discriminant validity, the Digit Cancellation Test (DCT), Mini-Mental State Examination (MMSE), and Babcock Story Recall Test (BSRT) were administered. Finally, discriminant accuracy of SCT between AD patients and nondemented elderly subjects was assessed. Inter-rater and test-retest reliability for P1 and P2 was excellent for both AD patients and the normal population, with a high degree of internal consistency. The SCT was significantly correlated with the DCT (0.67), MMSE (0.60), and BSRT (0.33). The classification accuracies of overall performance on the SCT for subjects with and without AD were 0.62 and 0.91, respectively. The SCT is a valid and reliable test to assess selective attention in elderly subjects, in whom dementing illness must be diagnosed and clinically distinct from age-related cognitive decline.
Reduced size first-order subsonic and supersonic aeroelastic modeling
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.
Al-Fatlawi, Ali H; Fatlawi, Hayder K; Sai Ho Ling
2017-07-01
Daily physical activities monitoring is benefiting the health care field in several ways, in particular with the development of the wearable sensors. This paper adopts effective ways to calculate the optimal number of the necessary sensors and to build a reliable and a high accuracy monitoring system. Three data mining algorithms, namely Decision Tree, Random Forest and PART Algorithm, have been applied for the sensors selection process. Furthermore, the deep belief network (DBN) has been investigated to recognise 33 physical activities effectively. The results indicated that the proposed method is reliable with an overall accuracy of 96.52% and the number of sensors is minimised from nine to six sensors.
Factual knowledge about AIDS and dating practices among high school students from selected schools.
Nyachuru-Sihlangu, R H; Ndlovu, J
1992-06-01
Following various educational strategies by governmental and non-governmental organisations to educate youths and school teachers about HIV infection and prevention, this KABP survey was one attempt to evaluate the results. The study sample of 478 high school students was drawn from four randomly selected schools in Mashonaland and Matabeleland including high and low density, government and mission co-educational schools. The sample was randomly selected and stratified to represent sex and grade level. The KABP self administered questionnaire was used. The paper analyses the relationship between the knowledge and dating patterns. Generally, respondents demonstrated a 50pc to 80pc accuracy of factual knowledge. Of the 66pc Forms I through IV pupils who dated, 30pc preferred only sexually involved relationships and a small number considered the possibility of HIV/AIDS infection. A theoretically based tripartite coalition involving the school, the family health care services for education, guidance and support to promote responsible behaviour throughout childhood was suggested.
Generative model selection using a scalable and size-independent complex network classifier
NASA Astrophysics Data System (ADS)
Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar
2013-12-01
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.
Fast object detection algorithm based on HOG and CNN
NASA Astrophysics Data System (ADS)
Lu, Tongwei; Wang, Dandan; Zhang, Yanduo
2018-04-01
In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.
On the use of feature selection to improve the detection of sea oil spills in SAR images
NASA Astrophysics Data System (ADS)
Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo
2017-03-01
Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.
A Deterministic Approach to Active Debris Removal Target Selection
NASA Astrophysics Data System (ADS)
Lidtke, A.; Lewis, H.; Armellin, R.
2014-09-01
Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the purpose of ADR are also drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is proposed.
Wilson, Bethany J; Nicholas, Frank W; James, John W; Wade, Claire M; Thomson, Peter C
2013-01-01
Canine hip dysplasia (CHD) is a serious and common musculoskeletal disease of pedigree dogs and therefore represents both an important welfare concern and an imperative breeding priority. The typical heritability estimates for radiographic CHD traits suggest that the accuracy of breeding dog selection could be substantially improved by the use of estimated breeding values (EBVs) in place of selection based on phenotypes of individuals. The British Veterinary Association/Kennel Club scoring method is a complex measure composed of nine bilateral ordinal traits, intended to evaluate both early and late dysplastic changes. However, the ordinal nature of the traits may represent a technical challenge for calculation of EBVs using linear methods. The purpose of the current study was to calculate EBVs of British Veterinary Association/Kennel Club traits in the Australian population of German Shepherd Dogs, using linear (both as individual traits and a summed phenotype), binary and ordinal methods to determine the optimal method for EBV calculation. Ordinal EBVs correlated well with linear EBVs (r = 0.90-0.99) and somewhat well with EBVs for the sum of the individual traits (r = 0.58-0.92). Correlation of ordinal and binary EBVs varied widely (r = 0.24-0.99) depending on the trait and cut-point considered. The ordinal EBVs have increased accuracy (0.48-0.69) of selection compared with accuracies from individual phenotype-based selection (0.40-0.52). Despite the high correlations between linear and ordinal EBVs, the underlying relationship between EBVs calculated by the two methods was not always linear, leading us to suggest that ordinal models should be used wherever possible. As the population of German Shepherd Dogs which was studied was purportedly under selection for the traits studied, we examined the EBVs for evidence of a genetic trend in these traits and found substantial genetic improvement over time. This study suggests the use of ordinal EBVs could increase the rate of genetic improvement in this population.
Design and Application of Drought Indexes in Highly Regulated Mediterranean Water Systems
NASA Astrophysics Data System (ADS)
Castelletti, A.; Zaniolo, M.; Giuliani, M.
2017-12-01
Costs of drought are progressively increasing due to the undergoing alteration of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, most of the traditional drought indexes fail in detecting critical events in highly regulated systems, which generally rely on ad-hoc formulations and cannot be generalized to different context. In this study, we contribute a novel framework for the design of a basin-customized drought index. This index represents a surrogate of the state of the basin and is computed by combining the available information about the water available in the system to reproduce a representative target variable for the drought condition of the basin (e.g., water deficit). To select the relevant variables and combinatione thereof, we use an advanced feature extraction algorithm called Wrapper for Quasi Equally Informative Subset Selection (W-QEISS). W-QEISS relies on a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The accuracy objective is evaluated trough the calibration of an extreme learning machine of the water deficit for each candidate subset of variables, with the index selected from the resulting solutions identifying a suitable compromise between accuracy, cardinality, relevance, and redundancy. The approach is tested on Lake Como, Italy, a regulated lake mainly operated for irrigation supply. In the absence of an institutional drought monitoring system, we constructed the combined index using all the hydrological variables from the existing monitoring system as well as common drought indicators at multiple time aggregations. The soil moisture deficit in the root zone computed by a distributed-parameter water balance model of the agricultural districts is used as target variable. Numerical results show that our combined drought index succesfully reproduces the deficit. The index represents a valuable information for supporting appropriate drought management strategies, including the possibility of directly informing the lake operations about the drought conditions and improve the overall reliability of the irrigation supply system.
Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang
2014-12-01
The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
NASA Technical Reports Server (NTRS)
Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.
1992-01-01
The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villegier, J.C.; Goniche, M.; Renard, P.
1985-03-01
All-niobium nitride Josephson junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (Nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled Dry Reactive Ion Etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-Magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbNmore » counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250/sup 0/C.« less
Prediction of high incidence of dengue in the Philippines.
Buczak, Anna L; Baugher, Benjamin; Babin, Steven M; Ramac-Thomas, Liane C; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T; Velasco, John Mark S; Roque, Vito G; Tayag, Enrique A; Yoon, In-Kyu; Lewis, Sheri H
2014-04-01
Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.
Prediction of High Incidence of Dengue in the Philippines
Buczak, Anna L.; Baugher, Benjamin; Babin, Steven M.; Ramac-Thomas, Liane C.; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T.; Velasco, John Mark S.; Roque, Vito G.; Tayag, Enrique A.; Yoon, In-Kyu; Lewis, Sheri H.
2014-01-01
Background Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. PMID:24722434
NASA Astrophysics Data System (ADS)
Dos Santos Ferreira, Olavio; Sadat Gousheh, Reza; Visser, Bart; Lie, Kenrick; Teuwen, Rachel; Izikson, Pavel; Grzela, Grzegorz; Mokaberi, Babak; Zhou, Steve; Smith, Justin; Husain, Danish; Mandoy, Ram S.; Olvera, Raul
2018-03-01
Ever increasing need for tighter on-product overlay (OPO), as well as enhanced accuracy in overlay metrology and methodology, is driving semiconductor industry's technologists to innovate new approaches to OPO measurements. In case of High Volume Manufacturing (HVM) fabs, it is often critical to strive for both accuracy and robustness. Robustness, in particular, can be challenging in metrology since overlay targets can be impacted by proximity of other structures next to the overlay target (asymmetric effects), as well as symmetric stack changes such as photoresist height variations. Both symmetric and asymmetric contributors have impact on robustness. Furthermore, tweaking or optimizing wafer processing parameters for maximum yield may have an adverse effect on physical target integrity. As a result, measuring and monitoring physical changes or process abnormalities/artefacts in terms of new Key Performance Indicators (KPIs) is crucial for the end goal of minimizing true in-die overlay of the integrated circuits (ICs). IC manufacturing fabs often relied on CD-SEM in the past to capture true in-die overlay. Due to destructive and intrusive nature of CD-SEMs on certain materials, it's desirable to characterize asymmetry effects for overlay targets via inline KPIs utilizing YieldStar (YS) metrology tools. These KPIs can also be integrated as part of (μDBO) target evaluation and selection for final recipe flow. In this publication, the Holistic Metrology Qualification (HMQ) flow was extended to account for process induced (asymmetric) effects such as Grating Imbalance (GI) and Bottom Grating Asymmetry (BGA). Local GI typically contributes to the intrafield OPO whereas BGA typically impacts the interfield OPO, predominantly at the wafer edge. Stack height variations highly impact overlay metrology accuracy, in particular in case of multi-layer LithoEtch Litho-Etch (LELE) overlay control scheme. Introducing a GI impact on overlay (in nm) KPI check quantifies the grating imbalance impact on overlay, whereas optimizing for accuracy using self-reference captures the bottom grating asymmetry effect. Measuring BGA after each process step before exposure of the top grating helps to identify which specific step introduces the asymmetry in the bottom grating. By evaluating this set of KPI's to a BEOL LELE overlay scheme, we can enhance robustness of recipe selection and target selection. Furthermore, these KPIs can be utilized to highlight process and equipment abnormalities. In this work, we also quantified OPO results with a self-contained methodology called Triangle Method. This method can be utilized for LELE layers with a common target and reference. This allows validating general μDBO accuracy, hence reducing the need for CD-SEM verification.
Using Deep Learning for Compound Selectivity Prediction.
Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili
2016-01-01
Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.
Weyand, Sabine; Takehara-Nishiuchi, Kaori; Chau, Tom
2015-10-30
Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable users to interact with their environment using only cognitive activities. This paper presents the results of a comparison of four methodological frameworks used to select a pair of tasks to control a binary NIRS-BCI; specifically, three novel personalized task paradigms and the state-of-the-art prescribed task framework were explored. Three types of personalized task selection approaches were compared, including: user-selected mental tasks using weighted slope scores (WS-scores), user-selected mental tasks using pair-wise accuracy rankings (PWAR), and researcher-selected mental tasks using PWAR. These paradigms, along with the state-of-the-art prescribed mental task framework, where mental tasks are selected based on the most commonly used tasks in literature, were tested by ten able-bodied participants who took part in five NIRS-BCI sessions. The frameworks were compared in terms of their accuracy, perceived ease-of-use, computational time, user preference, and length of training. Most notably, researcher-selected personalized tasks resulted in significantly higher accuracies, while user-selected personalized tasks resulted in significantly higher perceived ease-of-use. It was also concluded that PWAR minimized the amount of data that needed to be collected; while, WS-scores maximized user satisfaction and minimized computational time. In comparison to the state-of-the-art prescribed mental tasks, our findings show that overall, personalized tasks appear to be superior to prescribed tasks with respect to accuracy and perceived ease-of-use. The deployment of personalized rather than prescribed mental tasks ought to be considered and further investigated in future NIRS-BCI studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo
2017-01-01
Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits (by genomic selection or MAS) and forage yield. PMID:28068350
Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo
2017-01-01
Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits (by genomic selection or MAS) and forage yield.
