Science.gov

Sample records for high activity effluent

  1. Pancreatic lipase activity in overnight effluent predicts high transport status in peritoneal dialysis patients.

    PubMed

    Idei, Mayumi; Tabe, Yoko; Hamada, Chieko; Miyake, Kazunori; Takemura, Hiroyuki; Io, Hiroaki; Wakita, Mitsuru; Horii, Takashi; Tomino, Yasuhiko; Ohsaka, Akimichi; Miida, Takashi

    2016-11-01

    Long-term peritoneal dialysis (PD) causes peritoneal morphological and functional changes, resulting in high transport status featuring increased peritoneal permeability. High transport status is diagnosed by peritoneal equilibration test (PET), a reliable but time-consuming method. We identifed a reliable biomarker in peritoneal effluent to predict high transport status in PD patients. We collected peritoneal effluent and serum from 33 PD patients and measured common laboratory test parameters. High transport status was determined by PET if the dialysate/plasma ratio of creatinine at 4h dwell (D/P Cr 4h) was ≥0.81. There were significant correlations between D/P Cr 4h and some laboratory parameters in overnight effluent (pancreatic lipase activity, r=0.65, p<0.001; β2-microglobulin concentration, r=0.59, p<0.001; IL-6 concentration, r=0.53, p<0.001; and CA125 concentration, r=0.29, p=0.027). In a multivariate logistic regression analysis, the pancreatic lipase activity in overnight effluent was identified as an independent predictor of high transport status even after adjusting for age, PD duration, and glomerular filtration rate [OR=1.43 (95% CI: 1.11-1.83), p=0.005]. The pancreatic lipase activity in overnight effluent is an independent predictor of high transport status in PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Estrogenic activity in Finnish municipal wastewater effluents.

    PubMed

    Välitalo, Pia; Perkola, Noora; Seiler, Thomas-Benjamin; Sillanpää, Markus; Kuckelkorn, Jochen; Mikola, Anna; Hollert, Henner; Schultz, Eija

    2016-01-01

    Effluents from wastewater treatment plants (WWTPs) are a major source of estrogenic compounds to the aquatic environment. In the present work, estrogenic activities of effluents from eight municipal WWTPs in Finland were studied. The main objectives of the study were to quantify the concentrations of selected estrogenic compounds, to evaluate their contribution to estrogenic potency and to test the feasibility of the commercial bioassays for wastewater analysis. The effluent samples were analyzed by two in vitro tests, i.e. ERα-CALUX(®) and ELISA-E2, and by liquid chromatography mass spectrometry for six estrogenic compounds: estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 17α-estradiol and bisphenol A (BPA). Estrogenic effects were found in all of the effluent samples with both of the bioassays. The concentrations measured with ELISA-E2 (8.6-61.6 ng/L) were clearly higher but exhibited a similar pattern than those with chemical analysis (E2 high BPA contribution (17%). The contribution of E2 was significant in two samples where it was detected (28% and 67%). The results demonstrated that more comprehensive information on potential estrogenic activity of wastewater effluents can be achieved by using in vitro biotests in addition to chemical analysis and their use would be beneficial in monitoring and screening purposes.

  3. Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge.

    PubMed

    Kazner, C; Wintgens, T; Melin, T; Baghoth, S; Sharma, S; Amy, G

    2008-01-01

    Direct nanofiltration and nanofiltration combined with powdered activated carbon known as the PAC/NF process were tested regarding the removal of effluent organic matter for reclamation of tertiary effluent from a municipal wastewater treatment plant. They can be regarded as a promising treatment alternative for high quality water reuse applications, especially for direct injection. The total removal for DOC was above 90% with permeate concentrations below 0.5 mg/l. Size exclusion chromatography and fluorescence EEM proved to trace origin of the organic matter even in low concentration ranges. The type and dosage of adsorbent influences the process performance significantly and allows process optimization. Copyright IWA Publishing 2008.

  4. Nitrification-denitrification of UASB effluents highly loaded with nitrogen in an activated sludge reactor operated with short cycled aeration.

    PubMed

    Villaverde, S; Lacalle, M L; García-Encina, P A; Fdz-Polanco, F

    2001-01-01

    A conventional activated sludge reactor operated with short cycled aeration was used for total nitrogen removal of UASB anaerobic reactor effluent containing nitrogen (up to 1,200 mg NKT/L) and organic matter (up to 2,000 mg COD/L). Initially the reactor was fed with synthetic water to progressively introduce the UASB effluent. This favored the acclimation of the microorganisms to the real environment. The results obtained throughout this study showed that initially the tested technology is feasible and can report significant cuts on operation and maintenance when compared to conventional activated sludge processes. Total nitrogen removal up to 66% was attained treating the effluent of an UASB process designed for treating the wastewater of a potato starch factory. Total nitrogen removal capacities ranging between 0.1 and 0.58 kg of nitrogen per cubic metre per day are reported. Short-cycled aeration allowed for a more efficient use of the oxygen supply for nitrification and the organic carbon content present in the wastewater for denitrification. This operating protocol has demonstrated serious advantages in terms of operation costs and simplicity when total nitrogen removal is wanted. Most of the existing activated sludge processes, i.e. single continuous flow reactors, can be updated for total nitrogen removal essentially at no cost, the inversion (aeration control system) is rapidly returned as reduction in energy expenditure.

  5. High-yield pulping effluent treatment technologies

    SciTech Connect

    Su, W.X.; Hsieh, J.S. . School of Chemical Engineering)

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge.

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  7. Biological activity of bleached kraft pulp mill effluents before and after activated sludge and ozone treatments.

    PubMed

    Lopes, Alessandra Cunha; Mounteer, Ann H; Stoppa, Teynha Valverde; Aquino, Davi Santiago

    2013-01-01

    Eucalyptus bleached kraft pulp production, an important sector of the Brazilian national economy, is responsible for generating large volume, high pollutant load effluents, containing a considerable fraction of recalcitrant organic matter. The objectives of this study were to quantify the biological activity of the effluent from a eucalyptus bleached kraft pulp mill, characterize the nature of compounds responsible for biological activity and assess the effect of ozone treatment on its removal. Primary and secondary effluents were collected bimonthly over the course of one year at a Brazilian bleached eucalypt kraft pulp mill and their pollutant loads (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), adsorbable organic halogen (AOX), lignin, extractives) and biological activity (acute and chronic toxicity and estrogenic activity) quantified. The effluent studied did not present acute toxicity to Daphnia, but presented the chronic toxicity effects of algal growth inhibition and reduced survival and reproduction in Ceriodaphnia, as well as estrogenic activity. Chronic toxicity and estrogenic activity were reduced but not eliminated during activated sludge biological treatment. The toxicity identification evaluation revealed that lipophilic organic compounds (such as residual lignin, extractives and their byproducts) were responsible for the toxicity and estrogenic activity. Ozone treatment (50 mg/L O(3)) of the secondary effluent eliminated the chronic toxicity and significantly reduced estrogen activity.

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  9. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites.

    PubMed

    Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul

    2016-01-01

    Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.

  10. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  11. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-04-10

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies.

  12. Management plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  13. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    EPA Science Inventory

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FL

    Recent studies have shown the presence of androgenic activity in water...

  14. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    EPA Science Inventory

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FL

    Recent studies have shown the presence of androgenic activity in water...

  15. High-yield pulping effluent treatment technologies. Final report

    SciTech Connect

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge.

  16. Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities.

    PubMed

    Boillot, C; Bazin, C; Tissot-Guerraz, F; Droguet, J; Perraud, M; Cetre, J C; Trepo, D; Perrodin, Y

    2008-09-15

    The problem of hospital effluents falls into the framework of hazardous substances due to the specific substances used and discharged for the most part into urban drainage networks without prior treatment. This in-depth study has led to greater understanding of the effluents discharged by hospitals. The experimental program implemented consisted in carrying out parallel sampling of the effluents of one hospital: a 24 h-average sample and 5 periodic samples corresponding to fractions of times and hospital activities. The samples were characterized by physicochemical, microbiological and ecotoxicological analyses. The results highlight that the effluents contained very little bacterial flora and a moderate organic pollution. However, a numerous of specific pollutants were detected: AOX, glutaraldehyde, free chlorine, detergents, Freon 113 as well as alcohols, acetone, formaldehyde, acetaldehyde, ammonium, phenols and several metals. The battery of bioassays showed that the effluents had a high level of ecotoxicity partly linked to particles in suspension and, that pollution fluctuated greatly during the day in connection with hospital activities. Finally, the PNEC values compared to the concentrations of pollutants dosed in the effluents highlighted that their toxicity was mainly due to several major pollutants, in particular free chlorine. Some hypotheses require additional experiments to be carried out. They concern: reactions of fermentations likely to occur in the drainage network and to form secondary toxic compounds, retention of chlorine by particles and physicochemical characterization of suspended solids.

  17. Activated carbon testing for the 200 area effluent treatment facility

    SciTech Connect

    Wagner, R.N.

    1997-01-17

    This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

  18. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon.

    PubMed

    Hartig, C; Ernst, M; Jekel, M

    2001-11-01

    The adsorption behaviour of two polar organic micropollutants (N-n-butylbenzenesulphonamide and sulphmethoxazole) onto powdered activated carbon (PAC) under competitive conditions prior to and after filtration with a tight ultrafiltration membrane was examined. The sulphonamides were spiked into microfiltered tertiary municipal effluent in microg L(-1) quantities. Ultrafiltration of these effluents resulted in better adsorbability for both the micropollutants and the background organic matter in the permeates compared to the feed waters. This behaviour seems to be caused by a reduced blocking of micropores by lower concentrations of high molecular weight compounds in membrane filtrates. A combined treatment of ultrafiltration prior to adsorption can therefore reduce the carbon demand for potentially harmful micropollutants in effluents.

  19. Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture.

    PubMed

    Coloso, R M; King, K; Fletcher, J W; Weis, P; Werner, A; Ferraris, R P

    2003-08-01

    Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40-70% of total effluent P production by trout. Particulate P concentrations accounted for 25-50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.

  20. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  1. Effect of selected textile effluents on activated sludge nitrification process.

    PubMed

    Giordano, Andrea; Grilli, Selene; De Florio, Loredana; Mattioli, Davide

    2005-01-01

    In this study, a recently developed methodology for the assessment of the inhibitory effect on nitrifying biomass was applied to several textile effluents from productive processes. Effluents are classified according to the degree of inhibition as EC50 (concentration producing 50% nitrification inhibition); the investigated textile effluents showed a wide range of EC50 ranging from 20 ml gVSS-1 (83 ml l-1) to values above 100 ml gVSS-1 (300 ml l-1) for effluents produced by rinsing phases. Taking into account biodegradability and toxicity evaluations, most of the effluents showed a good treatability in conventional biological wastewater treatment plant. On the other hand three textile effluents showed significant toxic effects towards nitrifying biomass. In any case, the proposed procedure represents an efficient tool to prevent treatment failures due to toxic discharges.

  2. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  3. Combined fenton oxidation and biological activated carbon process for recycling of coking plant effluent.

    PubMed

    Jiang, Wen-xin; Zhang, Wei; Li, Bing-jing; Duan, Jun; Lv, Yan; Liu, Wan-dong; Ying, Wei-chi

    2011-05-15

    Fenton oxidation and coagulation-flocculation-sedimentation (CFS) were both effective in removing many organic constituents of the biotreated coking plant effluent before the final treatment in an activated carbon adsorber. Fenton oxidation broke down most persistent organic pollutants and complex cyanides present in the feed stream and caused the eventual biodegradation of the organic residues in the adsorber. The results of Fenton oxidation followed by adsorption and biodegradation in two biological activated carbon (BAC) adsorbers show that the combined treatment consistently produced a high quality final effluent of <50mg/L in COD(Cr) and <0.5mg/L in total cyanide during the 70-d study without replacing any activated carbon. The BAC function of the adsorber substantially reduced the need for replacing activated carbon making the combined Fenton oxidation-BAC treatment process a cost effective treatment process to recycle the final effluent for many beneficial reuses while meeting the much more stringent discharge limits of the future.

  4. Detection of estrogenic activity from kraft mill effluents by the yeast estrogen screen.

    PubMed

    Chamorro, S; Hernández, V; Monsalvez, E; Becerra, J; Mondaca, M A; Piña, B; Vidal, G

    2010-02-01

    Estrogenic activity of kraft pulp mill effluents (P. radiata, E. globulus and mixed -50% E. globulus and 50% P. radiata) was evaluated by the yeast estrogen screen assay. The estrogenic activity values were relatively low, ranking between 1.475 and 0.383 ng/L of EE2 eq. (Estrogenic equivalent of 17 alpha-ethynylestradiol), where the highest value corresponds to the E. globulus effluent and the lowest value to the P. radiata effluent. Analysis by solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) of chemical compounds present in all three effluents detected at least five major groups of organic compounds, corresponding to fatty acids, hydrocarbons, phenols, sterols and triterpenes. Comparison of analytical and biological data suggests that sterols could be the cause of the estrogenic activity in the evaluated effluent.

  5. Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-11-19

    Trace levels of antibiotics in treated wastewater effluents may present a human health risk due to the rise of antibacterial activity in the downstream environments. Advanced oxidation has a potential to become an effective treatment technology for transforming trace antibiotics in wastewater effluents, but residual or newly generated antibacterial properties of transformation products are a concern. This study demonstrates the effect of UV photolysis and UV/H2O2 advanced oxidation on transformation of 6 antibiotics, each a representative of a different structural class, in pure water and in two different effluents and reports new or confirmatory photolysis quantum yields and hydroxyl radical rate constants. The decay of the parent compound was monitored with HPLC/ITMS, and the corresponding changes in antibacterial activity were measured using bacterial inhibition assays. No antibacterially active products were observed following treatment for four of the six antibiotics (clindamycin, ciprofloxacin, penicillin-G, and trimethoprim). The remaining two antibiotics (erythromycin and doxycycline) showed some intermediates with antibacterial activity at low treatment doses. The antibacterially active products lost activity as the UV dose increased past 500 mJ/cm(2). Active products were observed only in wastewater effluents and not in pure water, suggesting that complex secondary reactions controlled by the composition of the matrix were responsible for their formation. This outcome emphasizes the importance of bench-scale experiments in realistic water matrices. Most importantly, the results indicate that photosensitized processes during high dose wastewater disinfection may be creating antibacterially active transformation products from some common antibiotics.

  6. Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent.

    PubMed

    Ma, Defang; Gao, Yue; Gao, Baoyu; Wang, Yan; Yue, Qinyan; Li, Qian

    2014-12-01

    Characteristics and trihalomethane (THM) formation reactivity of dissolved organic matter (DOM) in effluents from two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition (referred to as PAC/MBR and MBR, respectively) were examined to investigate the effects of PAC addition on THM formation of MBR effluent during chlorination. PAC addition increased the specific UV absorbance. Hydrophobic DOM especially hydrophobic acids in PAC/MBR effluent (50%) were more than MBR effluent (42%). DOM with molecular weight <1 kDa constituted 12% of PAC/MBR effluent DOM, which was less than that of MBR effluent (16%). Data obtained from excitation and emission matrix fluorescence spectroscopy revealed that PAC/MBR effluent DOM contained more simple aromatic protein, but had less fulvic acid-like and soluble microbial by-product-like. PAC addition reduced the formation of bromine-containing THMs during chlorination of effluents, but increased THM formation reactivity of effluent DOM.

  7. Highly dealuminated Y zeolite as efficient adsorbent for the hydrophobic fraction from wastewater treatment plants effluents.

    PubMed

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-07-15

    In this work we report that highly dealuminated zeolite Y is a hydrophobic material that is able to remove selectively fatty acids and hydrocarbon compounds from the effluent of an urban wastewater treatment plant (UWTP). This adsorbent capability of zeolite Y could lead to an improved quality of UWTP effluents. Typical domestic wastewaters contain detergents, soaps and surfactants that are only partially removed in conventional UWTP. In the present work using an effluent from a UWTP located at Ribarroja del Turia (Valencia, Spain) containing 10 ppm of total organic carbon, we have been able to retain by adsorption on the dealuminated Y zeolite up to 16 and 60% of the organic matter of the effluent at pH values 7.2 and 4, respectively. Characterization of the adsorbed organic matter by Fourier transformed infrared (FT-IR), (1)H NMR and GC-MS after derivatization has shown that the zeolite adsorbs selectively the hydrophobic compounds of the effluent.

  8. The attenuation of microorganisms in on-site wastewater effluent discharged into highly permeable subsoils

    NASA Astrophysics Data System (ADS)

    O'Luanaigh, N. D.; Gill, L. W.; Misstear, B. D. R.; Johnston, P. M.

    2012-11-01

    An extensive field study on percolation areas receiving both septic tank and secondary treated on-site effluents from single houses in Ireland was carried out to investigate the attenuation capacity of highly permeable subsoils with respect to E. coli bacteria and spiked bacteriophages (MS2, ΦX174 and PR772). The development of biomats across the percolation areas receiving the secondary effluent was restricted compared to the percolation area receiving septic tank effluent, promoting a much higher areal hydraulic loading which created significant differences in the potential microbiological loading to groundwater. Greatest E. coli removal in the subsoil occurred within the first 0.35 m of unsaturated subsoil for all effluent types. Analysis showed, however, that more evidence of faecal contamination occurred at depth in the subsoils receiving secondary treated effluents than that receiving septic tank effluent, despite the lower bacterial influent load. All three bacteriophages were reduced to their minimum detection limit (< 10 PFU/mL) at a depth of 0.95 m below the percolation trenches receiving septic tank effluent, although isolated incidences of ΦX174 and PR772 were measured below one trench. However again, slightly higher breakthroughs of MS2 and PR772 contamination were detected at the same depth under the trenches receiving secondary treated effluent.

  9. INHIBITION OF RETINOID ACTIVITY BY COMPONENTS OF A PAPER MILL EFFLUENT

    EPA Science Inventory

    A cell line stably transfected with reporter genes activated by retinoic acid was used to test a paper mill effluent for the presence of retinoids or components that interfere with retinoic acid-stimulated gene transcription.

  10. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  11. Physiological Functionality and Enzyme Activity of Biomass from Pichia anomala Grown on Ginseng-Steaming Effluent

    PubMed Central

    Kim, Na-Mi; So, Seung-Ho; Lee, Sung-Gae; Song, Jung-Eun; Seo, Dong-Soo

    2008-01-01

    A novel biomass was prepared from Pichia anomala KCCM 11473, which grew well in ginseng-steaming effluent (GSE), and its physiological functionalities and enzyme activities were determined. When the strain was cultured in the GSE (pH 6.0) at 30℃ for 48 h, 1.6 mg of biomass per ml-cultures was produced. The cell-free extract of the biomass showed high antihypertensive angiotensin I-converting enzyme inhibitory activity of 72.0% and anticholesteromia HMG-CoA reductase inhibitory activity of 46.5%. The cell-free extract also showed 13.0 U per ml and 8.5 U per ml of neutral protease activity and alkaline protease, respectively. PMID:23997615

  12. Granular activated carbon promoted ozonation of a food-processing secondary effluent.

    PubMed

    Alvarez, Pedro M; Pocostales, J Pablo; Beltrán, Fernando J

    2011-01-30

    This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1).

  13. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents.

    PubMed

    Daouk, Silwan; Chèvre, Nathalie; Vernaz, Nathalie; Bonnabry, Pascal; Dayer, Pierre; Daali, Youssef; Fleury-Souverain, Sandrine

    2015-09-01

    The important number of active pharmaceutical ingredients (API) available on the market along with their potential adverse effects in the aquatic ecosystems, lead to the development of prioritization methods, which allow choosing priority molecules to monitor based on a set of selected criteria. Due to the large volumes of API used in hospitals, an increasing attention has been recently paid to their effluents as a source of environmental pollution. Based on the consumption data of a Swiss university hospital, about hundred of API has been prioritized following an OPBT approach (Occurrence, Persistence, Bioaccumulation and Toxicity). In addition, an Environmental Risk Assessment (ERA) allowed prioritizing API based on predicted concentrations and environmental toxicity data found in the literature for 71 compounds. Both prioritization approaches were compared. OPBT prioritization results highlight the high concern of some non steroidal anti-inflammatory drugs and antiviral drugs, whereas antibiotics are revealed by ERA as potentially problematic to the aquatic ecosystems. Nevertheless, according to the predicted risk quotient, only the hospital fraction of ciprofloxacin represents a risk to the aquatic organisms. Some compounds were highlighted as high-priority with both methods: ibuprofen, trimethoprim, sulfamethoxazole, ritonavir, gabapentin, amoxicillin, ciprofloxacin, raltegravir, propofol, etc. Analyzing consumption data and building prioritization lists helped choosing about 15 API to be monitored in hospital wastewaters. The API ranking approach adopted in this study can be easily transposed to any other hospitals, which have the will to look at the contamination of their effluents.

  14. Transformation of anti-estrogenic-activity related dissolved organic matter in secondary effluents during ozonation.

    PubMed

    Tang, Xin; Wu, Qian-Yuan; Zhao, Xin; Du, Ye; Huang, Huang; Shi, Xiao-Lei; Hu, Hong-Ying

    2014-01-01

    Anti-estrogenic activity of dissolved organic matter (DOM) in reclaimed water is gaining increasing attention. In this study, anti-estrogenic activity removal efficiency by ozonation in the tertiary treatment process of domestic wastewater was investigated. The anti-estrogenic activity in the secondary effluents used in this study ranged between 0.95 and 2.00 mg-TAM L(-1) and decreased significantly after ozonation. The removal efficiency of anti-estrogenic activity at a dose of 10 mg-O3 L(-1) was 65-87%. The removal of the anti-estrogenic activity was highly correlated with the removal of UV254, suggesting that UV254 can be used as a surrogate for anti-estrogenic activity during ozonation. The results of size exclusion chromatography of the wastewater samples during ozonation showed that the UV254 absorbance of the DOM fraction with large apparent molecular weight (MW) around 7.6 k Da dropped significantly, and the DOM fraction was suspected to be humic substances which have been previously identified as anti-estrogenic constituents in secondary effluents. The excitation emission matrix fluorescence spectra of the wastewater samples proved that humic substances existed in the DOM and indeed reacted with the ozone. With the help of two-dimensional correlation of Fourier transform infrared, it was confirmed that the aromatic structures in the DOM were largely destroyed by ozonation. Therefore, it was suggested that the destruction of the aromatic structures in the DOM was related to the removal of the anti-estrogenic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Feasibility study of a compact process for biological treatment of highly soluble VOCs polluted gaseous effluent.

    PubMed

    Daubert, I; Lafforgue, C; Maranges, C; Fonade, C

    2001-01-01

    Volatile organic compounds (VOCs), representing a wide range of products mainly generated by industrial activity, are involved in air pollution. This study deals with a new biological treatment process of gaseous effluent combining a gas/liquid contactor called an "aero-ejector" and a membrane bioreactor. Combining these two innovative technologies enables a high elimination efficiency to be reached. We first focus on transfer phenomena characterization in a pilot installation on a laboratory scale, using a gaseous effluent polluted with a low ethanol concentration (7.1 x 10(-3) kg.m(-3)). These experiments demonstrated the good transfer performances since 90% of the ethanol was absorbed in the liquid phase in one step. After this physical characterization, the biological aspect of the system was studied using the yeast Candida utilis as microorganism. During the experiment, no ethanol was measured in the fermentation broth nor in the outlet gas, confirming the efficiency of ethanol elimination by C. utilis. The experimental procedure emerging from the present study strongly validates the suitability of this process for ethanol removal from air.

  16. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  17. Assessing estrogenic activity and reproductive toxicity of organic extracts in WWTP effluents.

    PubMed

    Li, Bo; Cao, Jun; Xing, Chuanhong; Wang, Zhijin; Cui, Liuxin

    2015-03-01

    Trace level organic contaminants might not be completely removed from the municipal wastewater and the safety incurred by them had become a concern. These organic pollutants were extracted from water samples and detected by GC-MS. The estrogenic activity of the organic was tested using Yeast Estrogen Screen to detect the transcriptional activation of the estrogen receptor (ER) and immature mouse uterotrophic bioassays to study reproductive toxicity. The results of GC-MS demonstrated the organic extracts in the municipal wastewater and the WWTP effluents Included two major categories, benzenes and Phthalates. The estrogenic activity of organic extracts from the secondary effluent (SE) and tertiary effluent (TE) was below that of the raw wastewater (RW). Results of uterotrophic bioassay demonstrated that SE would bring some potential hazards on animals while TE was relatively safe. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Organic Pesticide Active Ingredient... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 2 Table 2 to Part 455—Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology...

  19. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Organic Pesticide Active Ingredient... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pt. 455, Table 2 Table 2 to Part 455—Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically Achievable...

  20. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Organic Pesticide Active Ingredient... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pt. 455, Table 2 Table 2 to Part 455—Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically Achievable...

  1. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Organic Pesticide Active Ingredient... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 2 Table 2 to Part 455—Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology...

  2. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Organic Pesticide Active Ingredient... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 2 Table 2 to Part 455—Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology...

  3. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  4. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    EPA Science Inventory

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  5. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    EPA Science Inventory

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  6. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  7. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    PubMed

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations. Copyright © 2012. Published by Elsevier Ltd.

  8. An Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents

    PubMed Central

    Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.

    2006-01-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  9. An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents.

    PubMed

    Thorpe, Karen L; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R

    2006-04-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  10. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  11. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs.

    PubMed

    Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson

    2016-08-02

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.

  12. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs

    PubMed Central

    Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson

    2016-01-01

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563

  13. Oil refinery effluents: evidence of cocarcinogenic activity in the trout embryo microinjection assay

    SciTech Connect

    Metcalfe, C.D.; Sonstegard, R.A.

    1985-12-01

    Extracts prepared from oil refinery effluents (soxhlet and XAD-2) were tested for carcinogenic potential by means of the rainbow trout (Salmo gairdneri) embryo-injection bioassay. No neoplasms were detected in fish given injections of refinery extracts alone (with and without exogenous rat S-9 activation). Refinery extracts coinjected with aflatoxin B1 induced elevated frequencies of hepatic neoplasms. This cocarcinogenic effect was most pronounced when aflatoxin B1 was preincubated with rat S-9 prior to injection. Effluent extracts coinjected with a direct-acting carcinogen (N-methyl-N'-nitro-N-nitrosoguanidine (CAS: 56-57-5)) did not increase the incidence of hepatic neoplasms (with and without exogenous S-9 activation).

  14. Treatment of farm dairy effluent with hybrid upflow multilayer bioreactor and activated sludge module.

    PubMed

    Shams, D F; Singhal, N; Elefsiniotis, P; Johnson, A

    2010-01-01

    Biological removal of nitrogen and carbon from farm dairy effluent (FDE) was studied with two laboratory-scale systems following nitrification and denitrification processes. Each system consisted of an upflow multilayer bioreactor (UMBR) as a pre-denitrification unit, an aeration tank (AT) as nitrification unit and a secondary clarifier. The optimization of two operational variables, total hydraulic retention time (HRT) and internal recycle (IR) rate with both real-FDE and a synthetic-wastewater were investigated. First, HRTs of 2, 3, 4 and 5 days were tested with synthetic-wastewater at uniform IR rate. The HRT of 4 days proved optimum with high efficiencies for nitrification (>90%), denitrification (>90%) and total chemical oxygen demand (COD) removal ( approximately 90%). The lowest efficiency was recorded at 2 days HRT with 7% nitrification efficiency. This was followed by experimentation with IR rates of 200%, 300% and 400% on both real-FDE and synthetic-wastewater at optimized HRT. The increase in IR to 300% improved the denitrification potential and overall performance with continuous high nitrification efficiency and COD removal whereas IR of 400% retarded the process. The application of combined UMBR and activated sludge system showed good potential for biological removal of nitrogen from FDE.

  15. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    PubMed

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  16. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  17. Analysis of solid-rocket effluents for aluminum, silicon, and other trace elements by neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1974-01-01

    The sensitivity and reliability of neutron activation analysis in detecting trace elements in solid rocket effluents are discussed. Special attention was given to Al and Si contaminants. The construction and performance of a thermal column irradiation unit was reported.

  18. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater.

  19. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    SciTech Connect

    Adamson, D.; Nash, C.; Mcclane, D.; McCabe, D.

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  20. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.

    PubMed

    Nguyen, S T; Roddick, F A; Harris, J L

    2010-01-01

    Membrane fouling in microfiltration (MF) and ultrafiltration (UF) of an activated sludge (AS) effluent was investigated. It was found that the major membrane foulants were polysaccharides, proteins, polysaccharide-like and protein-like materials and humic substances. MF fouling by the raw effluent was governed by pore adsorption of particles smaller than the pores during the first 30 minutes of filtration and then followed the cake filtration model. UF fouling could be described by the cake filtration model throughout the course of filtration. Coagulation with alum and (poly)aluminium chlorohydrate (ACH) altered the MF fouling mechanism to follow the cake filtration model from the beginning of filtration. The MF and UF flux improvement by coagulation was due to the removal of some of the foulants in the raw AS effluent by the coagulants. The MF flux improvement was greater for alum than for ACH whereas the two coagulants performed equally well in UF. Coagulation also reduced hydraulically irreversible fouling on the membranes and this effect was more prominent in MF than in UF. The unified membrane fouling index (UMFI) was used to quantitatively evaluate the effectiveness of coagulation on membrane flux enhancement.

  1. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent.

    PubMed

    Santos-Juanes, L; Amat, A M; Arques, A; Bernabeu, A; Silvestre, M; Vicente, R; Añó, E

    2008-05-30

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC50 of 0.5 mg/l was determined for CN(-) and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO2, but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu2+ and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay.

  2. Membrane bioreactor application within the treatment of high-strength textile effluent.

    PubMed

    De Jager, D; Sheldon, M S; Edwards, W

    2012-01-01

    A pilot-scale dual-stage membrane bioreactor (dsMBR) incorporating two ultra-filtration (UF) side-stream membrane modules was designed, constructed, operated and evaluated on-site for treating high-strength textile effluent. The effluent stream was characterised by a COD range of between 45 to 2,820 mg/L and an average BOD of 192.5 mg/L. The dsMBR achieved an average COD reduction of 75% with a maximum of 97% over the 9 month test period. The COD concentration obtained after dsMBR treatment averaged at 190 mg/L, which was well within the discharge standard. The average reduction in turbidity and TSS were 94% and 19.6%, respectively, during the UF-MBR stage of the system. Subsequent treatment of the UF-permeate with nanofiltration (NF) and reverse osmosis (RO) removed both the residual colour and remaining salt. A consistent reduction in the color of the incoming effluent was evident. The ADMI was reduced from an average of 659 to ∼20, a lower ADMI and colour compared to the potable water. An average conductivity rejection of 91% was achieved with conductivity being reduced from an average of 7,700 to 693 μS/cm and the TDS reduced from an average of 5,700 to 473 mg/L, which facilitated an average TDS rejection of 92%.

  3. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    PubMed

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tracking multiple modes of endocrine activity in Australia's largest inland sewage treatment plant and effluent- receiving environment using a panel of in vitro bioassays.

    PubMed

    Roberts, Jenna; Bain, Peter A; Kumar, Anupama; Hepplewhite, Christopher; Ellis, David J; Christy, Andrew G; Beavis, Sara G

    2015-10-01

    Estrogenicity of sewage effluents, and related ecotoxicological effects in effluent-receiving environments, have been widely reported over the last 2 decades. However, relatively little attention has been given to other endocrine pathways that may be similarly disrupted by a growing list of contaminants of concern. Furthermore, the Australian evidence base is limited compared with those of Europe and North America. During a low dilution period in summer, the authors investigated multiple endocrine potencies in Australia's largest inland sewage treatment plant (STP) and the Lower Molonglo/Upper Murrumbidgee effluent-receiving environment. This STP receives 900 L/s of mostly domestic wastewater from a population of 350 000, and contributes a high proportion of total flow in the lower catchment during dry periods. A panel of in vitro receptor-driven transactivation assays were used to detect (anti)estrogenic, (anti) androgenic, (anti)progestagenic, glucocorticoid, and peroxisome-proliferator activity at various stages of the sewage treatment process. Total estrogenic and (anti)androgenic potency was removed after primary and/or secondary treatment; however, total removal efficiency for glucocorticoid potency was poorer (53-66%), and progestagenic potency was found to increase along the treatment train. Estrogenicity was detected in surface waters and bed sediments upstream and downstream of the effluent outfall, at maximum levels 10 times lower than low-hazard thresholds. Glucocorticoid and progestagenic activity were found to persist to 4 km downstream of the effluent outfall, suggesting that future research is needed on these endocrine-disrupting chemical categories in effluent-receiving systems.

  5. Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, USA.

    PubMed

    Soto, Ana M; Calabro, Janine M; Prechtl, Nancy V; Yau, Alice Y; Orlando, Edward F; Daxenberger, Andreas; Kolok, Alan S; Guillette, Louis J; le Bizec, Bruno; Lange, Iris G; Sonnenschein, Carlos

    2004-03-01

    Studies reveal that surface waters worldwide are contaminated with hormonally active agents, many released from sewage treatment plants. Another potential source of aquatic hormonal contamination is livestock feedlot effluent. In this study, we assessed whether feedlot effluent contaminates watercourses by measuring a) total androgenic [methyltrienolone (R1881) equivalents] and estrogenic (17beta-estradiol equivalents) activity using the A-SCREEN and E-SCREEN bioassays and b) concentrations of anabolic agents via gas chromatography-mass spectroscopy and enzyme-based immunoassays. Water samples were collected over 3 years from up to six sites [all confluent with the Elkhorn River, Nebraska, USA: a feedlot retention pond (site 1), a site downstream from site 1 (site 2), a stream with intermediate livestock impact (site 3), and three sites with no observable livestock impact (sites 4-6)] and two sources of tap water. In 1999, samples from site 1 contained 9.6 pM R1881 equivalents and 1.7 pM 17beta-estradiol equivalents. Site 2 samples had estrogen levels similar to those in site 1 samples but lower androgen levels (3.8 pM R1881 equivalents). Androgen levels in site 3 samples were similar to those in site 2 samples, whereas estrogen levels decreased to 0.7 pM 17beta-estradiol equivalents. At site 6, androgen levels were approximately half those found at site 3, and estrogen levels were comparable with those at site 3. Sampling in later years was limited to fewer sites because of drought and lack of permission to access one site. Instrumental analysis revealed estrone but no significant levels of resorcylic acid lactones or trenbolone metabolites. Tap water was devoid of hormonal activity. We conclude that feedlot effluents contain sufficient levels of hormonally active agents to warrant further investigation of possible effects on aquatic ecosystem health.

  6. Reduction on the anaerobic biological activity inhibition caused by heavy metals and sulphates in effluents through chemical precipitation with soda and lime.