Two-stage atlas subset selection in multi-atlas based image segmentation.
Zhao, Tingting; Ruan, Dan
2015-06-01
Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.
The Impact of Learning Curve Model Selection and Criteria for Cost Estimation Accuracy in the DoD
2016-04-30
Estimation Accuracy in the DoD Candice Honious, Student , Air Force Institute of Technology Brandon Johnson, Student , Air Force Institute of Technology...póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 453 - Panel 21. Methods for Improving Cost Estimates for Defense Acquisition Projects Thursday, May 5, 2016 3:30 p.m...Curve Model Selection and Criteria for Cost Estimation Accuracy in the DoD Candice Honious, Student , Air Force Institute of Technology Brandon Johnson
Regression Simulation of Turbine Engine Performance - Accuracy Improvement (TASK IV)
1978-09-30
33 21 Generalized Form of the Regression Equation for the Optimized Polynomial Exponent M ethod...altitude, Mach number and power setting combinations were generated during the ARES evaluation. The orthogonal Latin Square selection procedure...pattern. In data generation , the low (L), mid (M), and high (H) values of a variable are not always the same. At some of the corner points where
syris: a flexible and efficient framework for X-ray imaging experiments simulation.
Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo
2017-11-01
An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.
Genetic stock identification of Russian honey bees.
Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E
2010-06-01
A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; ...
2016-02-11
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less
Hyperspectral analysis of columbia spotted frog habitat
Shive, J.P.; Pilliod, D.S.; Peterson, C.R.
2010-01-01
Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less
High-order asynchrony-tolerant finite difference schemes for partial differential equations
NASA Astrophysics Data System (ADS)
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honorio, J.; Goldstein, R.; Honorio, J.
We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less
Yilmaz, E; Kayikcioglu, T; Kayipmaz, S
2017-07-01
In this article, we propose a decision support system for effective classification of dental periapical cyst and keratocystic odontogenic tumor (KCOT) lesions obtained via cone beam computed tomography (CBCT). CBCT has been effectively used in recent years for diagnosing dental pathologies and determining their boundaries and content. Unlike other imaging techniques, CBCT provides detailed and distinctive information about the pathologies by enabling a three-dimensional (3D) image of the region to be displayed. We employed 50 CBCT 3D image dataset files as the full dataset of our study. These datasets were identified by experts as periapical cyst and KCOT lesions according to the clinical, radiographic and histopathologic features. Segmentation operations were performed on the CBCT images using viewer software that we developed. Using the tools of this software, we marked the lesional volume of interest and calculated and applied the order statistics and 3D gray-level co-occurrence matrix for each CBCT dataset. A feature vector of the lesional region, including 636 different feature items, was created from those statistics. Six classifiers were used for the classification experiments. The Support Vector Machine (SVM) classifier achieved the best classification performance with 100% accuracy, and 100% F-score (F1) scores as a result of the experiments in which a ten-fold cross validation method was used with a forward feature selection algorithm. SVM achieved the best classification performance with 96.00% accuracy, and 96.00% F1 scores in the experiments in which a split sample validation method was used with a forward feature selection algorithm. SVM additionally achieved the best performance of 94.00% accuracy, and 93.88% F1 in which a leave-one-out (LOOCV) method was used with a forward feature selection algorithm. Based on the results, we determined that periapical cyst and KCOT lesions can be classified with a high accuracy with the models that we built using the new dataset selected for this study. The studies mentioned in this article, along with the selected 3D dataset, 3D statistics calculated from the dataset, and performance results of the different classifiers, comprise an important contribution to the field of computer-aided diagnosis of dental apical lesions. Copyright © 2017 Elsevier B.V. All rights reserved.
Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation
NASA Technical Reports Server (NTRS)
Orfiz, Gerardo G.; Lee, Shinhak
2006-01-01
A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.
Li, Youfang; Wang, Yumiao; Zhang, Renzhong; Wang, Jue; Li, Zhiqing; Wang, Ling; Pan, Songfeng; Yang, Yanling; Ma, Yanling; Jia, Manhong
2016-01-01
To understood the accuracy of oral fluid-based rapid HIV self-testing among men who have sex with men (MSM) and related factors. Survey was conducted among MSM selected through non-probability sampling to evaluate the quality of their rapid HIV self-testing, and related information was analyzed. The most MSM were aged 21-30 years (57.0%). Among them, 45.7% had educational level of college or above, 78.5% were unmarried, 59.3% were casual laborers. The overall accuracy rate of oral fluid based self-testing was 95.0%, the handling of"inserting test paper into tube as indicated by arrow on it"had the highest accuracy rate (98.0%), and the handling of"gently upsetting tube for 3 times"had lowest accuracy rate (65.0%); Chi-square analysis showed that educational level, no touch with middle part of test paper, whether reading the instruction carefully, whether understanding the instruction and inserting test paper into tube as indicated by the arrow on it were associated with the accuracy of oral fluid-based rapid HIV self-testing, (P<0.05). Multivariate logistic regression analysis indicated that educational level, no touch with middle part of test paper and understanding instructions were associated with the accuracy of oral fluid-based rapid HIV self-testing. The accuracy of oral fluid-based rapid HIV self-testing was high among MSM, the accuracy varied with the educational level of the MSM. Touch with the middle part of test paper or not and understanding the instructions or not might influence the accuracy of the self-testing.
Stereotype Accuracy: Toward Appreciating Group Differences.
ERIC Educational Resources Information Center
Lee, Yueh-Ting, Ed.; And Others
The preponderance of scholarly theory and research on stereotypes assumes that they are bad and inaccurate, but understanding stereotype accuracy and inaccuracy is more interesting and complicated than simpleminded accusations of racism or sexism would seem to imply. The selections in this collection explore issues of the accuracy of stereotypes…
NASA Astrophysics Data System (ADS)
Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.
2013-09-01
In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.
Accuracy enhancement of point triangulation probes for linear displacement measurement
NASA Astrophysics Data System (ADS)
Kim, Kyung-Chan; Kim, Jong-Ahn; Oh, SeBaek; Kim, Soo Hyun; Kwak, Yoon Keun
2000-03-01
Point triangulation probes (PTBs) fall into a general category of noncontact height or displacement measurement devices. PTBs are widely used for their simple structure, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability; measurement errors from inclinations of an object surface, probe signal fluctuations generated by speckle effects, power variation of a light source, electronic noises, and so on. In this paper, we propose a novel signal processing algorithm, named as EASDF (expanded average square difference function), for a newly designed PTB which is composed of an incoherent source (LED), a line scan array detector, a specially selected diffuse reflecting surface, and several optical components. The EASDF, which is a modified correlation function, is able to calculate displacement between the probe and the object surface effectively even if there are inclinations, power fluctuations, and noises.
Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.
Poletti, Mark A; Svensson, U Peter
2008-07-01
Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.
Sun, Wei; Ho, Stacy; Fang, Xiaojun Rick; O'Shea, Thomas; Liu, Hanlan
2018-05-10
An ultra-high pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was successfully developed and qualified for the simultaneous determination of triamcinolone hexacetonide (TAH) and triamcinolone acetonide (TAA, the active metabolite of TAH) in rabbit plasma. To prevent the hydrolysis of TAH to TAA ex vivo during sample collection and processing, we evaluated the effectiveness of several esterase inhibitors to stabilize TAH in plasma. Phenylmethanesulfonyl fluoride (PMSF) at 2.0 mM was chosen to stabilize TAH in rabbit plasma. The developed method is highly sensitive with a lower limit of quantitation of 10.0 pg/mL for both TAA and TAH using a 300 μL plasma aliquot. The method demonstrated good linearity, accuracy, precision, sensitivity, selectivity, recovery, matrix effects, dilution integrity, carryover, and stability. Linearity was obtained over the range of 10-2500 pg/mL. Both intra- and inter-run coefficients of variation were less than 9.1% and accuracies across the assay range were all within 100 ± 8.4%. The run time is under 5 minutes. The method was successfully implemented to support a rabbit pharmacokinetic study of TAH and TAA following a single intra-articular administration of TAH (Aristospan ® ). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Seiller, G.; Anctil, F.; Roy, R.
2017-09-01
This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.
New stimulation pattern design to improve P300-based matrix speller performance at high flash rate
NASA Astrophysics Data System (ADS)
Polprasert, Chantri; Kukieattikool, Pratana; Demeechai, Tanee; Ritcey, James A.; Siwamogsatham, Siwaruk
2013-06-01
Objective. We propose a new stimulation pattern design for the P300-based matrix speller aimed at increasing the minimum target-to-target interval (TTI). Approach. Inspired by the simplicity and strong performance of the conventional row-column (RC) stimulation, the proposed stimulation is obtained by modifying the RC stimulation through alternating row and column flashes which are selected based on the proposed design rules. The second flash of the double-flash components is then delayed for a number of flashing instants to increase the minimum TTI. The trade-off inherited in this approach is the reduced randomness within the stimulation pattern. Main results. We test the proposed stimulation pattern and compare its performance in terms of selection accuracy, raw and practical bit rates with the conventional RC flashing paradigm over several flash rates. By increasing the minimum TTI within the stimulation sequence, the proposed stimulation has more event-related potentials that can be identified compared to that of the conventional RC stimulations, as the flash rate increases. This leads to significant performance improvement in terms of the letter selection accuracy, the raw and practical bit rates over the conventional RC stimulation. Significance. These studies demonstrate that significant performance improvement over the RC stimulation is obtained without additional testing or training samples to compensate for low P300 amplitude at high flash rate. We show that our proposed stimulation is more robust to reduced signal strength due to the increased flash rate than the RC stimulation.
Pappula, Nagaraju; Kodali, Balaji; Datla, Peda Varma
2018-04-15
Highly selective and fast liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for simultaneous determination of tadalafil (TDL) and finasteride (FNS) in human plasma. The method was successfully applied for analysis of TDL and FNS samples in clinical study. The method was validated as per USFDA (United States Food and Drug Administration), EMA (European Medicines Agency), and ANVISA (Agência Nacional de Vigilância Sanitária-Brazil) bio analytical method validation guidelines. Glyburide (GLB) was used as common internal standard (ISTD) for both analytes. The selected multiple reaction monitoring (MRM) transitions for mass spectrometric analysis were m/z 390.2/268.2, m/z 373.3/305.4 and m/z 494.2/369.1 for TDL, FNS and ISTD respectively. The extraction of analytes and ISTD was accomplished by a simple solid phase extraction (SPE) procedure. Rapid analysis time was achieved on Zorbax Eclipse C18 column (50 × 4.6 mm, 5 μm). The calibration ranges for TDL and FNS were 5-800 ng/ml and 0.2-30 ng/ml respectively. The results of precision and accuracy, linearity, recovery and matrix effect of the method are acceptable. The accuracy was in the range of 92.9%-106.4% and method precision was also good; %CV was less than 8.1%. Copyright © 2018 Elsevier B.V. All rights reserved.