    PubMed

    Alves, L de Carvalho; Cammarota, M C; De França, F P

    2006-12-01

    The School of Chemistry Environmental Technology Laboratory generates 43.4 1 of effluent with low pH (0.7) and high contents of COD (1908 mgO2 l(-1)), phenol (132.1 mg l(-1)), sulfate (36700 mg l(-1)) and heavy metals (28.2 mg Hg l(-1); 82.1 mg Cr(total) l(-1); 30.8 mg Cu l(-1); 57.4 mg Fe(total) l(-1); 16.2 mg Al l(-1)) weekly. These data show that this effluent presents high toxicity for biological treatment, with a physical-chemical step being necessary before a biological step. Preliminary studies showed that the most toxic constituents of the effluent were sulfate, phenol and total chromium. In this work, a chemical precipitation step with sodium hydroxide or lime was evaluated for the toxicity reduction on anaerobic microbial consortium. These experiments were carried out with increasing concentrations of alkalis in the effluent in order to obtain pH initial values of 8-12. Similar results were obtained for COD (15-28%), turbidity (95-98%), phenol (13-24%) and total chromium (99.8-99.9%) removals in each condition studied with soda or lime. Sulfate was only removed by precipitation with lime, obtaining reductions from 84 to 88%. The toxicity on the anaerobic sludge was studied employing specific methanogenic activity (SMA) analysis of raw and treated effluent (after chemical precipitation step). The SMA experiments showed that chemical precipitation at pH 8 reduces the toxic effect of the effluent on anaerobic microbial consortium three times (with soda) and thirteen times (with lime). These results indicate that precipitation with lime is more efficient at toxicity removal, however the produced sludge volume is around two times higher than that produced with soda.

  7. Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays.

    PubMed

    Van der Linden, Sander C; Heringa, Minne B; Man, Hai-Yen; Sonneveld, Edwin; Puijker, Leo M; Brouwer, Abraham; Van der Burg, Bart

    2008-08-01

    It is generally known that there are compounds present in the aquatic environment that can disturb endocrine processes, for example via interaction with the endogenous hormone receptors. Most research so far has focused on compounds that bind to the estrogen and/or androgen receptor, but ligands for other hormone receptors might also be present. In this study, a newly completed panel of human cell derived CALUX reporter gene bioassays was utilized to test water extracts for estrogen (ER), as well as androgen (AR), progesterone (PR), and glucocorticoid (GR) receptor mediated transactivation activity. Effluents from industry, hospital, and municipal sewage treatment plants, as well as tap water and different sources of surface water were tested. The CALUX reporter gene panel showed high sensitivity and specificity to known agonists, enabling discrimination between different receptor based endocrine responses present in the aquatic environment. Our results clearly showed the presence of agonistic activity on the ER, as well as on the AR, PR, and GR in the raw and wastewater and surface water extracts. However, no hormone receptor-mediated transactivation was detected in the drinking water or in the blank water. The levels of estrogenic activity were 0.2-0.5 ng E2-equiv/L for surface water and 0.4-1.0 ng E2-equiv/L for municipal effluents, which was consistent with previous studies. Surprisingly, the other hormonal activities were found to be present in similar or much higher levels. Most notably, glucocorticoid-like activity was detected in all samples, at surprisingly high levels ranging from 0.39-1.3 ng Dex-equiv/L in surface water and 11-243 ng Dex-equiv/L in effluents. When regarding the fact that dexamethasone in the GR CALUX bioassay is a factor 12 more potent than the natural hormone cortisol, results expressed as cortisol equivalents would range up to 2900 ng cortisol equiv/L. Further studies are needed to establish the identity of the active compounds and to

  8. Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent.

    PubMed

    Parvez, Suhel; Sayeed, Iqbal; Raisuddin, Sheikh

    2006-09-01

    Aquatic habitat is affected by paper mill effluent discharge in many ways. The effect of paper mill effluent on the gill ATPases was studied in freshwater fish Channa punctata (Bloch) exposed to 1%(v/v) of effluent for 15, 30, and 60 days. There was a time-dependent significant (P<0.05-0.001) decrease in all the ATPase activities measured, viz., total, Na(+), K(+)--and ouabain-insensitive ATPase in gill. ATPases play an important role in maintenance of functional integrity of plasma membrane and in several intracellular functions and are considered to be a sensitive indicator of toxicity. In addition to this, branchial ATPases are intimately involved in osmoregulation, acid-base regulation, and respiration of fish. The inhibition of ATPases in gills by, e.g., paper mill effluent could cause disruption of these processes. It is suggested that measurement of ATPases could also be used as a surrogate biomarker of exposure to chemical pollutants.

  9. In vitro detection of androgenic and estrogenic activity in complex environmental effluent samples: Lessions learned

    EPA Science Inventory

    Fish living in ecosystems contaminated with effluents from human or domestic animal wastes display reproductive alterations suggesting hormone disruption. Recent research with effluent from cattle feeding operations in the US have associated morphological alterations in fish col...

  10. In vitro detection of androgenic and estrogenic activity in complex environmental effluent samples: Lessions learned

    EPA Science Inventory

    Fish living in ecosystems contaminated with effluents from human or domestic animal wastes display reproductive alterations suggesting hormone disruption. Recent research with effluent from cattle feeding operations in the US have associated morphological alterations in fish col...

  11. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents.

    PubMed

    Reungoat, J; Escher, B I; Macova, M; Argaud, F X; Gernjak, W; Keller, J

    2012-03-01

    This study investigates the fate of trace organic chemicals (TrOCs) in three full-scale reclamation plants using ozonation followed by biological activated carbon (BAC) filtration to treat wastewater treatment plant effluents. Chemical analysis was used to quantify a wide range of TrOCs and combined with bioanalytical tools to assess non-specific toxicity (Microtox assay) and estrogenicity (E-SCREEN assay). Limited dissolved organic carbon (DOC) removal (<10%) was observed in the ozonation stages showing that oxidation leads to the formation of transformation products rather than mineralization. The quantified TrOCs were removed to a degree highly dependent on the compounds' structures and the specific ozone dose (mg(O3) mg(DOC)(-1)). Non-specific toxicity was reduced by 31-39%, demonstrating that the mixture of remaining parent compounds and their transformation products as well as newly formed oxidation by-products had an overall lower toxic potential than the mixture of parent compounds. Estrogenicity was reduced by more than 87% indicating that the transformation products of the estrogenic chemicals lost their specific toxicity potential. The subsequent BAC filtration removed between 20 and 50% of the DOC depending on the plant configuration, likely due to biodegradation of organic matter. The filtration was also able to reduce the concentrations of most of the remaining TrOCs by up to 99%, and reduce non-specific toxicity by 33-54%. Overall, the combination of ozonation and BAC filtration can achieve removals of 50% for DOC and more than 90% for a wide range of TrOCs as well as a reduction of 70% of non-specific toxicity and more than 95% of estrogenicity. This process combination is therefore suggested as an effective barrier to reduce the discharge of TrOCs into the environment or their presence in water recycling schemes.

  12. Ozonation of dissolved organic matter in substrate-varied and operationally-varied activated sludge effluents

    SciTech Connect

    Watt, R.D.

    1984-01-01

    The dissolved organic matter in activated sludge effluents includes microbial by-products, so manipulating bioreactor variables could indirectly affect downstream processes. This research studied ozonation and ozonated effluent character as affected by three activated sludge variables. These variables were each tested at two levels, including pH levels of 6.0 and 8.0, dissolved oxygen (DO) levels of 1 and 7 mg/L, and organic substrates of complex and simple compositions. All eight possible combinations of these levels were tested in laboratory reactors, yielding eight long-term composite samples, which were then filtered and adjusted to pH 7. Data from the unozonated samples showed that complex feed, a pH of 8, or a DO of 7 mg/L had resulted in higher organic levels. Molecular size and adsorption tests indicated that the bioreactor variables had also influenced the qualitative character of effluent organics. The relative ozone demand of each sample was measured by a test that found the ozone dose required to yield a dissolved ozone residual of 0.30-0.35 mg/L after five minutes of mixing in a gas-liquid batch reactor. Resulting doses ranged from 3 to 16 mg/L and correlated to organic level, especially after accounting for nitrite. Another test measured ozone consumption rates. The data fit pseudo-first-order kinetics that were modified by replacing the rate constant by a rate-constant function, which decreased as ozone was consumed. Sample comparison suggested that kinetic behavior was also related to organic and nitrite levels.

  13. Effect of microalgae/activated sludge ratio on cooperative treatment of anaerobic effluent of municipal wastewater.

    PubMed

    Roudsari, Fatemeh Pourasgharian; Mehrnia, Mohammad Reza; Asadi, Akram; Moayedi, Zohreh; Ranjbar, Reza

    2014-01-01

    In this work, capability of the green microalga (MA), Chlorella vulgaris, in treating synthetic anaerobic effluent of municipal wastewater was investigated. While pure C. vulgaris (100 % MA) provided maximum soluble chemical oxygen demand (sCOD) and N-NH4(+) removal efficiencies of 27 and 72 % respectively, addition of activated sludge (AS) to MA in different mass ratios (91, 80, 66.7, 9 % MA) improved wastewater treatment efficiency. Thus giving maximum sCOD and N-NH4(+) removal efficiencies 85 and 86.3 % (for MA/AS = 10/1), respectively. Utilizing AS without C. vulgaris, for treating the synthetic wastewater resulted in 87 % maximum sCOD and 42 % maximum N-NH4(+) removal efficiencies. Furthermore, algal growth and specific growth rates were measured in the systems with microalga as the dominant cellular population. As a result, faster algal growth was observed in mixed systems. Specific growth rate of C. vulgaris was 0.14 (day(-1)) in 100 % MA and 0.39 (day(-1)) in 80 % MA. Finally, data gathered by online measurement of dissolved oxygen indicate that algae-activated sludge mixture improves photosynthetic activity of examined microalga strain during anaerobic effluent treatment.

  14. Effect of leather industry effluents on soil microbial and protease activity.

    PubMed

    Pradeep, M Reddi; Narasimha, G

    2012-01-01

    Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)).

  15. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.

    PubMed

    Santiago, Aníbal Fonseca; Calijuri, Maria Lucia; Assemany, Paula Peixoto; Calijuri, Maria do Carmo; dos Reis, Alberto José Delgado

    2013-01-01

    Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.

  16. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

    PubMed

    Gao, Yue; Ma, Defang; Yue, Qinyan; Gao, Baoyu; Huang, Xia

    2016-09-01

    In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Silica removal in industrial effluents with high silica content and low hardness.

    PubMed

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  18. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  19. Treatment of colored effluent of the textile industry in Bangladesh using zinc chloride treated indigenous activated carbons.

    PubMed

    Karim, Mohammad Mainul; Das, Ajoy Kumar; Lee, Sang Hak

    2006-08-18

    The adsorption of colored compounds from the textile dyeing effluents of Bangladesh on granulated activated carbons produced from indigenous vegetable sources by chemical activation with zinc chloride was studied. The most important parameters in chemical activation were found be the chemical ratio of ZnCl2 to feed (3:1), carbonization temperature (450-465 degrees C) and activation time (80 min). The adsorbances at 511 nm (red effluent) and 615 nm (blue effluent) were used for color estimation. It is established that at optimum temperature (50 degrees C), time of contact (30-40 min) and adsorbent loading (2 g l(-1)), activated carbons developed from Segun saw-dust and water hyacinth showed substantial capability to remove coloring materials from the effluents. It is observed that adsorption of reactive dyes by all sorts of activated carbons is higher than disperse dyes. It is explained that activated carbon, because of its acidic nature, can better adsorb reactive dye particles containing large number of nitrogen sites and -SO3Na group in their structure. The use of carbons would be economical, as saw-dust and water hyacinth are waste products and abundant in Bangladesh.

  20. Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater Treatment Plant Effluents by a High-Throughput Sequencing Method

    PubMed Central

    Prevost, B.; Lucas, F. S.; Ambert-Balay, K.; Pothier, P.; Wurtzer, S.

    2015-01-01

    Although clinical epidemiology lists human enteric viruses to be among the primary causes of acute gastroenteritis in the human population, their circulation in the environment remains poorly investigated. These viruses are excreted by the human population into sewers and may be released into rivers through the effluents of wastewater treatment plants (WWTPs). In order to evaluate the viral diversity and loads in WWTP effluents of the Paris, France, urban area, which includes about 9 million inhabitants (approximately 15% of the French population), the seasonal occurrence of astroviruses and noroviruses in 100 WWTP effluent samples was investigated over 1 year. The coupling of these measurements with a high-throughput sequencing approach allowed the specific estimation of the diversity of human astroviruses (human astrovirus genotype 1 [HAstV-1], HAstV-2, HAstV-5, and HAstV-6), 7 genotypes of noroviruses (NoVs) of genogroup I (NoV GI.1 to NoV GI.6 and NoV GI.8), and 16 genotypes of NoVs of genogroup II (NoV GII.1 to NoV GII.7, NoV GII.9, NoV GII.12 to NoV GII.17, NoV GII.20, and NoV GII.21) in effluent samples. Comparison of the viral diversity in WWTP effluents to the viral diversity found by analysis of clinical data obtained throughout France underlined the consistency between the identified genotypes. However, some genotypes were locally present in effluents and were not found in the analysis of the clinical data. These findings could highlight an underestimation of the diversity of enteric viruses circulating in the human population. Consequently, analysis of WWTP effluents could allow the exploration of viral diversity not only in environmental waters but also in a human population linked to a sewerage network in order to better comprehend viral epidemiology and to forecast seasonal outbreaks. PMID:26253673

  1. Synergistic effect of biological activated carbon and enhanced coagulation in secondary wastewater effluent treatment.

    PubMed

    Aryal, A; Sathasivan, A; Vigneswaran, S

    2012-01-01

    The use of secondary wastewater effluent (SWWE) is an essential strategy for making better use of limited water resources. However, a wide range of organic compounds eventually renders them unsuitable for recycling. In water treatment processes, biologically activated carbon (BAC) is adopted after physicochemical treatment. However, the effectiveness of such combination for SWWE remains poorly understood. This study investigates the effectiveness of various combinations: BAC/enhanced coagulation (EC) or EC/BAC, especially in terms of dissolved organic carbon (DOC) removal. The results showed that distinct advantage could be obtained by adopting BAC/EC combination rather than EC/BAC, as microbes in BAC not only remove non-coagulable compounds but also synergize the removal efficiency by releasing some coagulable humic substances.

  2. 3,3',5-Triiodo-L-thyronine-like activity in effluents from domestic sewage treatment plants detected by in vitro and in vivo bioassays

    SciTech Connect

    Murata, Tomonori; Yamauchi, Kiyoshi

    2008-02-01

    Thyroid system-disrupting activity in effluents from municipal domestic sewage treatment plants was detected using three in vitro assays and one in vivo assay. Contaminants in the effluents were extracted by solid-phase extraction (SPE) and eluted stepwise with different organic solvents. The majority of the thyroid system-disrupting activity was detected in the dichloromethane/methanol (1/1) fraction after SPE in all three in vitro assays: competitive assays of 3,3',5-[{sup 125}I]triiodo-L-thyronine ([{sup 125}I]T{sub 3}) binding to the plasma protein transthyretin (TTR assay) and thyroid hormone receptor (TR assay) and T{sub 3}-dependent luciferase assay (Luc assay). Subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) of the dichloromethane/methanol (1/1) fraction separated contaminants potent in the TR and Luc assays from those potent in the TTR assay. The contaminants potent in the TR and Luc assays were also potent in an in vivo short-term gene expression assay in Xenopus laevis (Tadpole assay). The present study demonstrated that the effluents from domestic sewage treatment plants contain contaminants with T{sub 3}-like activity of {approx} 10{sup -10} M T{sub 3}-equivalent concentration (T{sub 3}EQ) and that the TR and Luc assays are powerful in vitro bioassays for detecting thyroid system-disrupting activity in effluents. The availability and applicability of these bioassays for screening contaminants with thyroid system-disrupting activity in the water environment are discussed.

  3. Lessons learned from a review of post-accident sampling systems, high range effluent monitors and high concentration particulate iodine samplers

    SciTech Connect

    Hull, A.P.; Knox, W.H.; White, J.R.

    1987-01-01

    Post-accident sampling systems (PASS), high range gaseous effluent monitors and sampling systems for particulates and iodine in high concentrations have been reviewed at twenty-one licensee sites in Region I of the US Nuclear Regulatory Commission which includes fifteen BWR's and fourteen PWR's. Although most of the installed PASS met the criteria, the highest operational readiness was found in on-line systems that were also used for routine sampling and analysis. The detectors used in the gaseous effluent monitors included external ion chambers, GM tubes, organic scintillators and Cd-Te solid state crystals. Although all were found acceptable, each had its own inherent limitations in the conversion of detector output to the time varying concentration of a post-accident mixture of noble gases. None of the installed particulate and iodine samplers fully met all of the criteria. Their principal limitations included a lack of documentation showing that they could obtain a representative sample and that many of them would collect of an excessive amount of activity at the design criteria. 10 refs., 4 figs., 5 tabs.

  4. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    PubMed

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  5. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  6. Catalytic hydrothermal treatment of pulping effluent using a mixture of Cu and Mn metals supported on activated carbon as catalyst.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-10-01

    The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity = 0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3-4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.

  7. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent

    PubMed Central

    Pramanik, Biplob Kumar; Roddick, Felicity A.; Fan, Linhua

    2016-01-01

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE. PMID:27483327

  8. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-07-30

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE.

  9. Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill.