Selecting the Best Mobile Information Service with Natural Language User Input
NASA Astrophysics Data System (ADS)
Feng, Qiangze; Qi, Hongwei; Fukushima, Toshikazu
Information services accessed via mobile phones provide information directly relevant to subscribers’ daily lives and are an area of dynamic market growth worldwide. Although many information services are currently offered by mobile operators, many of the existing solutions require a unique gateway for each service, and it is inconvenient for users to have to remember a large number of such gateways. Furthermore, the Short Message Service (SMS) is very popular in China and Chinese users would prefer to access these services in natural language via SMS. This chapter describes a Natural Language Based Service Selection System (NL3S) for use with a large number of mobile information services. The system can accept user queries in natural language and navigate it to the required service. Since it is difficult for existing methods to achieve high accuracy and high coverage and anticipate which other services a user might want to query, the NL3S is developed based on a Multi-service Ontology (MO) and Multi-service Query Language (MQL). The MO and MQL provide semantic and linguistic knowledge, respectively, to facilitate service selection for a user query and to provide adaptive service recommendations. Experiments show that the NL3S can achieve 75-95% accuracies and 85-95% satisfactions for processing various styles of natural language queries. A trial involving navigation of 30 different mobile services shows that the NL3S can provide a viable commercial solution for mobile operators.
Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.
Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O
2014-05-01
To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato.
Stich, Benjamin; Van Inghelandt, Delphine
2018-01-01
Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.
Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato
Stich, Benjamin; Van Inghelandt, Delphine
2018-01-01
Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs. PMID:29563919
NASA Astrophysics Data System (ADS)
Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton
2014-08-01
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.
Break-even cost of cloning in genetic improvement of dairy cattle.
Dematawewa, C M; Berger, P J
1998-04-01
Twelve different models for alternative progeny-testing schemes based on genetic and economic gains were compared. The first 10 alternatives were considered to be optimally operating progeny-testing schemes. Alternatives 1 to 5 considered the following combinations of technologies: 1) artificial insemination, 2) artificial insemination with sexed semen, 3) artificial insemination with embryo transfer, 4) artificial insemination and embryo transfer with few bulls as sires, and 5) artificial insemination, embryo transfer, and sexed semen with few bulls, respectively. Alternatives 6 to 12 considered cloning from dams. Alternatives 11 and 12 considered a regular progeny-testing scheme that had selection gains (intensity x accuracy x genetic standard deviation) of 890, 300, 600, and 89 kg, respectively, for the four paths. The sums of the generation intervals of the four paths were 19 yr for the first 8 alternatives and 19.5, 22, 29, and 29.5 yr for alternatives 9 to 12, respectively. Rates of genetic gain in milk yield for alternatives 1 to 5 were 257, 281, 316, 327, and 340 kg/yr, respectively. The rate of gain for other alternatives increased as number of clones increased. The use of three records per clone increased both accuracy and generation interval of a path. Cloning was highly beneficial for progeny-testing schemes with lower intensity and accuracy of selection. The discounted economic gain (break-even cost) per clone was the highest ($84) at current selection levels using sexed semen and three records on clones of the dam. The total cost associated with cloning has to be below $84 for cloning to be an economically viable option.
Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi
2014-01-01
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin
2017-03-01
Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.
Böcker, K B E; Gerritsen, J; Hunault, C C; Kruidenier, M; Mensinga, Tj T; Kenemans, J L
2010-07-01
Cannabis intake has been reported to affect cognitive functions such as selective attention. This study addressed the effects of exposure to cannabis with up to 69.4mg Delta(9)-tetrahydrocannabinol (THC) on Event-Related Potentials (ERPs) recorded during a visual selective attention task. Twenty-four participants smoked cannabis cigarettes with four doses of THC on four test days in a randomized, double blind, placebo-controlled, crossover study. Two hours after THC exposure the participants performed a visual selective attention task and concomitant ERPs were recorded. Accuracy decreased linearly and reaction times increased linearly with THC dose. However, performance measures and most of the ERP components related specifically to selective attention did not show significant dose effects. Only in relatively light cannabis users the Occipital Selection Negativity decreased linearly with dose. Furthermore, ERP components reflecting perceptual processing, as well as the P300 component, decreased in amplitude after THC exposure. Only the former effect showed a linear dose-response relation. The decrements in performance and ERP amplitudes induced by exposure to cannabis with high THC content resulted from a non-selective decrease in attentional or processing resources. Performance requiring attentional resources, such as vehicle control, may be compromised several hours after smoking cannabis cigarettes containing high doses of THC, as presently available in Europe and Northern America. Copyright 2010 Elsevier Inc. All rights reserved.
Burgmans, Mark Christiaan; den Harder, J Michiel; Meershoek, Philippa; van den Berg, Nynke S; Chan, Shaun Xavier Ju Min; van Leeuwen, Fijs W B; van Erkel, Arian R
2017-06-01
To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions. CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers. Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values. The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.
Amperometric Glucose Sensors: Sources of Error and Potential Benefit of Redundancy
Castle, Jessica R.; Kenneth Ward, W.
2010-01-01
Amperometric glucose sensors have advanced the care of patients with diabetes and are being studied to control insulin delivery in the research setting. However, at times, currently available sensors demonstrate suboptimal accuracy, which can result from calibration error, sensor drift, or lag. Inaccuracy can be particularly problematic in a closed-loop glycemic control system. In such a system, the use of two sensors allows selection of the more accurate sensor as the input to the controller. In our studies in subjects with type 1 diabetes, the accuracy of the better of two sensors significantly exceeded the accuracy of a single, randomly selected sensor. If an array with three or more sensors were available, it would likely allow even better accuracy with the use of voting. PMID:20167187
NASA Astrophysics Data System (ADS)
McMullen, Kyla A.
Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present study also found that the presence of visual reference frames significantly increased recall accuracy. Additionally, the incorporation of drastic attenuation significantly improved environment recall accuracy. Through investigating the aforementioned concerns, the present study made initial footsteps guiding the design of virtual auditory environments that support spatial configuration recall.
Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J
2012-02-09
The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.
Mao, Yong; Zhou, Xiao-Bo; Pi, Dao-Ying; Sun, You-Xian; Wong, Stephen T C
2005-10-01
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
Xavier, Alencar; Muir, William M.; Rainey, Katy Martin
2016-01-01
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786
Xu, Hang; Su, Shi; Tang, Wuji; Wei, Meng; Wang, Tao; Wang, Dongjin; Ge, Weihong
2015-09-01
A large number of warfarin pharmacogenetics algorithms have been published. Our research was aimed to evaluate the performance of the selected pharmacogenetic algorithms in patients with surgery of heart valve replacement and heart valvuloplasty during the phase of initial and stable anticoagulation treatment. 10 pharmacogenetic algorithms were selected by searching PubMed. We compared the performance of the selected algorithms in a cohort of 193 patients during the phase of initial and stable anticoagulation therapy. Predicted dose was compared to therapeutic dose by using a predicted dose percentage that falls within 20% threshold of the actual dose (percentage within 20%) and mean absolute error (MAE). The average warfarin dose for patients was 3.05±1.23mg/day for initial treatment and 3.45±1.18mg/day for stable treatment. The percentages of the predicted dose within 20% of the therapeutic dose were 44.0±8.8% and 44.6±9.7% for the initial and stable phases, respectively. The MAEs of the selected algorithms were 0.85±0.18mg/day and 0.93±0.19mg/day, respectively. All algorithms had better performance in the ideal group than in the low dose and high dose groups. The only exception is the Wadelius et al. algorithm, which had better performance in the high dose group. The algorithms had similar performance except for the Wadelius et al. and Miao et al. algorithms, which had poor accuracy in our study cohort. The Gage et al. algorithm had better performance in both phases of initial and stable treatment. Algorithms had relatively higher accuracy in the >50years group of patients on the stable phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data
NASA Astrophysics Data System (ADS)
Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.
2017-05-01
The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.
Genomic Prediction Accounting for Residual Heteroskedasticity.
Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M
2015-11-12
Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.
Broccoli/weed/soil discrimination by optical reflectance using neural networks
NASA Astrophysics Data System (ADS)
Hahn, Federico
1995-04-01
Broccoli is grown extensively in Scotland, and has become one of the main vegetables cropped, due to its high yields and profits. Broccoli, weed and soil samples from 6 different farms were collected and their spectra obtained and analyzed using discriminant analysis. High crop/weed/soil discrimination success rates were encountered in each farm, but the selected wavelengths varied in each farm due to differences in broccoli variety, weed species incidence and soil type. In order to use only three wavelengths, neural networks were introduced and high crop/weed/soil discrimination accuracies for each farm were achieved.
A New Direction of Cancer Classification: Positive Effect of Low-Ranking MicroRNAs.
Li, Feifei; Piao, Minghao; Piao, Yongjun; Li, Meijing; Ryu, Keun Ho
2014-10-01
Many studies based on microRNA (miRNA) expression profiles showed a new aspect of cancer classification. Because one characteristic of miRNA expression data is the high dimensionality, feature selection methods have been used to facilitate dimensionality reduction. The feature selection methods have one shortcoming thus far: they just consider the problem of where feature to class is 1:1 or n:1. However, because one miRNA may influence more than one type of cancer, human miRNA is considered to be ranked low in traditional feature selection methods and are removed most of the time. In view of the limitation of the miRNA number, low-ranking miRNAs are also important to cancer classification. We considered both high- and low-ranking features to cover all problems (1:1, n:1, 1:n, and m:n) in cancer classification. First, we used the correlation-based feature selection method to select the high-ranking miRNAs, and chose the support vector machine, Bayes network, decision tree, k-nearest-neighbor, and logistic classifier to construct cancer classification. Then, we chose Chi-square test, information gain, gain ratio, and Pearson's correlation feature selection methods to build the m:n feature subset, and used the selected miRNAs to determine cancer classification. The low-ranking miRNA expression profiles achieved higher classification accuracy compared with just using high-ranking miRNAs in traditional feature selection methods. Our results demonstrate that the m:n feature subset made a positive impression of low-ranking miRNAs in cancer classification.
Validation of geometric accuracy of Global Land Survey (GLS) 2000 data
Rengarajan, Rajagopalan; Sampath, Aparajithan; Storey, James C.; Choate, Michael J.
2015-01-01
The Global Land Survey (GLS) 2000 data were generated from Geocover™ 2000 data with the aim of producing a global data set of accuracy better than 25 m Root Mean Square Error (RMSE). An assessment and validation of accuracy of GLS 2000 data set, and its co-registration with Geocover™ 2000 data set is presented here. Since the availability of global data sets that have higher nominal accuracy than the GLS 2000 is a concern, the data sets were assessed in three tiers. In the first tier, the data were compared with the Geocover™ 2000 data. This comparison provided a means of localizing regions of higher differences. In the second tier, the GLS 2000 data were compared with systematically corrected Landsat-7 scenes that were obtained in a time period when the spacecraft pointing information was extremely accurate. These comparisons localize regions where the data are consistently off, which may indicate regions of higher errors. The third tier consisted of comparing the GLS 2000 data against higher accuracy reference data. The reference data were the Digital Ortho Quads over the United States, orthorectified SPOT data over Australia, and high accuracy check points obtained using triangulation bundle adjustment of Landsat-7 images over selected sites around the world. The study reveals that the geometric errors in Geocover™ 2000 data have been rectified in GLS 2000 data, and that the accuracy of GLS 2000 data can be expected to be better than 25 m RMSE for most of its constituent scenes.