    PubMed

    Ordóñez, R; Hermosilla, D; San Pío, I; Blanco, A

    2010-01-01

    A further closure of the water circuit in paper mills with a relative high optimization of their water network is limited by the increase of contamination in the water and runnability problems of the paper machine. Therefore, new strategies for saving water must be focussed on the treatment of final effluents of the paper mill, aiming to obtain high quality water that may replace fresh water use in some applications. An appropriate treatment train performed at pilot scale, consisting on a previous clarification stage followed by anaerobic and aerobic treatments, ultrafiltration, and reverse osmosis, made possible producing the highest water quality from the final effluent of the mill. Anaerobic pre-treatment showed very good performance assisting the aerobic stage on removing organics and sulphates, besides it produced enough biogas for being considered as cost-effective. Permeate recovery depended on the silica content of the paper mill effluent, and it was limited to a 50-60%. The reject of the membranes fully met the legislation requirements imposed to effluents arriving to municipal wastewater treatment plants.

  10. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  11. Novel fibrous catalyst in advanced oxidation of photographic processing effluents.

    PubMed

    Yang, Zhuxian; Ishtchenko, Vera V; Huddersman, Katherine D

    2006-01-01

    A novel fibrous catalyst was used to destroy the pollutants in Kodak Non-Silver-Bearing (NSB) photographic processing effluents with high chemical oxygen demand (COD) value. The oxidation activity of the catalyst was evaluated in terms of COD reduction of the effluent. The effects of concentrations of hydrogen peroxide and effluent, amount of catalyst, reaction time and temperature on the COD reduction were studied. In addition, the combination of catalysis with UV treatment on the COD reduction of the effluent was also investigated. Based on the experimental results, room temperature is preferred for the catalytic oxidation of NSB effluent. It was found that COD reduction of the effluent depends on the amount of hydrogen peroxide added to the feed in relation to the mass of catalyst used. Significant COD reduction (up to 52%) is achieved after 4 hours of catalytic treatment. Extending the duration of catalysis up to 24 hours gives further slight decrease in COD value.

  12. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.

    PubMed

    Bonvin, Florence; Jost, Livia; Randin, Lea; Bonvin, Emmanuel; Kohn, Tamar

    2016-03-01

    In an effort to mitigate the discharge of micropollutants to surface waters, adsorption of micropollutants onto powdered activated carbon (PAC) after conventional wastewater treatment has been identified as a promising technology for enhanced removal of pharmaceuticals and pesticides from wastewater. We investigated the effectiveness of super-fine powdered activated carbon, SPAC, (ca. 1 μm mean particle diameter) in comparison to regular-sized PAC (17-37 μm mean diameter) for the optimization of micropollutant removal from wastewater. Adsorption isotherms and batch kinetic experiments were performed for 10 representative micropollutants (bezafibrate, benzotriazole, carbamazepine, diclofenac, gabapentin, mecoprop, metoprolol, ofloxacin, sulfamethoxazole and trimethoprim) onto three commercial PACs and their super-fine variants in carbonate buffer and in wastewater effluent. SPAC showed substantially faster adsorption kinetics of all micropollutants than conventional PAC, regardless of the micropollutant adsorption affinity and the solution matrix. The total adsorptive capacities of SPAC were similar to those of PAC for two of the three tested carbon materials, in all tested waters. However, in effluent wastewater, the presence of effluent organic matter adversely affected micropollutant removal, resulting in lower removal efficiencies especially for micropollutants with low affinity for adsorbent particles in comparison to pure water. In comparison to PAC, SPAC application resulted in up to two-fold enhanced dissolved organic carbon (DOC) removal from effluent wastewater. The more efficient adsorption process using SPAC translates into a reduction of contact time and contact tank size as well as reduced carbon dosing for a targeted micropollutant removal. In the tested effluent wastewater (5 mg/L DOC), the necessary dose to achieve 80% average removal of indicator micropollutants (benzotriazole, diclofenac, carbamazepine, mecoprop and sulfamethoxazole) ranged

  13. Source and identity of compounds in a thermomechanical pulp mill effluent inducing hepatic mixed-function oxygenase activity in fish

    SciTech Connect

    Martel, P.H.; Kovacs, T.G.; O`Connor, B.I.; Voss, R.H.

    1997-11-01

    The source and identity of two mixed-function oxygenase (MFO)-inducing substances present in the primary-treated effluent of a thermomechanical pulp (TMP) mill producing newsprint was determined. The source was pinpointed by exposing rainbow trout (Oncorhynchus mykiss) to various process effluents sampled throughout the mill. Exposure concentrations were based on the flow of these process streams in relation to the final effluent flow. Contaminated TMP steam condensates were identified as the major process source of MFO-inducing substances. Using conventional extraction and fractionation procedures, an MFO-inducing fraction was isolated. The major gas chromatographic peaks in this fraction were identified by gas chromatography/mass spectrometry as juvabione, dehydrojuvabione, and manool, all naturally occurring extractives in balsam fix (Abies balsamea). These substances were extracted and isolated from balsam fir and TMP condensates. Trout exposed to juvabione and dehydrojuvabione responded by exhibiting significant hepatic MFO inductions. No MFO induction was observed for manool. Secondary treatment in an activated sludge system effectively eliminated the MFO-inducing potential of the combined mill effluent consistent with a corresponding 90% reduction of both juvabione and dehydrojuvabione.

  14. High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent.

    PubMed

    Sudhakar, M; Vijayalakshmi, P; Nilavunesan, D; Thiruvengadaravi, K V; Baskaralingam, P; Sivanesan, S

      The textile dyeing industry consumes a significant amount of high-quality water for processing, which stresses water resources. In recent decades, technologies have been developed to recover water from wastewater. This study describes the high recovery (greater than 92%) of reusable water from an industrial-scale hosiery dye-water recovery facility, consisting of three stages of reverse osmosis and ultrafiltration. The effluent was pre-treated before the membrane process was performed to prevent biofouling. The process performance results in the generation of a consistent water quality that is required for dyeing operations. An average feed flux of 15 l/m(2)h was maintained in the reverse osmosis membrane by regular chemical dosing and cleaning. The integrated membrane process achieved a permeate with a pH of 6.5 and total dissolved solids (TDS) of 160 mg/l, with no other contaminants, which is of sufficient quality for reuse in the cotton hosiery dyeing process.

  15. The effect of the feeding pattern of complex industrial wastewater on activated sludge characteristics and the chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-04-01

    Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS(-1). Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS(-1). These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.

  16. Environmental estrogens in an urban aquatic ecosystem: I. Spatial and temporal occurrence of estrogenic activity in effluent-dominated systems.

    PubMed

    Martinovic-Weigelt, Dalma; Minarik, Thomas A; Curran, Erin M; Marchuk, Jascha S; Pazderka, Matt J; Smith, Eric A; Goldenstein, Rachel L; Miresse, Christine L; Matlon, Thomas J; Schultz, Melissa M; Schoenfuss, Heiko L

    2013-11-01

    The present study investigated occurrence of environmental estrogens (EEs) in waterways managed by the Metropolitan Water Reclamation District of Greater Chicago ('District') - one of the largest and most complex water districts in the United States. The objectives of the study were: (i) to document spatial and temporal occurrence of EEs in the Chicago Area Waterways (CAWs); (ii) to determine whether water reclamation plant (WRP) effluents contribute to estrogenic pollution of the receiving streams; (iii) to determine whether the mandated water quality monitoring data could be used to predict estrogenic pollution in the receiving streams; and (iv) to determine whether snow melt, storm runoff and combined sewer overflows may also be contributors of estrogenic activity to these systems. The estrogenic potency of the waterways was assessed using a cell-based reporter gene assay. The water quality data was readily available as part of the District's regular monitoring program. Our findings indicate that EEs are commonly found in the CAWs, and that WRP effluents are one of, but not the only important contributor to estrogenic activity. Mean estrogenic activities in CAWs (11ng estradiol equivalents (EEQs/L)) are well within the values reported for other urban areas and WRP effluents. The estrogenic activity exhibited significant seasonal variation with highest values noted during the spring and summer months. When comparing the mean estrogenic activity of general use waters, secondary contact waters and WRP effluents, we found that general use waters had significantly lower estrogenic activity (ca 5ng EEQ/L) than the other two matrices (ca 15 and 17ng EEQ/L respectively). Our analyses indicate that estrogenic activity of the waterways was not reliably associated with mandated water quality parameters, and that such measurements may not be useful for predicting estrogenic activity, especially so in the complex urban systems. One of the prominent findings of this study is

  17. Respirometric analysis of activated sludge models from palm oil mill effluent.

    PubMed

    Damayanti, A; Ujang, Z; Salim, M R; Olsson, G; Sulaiman, A Z

    2010-01-01

    Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs. The dissolved oxygen (DO) profile for 11 days was monitored. It was found the mass transfer coefficient K(La) is 0.3 h(-1) during lag and start feed phase and 0.01 h(-1) during stop feed phase, while the heterotrophic yield coefficient Y(H) is 0.44. Some of the chemical oxygen demand (COD) fractionations of palm oil mill effluent (POME) using respirometric test in ASM models are S(s) 50 mg/L, S(I) 16,600 mg/L, X(S) 25,550 mg/L, and X(I) 2,800 mg/L. The comparison of experimental and ASM1 from OUR concentration is found to fit well.

  18. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon.

    PubMed

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-07-30

    Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (<1kDa) were found to be the major contributors to the significant reduction in PFC adsorption capacity, while large-molecular-weight compounds (>30kDa) had much less effect on PFC adsorption capacity.

  19. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    PubMed

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances.

  20. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  1. Screening complex effluents for estrogenic activity with the T47D-KBluc cell bioassay: assay optimization and comparison with in vivo responses in fish.

    PubMed

    Wehmas, Leah C; Cavallin, Jenna E; Durhan, Elizabeth J; Kahl, Michael D; Martinovic, Dalma; Mayasich, Joe; Tuominen, Tim; Villeneuve, Daniel L; Ankley, Gerald T

    2011-02-01

    Wastewater treatment plant (WWTP) effluents can contain estrogenic chemicals, which potentially disrupt fish reproduction and development. The current study focused on the use of an estrogen-responsive in vitro cell bioassay (T47D-KBluc), to quantify total estrogenicity of WWTP effluents. We tested a novel sample preparation method for the T47D-KBluc assay, using powdered media prepared with direct effluent. Results of the T47D-KBluc assay were compared with the induction of estrogen receptor-regulated gene transcription in male fathead minnows (Pimephales promelas) exposed to the same effluents. Effluent samples for the paired studies were collected over the course of three months. According to the T47D-KBluc assay, the effluent estrogenicity ranged from 1.13 to 2.00 ng 17β-estradiol (E2) equivalents/L. Corresponding in vivo studies exposing male fathead minnows to 0, 10, 50, and 100% effluent dilutions demonstrated that exposure to 100% effluent significantly increased hepatic vitellogenin (VTG) and estrogen receptor α subunit transcripts relative to controls. The induction was also significant in males exposed to 250 ng E2/L or 100 ng E2/L. The in vitro and in vivo results support the conclusion that the effluent contains significant estrogenic activity, but there was a discrepancy between in vitro- and in vivo-based E2 equivalent estimates. Our results suggest that the direct effluent preparation method for the T47D-KBluc assay is a reasonable approach to estimate the estrogenicity of wastewater effluent.

  2. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    PubMed

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  3. Carbon substrate utilisation profile of a high concentration effluent degrading microbial consortium.

    PubMed

    Jena, S; Jeanmeure, L F C; Wichukorn, S D; Wright, P C

    2006-08-01

    This paper presents the carbon substrate utilisation profile of a group of microorganisms responsible for the biodegradation of a highly concentrated industrial effluent. A 1 litre bioreactor was used to study this consortium's biodegradation potential, with the chemical oxygen demand (COD) of the waste being reduced by 90% from 24000 mg l(-1) within 456 hours. This study also demonstrates that the consortium is capable of degrading organic solvents, such as isopropanol, at concentrations of 260 mg l(-1). The population distribution and biochemical behaviour were also characterised using denaturing gradient gel electrophoresis (DGGE) and Biolog Eco Plates at various stages of bioreactor operation. The DGGE results indicated that the dominant bands of the microbial population profile were stable at various operational stages, and that only a few bands varied with time. Moreover, four Biolog Eco plates were inoculated with samples drawn from the bioreactor at 0, 24, 72 and 120 hours after inoculation. Based on this Biolog Eco Plate profiling, a carbon source utilisation analysis was conducted to group the substrates according to their colour development patterns. Patterns were quantified via measurement of well optical density. Subsequently, cross-correlation statistical techniques were used to establish the existence of recurrent behavioural responses from each carbon source to the various wastewater samples. From the cross correlation, an attempt was made to classify the metabolic potential for future biodegradation processes. Carbohydrates, amino acids and carboxylic acids were the most predominant groups of sole carbon substrates showing similar growth behaviour in the consortium.

  4. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    SciTech Connect

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  5. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production.

    PubMed

    Hu, Yuansheng; Hao, Xiaodi; van Loosdrecht, Mark; Chen, Huiqin

    2017-08-15

    Microalgae cultivation is a promising technology for integrated effluent polishing and biofuel production, but poor separability of microalgal cells hinders its industrial application. This study intended to selectively enrich settleable microalgal consortia in mixed culture by applying "wash-out" pressure, which was realized by controlling settling time (ST) and volume exchange ratio (VER) in photo-SBRs. The results demonstrated that highly settleable microalgal consortia (settling efficiency>97%; SVI = 17-50 mL/g) could be enriched from indigenous algal cultures developed in WWTP's effluent. High VER was the key factor for the fast development of settleable microalgae. VER was also a controlling factor of the algal community structure. High VERs (0.5 and 0.7) resulted in the dominance of diatom, while low VER (0.2) facilitated the dominance of cyanobacteria. The settleable microalgal consortia were very efficient in phosphorus removal (effluent PO4(3-)-P<0.1 mg/L; removal efficiency>99%), which was largely attributed to intensive chemical precipitation of phosphate induced by high pH (8.5-10). However, the high pH decreased the bioavailable inorganic carbon, resulting in incomplete nitrate removal (effluent NO3(-)-N = 2.2-4 mg/L; removal efficiency = 61-79%) under high VERs and low lipid content (up to 10%) in the settleable microalgae. This problem could be resolved by sparging CO2 or controlling pH. Overall, this study demonstrated a simple and effective method to overcome the separation challenge in scale-up of microalgae biotechnology for advanced wastewater purification and biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Screening Complex Effluents for Estrogenic Activity with the T47D-Kbluc Cell Bioassay: Assay Optimization and Comparison to In Vivo Responses in Fish

    EPA Science Inventory

    The endocrine activity of complex mixtures of chemicals associated with wastewater treatment plant effluents, runoff from concentrated animal feeding operations (CAFOs), and/or other environmental samples can be difficult to characterize based on analytical chemistry. In vitro bi...

  7. Screening Complex Effluents for Estrogenic Activity with the T47D-Kbluc Cell Bioassay: Assay Optimization and Comparison to In Vivo Responses in Fish

    EPA Science Inventory

    The endocrine activity of complex mixtures of chemicals associated with wastewater treatment plant effluents, runoff from concentrated animal feeding operations (CAFOs), and/or other environmental samples can be difficult to characterize based on analytical chemistry. In vitro bi...

  8. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  9. Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: Evaluation using biomarker responses and chemical analysis.

    PubMed

    Beijer, Kristina; Björlenius, Berndt; Shaik, Siraz; Lindberg, Richard H; Brunström, Björn; Brandt, Ingvar

    2017-06-01

    Traces of active pharmaceutical ingredients (APIs) and other chemicals are demonstrated in effluents from sewage treatment plants (STPs) and they may affect quality of surface water and eventually drinking water. Treatment of effluents with granular activated carbon (GAC) or ozone to improve removal of APIs and other contaminants was evaluated at two Swedish STPs, Käppala and Uppsala (88 and 103 APIs analyzed). Biomarker responses in rainbow trout exposed to regular and additionally treated effluents were determined. GAC and ozone treatment removed 87-95% of the total concentrations of APIs detected. In Käppala, GAC removed 20 and ozonation (7 g O3/m(3)) 21 of 24 APIs detected in regular effluent. In Uppsala, GAC removed 25 and ozonation (5.4 g O3/m(3)) 15 of 25 APIs detected in effluent. GAC and ozonation also reduced biomarker responses caused by unidentified pollutants in STP effluent water. Elevated ethoxyresorufin-O-deethylase (EROD) activity in gills was observed in fish exposed to effluent in both STPs. Gene expression analysis carried out in Käppala showed increased concentrations of cytochrome P450 (CYP1As and CYP1C3) transcripts in gills and of CYP1As in liver of fish exposed to effluent. In fish exposed to GAC- or ozone-treated effluent water, gill EROD activity and expression of CYP1As and CYP1C3 in gills and liver were generally equal to or below levels in fish held in tap water. The joint application of chemical analysis and sensitive biomarkers proved useful for evaluating contaminant removal in STPs with new technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    NASA Astrophysics Data System (ADS)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  11. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  12. Estimating effluent COD

    SciTech Connect

    Eckenfelder, W.W.; Landine, R.

    1995-06-01

    In many parts of the world, chemical oxygen demand (COD) is a primary effluent parameter. Unlike BOD, which considers only biodegradable organics, COD also includes non-degradable organics and non-degradable biological oxidation by-products, generally referred to as soluble microbial products (SMP). The SMP can vary from 2% to 10% of the influent degradable COD. If the technology is limited to biological treatment only, the degradable COD will be removed. Further reductions in COD will require physical chemical treatments such as activated carbon. Effluent COD values for several industrial wastewaters are presented. Effluent characteristics from the anaerobic treatment of industrial wastewaters are also discussed.