Wu, C; de Jong, J R; Gratama van Andel, H A; van der Have, F; Vastenhouw, B; Laverman, P; Boerman, O C; Dierckx, R A J O; Beekman, F J
2011-09-21
Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In (125)I, (201)Tl, (99m)Tc and (111)In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for (125)I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for (125)I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.
Nasiri, Jaber; Naghavi, Mohammad Reza; Kayvanjoo, Amir Hossein; Nasiri, Mojtaba; Ebrahimi, Mansour
2015-03-07
For the first time, prediction accuracies of some supervised and unsupervised algorithms were evaluated in an SSR-based DNA fingerprinting study of a pea collection containing 20 cultivars and 57 wild samples. In general, according to the 10 attribute weighting models, the SSR alleles of PEAPHTAP-2 and PSBLOX13.2-1 were the two most important attributes to generate discrimination among eight different species and subspecies of genus Pisum. In addition, K-Medoids unsupervised clustering run on Chi squared dataset exhibited the best prediction accuracy (83.12%), while the lowest accuracy (25.97%) gained as K-Means model ran on FCdb database. Irrespective of some fluctuations, the overall accuracies of tree induction models were significantly high for many algorithms, and the attributes PSBLOX13.2-3 and PEAPHTAP could successfully detach Pisum fulvum accessions and cultivars from the others when two selected decision trees were taken into account. Meanwhile, the other used supervised algorithms exhibited overall reliable accuracies, even though in some rare cases, they gave us low amounts of accuracies. Our results, altogether, demonstrate promising applications of both supervised and unsupervised algorithms to provide suitable data mining tools regarding accurate fingerprinting of different species and subspecies of genus Pisum, as a fundamental priority task in breeding programs of the crop. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei
2015-04-01
Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.
Kane, Greg
2013-11-04
A Drug Influence Evaluation (DIE) is a formal assessment of an impaired driving suspect, performed by a trained law enforcement officer who uses circumstantial facts, questioning, searching, and a physical exam to form an unstandardized opinion as to whether a suspect's driving was impaired by drugs. This paper first identifies the scientific studies commonly cited in American criminal trials as evidence of DIE accuracy, and second, uses the QUADAS tool to investigate whether the methodologies used by these studies allow them to correctly quantify the diagnostic accuracy of the DIEs currently administered by US law enforcement. Three studies were selected for analysis. For each study, the QUADAS tool identified biases that distorted reported accuracies. The studies were subject to spectrum bias, selection bias, misclassification bias, verification bias, differential verification bias, incorporation bias, and review bias. The studies quantified DIE performance with prevalence-dependent accuracy statistics that are internally but not externally valid. The accuracies reported by these studies do not quantify the accuracy of the DIE process now used by US law enforcement. These studies do not validate current DIE practice.
Using Ensemble Decisions and Active Selection to Improve Low-Cost Labeling for Multi-View Data
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Wagstaff, Kiri L.
2011-01-01
This paper seeks to improve low-cost labeling in terms of training set reliability (the fraction of correctly labeled training items) and test set performance for multi-view learning methods. Co-training is a popular multiview learning method that combines high-confidence example selection with low-cost (self) labeling. However, co-training with certain base learning algorithms significantly reduces training set reliability, causing an associated drop in prediction accuracy. We propose the use of ensemble labeling to improve reliability in such cases. We also discuss and show promising results on combining low-cost ensemble labeling with active (low-confidence) example selection. We unify these example selection and labeling strategies under collaborative learning, a family of techniques for multi-view learning that we are developing for distributed, sensor-network environments.
Generative model selection using a scalable and size-independent complex network classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu
2013-12-15
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree formore » model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.« less
Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J
2015-06-01
The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.
Rossini, Gabriele; Parrini, Simone; Castroflorio, Tommaso; Deregibus, Andrea; Debernardi, Cesare L
2016-02-01
Our objective was to assess the accuracy, validity, and reliability of measurements obtained from virtual dental study models compared with those obtained from plaster models. PubMed, PubMed Central, National Library of Medicine Medline, Embase, Cochrane Central Register of Controlled Clinical trials, Web of Knowledge, Scopus, Google Scholar, and LILACs were searched from January 2000 to November 2014. A grading system described by the Swedish Council on Technology Assessment in Health Care and the Cochrane tool for risk of bias assessment were used to rate the methodologic quality of the articles. Thirty-five relevant articles were selected. The methodologic quality was high. No significant differences were observed for most of the studies in all the measured parameters, with the exception of the American Board of Orthodontics Objective Grading System. Digital models are as reliable as traditional plaster models, with high accuracy, reliability, and reproducibility. Landmark identification, rather than the measuring device or the software, appears to be the greatest limitation. Furthermore, with their advantages in terms of cost, time, and space required, digital models could be considered the new gold standard in current practice. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Road sign recognition with fuzzy adaptive pre-processing models.
Lin, Chien-Chuan; Wang, Ming-Shi
2012-01-01
A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.
Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models
Lin, Chien-Chuan; Wang, Ming-Shi
2012-01-01
A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650
Online detecting system of roller wear based on laser-linear array CCD technology
NASA Astrophysics Data System (ADS)
Guo, Yuan
2010-10-01
Roller is an important metallurgy tool in the rolling mill. And the surface of a roller affects the quantity of the rolling product directly. After using a period of time, roller must be repaired or replaced. Examining the profile of a working roller between the intervals of rolling is called online detecting for roller wear. The study of online detecting roller wear is very important for selecting the grinding time in reason, reducing the exchanging times of rollers, improving the quality of the product and realizing online grinding rollers. By applying the laser-linear array CCD detective technology, a method for online non-touch detecting roller wear was brought forward. The principle, composition and the operation process of the linear array CCD detecting system were expatiated. And an error compensation algorithm is exactly calculated to offset the shift of the roller axis in this measurement system. So the stability and the accuracy were improved remarkably. The experiment proves that the accuracy of the detecting system reaches to the demand of practical production process. It can provide a new method of high speed and high accuracy online detecting for roller wear.
Shaw, Patricia; Zhang, Vivien; Metallinos-Katsaras, Elizabeth
2009-02-01
The objective of this study was to examine the quantity and accuracy of dietary supplement (DS) information through magazines with high adolescent readership. Eight (8) magazines (3 teen and 5 adult with high teen readership) were selected. A content analysis for DS was conducted on advertisements and editorials (i.e., articles, advice columns, and bulletins). Noted claims/cautions regarding DS were evaluated for accuracy using Medlineplus.gov and Naturaldatabase.com. Claims for dietary supplements with three or more types of ingredients and those in advertisements were not evaluated. Advertisements were evaluated with respect to size, referenced research, testimonials, and Dietary Supplement Health and Education Act of 1994 (DSHEA) warning visibility. Eighty-eight (88) issues from eight magazines yielded 238 DS references. Fifty (50) issues from five magazines contained no DS reference. Among teen magazines, seven DS references were found: five in the editorials and two in advertisements. In adult magazines, 231 DS references were found: 139 in editorials and 92 in advertisements. Of the 88 claims evaluated, 15% were accurate, 23% were inconclusive, 3% were inaccurate, 5% were partially accurate, and 55% were unsubstantiated (i.e., not listed in reference databases). Of the 94 DS evaluated in advertisements, 43% were full page or more, 79% did not have a DSHEA warning visible, 46% referred to research, and 32% used testimonials. Teen magazines contain few references to DS, none accurate. Adult magazines that have a high teen readership contain a substantial amount of DS information with questionable accuracy, raising concerns that this information may increase the chances of inappropriate DS use by adolescents, thereby increasing the potential for unexpected effects or possible harm.
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.
Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens
2016-01-01
MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.
Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Achten, Eric; De Neve, Wilfried; Van Hoof, Tom
2015-12-23
The present study aimed to measure the effect of a morphometric atlas selection strategy on the accuracy of multi-atlas-based BP autosegmentation using the commercially available software package ADMIRE® and to determine the optimal number of selected atlases to use. Autosegmentation accuracy was measured by comparing all generated automatic BP segmentations with anatomically validated gold standard segmentations that were developed using cadavers. Twelve cadaver computed tomography (CT) atlases were included in the study. One atlas was selected as a patient in ADMIRE®, and multi-atlas-based BP autosegmentation was first performed with a group of morphometrically preselected atlases. In this group, the atlases were selected on the basis of similarity in the shoulder protraction position with the patient. The number of selected atlases used started at two and increased up to eight. Subsequently, a group of randomly chosen, non-selected atlases were taken. In this second group, every possible combination of 2 to 8 random atlases was used for multi-atlas-based BP autosegmentation. For both groups, the average Dice similarity coefficient (DSC), Jaccard index (JI) and Inclusion index (INI) were calculated, measuring the similarity of the generated automatic BP segmentations and the gold standard segmentation. Similarity indices of both groups were compared using an independent sample t-test, and the optimal number of selected atlases was investigated using an equivalence trial. For each number of atlases, average similarity indices of the morphometrically selected atlas group were significantly higher than the random group (p < 0,05). In this study, the highest similarity indices were achieved using multi-atlas autosegmentation with 6 selected atlases (average DSC = 0,598; average JI = 0,434; average INI = 0,733). Morphometric atlas selection on the basis of the protraction position of the patient significantly improves multi-atlas-based BP autosegmentation accuracy. In this study, the optimal number of selected atlases used was six, but for definitive conclusions about the optimal number of atlases and to improve the autosegmentation accuracy for clinical use, more atlases need to be included.
One improved LSB steganography algorithm
NASA Astrophysics Data System (ADS)
Song, Bing; Zhang, Zhi-hong
2013-03-01
It is easy to be detected by X2 and RS steganalysis with high accuracy that using LSB algorithm to hide information in digital image. We started by selecting information embedded location and modifying the information embedded method, combined with sub-affine transformation and matrix coding method, improved the LSB algorithm and a new LSB algorithm was proposed. Experimental results show that the improved one can resist the X2 and RS steganalysis effectively.
Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils
Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng
2017-01-01
This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412
NASA Astrophysics Data System (ADS)
Zhu, Jing; Zhou, Zebo; Li, Yong; Rizos, Chris; Wang, Xingshu
2016-07-01
An improvement of the attitude difference method (ADM) to estimate deflections of the vertical (DOV) in real time is described in this paper. The ADM without offline processing estimates the DOV with a limited accuracy due to the response delay. The proposed model selection-based self-adaptive delay feedback (SDF) method takes the results of the ADM as the a priori information, then uses fitting and extrapolation to estimate the DOV at the current epoch. The active region selection factor F th is used to take full advantage of the Earth model EGM2008 and the SDF with different DOV exhibitions. The factors which affect the DOV estimation accuracy are analyzed and modeled. An external observation which is specified by the velocity difference between the global navigation satellite system (GNSS) and the inertial navigation system (INS) with DOV compensated is used to select the optimal model. The response delay induced by the weak observability of an integrated INS/GNSS to the violent DOV disturbances in the ADM is compensated. The DOV estimation accuracy of the SDF method is improved by approximately 40% and 50% respectively compared to that of the EGM2008 and the ADM. With an increase in GNSS accuracy, the DOV estimation accuracy could improve further.
A survey of the accuracy of interpretation of intraoperative cholangiograms.