  13. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent.

    PubMed

    Felföldi, Tamás; Vengring, Anita; Kéki, Zsuzsa; Márialigeti, Károly; Schumann, Peter; Tóth, Erika M

    2014-06-01

    A novel bacterium, PB3-7B(T), was isolated on phenol-supplemented inorganic growth medium from a laboratory-scale wastewater purification system that treated coke plant effluent. 16S rRNA gene sequence analysis revealed that strain PB3-7B(T) belonged to the family Alcaligenaceae and showed the highest pairwise sequence similarity to Parapusillimonas granuli Ch07(T) (97.5%), Candidimonas bauzanensis BZ59(T) (97.3%) and Pusillimonas noertemannii BN9(T) (97.2%). Strain PB3-7B(T) was rod-shaped, motile and oxidase- and catalase-positive. The predominant fatty acids were C(16 : 0), C(17 : 0) cyclo, C(19 : 0) cyclo ω8c and C(14 : 0) 3-OH, and the major respiratory quinone was Q-8. The G+C content of the genomic DNA of strain PB3-7B(T) was 59.7 mol%. The novel bacterium can be distinguished from closely related type strains based on its urease activity and the capacity for assimilation of glycerol and amygdalin. On the basis of the phenotypic, chemotaxonomic and molecular data, strain PB3-7B(T) is considered to represent a new genus and species, for which the name Eoetvoesia caeni gen. nov., sp. nov. is proposed. The type strain of Eoetvoesia caeni is PB3-7B(T) ( = DSM 25520(T) = NCAIM B 02512(T)).

  14. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  15. Effect of untreated sewage effluent irrigation on heavy metal content, microbial population and enzymatic activities of soils in Aligarh.

    PubMed

    Bansal, O P; Singh, Gajraj; Katiyar, Pragati

    2014-07-01

    The study pertains to the impact of domestic and industrial sewage water irrigation on the chemical, biological and enzymatic activities in alluvial soils of Aligarh District. Results showed that soil enzymatic [dehydogenase (DHA), acid and alkaline phosphatase, urease and catalase] activities in the soils increased up to 14 days of incubation and thereafter inhibited significantly. The enzymatic activity were in the order sewage effluent > partial sewage effluent > ground water irrigated soils. Increase in soil enzymatic activities up to 2nd week of incubation was due to decomposition of organic matter. Maximum inhibition of enzymatic activities, after 14 days of incubation were found in sewage effluent irrigated soils and minimum in ground water irrigated soils. Similar trend was also seen for microbial population. Soil enzymatic activities and microbial population were significantly and positively correlated with soil organic matter. Results also indicated that the microbial population and enzymatic activities in sewage irrigated soils decreased continually with irrigation period. The average concentration of total heavy metals in sewage irrigated soils and partial sewage irrigated soils increased and was 3 and 2 times higher for Zn; 4.5 and 1.7 times higher for Cu; 3.8 and 2.4 times higher for Cr; 5.7 and 3.5 times higher for Pb; 3.5 and 2.2 times higher for Cd and 2.7 and 2.0 times higher for Ni respectively than that of ground water irrigated soils. Results also showed that though total heavy metals concentration increased with period of sewage irrigation but the concentration of diethylene triamine pentaacetic acid (DTPA) extractable heavy metals in partial sewage irrigated and sewage irrigated soils remained almost same, which might be due to deposition of heavy metals in crops grown on the soils.

  16. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    PubMed

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  17. High COD wastewater treatment in an aerobic SBR: treatment of effluent from a small farm goat's cheese dairy.

    PubMed

    Torrijos, M; Sousbie, P h; Moletta, R; Delgenes, J P

    2004-01-01

    In France, small goat's cheese dairies using traditional craft methods often have no profitable solution for dealing with the whey byproduct of their cheesemaking activity: it is usually mixed with the cleaning wastewater which, in the absence of other possibilities, is then discharged directly into the environment. The volume of such wastewater is small but it has a high COD of around 12-15 g/L. An aerobic SBR was proposed as a method for treating the mixture of wastewater and whey and the first installation was set up on a farm with 170 goats. Its operations were monitored for 7.5 months, particularly in order to measure any excess volume of sludge and to check that such excess remained within acceptable limits, given the high COD of the effluent requiring treatment. The results obtained show that the treated wastewater was of excellent quality, well within the most rigorous discharge norms. With this type of wastewater, excess sludge was produced in only very low amounts with 0.2 g of SS/g of COD. Moreover, the sludge proved to be quick settling which made it possible to: i) maintain a high level of SS in the reactor (up to 15 g/L); ii) withdraw sludge with concentrations reaching 30 g/L after 2 hours of settling. This resulted in a low volume of excess sludge (less than 5% of treated volume), making such aerobic biological treatment in an SBR competitive when compared to the straightforward spreading of all the wastewater.

  18. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  19. High temperature electrolytic recovery of oxygen from gaseous effluents from the carbo-chlorination of lunar anorthite and the hydrogenation of ilmenite: A theoretical study

    NASA Technical Reports Server (NTRS)

    Erstfield, T. E.; Williams, R. J.

    1979-01-01

    A thermodynamic analysis discusses the compositions of gaseous effluents from the reaction of carbon and chlorine and of hydrogen with lunar anorthite and ilmenite, respectively. The computations consider the effects of the indigenous volatiles on the solid/gas reactions and on the composition of the effluent gases. A theoretical parameterization of the high temperature electrolysis of such gases is given for several types of solid ceramic electrolytes, and the effect of oxygen removal on the effluents is computed. Potential chemical interactions between the gases and the ceramic electrolytes are analyzed and discussed.

  20. Treatment of Industrial Process Effluents & Contaminated Groundwater Using the Biological Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) Process. Volume I

    DTIC Science & Technology

    2007-11-02

    and effluent streams. The influent and effluent wastewater streams were analyzed for DNT, DAT, ethanol, ether, short chain fatty acids, and COD. Added...Substrates like glucose, alcohols or acetone are sufficient for activating the anaerobic biomass and supplying the reducing equivalents for the...separate the MeCI/ Water emulsions . The MeCI layer was removed with a Pasteur pipette and passed through another Pasteur pipette packed with anhydrous

  1. Lessons learned from a NUREG-0737 review of high-range effluent monitors and samplers

    SciTech Connect

    Hull, A.P.; White, J.R.

    1985-01-01

    Shortly after the onset of the accident on 3/28/79 at Unit 2 of the Three Mile Island Nuclear Power Station, the upper range capabilities of its real-time monitors for gaseous, radioiodine and particulate effluents to the atmosphere were exceeded. Subsequently, the NRC required extended range gaseous effluent monitors and an improved capability for the obtaining of frequent samples of radioiodines and particulates at the concentrations that would be anticipated in effluent steams under accident conditions (NUREG-0578, NUREG-0660, NUREG-0737, Items II.F.1-1 + II.F.1-2). In 1983 an on-site post-implementation review of their installation and operation was initiated by the NRC Region I. The results from nineteen such reviews indicate that the licensees have adopted a variety of approaches to meet the NRC's requirements ranging from the installation of completely new commercial modules to improvised additions to existing monitors and samplers. Some advantages and drawbacks of these various approaches are summarized. 12 refs., 15 figs.

  2. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents.

    PubMed

    Aerni, Hans-Rudolf; Kobler, Bernd; Rutishauser, Barbara V; Wettstein, Felix E; Fischer, René; Giger, Walter; Hungerbühler, Andreas; Marazuela, M Dolores; Peter, Armin; Schönenberger, René; Vögeli, A Christiane; Suter, Marc J-F; Eggen, Rik I L

    2004-02-01

    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51 ng L(-1), estradiol (E2) up to 6 ng L(-1), and ethinylestradiol (EE2) up to 2 ng L(-1) in the 90 samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at microg L(-1) concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R(2)=0.6).

  3. Effluent Guidelines

    EPA Pesticide Factsheets

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  4. Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent.

    PubMed

    Javed, Mehjbeen; Ahmad, Irshad; Ahmad, Ajaz; Usmani, Nazura; Ahmad, Masood

    2016-01-01

    The present study was conducted to assess the toxicity of thermal power plant effluent containing heavy metals (Fe > Cu > Zn > Mn > Ni > Co > Cr) on haematological indices, micronuclei, lobed nuclei and activity of pathological marker enzymes [alkaline phosphatase (ALP), aspartate transferase (AST), alanine transferase (ALT) and creatine kinase (CK)] in Channa punctatus. Total erythrocyte count (-54.52 %), hemoglobin (-36.98 %), packed cell volume (-36.25 %), mean corpuscular hemoglobin concentration (-1.41 %) and oxygen (O2) carrying capacity (-37.04 %) declined significantly over reference fish, however total leukocyte count (+25.43 %), mean corpuscular hemoglobin (+33.52 %) and mean corpuscular volume (+35.49 %) showed elevation. High frequency of micronuclei (1133.3 %) and lobed nuclei (150 %) were observed in exposed fish which may indicate mutagenesis. Activities of pathological marker enzymes ALP, AST, ALT and CK increased significantly in serum of exposed fish. The ratio of ALT: AST in exposed fish was beyond 1 which indicates manifestation of pathological processes. These biomarkers show that fish have macrocytic hypochromic anemia. Leukocytosis showed general defence response against heavy metal toxicity and marker enzymes showed tissue degeneration. In conclusion, thermal power plant effluent has strong potential to induce micronuclei, tissue pathology, making the fish anemic, weak, stressed and vulnerable to diseases.

  5. Pharmaceutically active compounds in atlantic canadian sewage treatment plant effluents and receiving waters, and potential for environmental effects as measured by acute and chronic aquatic toxicity.

    PubMed

    Brun, Guy L; Bernier, Marc; Losier, René; Doe, Ken; Jackman, Paula; Lee, Hing-Biu

    2006-08-01

    Ten acidic and two neutral pharmaceuticals were detected in the effluents of eight sewage treatment plants (STPs) from across Atlantic Canada. Concentrations varied between nondetectable and 35 microg/L. The analgesic, nonsteroidal anti-inflammatory drugs ibuprofen and naproxen were predominant. Carbamazepine, a neutral compound used as an antiepileptic drug, was observed consistently at a median concentration of 79 ng/L. Acetaminophen was found in the effluents of the three largest mechanical STPs at a median concentration of 1.9 microg/L, but not in the lagoon treatment systems. The substantially longer hydraulic retention times may have contributed to more effective removal of acetaminophen in the lagoon treatment systems. Drugs generally were not detected at significant concentrations in the larger bodies of receiving water (Saint John River, Hillsborough River, and Bedford Bay, Canada). However, drug residues in the small receiving streams were 15 to 30% of the effluent median concentrations. Six compounds (caffeine, naproxen, salicylic acid, carbamazepine, metoprolol, and sotolol) were found to persist in a small stream for a distance of at least 17 km, suggesting that small stream exposure to pharmaceutically active residues may be relatively greater than that in large bodies of water. Bioassays assessing acute and chronic effects on four organisms were conducted on four high-use drugs: Acetaminophen, ibuprofen, naproxen, and salicylic acid (metabolite of acetyl salicylic acid). Results indicated no negative effects except for the chronic algal (Selanastrum capricornutum) growth test on ibuprofen (no-observed-effect concentration, 10 microg/L; lowest-observed-effect concentration, 32 microg/L). Effects of these four compounds on invertebrates and plants in the receiving environments are unlikely based on the concentrations measured.

  6. Pulp mill effluents: Activated sludge treatment process. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning plant histories, laboratory analyses, field applications, performance evaluations, and cost factors of pulping mill activated sludge treatment facilities. Monitoring techniques of the activated sludge effluent treatment process, and operating problems and solutions are discussed. Computerized simulation of activated sludge plants is included. (Contains a minimum of 75 citations and includes a subject term index and title list.)

  7. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Anjum, Aftab Ahmad; Javeed, Aqeel; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra

    2016-01-01

    Exposure to complex mixtures like textile effluent poses risks to animal and human health such as mutations, genotoxicity and oxidative damage. Aim of the present study was to quantify metals in industrial effluent and to determine its mutagenic, genotoxic and cytotoxic potential and effects on oxidative stress biomarkers in effluent exposed rats. Metal analysis revealed presence of high amounts of zinc, copper, chromium, iron, arsenic and mercury in industrial effluent. Ames test with/without enzyme activation and MTT assay showed strong association of industrial effluent with mutagenicity and cytotoxicity respectively. In-vitro comet assay revealed evidence of high oxidative DNA damage. When Wistar rats were exposed to industrial effluent in different dilutions for 60 days, then activities of total superoxide dismutase and catalase and hydrogen peroxide concentration were found to be significantly lower in kidney, liver and blood/plasma of effluent exposed rats than control. Vitamin C in a dose of 50 mg/kg/day significantly reduced oxidative effects of effluent in rats. On the basis of this study it is concluded that industrial effluent may cause mutagenicity, in-vitro oxidative stress-related DNA damage and cytotoxicity and may be associated with oxidative stress in rats. Vitamin C may have ameliorating effect when exposed to effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Strategies for selecting optimal sampling and work-up procedures for analysing alkylphenol polyethoxylates in effluents from non-activated sludge biofilm reactors.

    PubMed

    Stenholm, Ake; Holmström, Sara; Hjärthag, Sandra; Lind, Ola

    2012-01-01

    Trace-level analysis of alkylphenol polyethoxylates (APEOs) in wastewater containing sludge requires the prior removal of contaminants and preconcentration. In this study, the effects on optimal work-up procedures of the types of alkylphenols present, their degree of ethoxylation, the biofilm wastewater treatment and the sample matrix were investigated for these purposes. The sampling spot for APEO-containing specimens from an industrial wastewater treatment plant was optimized, including a box that surrounded the tubing outlet carrying the wastewater, to prevent sedimented sludge contaminating the collected samples. Following these changes, the sampling precision (in terms of dry matter content) at a point just under the tubing leading from the biofilm reactors was 0.7% RSD. The findings were applied to develop a work-up procedure for use prior to a high-performance liquid chromatography-fluorescence detection analysis method capable of quantifying nonylphenol polyethoxylates (NPEOs) and poorly investigated dinonylphenol polyethoxylates (DNPEOs) at low microg L(-1) concentrations in effluents from non-activated sludge biofilm reactors. The selected multi-step work-up procedure includes lyophilization and pressurized fluid extraction (PFE) followed by strong ion exchange solid phase extraction (SPE). The yields of the combined procedure, according to tests with NP10EO-spiked effluent from a wastewater treatment plant, were in the 62-78% range.

  9. Behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge.

    PubMed

    Tonani, K A A; Julião, F C; Trevilato, T M B; Takayanagui, A M M; Bocio, Ana; Domingo, Jose L; Segura-Muñoz, Susana I

    2011-11-01

    The purpose of this study was to evaluate the behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge in a wastewater treatment plant in Ribeirão Preto (WTP-RP), Sao Paulo, Brazil. The evaluation was done during a period of 1 year. Results showed that metal concentrations in treated effluents decreased, reaching concentrations according to those established by national regulations. The activated sludge process at the WTP-RP promoted a partial removal of parasites considered as possible indicators according to the WHO guidelines. Reduction factors varied between 18.2% and 100% for agents such as Endolimax nana, Entamoeba coli, Entamoeba hystolitica, Giardia sp., Ancylostoma sp., Ascaris sp., Fasciola hepatica, and Strongyloides stercoralis. A removal was also observed in total and fecal coliforms quantification. The present study represents an initial evaluation of the chemical and microbiological removal capacity of the WTP-RP. The results should be of interest for the authorities responsible for the environmental health at municipal, regional, national, and international levels.

  10. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h).

  11. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.

    PubMed

    Zietzschmann, Frederik; Aschermann, Geert; Jekel, Martin

    2016-10-01

    The adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC) was compared between regionally different waters within two groups, namely five drinking waters and seven wastewater treatment plant (WWTP) effluents. In all waters, OMP were spiked to adjust similar ratios of the initial OMP and DOC concentrations (c0,OMP/c0,DOC). PAC was dosed specific to the respective DOC (e.g. 2 mg PAC/per mg DOC). Liquid chromatography with online carbon detection shows differences of the background organic matter (BOM) compositions. The OMP removals at given DOC-specific PAC doses vary by ±15% (drinking waters) and ±10% (WWTP effluents). Similar BOM-induced adsorption competition in the waters of the respective group results in overall relationships between the PAC loadings and the liquid phase concentrations of each OMP (in the case of strong adsorbates). Weaker adsorbates show no overall relationships because of the strong BOM-induced adsorption competition near the initial OMP concentration. Correlations between OMP removals and UV254 removals were independent of the water (within the respective group). The equivalent background compound (EBC) model was applied to the experimental data. Using global EBC Freundlich coefficients, the initial EBC concentration correlates with the DOC (both water groups separately) and the low molecular weight (LMW) organics concentrations (all waters combined). With these correlations, the EBC could be initialized by using the DOC or the LMW organics concentration of additional drinking water, WWTP effluent, and surface water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessment of derived emission limits for radioactive effluents resulted from the decommissioning activities of the VVR-S nuclear research reactor.

    PubMed

    Tuca, C; Stochioiu, A; Sahagia, M; Gurau, D; Dragusin, M

    2015-10-01

    This paper presents complex studies on establishment of derived emission limits for potential radionuclides emitted as gaseous and liquid effluents, during the decommissioning activities (2nd and 3rd phases) of a nuclear research reactor, cooled and moderated with distilled water, type VVR-S, owned by the IFIN-HH. In the present paper there are described: the analysis methods and equipment used, the methodologies for calculating doses and the Derived Emission Limits (DEL), the experimentally measured activities of the representative radionuclides found in gaseous and liquid effluents resulted from decommissioning activities, as well as the effective derived limits of liquid and gaseous effluents, applying the calculation methodologies, specific to critical categories of exposed subjects. A constraint effective dose limit for a person from the critical group of 50 μSv/year was considered in calculations. From the comparison of the two series of values, measured released activities and DELs, there has been concluded that for the gaseous effluents they comply with the DELs, while in the case of liquid effluents they are higher and consequently they must be treated as liquid radioactive wastes.

  13. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined.

  14. Energy saving membrane treatment of high organic load industrial effluents: from lab to pilot scale.

    PubMed

    Lopes, Mafalda Pessoa; Xin, Gang; Crespo, João G

    2013-12-15

    In this study, a nanofiltration unit was implemented at an industrial site, for the treatment of industrial wastewater generated during rubber tubing extrusion. The aim was to reduce the energy input required, while assuring a final effluent quality that meets the requirements of environmental legislation. In a first stage, two membrane process treatments, ultrafiltration and nanofiltration, were evaluated at laboratory scale in order to assess the rejection of pollutants and maximise permeate throughput. Permeate generated from nanofiltration using either an NF90 or an NF270 membrane were shown to meet the effluent discharge requirements (<2000 mg COD/l). The less restrictive membrane, NF270, was chosen for study in a pilot plant at the industrial site, due to its higher membrane permeability. The pilot nanofiltration unit was integrated into the treatment plant operation aiming at optimising the process in terms of the efficiency of pollutant removal with minimal energy input. A feasibility study was performed for this case-study and it was concluded that the energy expenditure of the new process represents only 62% of the current energy consumption of the treatment plant. The proposed solution in this work may be retrofitted to full scale wastewater treatment processes, and may be applicable to industries that employ similar manufacturing processes, and face similar difficulties.

  15. The Buoyant Filter Bioreactor: a high-rate anaerobic reactor for complex wastewater--process dynamics with dairy effluent.

    PubMed

    Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B

    2005-03-01

    A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation.

  16. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    SciTech Connect

    McCabe, Daniel J.; Nash, Charles A.

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  17. Antimicrobial activity of pharmaceutical cocktails in sewage treatment plant effluent - An experimental and predictive approach to mixture risk assessment.

    PubMed

    Menz, Jakob; Baginska, Ewelina; Arrhenius, Åsa; Haiß, Annette; Backhaus, Thomas; Kümmerer, Klaus

    2017-09-26

    Municipal wastewater contains multi-component mixtures of active pharmaceutical ingredients (APIs). This could shape microbial communities in sewage treatment plants (STPs) and the effluent-receiving ecosystems. In this paper we assess the risk of antimicrobial effects in STPs and the aquatic environment for a mixture of 18 APIs that was previously detected in the effluent of a European municipal STP. Effects on microbial consortia (collected from a separate STP) were determined using respirometry, enumeration of culturable microorganisms and community-level physiological profiling. The mixture toxicity against selected bacteria was assessed using assays with Pseudomonas putida and Vibrio fischeri. Additional data on the toxicity to environmental bacteria were compiled from literature in order to assess the individual and expected joint bacterial toxicity of the pharmaceuticals in the mixture. The reported effluent concentration of the mixture was 15.4 nmol/l and the lowest experimentally obtained effect concentrations (EC10) were 242 nmol/l for microbial consortia in STPs, 225 nmol/l for P. putida and 73 nmol/l for V. fischeri. The lowest published effect concentrations (EC50) of the individual antibiotics in the mixture range between 15 and 150 nmol/l, whereas 0.9-190 μmol/l was the range of bacterial EC50 values found for the non-antibiotic mixture components. Pharmaceutical cocktails could shape microbial communities at concentrations relevant to STPs and the effluent receiving aquatic environment. The risk of antimicrobial mixture effects was completely dominated by the presence of antibiotics, whereas other pharmaceutical classes contributed only negligibly to the mixture toxicity. The joint bacterial toxicity can be accurately predicted from the individual toxicity of the mixture components, provided that standardized data on representative bacterial strains becomes available for all relevant compounds. These findings argue for a more sophisticated

  18. High dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants.

    PubMed

    Ojer-Usoz, Elena; González, David; García-Jalón, Isabel; Vitas, Ana Isabel

    2014-06-01

    Water environments play an important role in the dissemination of antibiotic-resistant bacteria among humans, animals and agricultural sources. In order to assess the spread of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, we analyzed 279 effluent samples from 21 wastewater treatment plants in Navarra (northern Spain). A total of 185 cefpodoxime-resistant bacteria were isolated on ChromID ESBL agar plates, with high predominance of Escherichia coli among isolated species (73%). ESBL production was determined by different methods, concluding its presence in 86.5% of the isolates by the combination disk test, 75.7% by double-disk synergy test and 73.5% by MicroScan(®) NM37 automated system. PCR and sequencing analysis showed that the predominant β-lactamases (bla) genes were blaCTx-M (67.4%) followed by blaTEM (47%), blaSHV (17.4%) and blaOxA (8.3%); furthermore, two or more β-lactamases genes were found in 34.9% of the isolates. The results demonstrate the high prevalence of ESBL-producing Enterobacteriaceae in effluent water from wastewater treatment plants and confirm the need to optimize current disinfection procedures and to improve management of wastewater in an effort to minimize reservoirs of resistant bacteria. Further studies are needed for examining the presence of these bacteria in other environments and for determining the potential dissemination routes of these resistances as well as their impact on human health.

  19. Dynamic assessment of the floc morphology, bacterial diversity, and integron content of an activated sludge reactor processing hospital effluent.

    PubMed

    Stalder, Thibault; Alrhmoun, Mousaab; Louvet, Jean-Noël; Casellas, Magali; Maftah, Corinne; Carrion, Claire; Pons, Marie-Noëlle; Pahl, Ole; Ploy, Marie-Cécile; Dagot, Christophe

    2013-07-16

    The treatment of hospital effluents (HE) is a major concern, as they are suspected of disseminating drugs and antibiotic resistance determinants in the environment. In order to assess HE influence on wastewater treatment plant biomass, lab-scale conventional activated sludge systems (CAS) were continuously fed with real HE or urban effluent as a control. To gain insights into the main hurdles linked to HE treatment, we conducted a multiparameter study using classical physicochemical characterization, phase contrast and confocal laser scaning microscopy, and molecular biology (i.e., pyrosequencing) tools. HE caused erosion of floc structure and the production of extracellular polymeric substances attributed to the development of floc-forming bacteria. Adaptation of the sludge bacterial community to the HE characteristics, thus maintaining the purification performance of the biomass, was observed. Finally, the comparative metagenomic analysis of the CAS showed that HE treatment resulted in an increase of class 1 resistance integrons (RIs) and the introduction of Pseudomonas spp. into the bacterial community. HE treatment did not reduce the CAS process performance; nevertheless it increases the risk of dissemination into the environment of bacterial species and genetic determinants (RIs) involved in antibiotic resistance acquisition.

  20. Evaluation of the use of powdered activated carbon in membrane bioreactor for the treatment of bleach pulp mill effluent.

    PubMed

    Amaral, Míriam C S; Lange, Liséte C; Borges, Cristiano P

    2014-09-01

    In this paper, the use of powered activated carbon (PAC) in membrane bioreactor (MBR) employed in the treatment of bleach pulp mill effluents was evaluated. The MBR was operated with hydraulic residence time of 9.5 h and PAC concentration of 10 g/L. The addition of PAC to the MBR reduced the average concentration of chemical oxygen demand (COD) in the permeate from 215 mg/L (82% removal efficiency) to 135 mg/L (88% removal efficiency), producing an effluent that can be reused on bleaching stage. Moreover, the addition of PAC to the MBR resulted in the reduction in applied pressure and provided a more stable operation during the monitoring period. This occurrence was probably due to the increase of critical flux after the addition of PAC. The fouling mechanism was investigated and the results showed that controlling the concentration of soluble microbial products (SMP) and extracellular polymeric substance (EPS) by using PAC and keeping the operational flux below critical flux is of major importance for MBR operational sustainability.

  1. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    PubMed

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  2. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.

    PubMed

    Maletz, Sibylle; Floehr, Tilman; Beier, Silvio; Klümper, Claudia; Brouwer, Abraham; Behnisch, Peter; Higley, Eric; Giesy, John P; Hecker, Markus; Gebhardt, Wilhelm; Linnemann, Volker; Pinnekamp, Johannes; Hollert, Henner

    2013-03-15

    Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects

  3. Modeling depth filtration of activated sludge effluent using a compressible medium filter.

    PubMed

    Caliskaner, Onder; Tchobanoglous, George

    2005-01-01

    A new filter, using a compressible-filter medium, has been evaluated for the filtration of secondary effluent. The ability to adjust the properties of the filter medium by altering the degree of the medium compression is a significant departure from conventional depth-filtration technology. Unlike conventional filters, it is possible to optimize the performance of the compressible-medium filter (CMF) by adjusting the medium properties (i.e., collector size, porosity, and depth) to respond to the variations in influent quality. Because existing filter models cannot be used to predict the performance of the CMF, a new predictive model has been developed to describe the filtration performance of the CMF and the effect of medium-compression ratio. The model accounts for the fact that the properties of the filter medium change with time and depth. The model, developed for heterodisperse suspensions and variable influent total suspended solids concentrations, can be used to predict all possible phases of filtration (i.e., ripening, constant removal, and breakthrough). A hyperbolic-type, second-order, nonlinear, partial-differential equation was derived to model the CMF. The equation was solved using the finite-difference numerical method. The accuracy of the numerical method was tested by a sensitivity analysis and a convergence test. The model is first-order accurate with respect to medium depth and time. Field data were obtained for the filtration of settled secondary effluent using a CMF with a capacity of 1200 m3/d. Model predictions were compared with observed performance from filter runs conducted at medium-compression ratios between 15 and 40% and filtration rates from 410 to 820 L/m2 min. The difference between the observed and the predicted values was found to be within 0 to 15%.

  4. Trade-off between carbon emission and effluent quality of activated sludge processes under seasonal variations of wastewater temperature and mean cell retention time.

    PubMed

    Guo, Jingbo; Fu, Xin; Andrés Baquero, G; Sobhani, Reza; Nolasco, Daniel A; Rosso, Diego

    2016-03-15

    Over the seasonal cycles, the mean cell retention time (MCRT) of the activated sludge process is varied to compensate the wastewater temperature variations. The effects of these variations on the carbon footprint (CFP) and effluent quality index (EQI) of a conventional activated sludge (CAS) process and a nitrification/denitrification (NDN) process were quantified. The carbon emission included both biogenic and non-biogenic carbon. Carbon emissions of wasted biosolids management were also addressed. Our results confirmed that the effluent quality indicated by EQI was not necessarily improved by increasing MCRT. Higher MCRT increased the carbon emission and reduced excess sludge production, which decreased the potential for biogas energy recovery. The NDN process was preferable to the CAS process from the perspective of effluent quality. This consideration extended to the whole plant CFP if the N2O emitted during NDN was limited ([N2O]<1% [NH4(+)]removed) as the carbon emission per unit effluent quality achieved by NDN process is less than that of the CAS process. By putting forward carbon emission intensity (γ) derived from CFP and EQI, our work provides a quantitative tool for decision makers evaluating process alternatives when there is a trade-off between carbon emission and effluent quality.

  5. Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L.

    PubMed

    Bharagava, Ram Naresh; Chandra, Ram

    2010-08-15

    Present study deals the effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on germination, seedling growth and amylase activity in Phaseolus mungo L. seeds. Results revealed that untreated PMDE was highly toxic in nature carrying high BOD, COD values along with high metals content. But, after bacterial treatment, these values were reduced by 64.58 and 74.20%, respectively. It was observed that 40% untreated PMDE has no inhibitory effect on seed germination but 60, 80 and 100% PMDE has inhibited 20, 40 and 60% germination, respectively while 100% germination was recorded up to 60% treated PMDE. Moreover, 40 and 60% PMDE has shown deleterious effects on seedling growth parameter and seeds treated with 80 and 100% PMDE showed no root development. However, 20% bacteria treated PMDE was found most suitable for plant growth possibly due to presence of optimum level of nutrients. Further, Phaseolus seeds treated with 60 and 80% untreated PMDE showed reduced amylase activity and no amylase activity was observed in seeds treated with 100% untreated PMDE. But, seeds treated with bacterial degraded PMDE showed amylase activity and molecular weight of alpha-amylase enzyme determined by SDS-PAGE was approximately 47.5, 46 and 44.5 kDa, respectively. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Composition of activated sludge settling and planktonic bacterial communities treating industrial effluent and their correlation to settling problems.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2010-11-01

    Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.

  7. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics.

    PubMed

    Agridiotis, V; Forster, C F; Carliell-Marquet, C

    2007-11-01

    Metal salts, ferrous sulphate and aluminium chloride, were added to laboratory-scale activated sludge plant treating paper mill effluents to investigate the effect on settlement characteristics. Before treatment the sludge was filamentous, had stirred sludge volume index (SSVI) values in excess of 300 and was moderately hydrophobic. The use of FeSO4.7H2O took three weeks to reduce the SSVI to 90. Microscopic examination showed that Fe had converted the filamentous flocs into a compact structure. When the iron dosing was stopped, the sludge returned to its bulking state within four weeks. In a subsequent trial, the addition of AlCl3 initially resulted in an improvement of the settlement index but then caused deterioration of the sludge properties. It is possible that aluminium was overdosed and caused charge reversal, increasing the SSVI.

  8. Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents.

    PubMed

    Körner, W; Hanf, V; Schuller, W; Kempter, C; Metzger, J; Hagenmaier, H

    1999-01-12

    A simplified proliferation test with human estrogen receptor-positive MCF-7 breast cancer cells (E-screen assay) was optimized and validated for the sensitive quantitative determination of total estrogenic activity in effluent samples from municipal sewage plants. After solid phase extraction of 1 l sewage on either 0.2 g polystyrene copolymer (ENV+) or 1 g RP-C18 material and removal of the solvent, analysis of the extracts in the E-screen assay could be performed without any clean-up step. This was even possible with untreated sewage. Parallel extraction of four sewage samples on both different solid phase materials gave comparable quantitative results in the E-screen. A blank sample did not induce cell proliferation. As additive behaviour of the estrogenic response of single compounds was proven for two different mixtures each containing three xenoestrogens, total estrogenic activity in the sewage samples, expressed as 17 beta-estradiol equivalent concentration (EEQ), could be calculated comparing the EC50 values of the samples with those of the positive control 17 beta-estradiol. The detection limit of the E-screen method was 0.05 pmol EEQ/l (0.014 ng EEQ/l), the limit of quantification 0.25-0.5 pmol EEQ/l (0.07-0.14 ng EEQ/l). In total, extracts of nine effluent and one influent sample from five different municipal sewage plants in South Germany were analyzed in the E-screen. All samples strongly induced cell proliferation in a dose-dependent manner which was completely inhibited by coincubation with 5 nM of the estrogen receptor-antagonist ICI 182,780. The proliferative effect relative to the positive control 17 beta-estradiol (RPE) was between 30 and 101%. 17 beta-Estradiol equivalent concentrations were between 2.5 and 25 ng/l indicating a significant input of estrogenic substances via sewage treatment plants into rivers.

  9. Aromatase activity in the ovary and brain of the eastern mosquitofish (Gambusia holbrooki) exposed to paper mill effluent.

    PubMed Central

    Orlando, Edward F; Davis, William P; Guillette, Louis J

    2002-01-01

    Studies have shown that female mosquitofish living downstream of a paper mill located on the Fenholloway River, Florida, have masculinized secondary sex characteristics, including altered anal fin development and reproductive behavior. Masculinization can be caused by exposure to androgens in the water or from an alteration in aromatase activity in the fish. We hypothesized that aromatase activity would be inhibited by a component(s) of the paper mill effluent. Aromatase inhibition could masculinize the hormonal profile and, subsequently, secondary sex characteristics of the exposed females. Therefore, we predicted that ovarian and brain aromatase activity would be lower in the female mosquitofish from the Fenholloway River compared with the reference site, the Econfina River. Adult females were collected and standard length, body mass, anal fin length, and segment number were measured. Ovarian and brain aromatase activity were determined using a tritiated water assay. Fenholloway females had masculinized anal fin development as indicated by an increase in the number of segments in the longest anal fin ray (p < 0.0001), yet the length of the ray did not differ between sites (p = 0.95). Fenholloway females exhibited higher ovarian (p = 0.0039) and brain (p = 0.0003) aromatase activity compared with reference site fish. These data do not support aromatase inhibition as the mechanism for masculinization, suggesting that the masculinization of the Fenholloway female mosquitofish is due to androgenic contaminants. Future studies should examine the relationship between aromatase enzyme activity and exposure to environmental androgens. PMID:12060840

  10. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers.

    PubMed

    Drury, Bradley; Rosi-Marshall, Emma; Kelly, John J

    2013-03-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.