Sanjay, Pandanaboyana; Tagolao, Sherry; Dirkzwager, Ilse; Bartlett, Adam
2012-10-01
There are few data in the literature regarding the ability of surgical trainees and surgeons to correctly interpret intraoperative cholangiograms (IOCs) during laparoscopic cholecystectomy (LC). The aim of this study was to determine the accuracy of surgeons' interpretations of IOCs. Fifteen IOCs, depicting normal, variants of normal and abnormal anatomy, were sent electronically in random sequence to 20 surgical trainees and 20 consultant general surgeons. Information was also sought on the routine or selective use of IOC by respondents. The accuracy of IOC interpretation was poor. Only nine surgeons and nine trainees correctly interpreted the cholangiograms showing normal anatomy. Six consultant surgeons and five trainees correctly identified variants of normal anatomy on cholangiograms. Abnormal anatomy on cholangiograms was identified correctly by 18 consultant surgeons and 19 trainees. Routine IOC was practised by seven consultants and six trainees. There was no significant difference between those who performed routine and selective IOC with respect to correct identification of normal, variant and abnormal anatomy. The present study shows that the accuracy of detection of both normal and variants of normal anatomy was poor in all grades of surgeon irrespective of a policy of routine or selective IOC. Improving operators' understanding of biliary anatomy may help to increase the diagnostic accuracy of IOC interpretation. © 2012 International Hepato-Pancreato-Biliary Association.
A survey of the accuracy of interpretation of intraoperative cholangiograms
Sanjay, Pandanaboyana; Tagolao, Sherry; Dirkzwager, Ilse; Bartlett, Adam
2012-01-01
Objectives There are few data in the literature regarding the ability of surgical trainees and surgeons to correctly interpret intraoperative cholangiograms (IOCs) during laparoscopic cholecystectomy (LC). The aim of this study was to determine the accuracy of surgeons' interpretations of IOCs. Methods Fifteen IOCs, depicting normal, variants of normal and abnormal anatomy, were sent electronically in random sequence to 20 surgical trainees and 20 consultant general surgeons. Information was also sought on the routine or selective use of IOC by respondents. Results The accuracy of IOC interpretation was poor. Only nine surgeons and nine trainees correctly interpreted the cholangiograms showing normal anatomy. Six consultant surgeons and five trainees correctly identified variants of normal anatomy on cholangiograms. Abnormal anatomy on cholangiograms was identified correctly by 18 consultant surgeons and 19 trainees. Routine IOC was practised by seven consultants and six trainees. There was no significant difference between those who performed routine and selective IOC with respect to correct identification of normal, variant and abnormal anatomy. Conclusions The present study shows that the accuracy of detection of both normal and variants of normal anatomy was poor in all grades of surgeon irrespective of a policy of routine or selective IOC. Improving operators' understanding of biliary anatomy may help to increase the diagnostic accuracy of IOC interpretation. PMID:22954003
Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang
2017-01-01
Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926
Real-time teleophthalmology versus face-to-face consultation: A systematic review.
Tan, Irene J; Dobson, Lucy P; Bartnik, Stephen; Muir, Josephine; Turner, Angus W
2017-08-01
Introduction Advances in imaging capabilities and the evolution of real-time teleophthalmology have the potential to provide increased coverage to areas with limited ophthalmology services. However, there is limited research assessing the diagnostic accuracy of face-to-face teleophthalmology consultation. This systematic review aims to determine if real-time teleophthalmology provides comparable accuracy to face-to-face consultation for the diagnosis of common eye health conditions. Methods A search of PubMed, Embase, Medline and Cochrane databases and manual citation review was conducted on 6 February and 7 April 2016. Included studies involved real-time telemedicine in the field of ophthalmology or optometry, and assessed diagnostic accuracy against gold-standard face-to-face consultation. The revised quality assessment of diagnostic accuracy studies (QUADAS-2) tool assessed risk of bias. Results Twelve studies were included, with participants ranging from four to 89 years old. A broad number of conditions were assessed and include corneal and retinal pathologies, strabismus, oculoplastics and post-operative review. Quality assessment identified a high or unclear risk of bias in patient selection (75%) due to an undisclosed recruitment processes. The index test showed high risk of bias in the included studies, due to the varied interpretation and conduct of real-time teleophthalmology methods. Reference standard risk was overall low (75%), as was the risk due to flow and timing (75%). Conclusion In terms of diagnostic accuracy, real-time teleophthalmology was considered superior to face-to-face consultation in one study and comparable in six studies. Store-and-forward image transmission coupled with real-time videoconferencing is a suitable alternative to overcome poor internet transmission speeds.
Monitoring Building Deformation with InSAR: Experiments and Validation
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-01-01
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403
NASA Astrophysics Data System (ADS)
Karakacan Kuzucu, A.; Bektas Balcik, F.
2017-11-01
Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.
Teipel, Stefan J; Keller, Felix; Thyrian, Jochen R; Strohmaier, Urs; Altiner, Attila; Hoffmann, Wolfgang; Kilimann, Ingo
2017-01-01
Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.
NASA Astrophysics Data System (ADS)
Wang, J.; Feng, B.
2016-12-01
Impervious surface area (ISA) has long been studied as an important input into moisture flux models. In general, ISA impedes groundwater recharge, increases stormflow/flood frequency, and alters in-stream and riparian habitats. Urban area is recognized as one of the richest ISA environment. Urban ISA mapping assists flood prevention and urban planning. Hyperspectral imagery (HI), for its ability to detect subtle spectral signature, becomes an ideal candidate in urban ISA mapping. To map ISA from HI involves endmember (EM) selection. The high degree of spatial and spectral heterogeneity of urban environment puts great difficulty in this task: a compromise point is needed between the automatic degree and the good representativeness of the method. The study tested one manual and two semi-automatic EM selection strategies. The manual and the first semi-automatic methods have been widely used in EM selection. The second semi-automatic EM selection method is rather new and has been only proposed for moderate spatial resolution satellite. The manual method visually selected the EM candidates from eight landcover types in the original image. The first semi-automatic method chose the EM candidates using a threshold over the pixel purity index (PPI) map. The second semi-automatic method used the triangle shape of the HI scatter plot in the n-Dimension visualizer to identify the V-I-S (vegetation-impervious surface-soil) EM candidates: the pixels locate at the triangle points. The initial EM candidates from the three methods were further refined by three indexes (EM average RMSE, minimum average spectral angle, and count based EM selection) and generated three spectral libraries, which were used to classify the test image. Spectral angle mapper was applied. The accuracy reports for the classification results were generated. The overall accuracy are 85% for the manual method, 81% for the PPI method, and 87% for the V-I-S method. The V-I-S EM selection method performs best in this study. This fact proves the value of V-I-S EM selection method in not only moderate spatial resolution satellite image but also the more and more accessible high spatial resolution airborne image. This semi-automatic EM selection method can be adopted into a wide range of remote sensing images and provide ISA map for hydrology analysis.
Experimental study of a generic high-speed civil transport
NASA Technical Reports Server (NTRS)
Belton, Pamela S.; Campbell, Richard L.
1992-01-01
An experimental study of generic high-speed civil transport was conducted in the NASA Langley 8-ft Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wingtip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wingtip shape, while the second model has a more conventional straight wingtip shape. The study was conducted at Mach numbers from 0.30 to 1.19. Force data were obtained on both the straight wingtip model and the curved wingtip model. Only the curved wingtip model was instrumented for measuring pressures. Selected longitudinal, lateral, and directional data are presented for both models. Selected pressure distributions for the curved wingtip model are also presented.
Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L
2017-06-28
Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.
Du, Wei; Zhang, Bilin; Guo, Pengqi; Chen, Guoning; Chang, Chun; Fu, Qiang
2018-03-15
Dexamethasone-imprinted polymers were fabricated by reversible addition-fragmentation chain transfer polymerization on the surface of magnetic nanoparticles under mild polymerization conditions, which exhibited a narrow polydispersity and high selectivity for dexamethasone extraction. The dexamethasone-imprinted polymers were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometry, and vibrating sample magnetometry. The adsorption performance was evaluated by static adsorption, kinetic adsorption and selectivity tests. The results confirmed the successful construction of an imprinted polymer layer on the surface of the magnetic nanoparticles, which benefits the characteristics of high adsorption capacity, fast mass transfer, specific molecular recognition, and simple magnetic separation. Combined with high-performance liquid chromatography, molecularly imprinted polymers as magnetic extraction sorbents were used for the rapid and selective extraction and determination of dexamethasone in skincare cosmetic samples, with the accuracies of the spiked samples ranging from 93.8 to 97.6%. The relative standard deviations were less than 2.7%. The limit of detection and limit of quantification were 0.05 and 0.20 μg/mL, respectively. The developed method was simple, fast and highly selective and could be a promising method for dexamethasone monitoring in cosmetic products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
White, Rohen; Ung, Kim Ann; Mathlum, Maitham
2013-12-01
Selection of the optimal treatment pathway in patients with rectal adenocarcinoma relies on accurate locoregional staging. This study aims to assess the accuracy of staging with magnetic resonance imaging (MRI) and in particular, its accuracy in differentiating patients with early stage disease from those with more advanced disease who benefit from a different treatment approach. Patients who were staged with MRI and received surgery as the first line of treatment for biopsy-proven adenocarcinoma of the rectum were identified. Comparison was made between the clinical stage on MRI and the pathological stage of the surgical specimen. The sensitivity, specificity and overall accuracy of MRI was assessed. In all, 58 eligible patients were identified. In 31% of patients, the extent of disease was underrepresented on preoperative MRI. Sensitivity, specificity and overall accuracy of anorectal MRI in detecting stage II/III disease status in this cohort was 59, 71 and 62%, respectively. MRI underestimated the pathological stage in many patients in this series who may have benefited from the addition of neoadjuvant radiotherapy to their management. This study supports further refinement of preoperative staging and demonstrates that impressive results from highly controlled settings may be difficult to reproduce in community practice. © 2012 Wiley Publishing Asia Pty Ltd.
Solving the stability-accuracy-diversity dilemma of recommender systems
NASA Astrophysics Data System (ADS)
Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong
2017-02-01
Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.
Wong, Chung-Ki; Luo, Qingfei; Zotev, Vadim; Phillips, Raquel; Chan, Kam Wai Clifford; Bodurka, Jerzy
2018-03-31
In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection. Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle. The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy. The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB. The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns
2012-01-03
Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.
[Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].
Wang, Yan; Li, Ning; Xu, Kexin
2006-06-01
Mid-infrared (MIR) spectroscopy is applicable to blood glucose sensing without using any reagent, however, due to a result of inadequate accuracy, till now this method has not been used in clinical detection. The principle and key technologies of blood glucose sensing by MIR spectroscopy are presented in this paper. Along with our experimental results, the paper analyzes ways to enhance measurement accuracy and prediction accuracy by the following four methods: selection of optimized spectral region; application of spectra data processing method; elimination of the interference with other components in the blood, and promotion in system hardware. According to these four improving methods, we designed four experiments, i.e., strict determination of the region where glucose concentration changes most sensitively in MIR, application of genetic algorithm for wavelength selection, normalization of spectra for the purpose of enhancing measuring reproduction, and utilization of CO2 laser as light source. The results show that the measurement accuracy of blood glucose concentration is enhanced almost to a clinical detection level.
Sentiment analysis of feature ranking methods for classification accuracy
NASA Astrophysics Data System (ADS)
Joseph, Shashank; Mugauri, Calvin; Sumathy, S.
2017-11-01
Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.
Sadeghipour, F; Veuthey, J L
1997-11-07
A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajric, Sendin
Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.
Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A.
2015-01-01
Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses. PMID:18303804
The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images
NASA Astrophysics Data System (ADS)
Wang, Y.; Hu, C.; Xia, G.; Xue, H.
2018-04-01
The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.
The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.
Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo
2018-05-17
The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.
Theory of mind selectively predicts preschoolers’ knowledge-based selective word learning
Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane
2015-01-01
Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory of mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children’s preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children’s developing social cognition and early learning. PMID:26211504
Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.
Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane
2015-11-01
Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning. © 2015 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Kazmi, S. M. S.; Olin, Katherine E.; Waldron, James S.; Fox, Douglas J.; Dunn, Andrew K.
2017-03-01
Monitoring cerebral blood flow (CBF) during neurosurgery is essential for detecting ischemia in a timely manner for a wide range of procedures. Multiple clinical studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable, label-free CBF monitoring technique during neurosurgery. LSCI is an optical imaging method that provides blood flow maps with high spatiotemporal resolution requiring only a coherent light source, a lens system, and a camera. However, the quantitative accuracy and sensitivity of LSCI is limited and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study (n = 7) recorded multiple exposure times from the same cortical tissue area, and demonstrates that shorter exposure times (≤1 ms) provide the highest dynamic range and sensitivity for sampling flow rates in human neurovasculature. This study also combined exposure times using the MESI model, demonstrating high correlation with proper image calibration and acquisition. The physiological accuracy of speckle-estimated flow was validated using conservation of flow analysis on vascular bifurcations. Flow estimates were highly conserved in MESI and 1 ms exposure LSCI, with percent errors at 6.4% ± 5.3% and 7.2% ± 7.2%, respectively, while 5 ms exposure LSCI had higher errors at 21% ± 10% (n = 14 bifurcations). Results from this study demonstrate the importance of exposure time selection for LSCI, and that intraoperative MESI can be performed with high quantitative accuracy.
Robust Decision-making Applied to Model Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M.
2012-08-06
The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define eachmore » of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.« less
Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao
2015-01-01
In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299
Asiimwe, Stephen; Oloya, James; Song, Xiao; Whalen, Christopher C
2014-12-01
Unsupervised HIV self-testing (HST) has potential to increase knowledge of HIV status; however, its accuracy is unknown. To estimate the accuracy of unsupervised HST in field settings in Uganda, we performed a non-blinded, randomized controlled, non-inferiority trial of unsupervised compared with supervised HST among selected high HIV risk fisherfolk (22.1 % HIV Prevalence) in three fishing villages in Uganda between July and September 2013. The study enrolled 246 participants and randomized them in a 1:1 ratio to unsupervised HST or provider-supervised HST. In an intent-to-treat analysis, the HST sensitivity was 90 % in the unsupervised arm and 100 % among the provider-supervised, yielding a difference 0f -10 % (90 % CI -21, 1 %); non-inferiority was not shown. In a per protocol analysis, the difference in sensitivity was -5.6 % (90 % CI -14.4, 3.3 %) and did show non-inferiority. We conclude that unsupervised HST is feasible in rural Africa and may be non-inferior to provider-supervised HST.
Ngo, L; Ho, H; Hunter, P; Quinn, K; Thomson, A; Pearson, G
2016-02-01
Post-mortem measurements (cold weight, grade and external carcass linear dimensions) as well as live animal data (age, breed, sex) were used to predict ovine primal and retail cut weights for 792 lamb carcases. Significant levels of variance could be explained using these predictors. The predictive power of those measurements on primal and retail cut weights was studied by using the results from principal component analysis and the absolute value of the t-statistics of the linear regression model. High prediction accuracy for primal cut weight was achieved (adjusted R(2) up to 0.95), as well as moderate accuracy for key retail cut weight: tenderloins (adj-R(2)=0.60), loin (adj-R(2)=0.62), French rack (adj-R(2)=0.76) and rump (adj-R(2)=0.75). The carcass cold weight had the best predictive power, with the accuracy increasing by around 10% after including the next three most significant variables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recommendation in evolving online networks
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zeng, An; Shang, Ming-Sheng
2016-02-01
Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.
Quality assessment of the TLS data in conservation of monuments
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub S.; Zawieska, Dorota
2015-06-01
Laser scanning has been recently confirming its high potential in the field of acquiring 3D data for architectural and engineering objects. The objective of this paper is to analyse the quality of the TLS data acquired for different surfaces of monumental objects, with consideration of distances and the scanning angles. Tests concerning the quality of the survey data and shapes of architectural objects, characterised by diversified curvature, structure and the uniformity of the surface, were performed. The obtained results proved that utilisation of terrestrial laser scanning techniques does not allow to achieve expected accuracy for some historical surfaces and it should be substituted by alternative, photogrammetric techniques. Therefore, the typology of constructions of historical objects is important not only for selection of the optimum technique of surveys, but also for its appropriate utilisation. The test objects were architectural details of the Main Hall of the Warsaw University of Technology. Scans were acquired using the 5006h scanner. Diversified geometry of scans was tested, and the relations between the distance and obtained accuracy were specified. In the case of numerous conservational works the precise surface reconstruction is often important, in order to specify damages. Therefore, the repeatability of obtained TLS results for selected surfaces was also tested. Different surfaces were analysed, which are composed of different materials having glittery elements and inhomogeneous structure. The obtained results and performed analyses revealed the high imperfections of the TLS technique applied for measuring surfaces of historical objects. The presented accuracy of measurements of projection of historical surfaces, obtained using the TLS technique may be applied by art conservators, museum professionals, archaeologists and other specialists, to perform wide analyses of historical heritage objects.
NASA Astrophysics Data System (ADS)
Hamar, D.; Ferencz, Cs.; Steinbach, P.; Lichtenberger, J.; Ferencz, O. E.; Parrot, M.
2009-04-01
Examining the mechanism and effect of the coupling of the electromagnetic signals from the lower ionosphere into the Earth-ionosphere waveguide (EIWG) can be maintained with the analysis of simultaneous broadband VLF recordings acquired at ground station (Tihany, Hungary) and on LEO orbiting satellite (DEMETER) during nearby passes. Single hop whistlers, selected from concurrent broadband VLF data sets were analyzed with high accuracy applying the matched filtering (MF) technique, developed previously for signal analysis. The accuracy of the frequency-time-amplitude pattern and the resolution of the closely spaced whistler traces were further increased with least-square estimation of the parameters of the output of MF procedure. One result of this analysis is the fine structure of the whistler which can not be recognized in conventional spectrogram. The comparison of the detailed fine structure of the whistlers measured on board and on the ground enabled us to select reliably the corresponding signal pairs. The remarkable difference seen in the fine structure of matching whistler occurrences in the satellite and the ground data series can be addressed e.g. to the effect of the inhomogeneous ionospheric plasma (trans-ionosperic impulse propagation) or the process of wave energy leaking out from the ionized medium into the EIWG. This field needs further investigations. References: Ferencz Cs., Ferencz O. E., Hamar D. and Lichtenberger, J., (2001) Whistler Phenomena, Short Impulse Propagation; Kluwer Academic Publisher, ISBN 0-7923-6995-5, Netherlands Lichtenberger, J., Hamar D. and Ferencz Cs.,(2003) Methods for analyzing the structure and propagation characteristics of whistlers, in: Very Low Frequency (VLF) Phenomena, Narosa Publishing House, New Delhi, p. 88-107.
Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau
2014-03-01
To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.
Terrain clutter simulation using physics-based scattering model and digital terrain profile data
NASA Astrophysics Data System (ADS)
Park, James; Johnson, Joel T.; Ding, Kung-Hau; Kim, Kristopher; Tenbarge, Joseph
2015-05-01
Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
Vallejo, Roger L; Leeds, Timothy D; Gao, Guangtu; Parsons, James E; Martin, Kyle E; Evenhuis, Jason P; Fragomeni, Breno O; Wiens, Gregory D; Palti, Yniv
2017-02-01
Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population.
Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification
Huang, Lingkang; Zhang, Hao Helen; Zeng, Zhao-Bang; Bushel, Pierre R.
2013-01-01
Background Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecular diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the small sample size and the complex nature of multi-type tumors. Support vector machines (SVMs) have shown superior performance in cancer classification due to their ability to handle high dimensional low sample size data. The multi-class SVM algorithm of Crammer and Singer provides a natural framework for multi-class learning. Despite its effective performance, the procedure utilizes all variables without selection. In this paper, we propose to improve the procedure by imposing shrinkage penalties in learning to enforce solution sparsity. Results The original multi-class SVM of Crammer and Singer is effective for multi-class classification but does not conduct variable selection. We improved the method by introducing soft-thresholding type penalties to incorporate variable selection into multi-class classification for high dimensional data. The new methods were applied to simulated data and two cancer gene expression data sets. The results demonstrate that the new methods can select a small number of genes for building accurate multi-class classification rules. Furthermore, the important genes selected by the methods overlap significantly, suggesting general agreement among different variable selection schemes. Conclusions High accuracy and sparsity make the new methods attractive for cancer diagnostics with gene expression data and defining targets of therapeutic intervention. Availability: The source MATLAB code are available from http://math.arizona.edu/~hzhang/software.html. PMID:23966761
Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang
2013-01-27
Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.
NASA Astrophysics Data System (ADS)
Yugatama, A.; Rohmani, S.; Dewangga, A.
2018-03-01
Atorvastatin is the primary choice for dyslipidemia treatment. Due to patent expiration of atorvastatin, the pharmaceutical industry makes copy of the drug. Therefore, the development methods for tablet quality tests involving atorvastatin concentration on tablets needs to be performed. The purpose of this research was to develop and validate the simple atorvastatin tablet analytical method by HPLC. HPLC system used in this experiment consisted of column Cosmosil C18 (150 x 4,6 mm, 5 µm) as the stationary reverse phase chomatography, a mixture of methanol-water at pH 3 (80:20 v/v) as the mobile phase, flow rate of 1 mL/min, and UV detector at wavelength of 245 nm. Validation methods were including: selectivity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The results of this study indicate that the developed method had good validation including selectivity, linearity, accuracy, precision, LOD, and LOQ for analysis of atorvastatin tablet content. LOD and LOQ were 0.2 and 0.7 ng/mL, and the linearity range were 20 - 120 ng/mL.
Thermal behavior in single track during selective laser melting of AlSi10Mg powder
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; He, Yuyang; Du, Jun
2017-09-01
A three-dimensional model was developed to simulate the radiation heat transfer in the AlSi10Mg packed bed. The volume of fluid method (VOF) was used to capture the free surface during selective laser melting (SLM). A randomly packed powder bed was obtained using discrete element method (DEM) in Particle Flow Code (PFC). The proposed model has demonstrated a high potential to simulate the selective laser melting process (SLM) with high accuracy. In this paper, the effect of the laser scanning speed and laser power on the thermodynamic behavior of the molten pool was investigated numerically. The results show that the temperature gradient and the resultant surface tension gradient between the center and the edge of the molten pool increase with decreasing the scanning speed or increasing the laser power, thereby intensifying the Marangoni flow and attendant turbulence within the molten pool. However, at a relatively high scanning speed, a significant instability may be generated in the molten pool. The perturbation and instability in the molten pool during SLM may result in an irregular shaped track.
NASA Technical Reports Server (NTRS)
Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc
2014-01-01
In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.