  11. Adsorptive treatment of brewery effluent using activated Chrysophyllum albidium seed shell carbon.

    PubMed

    Menkiti, Matthew Chukwudi; Aneke, Mathew Chidiebere; Ejikeme, Paul Madus; Onukwuli, Okechukwu Dominic; Menkiti, Nwasinachi Uzoma

    2014-01-01

    Chrysophyllum albidium seed shell, an abundant, biodegradable and inexpensive natural resource was used as a precursor to bioadsorbent production for the removal of suspended and dissolved particles (SDP) from initially coagulated Brewery Effluent (BRE). Influence of key parameters such as contact time, bioadsorbent dose, pH and temperature were investigated using batch mode. The thermal behavior studies were evaluated using Thermogravimetric and Differential scanning calorimetric analyses. The morphological observations and functional groups of the bioadsorbents were determined using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption equilibrium, thermodynamics and kinetic of SDP adsorption on H3PO4-treated shell and NH4Cl-treated shell were examined at specified temperatures. Equilibrium data sufficiently fitted the Langmuir isotherm model (R (2) > 0.99; SSE < 0.09). The pseudo-second order kinetic model provided the best correlation (R (2) > 0.99; SSE < 0.14) with the experimental data. The values of ΔG° and ΔH° indicated the spontaneous and endothermic nature of the process. This study demonstrated that C. albidium seed shell could be utilized as low cost, renewable, ecofriendly bioadsorbent for the uptake of SDP from BRE.

  12. Activated carbons from end-products of tree nut and tree fruit production as sorbents for removing methyl bromide in ventilation effluent from postharvest chamber fumigation

    USDA-ARS?s Scientific Manuscript database

    End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide from the ventilation effluent of postharvest chamber fumigations. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using dif...

  13. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    EPA Science Inventory

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  14. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    EPA Science Inventory

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  15. Diagnosis of dissolved organic matter removal by GAC treatment in biologically treated papermill effluents using advanced organic characterisation techniques.

    PubMed

    Antony, Alice; Bassendeh, Mojgan; Richardson, Desmond; Aquilina, Simon; Hodgkinson, Andrew; Law, Ian; Leslie, Greg

    2012-02-01

    Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62cf. 1.47kgm(-3)) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240mgL(-1). The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58mgL(-1)), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534gmol(-1)) and aromaticity (5.35 vs. 4.67Lmg(-1)m(-1)) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0Lmg(-1)m(-1) in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50gmol(-1) while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.

  16. A high-yield sampler for toxicological characterization of complex mixtures in combustion effluents.

    PubMed Central

    Kruzel, E L; Lafleur, A L; Braun, A G; Longwell, J P; Thilly, W G; Peters, W A

    1991-01-01

    Combustion sampling for toxicological assessment often requires that large (greater than 100 mg) lots of complex organic mixtures of wide volatility range be rapidly recovered from high temperature gases without contamination. A new sampler, meeting these criteria for studies of public health interest, has been developed and demonstrated. The device provides high sampling rates and intimate contacting of the samples stream with large volumes of a well-cooled, liquid solvent, dichloromethane (DCM). This promotes rapid organics dissolution from carrier gas and particulates and prompt dilution and quenching of the resulting solution, resulting in high organics collection efficiencies with minimal DCM losses. Solvent separation then remits large quantities of concentrated organics for chemical analysis and toxicological testing. One- to seven-hour interrogations of in-flame, post-flame, and flue gas regions gave 50- to 250-mg yields of complex organic mixtures. In side-by-side sampling of combustion exhaust, the DCM sampler provided higher yields of DCM solubles (identified with complex organic mixtures) and of S. typhimuirim mutagens (active without exogenous metabolizing agents) than did a filter/polymeric sorbent bed sampling train. The new sampler also collects polar and high volatile hydrocarbons such as benzaheyde, pentadiyne, m- and p-diethynyl-benzene, and 1-hexen-3,5-diyne. Nitration of naphthalene and pyrene in DCM solution (1 mg/mL each) was less than 1 part in 10(7) after a 345-min exposure to a bubbling flow of moist N2/air mixture (1:1 v/v) containing 107 ppm NO and 1.5 ppm NO2, indicating that for these condition a DCM sampler should resist artifactual nitration of aromatics. However, because of the very high bacterial mutagenicity of some nitroaromatics and the wide range of sampling conditions of environmental interest, nitration and all artifacts must still be scrutinized when using the DCM sampler. The DCM sampler is expected to contribute to public

  17. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    PubMed

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  18. High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent.

    PubMed

    Kim, Hyun-Chul

    2015-02-01

    This work was designed to evaluate the effectiveness of magnetic ion exchange (MIEX) resin under the best possible conditions, passage through a fixed-bed of resin as opposed to the alternative of directly adding resin into a flowing stream. The possibility of using a very small amount of alum in addition to MIEX treatment was also investigated not only to adsorb residual EfOM in the effluent from a bed of MIEX but also to produce a porous cake layer that would keep away foulants from the surface of membrane or its pore walls. The MIEX treatment alone reduced fouling, but to a much lesser extent than for MIEX combined with an under-dosing coagulation (which uses a considerably low amount of alum). Almost all of colloids and organic acids were removed and the nearly complete removal of phosphorus was achieved by MIEX in a fixed-bed even for an extremely short hydraulic retention time of wastewater in the resin bed. MIEX resin removed phosphorus, but organic acids in EfOM were preferentially removed and the effects of competing anions on the removal of EfOM were insignificant. The MIEX treatment with added alum (only 0.5 mg Al L(-1)) dramatically improved the performance of MF and UF membranes and the subsequent membrane filtration also achieved ≤0.01 mg L(-1) of residual phosphorous. This condition also allowed good flux recovery after hydraulic flushing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  20. Removal of an endocrine disrupting chemical (17alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: effects of activated carbon type and competitive adsorption.

    PubMed

    Ifelebuegu, A O; Lester, J N; Churchley, J; Cartmell, E

    2006-12-01

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1gl(-1)). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7mgl(-1) the COD adsorption capacities were 3.16mg g(-1), 4.8 mg g(-1) and 7.1 mg g(-1) for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn > ACo > AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  1. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    PubMed

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  2. Endocrine disrupting activities in sewage effluent and river water determined by chemical analysis and in vitro assay in the context of granular activated carbon upgrade.

    PubMed

    Grover, D P; Balaam, J; Pacitto, S; Readman, J W; White, S; Zhou, J L

    2011-09-01

    As part of endocrine disruption in catchments (EDCAT) programme, this work aims to assess the temporal and spatial variations of endocrine disrupting chemicals (EDCs) in River Ray, before and after the commissioning of a full-scale granular activated carbon (GAC) plant at a sewage treatment works (STW). Through spot and passive sampling from effluent and river sites, estrogenic and anti-androgenic activities were determined by chemical analysis and in vitro bio-assay. A correlation was found between chemical analyses of the most potent estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2)) and yeast estrogen screen (YES) measurement, both showing clearly a reduction in estrogenic activity after the commissioning of the GAC plant at the STW. During the study period, the annual average concentrations of E1, E2 and EE2 had decreased from 3.5 ng L(-1), 3.1 ng L(-1) and 0.5 ng L(-1) to below their limit of detection (LOD), respectively, with a concentration reduction of at least 91%, 81% and 60%. Annual mean estrogenic activity measured by YES of spot samples varied from 1.9 ng L(-1) to 0.4 ng L(-1) E2 equivalent between 2006 and 2008 representing a 79% reduction. Similarly, anti-androgenic activity measured by yeast anti-androgen screen (anti-YAS) of spot samples was reduced from 148.8 to 22.4 μg flutamide L(-1), or by 85%. YES and anti-YAS values were related to each other, suggesting co-existence of both types of activities from chemical mixtures in environmental samples. The findings confirm the effectiveness of a full-scale GAC in removing both estrogenic and anti-androgenic activities from sewage effluent.

  3. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    PubMed

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  4. High performance multifunctional green Co3O4 spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro-aromatics and antibacterial potential.

    PubMed

    Jesudoss, S K; Judith Vijaya, J; Iyyappa Rajan, P; Kaviyarasu, K; Sivachidambaram, M; John Kennedy, L; Al-Lohedan, Hamad A; Jothiramalingam, R; Munusamy, Murugan A

    2017-03-28

    Tricobalt tetraoxide (Co3O4), a spinel-structured nanoparticle which possesses mixed oxidation states, has been synthesized via a Punica granatum (P. granatum, pomegranate) seed extract-mediated green reaction and has been investigated for its superior catalytic activity in three applications, which include (i) photodegradation of textile dye effluents (TDE) collected from the dyeing industry, Tiruppur, Tamil Nadu, India, (ii) catalytic hydrogenation of nitro-aromatic pollutants such as 4-nitrophenol and 4-nitroaniline, and (iii) antibacterial potential in biomedical applications. Prior to the application studies, the synthesized Co3O4 spinel nanoparticles (Co3O4-NPs) were characterized by well-known established techniques such as X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and Raman and FT-IR spectroscopies. We have also discussed the probable mechanism and kinetic studies of the catalytic activity of the Co3O4-NPs. Finally, we concluded that the design and development of novel, economic and green synthesis-mediated catalysts such as Co3O4-NPs can exhibit efficient catalytic activity in diverse fields, which is necessary for environmental remediation.

  5. Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents.

    PubMed

    Salima, Attouti; Benaouda, Bestani; Noureddine, Benderdouche; Duclaux, Laurent

    2013-06-15

    Marine algae Ulva lactuca (ULV-AC) and Systoceira stricta (SYS-AC) based activated carbons were investigated as potential adsorbents for the removal of hazardous cationic dyes. Both algae were surface oxidised by phosphoric acid for 2 and subsequently air activated at 600 °C for 3 h. Dyes adsorption parameters such as solution pH, contact time, carbon dosage, temperature and ionic strength were measured in batch experiments. Adsorption capacities of 400 and 526 mg/g for Malachite green and Safranine O by the SYS-AC and ULV-AC respectively were significantly enhanced by the chemical treatments. Model equations such as Langmuir, Freundlich and Temkin isotherms were used to analyse the adsorption equilibrium data and the best fits to the experimental data were provided by the first two isotherm models. BET, FT-IR, iodine number and methylene blue index determination were also performed to characterize the adsorbents. To describe the adsorption mechanism, kinetic models such as pseudo-second-order and the intra particle diffusion were applied. Thermodynamic analysis of the adsorption processes of both dyes confirms their spontaneity and endothermicity. Increasing solution ionic strength increased significantly the adsorption of Safranine O. This study shows that surface modified algae can be an alternative to the commercially available adsorbents for dyes removal from liquid effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  7. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia.

    PubMed

    Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Chu, Hua-Qiang; Guo, Jun

    2016-01-01

    A freshwater algae Chlorella pyrenoidosa was cultured outdoors using anaerobically digested activated sludge effluent. The effects of pH variations were evaluated. The coupled pH variations and free ammonia toxicity significantly affected the algal growth, lipids accumulation and contamination control during every season. The free ammonia toxicity at high pH levels actually inhibited the algal growth. Compared to an optimal algal growth at a pH of 5.7-6.5, biomass productivity at a high pH of 8.3-8.8 was reduced by 67.15±6.98%, 54.39±6.42% and 83.63±5.71% in the spring, fall and summer, respectively. When the pH rose above 9.1-9.6, algae were unable to grow in the wastewater. However, high pH levels reduced contamination (e.g., bacteria and microalgae grazers) and triggered lipids accumulation in algal cells. These findings suggest that pH control strategies are essential for this type of algal wastewater system, where ammonia is the dominant nitrogen source.

  8. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  9. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  10. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  11. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.

    2016-07-01

    Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.

  12. A comparative study of the hydroxyl radical scavenging capacity of activated sludge and membrane bioreactor wastewater effluents.

    PubMed

    Grant, Jacque-Ann; Hofmann, Ron

    2016-01-01

    This study evaluated the hydroxyl radical scavenging characteristics of wastewater from five membrane bioreactor (MBR) and five activated sludge (AS) systems. The average values of the characteristics of both wastewater types was found to be significantly different at a 90% confidence interval in terms UV absorbance at 254 nm, alkalinity, and biopolymer concentration. Effluent organic matter (EfOM), with an average kOH,EfOM of (2.75 ± 1.04) × 10(8) M(-1)s(-1), was identified as the primary hydroxyl scavenger contributing to >70% of the background scavenging in all cases, except when nitrite exceeded 0.3 mg NO(2)(-)-N/L. The average scavenging capacity, EfOM scavenging capacity, and the EfOM reaction rate constant of the AS wastewaters exceeded that of the MBR. However, due to the small sample size (n = 5) and considerable variability in scavenging characteristics among the MBR wastewaters, the difference in EfOM reactivity between the two wastewaters was not statistically significant at a 90% confidence interval. Nevertheless, these preliminary findings suggest the possibility that MBR wastewaters may be more amenable to treatment by advanced oxidation. A plausible explanation is that MBRs were observed to reject biopolymers, and a strong correlation was observed between EfOM scavenging capacity and biopolymer concentration.

  13. Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: Cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds.

    PubMed

    Balabanič, Damjan; Filipič, Metka; Krivograd Klemenčič, Aleksandra; Žegura, Bojana

    2017-01-01

    Paper mill effluents are complex mixtures containing different toxic compounds including endocrine-disrupting (EDCs) and genotoxic compounds. In the present study non-concentrated raw and biologically treated wastewaters from two paper mill plants with different paper production technologies i) Paper mill A uses virgin fibres, and ii) Paper mill B uses recycled fibres for paper production and the corresponding receiving surface waters, were assessed for their cytotoxic/genotoxic activity with SOS/umuC, Ames MPF 98/100 Aqua, and comet assay with human hepatoma HepG2 cells. In addition the levels of seven selected EDCs were quantified in wastewater samples and receiving surface waters. All investigated EDCs were confirmed in raw and biologically treated effluents from both paper mills with concentrations being markedly higher in Paper mill B effluents. In the receiving surface waters three of the studied EDCs were determined downstream of both paper mills effluent discharge. The wastewater samples and the recipient surface water samples from Paper mill A were not mutagenic for bacteria and did not induce DNA damage in HepG2 cells. On the contrary, half of the raw wastewater samples from Paper mill B were mutagenic whereas biologically treated wastewater and the recipient surface water samples were negative. In HepG2 cells most of the raw and biologically treated wastewater samples from Paper mill B as well as surface water samples collected downstream of Paper mill B effluent discharge induced DNA damage. The results confirmed that genotoxic contaminants were present only in wastewaters from Paper mill B that uses recycled fibres for paper production, and that the combined aerobic and anaerobic wastewater treatment procedure efficiently reduced contaminants that are bacterial mutagens, but not those that induce DNA damage in HepG2 cells. This study highlights that in addition to chemical analyses bioassays are needed for a comprehensive toxicological evaluation of

  14. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using in vitro bioassays

    SciTech Connect

    Zacharewski, T.; Berhane, K.; Gillesby, B.; Burnison, K. |

    1995-12-31

    Pulp and paper mill effluent contains a complex mixture of compounds which adversely affect fish physiologically and at the population level. These effects include compromised reproductive fitness and the induction of mixed-function oxidase activities; two classic responses mediated by the estrogen and/or Ah receptor. In vitro recombinant receptor/reporter gene assays were used to examine pulp and paper mill black liquor and effluent for estrogenic, dioxin-like and antiestrogenic activities. Using MCF7 cells transiently transfected with a Gal4-estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc), it was estimated that black liquor contains 4 {+-} 2 ppb ``estrogen equivalents``, while negligible estrogenic activity was observed in a methanol-extracted pulp and paper mill effluent fraction (MF). A dioxin response element (DRE)-regulated luciferase reporter gene (pGudLucl.1) transiently transfected into Hepalclc7 wild type cells exhibited a dose-dependent increase in luciferase activity following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDO), black liquor and MF. Based on the dose response curves, black liquor and MF contain 10 {+-} 4 ppb and 20 {+-} 6 ppt ``TCDD equivalents``, respectively. Moreover, MF exhibited significant AhR-mediated antiestrogenic activity. These results demonstrate the utility of these bioassays and suggest that the effects observed in fish exposed to pulp and paper mill effluent may be due to unidentified ER and AhR ligands not detected by conventional chemical analysis due to the lack of appropriate chemical standards.

  15. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems.

    PubMed

    Jesus, J M; Calheiros, C S C; Castro, P M L; Borges, M T

    2014-01-01

    High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg(-1) of NH4(+)-N and 5.60 mg kg(-1) of PO4(3-)-P and 6.9 mg kg(-1) dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH(4+)-N (inlet 0.25 +/- 0.13 mg L(-1)), 78% NO2(-)-N (inlet 0.78 +/- 0.62 mg L(-1)), 46% NO3(-)-N (inlet 18.83 +/- 8.93 mg L(-1)) whereas PO4(3-)-P was not detected (inlet 1.41 +/- 0.21 mg L(-1)). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4(3-)-P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.

  16. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    PubMed

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp.

  17. In vitro androgenicity in pulp and paper mill effluents.

    PubMed

    Svenson, Anders; Allard, Ann-Sofie

    2004-10-01

    Pulp and paper mill effluents were examined for in vitro androgenicity using a recombinant yeast-based androgen receptor assay. Low levels of androgenic effects were detected in extracts of some effluents after activated sludge treatment. Yeast cell growth cell was inhibited in some samples, and this interfered with the androgenic response. Solid-phase fractionation revealed androgenicity after partial separation of components in the effluents. Comparison of levels in untreated effluent and in effluent treated in an aerated lagoon showed that this treatment had only a marginal effect on androgenicity. An assay of the fractions eluted with increasing concentrations of methanol showed that androgenic compounds were low to moderately lipophilic. In an attempt to identify these compounds, a number of wood-related compounds (guaiacol, vanillin, beta-sitosterol, betulin, pinosylvin-O-methyl ether, and a wood extract enriched in lignans) were examined but were found not to be androgenic. Raw process water was not androgenic, but water from a highly humified lake and process water from the production of pulp from partly decayed wood had low androgenicity. It therefore can be plausibly suggested that the androgens originated in decaying wood. An assay of androgenicity in the bile of juvenile rainbow trout exposed to effluents for 3 weeks showed increased dose-dependent levels of androgens after enzymatic hydrolysis of hormone conjugates. Copyright 2004 Wiley Periodicals, Inc.