Srivastava, Praveen; Moorthy, Ganesh S; Gross, Robert; Barrett, Jeffrey S
2013-01-01
A selective and a highly sensitive method for the determination of the non-nucleoside reverse transcriptase inhibitor (NNRTI), efavirenz, in human plasma has been developed and fully validated based on high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Sample preparation involved protein precipitation followed by one to one dilution with water. The analyte, efavirenz was separated by high performance liquid chromatography and detected with tandem mass spectrometry in negative ionization mode with multiple reaction monitoring. Efavirenz and ¹³C₆-efavirenz (Internal Standard), respectively, were detected via the following MRM transitions: m/z 314.20243.90 and m/z 320.20249.90. A gradient program was used to elute the analytes using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase solvents, at a flow-rate of 0.3 mL/min. The total run time was 5 min and the retention times for the internal standard (¹³C₆-efavirenz) and efavirenz was approximately 2.6 min. The calibration curves showed linearity (coefficient of regression, r>0.99) over the concentration range of 1.0-2,500 ng/mL. The intraday precision based on the standard deviation of replicates of lower limit of quantification (LLOQ) was 9.24% and for quality control (QC) samples ranged from 2.41% to 6.42% and with accuracy from 112% and 100-111% for LLOQ and QC samples. The inter day precision was 12.3% and 3.03-9.18% for LLOQ and quality controls samples, and the accuracy was 108% and 95.2-108% for LLOQ and QC samples. Stability studies showed that efavirenz was stable during the expected conditions for sample preparation and storage. The lower limit of quantification for efavirenz was 1 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully applied for therapeutic drug monitoring and pharmacokinetic studies in HIV-infected patients.
Ando, Tatsuya; Suguro, Miyuki; Kobayashi, Takeshi; Seto, Masao; Honda, Hiroyuki
2003-10-01
A fuzzy neural network (FNN) using gene expression profile data can select combinations of genes from thousands of genes, and is applicable to predict outcome for cancer patients after chemotherapy. However, wide clinical heterogeneity reduces the accuracy of prediction. To overcome this problem, we have proposed an FNN system based on majoritarian decision using multiple noninferior models. We used transcriptional profiling data, which were obtained from "Lymphochip" DNA microarrays (http://llmpp.nih.gov/DLBCL), reported by Rosenwald (N Engl J Med 2002; 346: 1937-47). When the data were analyzed by our FNN system, accuracy (73.4%) of outcome prediction using only 1 FNN model with 4 genes was higher than that (68.5%) of the Cox model using 17 genes. Higher accuracy (91%) was obtained when an FNN system with 9 noninferior models, consisting of 35 independent genes, was used. The genes selected by the system included genes that are informative in the prognosis of Diffuse large B-cell lymphoma (DLBCL), such as genes showing an expression pattern similar to that of CD10 and BCL-6 or similar to that of IRF-4 and BCL-4. We classified 220 DLBCL patients into 5 groups using the prediction results of 9 FNN models. These groups may correspond to DLBCL subtypes. In group A containing half of the 220 patients, patients with poor outcome were found to satisfy 2 rules, i.e., high expression of MAX dimerization with high expression of unknown A (LC_26146), or high expression of MAX dimerization with low expression of unknown B (LC_33144). The present paper is the first to describe the multiple noninferior FNN modeling system. This system is a powerful tool for predicting outcome and classifying patients, and is applicable to other heterogeneous diseases.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.
Hypergraph Based Feature Selection Technique for Medical Diagnosis.
Somu, Nivethitha; Raman, M R Gauthama; Kirthivasan, Kannan; Sriram, V S Shankar
2016-11-01
The impact of internet and information systems across various domains have resulted in substantial generation of multidimensional datasets. The use of data mining and knowledge discovery techniques to extract the original information contained in the multidimensional datasets play a significant role in the exploitation of complete benefit provided by them. The presence of large number of features in the high dimensional datasets incurs high computational cost in terms of computing power and time. Hence, feature selection technique has been commonly used to build robust machine learning models to select a subset of relevant features which projects the maximal information content of the original dataset. In this paper, a novel Rough Set based K - Helly feature selection technique (RSKHT) which hybridize Rough Set Theory (RST) and K - Helly property of hypergraph representation had been designed to identify the optimal feature subset or reduct for medical diagnostic applications. Experiments carried out using the medical datasets from the UCI repository proves the dominance of the RSKHT over other feature selection techniques with respect to the reduct size, classification accuracy and time complexity. The performance of the RSKHT had been validated using WEKA tool, which shows that RSKHT had been computationally attractive and flexible over massive datasets.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172
Eliyas, S; Vere, J; Ali, Z; Harris, I
2014-02-01
Non-surgical endodontic retreatment is the treatment of choice for endodontically treated teeth with recurrent or residual disease in the majority of cases. In some cases, surgical endodontic treatment is indicated. Successful micro-surgical endodontic treatment depends on the accuracy of diagnosis, appropriate case selection, the quality of the surgical skills, and the application of the most appropriate haemostatic agents and biomaterials. This article describes the armamentarium and technical procedures involved in performing micro-surgical endodontics to a high standard.
RRTMGP: A High-Performance Broadband Radiation Code for the Next Decade
2015-09-30
NOAA ), Robin Hogan (ECMWF), a number of colleagues at the Max-Planck Institute, and Will Sawyer and Marcus Wetzstein (Swiss Supercomputer Center...somewhat out of date, so that the accuracy of our simplified algorithms can not be thoroughly evaluated. RRTMGP_LW_v0 has been provided to our NASA ...support, RRTMGP_LW_v0, has been completed and distributed to selected colleagues at modeling centers, including NOAA , NCAR, and CSCS. Our colleagues
A class of nonideal solutions. 2: Application to experimental data
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.; Donovan, L. F.
1983-01-01
Functions for the representation of the thermodynamic properties of nonideal solutions were applied to the experimental data for several highly nonideal solutions. The test solutions were selected to cover both electrolyte behavior. The results imply that the functions are fully capable of representing the experimental data within their accuracy over the whole composition range and demonstrate that many nonideal solutions can be regarded as members of the defined class of nonideal solutions.
Quality and accuracy assessment of nutrition information on the Web for cancer prevention.
Shahar, Suzana; Shirley, Ng; Noah, Shahrul A
2013-01-01
This study aimed to assess the quality and accuracy of nutrition information about cancer prevention available on the Web. The keywords 'nutrition + diet + cancer + prevention' were submitted to the Google search engine. Out of 400 websites evaluated, 100 met the inclusion and exclusion criteria and were selected as the sample for the assessment of quality and accuracy. Overall, 54% of the studied websites had low quality, 48 and 57% had no author's name or information, respectively, 100% were not updated within 1 month during the study period and 86% did not have the Health on the Net seal. When the websites were assessed for readability using the Flesch Reading Ease test, nearly 44% of the websites were categorised as 'quite difficult'. With regard to accuracy, 91% of the websites did not precisely follow the latest WCRF/AICR 2007 recommendation. The quality scores correlated significantly with the accuracy scores (r = 0.250, p < 0.05). Professional websites (n = 22) had the highest mean quality scores, whereas government websites (n = 2) had the highest mean accuracy scores. The quality of the websites selected in this study was not satisfactory, and there is great concern about the accuracy of the information being disseminated.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, Ephraim M.; Merkle, Jerod A.; Cole, Eric K.; Dewey, Sarah R.; Courtemanch, Alyson B.; Cross, Paul C.
2018-01-01
ContextLandscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity.ObjectiveTo compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection.MethodsUsing movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements.ResultsAll connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models.ConclusionsCTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, EM; Merkle, JA; Cole, EK; Dewey, SR; Courtemanch, AB; Cross, Paul C.
2018-01-01
Context: Landscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity. Objective: To compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection. Methods: Using movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements. Results: All models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP algorithms. Conclusions: CTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Detection of Alzheimer's disease using group lasso SVM-based region selection
NASA Astrophysics Data System (ADS)
Sun, Zhuo; Fan, Yong; Lelieveldt, Boudewijn P. F.; van de Giessen, Martijn
2015-03-01
Alzheimer's disease (AD) is one of the most frequent forms of dementia and an increasing challenging public health problem. In the last two decades, structural magnetic resonance imaging (MRI) has shown potential in distinguishing patients with Alzheimer's disease and elderly controls (CN). To obtain AD-specific biomarkers, previous research used either statistical testing to find statistically significant different regions between the two clinical groups, or l1 sparse learning to select isolated features in the image domain. In this paper, we propose a new framework that uses structural MRI to simultaneously distinguish the two clinical groups and find the bio-markers of AD, using a group lasso support vector machine (SVM). The group lasso term (mixed l1- l2 norm) introduces anatomical information from the image domain into the feature domain, such that the resulting set of selected voxels are more meaningful than the l1 sparse SVM. Because of large inter-structure size variation, we introduce a group specific normalization factor to deal with the structure size bias. Experiments have been performed on a well-designed AD vs. CN dataset1 to validate our method. Comparing to the l1 sparse SVM approach, our method achieved better classification performance and a more meaningful biomarker selection. When we vary the training set, the selected regions by our method were more stable than the l1 sparse SVM. Classification experiments showed that our group normalization lead to higher classification accuracy with fewer selected regions than the non-normalized method. Comparing to the state-of-art AD vs. CN classification methods, our approach not only obtains a high accuracy with the same dataset, but more importantly, we simultaneously find the brain anatomies that are closely related to the disease.
NASA Astrophysics Data System (ADS)
Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza
2016-04-01
Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Jiang, Yuan Yuan; Kim, Sung Min
2015-01-01
This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics, 18 gray level co-occurrence matrices, 18 Law's, and echogenicity were extracted. A total of 29 key features that were selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically.
Highly accurate photogrammetric measurements of the Planck reflectors
NASA Astrophysics Data System (ADS)
Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro
2017-11-01
The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.
2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.
Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen
2016-11-15
Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos
2017-04-13
Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.
AVHRR composite period selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Multitemporal satellite image datasets provide valuable information on the phenological characteristics of vegetation, thereby significantly increasing the accuracy of cover type classifications compared to single date classifications. However, the processing of these datasets can become very complex when dealing with multitemporal data combined with multispectral data. Advanced Very High Resolution Radiometer (AVHRR) biweekly composite data are commonly used to classify land cover over large regions. Selecting a subset of these biweekly composite periods may be required to reduce the complexity and cost of land cover mapping. The objective of our research was to evaluate the effect of reducing the number of composite periods and altering the spacing of those composite periods on classification accuracy. Because inter-annual variability can have a major impact on classification results, 5 years of AVHRR data were evaluated. AVHRR biweekly composite images for spectral channels 1-4 (visible, near-infrared and two thermal bands) covering the entire growing season were used to classify 14 cover types over the entire state of Colorado for each of five different years. A supervised classification method was applied to maintain consistent procedures for each case tested. Results indicate that the number of composite periods can be halved-reduced from 14 composite dates to seven composite dates-without significantly reducing overall classification accuracy (80.4% Kappa accuracy for the 14-composite data-set as compared to 80.0% for a seven-composite dataset). At least seven composite periods were required to ensure the classification accuracy was not affected by inter-annual variability due to climate fluctuations. Concentrating more composites near the beginning and end of the growing season, as compared to using evenly spaced time periods, consistently produced slightly higher classification values over the 5 years tested (average Kappa) of 80.3% for the heavy early/late case as compared to 79.0% for the alternate dataset case).
Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min
2012-01-01
A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.
Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min
2012-01-01
A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules. PMID:22942689
Wang, Bin; Cancilla, John C; Torrecilla, Jose S; Haick, Hossam
2014-02-12
The use of molecularly modified Si nanowire field effect transistors (SiNW FETs) for selective detection in the liquid phase has been successfully demonstrated. In contrast, selective detection of chemical species in the gas phase has been rather limited. In this paper, we show that the application of artificial intelligence on deliberately controlled SiNW FET device parameters can provide high selectivity toward specific volatile organic compounds (VOCs). The obtained selectivity allows identifying VOCs in both single-component and multicomponent environments as well as estimating the constituent VOC concentrations. The effect of the structural properties (functional group and/or chain length) of the molecular modifications on the accuracy of VOC detection is presented and discussed. The reported results have the potential to serve as a launching pad for the use of SiNW FET sensors in real-world counteracting conditions and/or applications.
A dynamic data source selection system for smartwatch platform.
Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid
2016-08-01
A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.
Training set optimization under population structure in genomic selection.
Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E
2015-01-01
Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.
Effects of Sample Selection Bias on the Accuracy of Population Structure and Ancestry Inference
Shringarpure, Suyash; Xing, Eric P.
2014-01-01
Population stratification is an important task in genetic analyses. It provides information about the ancestry of individuals and can be an important confounder in genome-wide association studies. Public genotyping projects have made a large number of datasets available for study. However, practical constraints dictate that of a geographical/ethnic population, only a small number of individuals are genotyped. The resulting data are a sample from the entire population. If the distribution of sample sizes is not representative of the populations being sampled, the accuracy of population stratification analyses of the data could be affected. We attempt to understand the effect of biased sampling on the accuracy of population structure analysis and individual ancestry recovery. We examined two commonly used methods for analyses of such datasets, ADMIXTURE and EIGENSOFT, and found that the accuracy of recovery of population structure is affected to a large extent by the sample used for analysis and how representative it is of the underlying populations. Using simulated data and real genotype data from cattle, we show that sample selection bias can affect the results of population structure analyses. We develop a mathematical framework for sample selection bias in models for population structure and also proposed a correction for sample selection bias using auxiliary information about the sample. We demonstrate that such a correction is effective in practice using simulated and real data. PMID:24637351
Accuracy of references and quotations in veterinary journals.
Hinchcliff, K W; Bruce, N J; Powers, J D; Kipp, M L
1993-02-01
The accuracy of references and quotations used to substantiate statements of fact in articles published in 6 frequently cited veterinary journals was examined. Three hundred references were randomly selected, and the accuracy of each citation was examined. A subset of 100 references was examined for quotational accuracy; ie, the accuracy with which authors represented the work or assertions of the author being cited. Of the 300 references selected, 295 were located, and 125 major errors were found in 88 (29.8%) of them. Sixty-seven (53.6%) major errors were found involving authors, 12 (9.6%) involved the article title, 14 (11.2%) involved the book or journal title, and 32 (25.6%) involved the volume number, date, or page numbers. Sixty-eight minor errors were detected. The accuracy of 111 quotations from 95 citations in 65 articles was examined. Nine quotations were technical and not classified, 86 (84.3%) were classified as correct, 2 (1.9%) contained minor misquotations, and 14 (13.7%) contained major misquotations. We concluded that misquotations and errors in citations occur frequently in veterinary journals, but at a rate similar to that reported for other biomedical journals.
2013-01-01
Background A Drug Influence Evaluation (DIE) is a formal assessment of an impaired driving suspect, performed by a trained law enforcement officer who uses circumstantial facts, questioning, searching, and a physical exam to form an unstandardized opinion as to whether a suspect’s driving was impaired by drugs. This paper first identifies the scientific studies commonly cited in American criminal trials as evidence of DIE accuracy, and second, uses the QUADAS tool to investigate whether the methodologies used by these studies allow them to correctly quantify the diagnostic accuracy of the DIEs currently administered by US law enforcement. Results Three studies were selected for analysis. For each study, the QUADAS tool identified biases that distorted reported accuracies. The studies were subject to spectrum bias, selection bias, misclassification bias, verification bias, differential verification bias, incorporation bias, and review bias. The studies quantified DIE performance with prevalence-dependent accuracy statistics that are internally but not externally valid. Conclusion The accuracies reported by these studies do not quantify the accuracy of the DIE process now used by US law enforcement. These studies do not validate current DIE practice. PMID:24188398
Memon, S; Lynch, A C; Bressel, M; Wise, A G; Heriot, A G
2015-09-01
Restaging imaging by MRI or endorectal ultrasound (ERUS) following neoadjuvant chemoradiotherapy is not routinely performed, but the assessment of response is becoming increasingly important to facilitate individualization of management. A search of the MEDLINE and Scopus databases was performed for studies that evaluated the accuracy of restaging of rectal cancer following neoadjuvant chemoradiotherapy with MRI or ERUS against the histopathological outcome. A systematic review of selected studies was performed. The methodological quality of studies that qualified for meta-analysis was critically assessed to identify studies suitable for inclusion in the meta-analysis. Sixty-three articles were included in the systematic review. Twelve restaging MRI studies and 18 restaging ERUS studies were eligible for meta-analysis of T-stage restaging accuracy. Overall, ERUS T-stage restaging accuracy (mean [95% CI]: 65% [56-72%]) was nonsignificantly higher than MRI T-stage accuracy (52% [44-59%]). Restaging MRI is accurate at excluding circumferential resection margin involvement. Restaging MRI and ERUS were equivalent for prediction of nodal status: the accuracy of both investigations was 72% with over-staging and under-staging occurring in 10-15%. The heterogeneity amongst restaging studies is high, limiting conclusive findings regarding their accuracies. The accuracy of restaging imaging is different for different pathological T stages and highest for T3 tumours. Morphological assessment of T- or N-stage by MRI or ERUS is currently not accurate or consistent enough for clinical application. Restaging MRI appears to have a role in excluding circumferential resection margin involvement. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.
[Automated Assessment for Bone Age of Left Wrist Joint in Uyghur Teenagers by Deep Learning].
Hu, T H; Huo, Z; Liu, T A; Wang, F; Wan, L; Wang, M W; Chen, T; Wang, Y H
2018-02-01
To realize the automated bone age assessment by applying deep learning to digital radiography (DR) image recognition of left wrist joint in Uyghur teenagers, and explore its practical application value in forensic medicine bone age assessment. The X-ray films of left wrist joint after pretreatment, which were taken from 245 male and 227 female Uyghur nationality teenagers in Uygur Autonomous Region aged from 13.0 to 19.0 years old, were chosen as subjects. And AlexNet was as a regression model of image recognition. From the total samples above, 60% of male and female DR images of left wrist joint were selected as net train set, and 10% of samples were selected as validation set. As test set, the rest 30% were used to obtain the image recognition accuracy with an error range in ±1.0 and ±0.7 age respectively, compared to the real age. The modelling results of deep learning algorithm showed that when the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the net train set was 81.4% and 75.6% in male, and 80.5% and 74.8% in female, respectively. When the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the test set was 79.5% and 71.2% in male, and 79.4% and 66.2% in female, respectively. The combination of bone age research on teenagers' left wrist joint and deep learning, which has high accuracy and good feasibility, can be the research basis of bone age automatic assessment system for the rest joints of body. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Baxter, Suzanne Domel; Guinn, Caroline H.; Smith, Albert F.; Hitchcock, David B.; Royer, Julie A.; Puryear, Megan P.; Collins, Kathleen L.; Smith, Alyssa L.
2017-01-01
Validation-study data were analyzed to investigate retention interval (RI) and prompt effects on accuracy of fourth-grade children’s reports of school-breakfast and school-lunch (in 24-hour recalls), and accuracy of school-breakfast reports by breakfast location (classroom; cafeteria). Randomly-selected fourth-grade children at 10 schools in four districts were observed eating school-provided breakfast and lunch, and interviewed under one of eight conditions (two RIs [short (prior-24-hour recall obtained in afternoon); long (previous-day recall obtained in morning)] crossed with four prompts [forward (distant-to-recent), meal-name (breakfast, etc.), open (no instructions), reverse (recent-to-distant)]). Each condition had 60 children (half girls). Of 480 children, 355 and 409 reported meals satisfying criteria for reports of school-breakfast and school-lunch, respectively. For breakfast and lunch separately, a conventional measure—report rate—and reporting-error-sensitive measures—correspondence rate and inflation ratio—were calculated for energy per meal-reporting child. Correspondence rate and inflation ratio—but not report rate—showed better accuracy for school-breakfast and school-lunch reports with the short than long RI; this pattern was not found for some prompts for each sex. Correspondence rate and inflation ratio showed better school-breakfast report accuracy for the classroom than cafeteria location for each prompt, but report rate showed the opposite. For each RI, correspondence rate and inflation ratio showed better accuracy for lunch than breakfast, but report rate showed the opposite. When choosing RI and prompts for recalls, researchers and practitioners should select short RIs to maximize accuracy. Recommendations for prompt selections are less clear. As report rates distort validation-study accuracy conclusions, reporting-error-sensitive measures are recommended. PMID:26865356
Rubio-Ochoa, J; Benítez-Martínez, J; Lluch, E; Santacruz-Zaragozá, S; Gómez-Contreras, P; Cook, C E
2016-02-01
It has been suggested that differential diagnosis of headaches should consist of a robust subjective examination and a detailed physical examination of the cervical spine. Cervicogenic headache (CGH) is a form of headache that involves referred pain from the neck. To our knowledge, no studies have summarized the reliability and diagnostic accuracy of physical examination tests for CGH. The aim of this study was to summarize the reliability and diagnostic accuracy of physical examination tests used to diagnose CGH. A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed in four electronic databases (MEDLINE, Web of Science, Embase and Scopus). Full text reports concerning physical tests for the diagnosis of CGH which reported the clinometric properties for assessment of CGH, were included and screened for methodological quality. Quality Appraisal for Reliability Studies (QAREL) and Quality Assessment of Studies of Diagnostic Accuracy (QUADAS-2) scores were completed to assess article quality. Eight articles were retrieved for quality assessment and data extraction. Studies investigating diagnostic reliability of physical examination tests for CGH scored poorer on methodological quality (higher risk of bias) than those of diagnostic accuracy. There is sufficient evidence showing high levels of reliability and diagnostic accuracy of the selected physical examination tests for the diagnosis of CGH. The cervical flexion-rotation test (CFRT) exhibited both the highest reliability and the strongest diagnostic accuracy for the diagnosis of CGH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C
2018-06-01
Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.
NASA Astrophysics Data System (ADS)
Liu, J.
2017-12-01
Accurately estimate of ET is crucial for studies of land-atmosphere interactions. A series of ET products have been developed recently relying on various simulation methods, however, uncertainties in accuracy of products limit their implications. In this study, accuracies of total 8 popular global ET products simulated based on satellite retrieves (ETMODIS and ETZhang), reanalysis (ETJRA55), machine learning method (ETJung) and land surface models (ETCLM, ETMOS, ETNoah and ETVIC) forcing by Global Land Data Assimilation System (GLDAS), respectively, were comprehensively evaluated against observations from eddy covariance FLUXNET sites by yearly, land cover and climate zones. The result shows that all simulated ET products tend to underestimate in the lower ET ranges or overestimate in higher ET ranges compared with ET observations. Through the examining of four statistic criterias, the root mean square error (RMSE), mean bias error (MBE), R2, and Taylor skill score (TSS), ETJung provided a high performance whether yearly or land cover or climatic zones. Satellite based ET products also have impressive performance. ETMODIS and ETZhang present comparable accuracy, while were skilled for different land cover and climate zones, respectively. Generally, the ET products from GLDAS show reasonable accuracy, despite ETCLM has relative higher RMSE and MBE for yearly, land cover and climate zones comparisons. Although the ETJRA55 shows comparable R2 with other products, its performance was constraint by the high RMSE and MBE. Knowledge from this study is crucial for ET products improvement and selection when they were used.