  18. ASSESSMENT OF ESTROGENIC ACTIVITY IN EFFLUENTS FROM SEWAGE TREATMENT PLANTS IN THE UNITED STATES

    EPA Science Inventory

    Newly developed molecular biology methods have been used for the measurement of estrogenic activity in source-biased studies of sewage treatment plants. Studies in Texas and New Mexico have shown the utility of the measurement of changes in vitellogenin gene expression in fathea...

  19. ASSESSMENT OF ESTROGENIC ACTIVITY IN EFFLUENTS FROM SEWAGE TREATMENT PLANTS IN THE UNITED STATES

    EPA Science Inventory

    Newly developed molecular biology methods have been used for the measurement of estrogenic activity in source-biased studies of sewage treatment plants. Studies in Texas and New Mexico have shown the utility of the measurement of changes in vitellogenin gene expression in fathea...

  20. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mgṡg-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  1. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay.

    PubMed

    Schilirò, Tiziana; Porfido, Arianna; Spina, Federica; Varese, Giovanna Cristina; Gilli, Giorgio

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17β-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35±1.68 ng/L pre-ozonation and 0.72±0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18±3.54 ng/L pre-ozonation and 2.53±2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p<0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67±26% and 52±27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S=0.650, p=0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms.

  2. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater.

  3. Pharmaceutical Removal from Water Effluents by Adsorption on Activated Carbons: A Monte Carlo Simulation Study.

    PubMed

    Bahamon, Daniel; Vega, Lourdes F

    2017-08-16

    Adsorption on activated carbons of five pharmaceutical molecules (ibuprofen, diclofenac, naproxen, paracetamol, and amoxicillin) in aqueous mixtures has been investigated by molecular simulations using the Grand Canonical Monte Carlo (GCMC) method. A virtual nanoporous carbon model based on polyaromatic units with defects and polar-oxygenated sites was used for this purpose. The simulation results show excellent agreement with available experimental data. The adsorption capacities of the carbons for the five drugs were quite different and were linked, essentially, to their molecular dimensions and atom affinities. The uptake behavior follows the trend PRM > DCF, NPX > IBP > AMX in all the studied structures. This work is a further step in order to describe macroscopic adsorption performance of activated carbons in drug removal applications.

  4. Removal of resin acids and sterols from pulp mill effluents by activated sludge treatment.

    PubMed

    Kostamo, A; Kukkonen, J V K

    2003-07-01

    The wastewater treatment plant of an elemental chlorine free bleaching kraft pulp mill located in eastern Finland was sampled in order to study the fate of wood extractives and the toxicity to luminescence bacteria (Vibrio fischeri) in different parts of the plant. Resin acids and sterols were analyzed from water, particles and sludge samples during three different runs. Waters before biotreatment and primary sludge were found to be toxic; but in the activated sludge treatment toxicity was removed. During wastewater treatment, concentrations of wood extractives were reduced over 97%. In activated sludge treatment, over 94% of the resin acids and over 41% of the sterols were degraded or transformed to other compounds. Furthermore, in general, less than 5% of the resin acids and over 31% of the sterols were removed in biosludge to the sludge thickener. Most of the extractives were discharged attached to particles. Although some disturbing factors increased the load of wood extractives during samplings, these factors did not affect the operational efficiency of the secondary treatment system.

  5. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments.

    PubMed

    Timourian, H; Felton, J S; Stuermer, D H; Healy, S; Berry, P; Tompkins, M; Battaglia, G; Hatch, F T; Thompson, L H; Carrano, A V; Minkler, J; Salazar, E

    1982-01-01

    Using bacterial bioassays, we have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the sites of two Lawrence Livermore National Laboratory (LLNL) in situ experiments: Hoe Creek II and Hoe Creek III. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. We found that mutagens are present in groundwater, persist for at least 2 yr after gasification has been terminated, and show a change in activity with time-possibly in parallel with changes in chemical composition. Preliminary evidence suggests that the mutagens in groundwater are quinoline and aniline derivatives, while the toxins in groundwater may be phenolic compounds. In tar from the product gas, the organic bases and neutrals were found to be genotoxic in both bacterial and mammalian cells; the neutral compounds appear to be the major mutagenic health hazards. Neutral compounds constitute most of the tar (85-97 wt%) and were mutagenic in both the bacterial and mammalian cell assays. Tar in the gas stream may be a problem for the aboveground environment if gas escapes through fractures in the overburden. Because it is mutagenic and induces chromosomal damage to mammalian cells, the tar may represent a disposal problem as well. However, it is difficult to assess tar quantitatively as a health hazard because its mutagenic activity is low, possibly due to contaminants in the neutral fraction that act to suppress mutagenicity.

  6. Ion-Imprinted Mesoporous Silica for Selective Removal of Uranium from Highly Acidic and Radioactive Effluent.

    PubMed

    Yang, Sen; Qian, Jun; Kuang, Liangju; Hua, Daoben

    2017-08-30

    It is strategically important to recycle uranium from radioactive liquid wastes for future uranium supply of nuclear energy. However, it is still a challenge to adsorb uranium selectively from highly acidic and radioactive waste. In this paper, we report a novel strategy for effective uranium removal from highly acidic and radioactive media by surface ion-imprinted mesoporous silica sorbent. The sorbent was successfully synthesized by a co-condensation method with uranyl as the template ion and diethylphosphatoethyltriethoxysilane as the functional ligands. The pseudo-second-order model and Langmuir model showed better correlation with the sorption kinetic and isotherm data, and the sorption equilibrium could be reached within 40 min, the maximum adsorption capacity from Langmuir model was 80 mg/g in 1 mol/L nitric acid (HNO3) solution at 298.15 K. The sorbent showed faster kinetics and higher selectivity toward uranium over other ions compared with nonimprinted mesoporous and other previous sorbents. Furthermore, the ion-imprinted materials exhibited remarkable radioresistance stability and could be regenerated efficiently after five cycles. This work may provide a new approach for highly efficient sorption of uranium from strong HNO3 and radioactive media.

  7. A pilot survey of 39 Victorian WWTP effluents using a high speed luminescent umu test in conjunction with a novel GC-MS-database technique for automatic identification of micropollutants.

    PubMed

    Allinson, Mayumi; Kageyama, Shiho; Nakajima, Daisuke; Kamata, Ryo; Shiraishi, Fujio; Goto, Sumio; Salzman, Scott Andrew; Allinson, Graeme

    2012-01-01

    In 2007, samples of treated effluent were collected at point of discharge to the environment from 39 wastewater treatment plants (WWTPs) located across Victoria, Australia grouped by treatment type. Sample genotoxicity was assessed with a high-throughput luminescent umu test method using Salmonella typhimurium TL210 strain, with and without addition of a commercially available metabolic activation system. Samples were also screened using a gas chromatographic-mass spectrometric mass-structure database recognition method. A genotoxic response was observed in half of the samples tested without metabolic activation system (activation system, 75% of samples elicited a genotoxic response, the majority of responses were stronger than without metabolic activation (effluents, although none could be unambiguously tied to the genotoxicity observed. Chemicals observed in one or more effluents included food additives (e.g. dibenzylether), various alkyl phenols, tyre leachates (e.g. 2(3H)-benzothiazolone), antioxidants, flame retardants (e.g. tris(2-chloroethyl)phosphate), insect repellents (e.g. diethyltoluamide), stimulants (e.g. caffeine) and anticonvulsants (e.g. carbamazepine). Of the 451 pesticides screened, carbamate insecticides (e.g. bendiocarb, propoxur), plant growth regulators (e.g. propham) and herbicides (e.g. atrazine, metolachlor, simazine) were amongst the compounds observed.

  8. Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead(II) in effluent.

    PubMed

    Dong, Cuihua; Zhang, Haiguang; Pang, Zhiqiang; Liu, Yu; Zhang, Fulong

    2013-10-01

    Sulfonated modification of cotton linter and its novel application as adsorbent for Pb(2+) in effluent were investigated. Results show that sulfonated cotton linter (SCL) has strong adsorbability for Pb(2+), more than 85% of Pb(2+) can be removed at lower Pb(2+) concentration (<20 mg/L). Its adsorbability for Pb(2+) is related to effluent pH, temperature, and initial Pb(2+) concentration. The adsorption process can reach equilibrium within 8 min, which can be described through the pseudo-second-order kinetic model. The adsorption isotherm is closely fitted with the Temkin isotherm model, which suggests that the adsorption of Pb(2+) on SCL can be regarded as chemical adsorption. The adsorption process of Pb(2+) on SCL is non-spontaneous and endothermic, based on the value of Gibbs free energy and enthalpy. Compared with commercial activated carbon, SCL is simple to prepare and does not require any special technology.

  9. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  10. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    SciTech Connect

    Fernandez, L.

    1995-03-13

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements.

  11. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  12. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  13. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  14. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  15. IN VITRO CONFIRMATION OF ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT WHICH IS ASSOCIATED WITH MASCULINIZED FEMALE MOSQUITOFISH FORP

    EPA Science Inventory

    Female mosquitofish downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent response. This effect can be introduced in the laboratory with exposure to either paper mill effluent (PME) or to androgenic drugs. Hence, it has been h...

  16. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  17. IN VITRO CONFIRMATION OF ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT WHICH IS ASSOCIATED WITH MASCULINIZED FEMALE MOSQUITOFISH FORP

    EPA Science Inventory

    Female mosquitofish downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent response. This effect can be introduced in the laboratory with exposure to either paper mill effluent (PME) or to androgenic drugs. Hence, it has been h...

  18. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  19. Ultra-trace analysis of multiple endocrine-disrupting chemicals in municipal and bleached kraft mill effluents using gas chromatography-high-resolution mass spectrometry.

    PubMed

    Ikonomou, Michael G; Cai, Sheng-Suan; Fernandez, Marc P; Blair, Joel D; Fischer, Maike

    2008-02-01

    A comprehensive gas chromatographic-high-resolution mass spectrometric (GC-HRMS)-based method was developed that permitted the simultaneous determination of 30 estrogenic endocrine-disrupting chemicals (EDCs) and related compounds, including surfactants, biogenic and synthetic steroids, fecal sterols, phytoestrogens, and plasticizers, in wastewater. Features of the method include low sample volume (~40 ml), optimized Florisil cleanup to minimize matrix interferences and optimized analyte derivatization to improve sensitivity via GC-HRMS. Detection limits were in the low- to mid-ng/L range, and recoveries were greater than 60% for most target analytes. This new method allows for high throughput analysis of many organic wastewater contaminants in a complex matrix with relative standard deviation of less than 15% for most measurable compounds. The applicability of the method was demonstrated by examining wastewater samples from different origins. Compounds such as di(2-ethylhexyl)phthalate, cholesterol, cholestanol, and other cholesterol derivatives were measured in much higher concentrations in untreated sewage and were reduced substantially in concentration by the treatment process. However, steroidal compounds, particularly estrone (E1), 17beta-estradiol (E2), and estriol (E3), as well as plant sterols (except stigmastanol), were greater in the treated municipal wastewater versus the untreated effluent. Plant and fungi sterols, stigmastanol and ergosterol, were found largely associated with bleached kraft mill effluent (BKME) as compared to the municipal effluents.

  20. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent.

    PubMed

    Duggan, P S; Chambers, P A; Heritage, J; Forbes, J M

    2000-10-01

    To assess the likelihood that the bla gene present in a transgenic maize line may transfer from plant material to the microflora associated with animal feeds, we have examined the survival of free DNA in maize silage effluent, ovine rumen fluid and ovine saliva. Plasmid DNA that had previously been exposed to freshly sampled ovine saliva was capable of transforming competent Escherichia coli cells to ampicillin resistance even after 24 h, implying that DNA released from the diet could provide a source of transforming DNA in the oral cavity of sheep. Although target DNA sequences could be amplified by polymerase chain reaction from plasmid DNA after a 30-min incubation in silage effluent and rumen contents, only short term biological activity, lasting less than 1 min, was observed in these environments, as shown by transformation to antibiotic resistance. These experiments were performed under in vitro conditions; therefore further studies are needed to elucidate the biological significance of free DNA in the rumen and oral cavities of sheep and in silage effluent.

  1. Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors.

    PubMed

    Ma, Defang; Gao, Baoyu; Xia, Chufan; Wang, Yan; Yue, Qinyan; Li, Qian

    2014-08-01

    In this study, real municipal wastewater intended for reuse was treated by two identical hybrid PAC/MBRs (membrane bioreactors with powdered activated carbon addition), which were operated at sludge retention times (SRTs) of 30 and 180 days, respectively. In order to investigate the effects of SRT on trihalomethane (THM) formation in chlorinated PAC/MBR effluents, characteristics and THM formation reactivity of effluent dissolved organic matter (EfOM) at different SRTs were examined. PAC/MBR-180 had higher level of EfOM, which contained less simple aromatic proteins and exhibited lower specific UV absorbance. EfOM with molecular weight <5 kDa from PAC/MBR-30 (23%) was lower than PAC/MBR-180 (26%). About 50% of EfOM from PAC/MBR-30 was hydrophobic acids, which was higher than that from PAC/MBR-180 (about 36%). EfOM at SRT 180 days exhibited higher hydrophilicity. Prolonging SRT greatly reduced THM formation reactivity of EfOM, but increased the formation of bromine-containing species during chlorination of PAC/MBR effluents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium

    USGS Publications Warehouse

    Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy

    2017-01-01

    Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.

  3. Biochemical responses in the gills of Meretrix meretrix after exposure to treated municipal effluent.

    PubMed

    Wan, Ru; Meng, Fanping; Fu, Wenchao; Wang, Qun; Su, Enping

    2015-01-01

    The biochemical effects in marine bivalves exposed to increasing concentrations of treated municipal effluent (TME), as discharged into receiving marine waters, are investigated. The effluent was collected from a municipal sewage treatment plant (STP) in Qingdao (China). Meretrix meretrix were exposed to effluent volume ratio (EVR, ratio of effluent volume accounted for tailwater seawater mixture) 0%, 1%, 5%, 10%, and 20% (v/v) TME for 15 days and the following biochemical responses in gills were measured: (1) the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) content, and lipid peroxidation levels of malondialdehyde (MDA), as oxidative stress biomarkers; (2) the activity of 7-ethoxyresorufin O-deethylase (EROD) and gluthathione S-transferase (GST), as phase I and phase II conjugation enzymes, respectively; (3) acetylcholinesterase (AChE), as a biomarker of neurotoxicity, and (4) metallothioneins (MTs), as proteins strongly induced by heavy metals. Most of the biochemical indices present high and significant variation frequency (above 50%). There is enhancement in the antioxidant enzymes, EROD, GST, AChE, and MTs, as well as consumption of GSH. The current experimental results suggest that effluent with concentrations less than 20% (v/v) do not cause lipid peroxidation damage. This implies that the activated defense is sufficient to protect the bivalves' gill tissues from cytotoxicity produced by the effluent. Furthermore, GSH, GPx, MTs, and GR are suitable, and sufficiently sensitive, biomarkers to indicate the pollution levels in marine environments receiving such effluent.

  4. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.

    PubMed

    Doederer, Katrin; Gernjak, Wolfgang; Weinberg, Howard S; Farré, Maria José

    2014-01-01

    During the production of high quality recycled water by reverse osmosis membrane filtration secondary effluent must be disinfected to limit biofouling on the membrane surface. Advanced Water Treatment Plants in South East Queensland, Australia use disinfectant contact times ranging from 30 min up to 24 h. Disinfectants such as chlorine and chloramines react with effluent organic matter to generate disinfection by-products (DBPs) which could be potentially hazardous to human health if the water is destined for supplementing public water supplies. In this context, secondary effluents are of concern because of their high total organic carbon content which can act as DBP precursors. Also, effluent organic matter may form different DBPs to those formed from natural organic matter during conventional drinking water treatment, either in quantity, identity or simply in the abundance of different DBPs relative to each other. It cannot be assumed per se with certainty that DBP formation will be affected in the same way by operational changes as in drinking water production. Response surface modelling has been employed in this study at the bench scale to investigate the effect of reaction time (0-24 h), pH (5.5-8.5), temperature (23-35 °C), disinfection strategy (chlorine vs chloramines used prior to membrane treatment) and the interaction between these different parameters on DBP formation during disinfection of secondary effluent. The concentration of halogenated DBPs formed during the first 24 h of reaction with the different disinfectants followed the order chlorination > in line-formed monochloramine > pre-formed monochloramine. Contact time with chlorine was the major influencing factor on DBP formation during chlorination, except for the bromine-containing trihalomethanes and dibromoacetonitrile for which pH was more significant. Chlorination at high pH led to an increased formation of chloral hydrate, trichloronitromethane, dibromoacetonitrile and the four

  5. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  6. Nitrification and Microbial Activity in Response to Wastewater Effluent in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Challenor, T.; Damashek, J.; Tolar, B. B.; Francis, C.; Casciotti, K. L.

    2016-12-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrate (NO3-) by a coterie of ammonia-oxidizing bacteria (AOB) and archaea (AOA), is a crucial step in removing nitrogen from marine ecosystems. The Sacramento/San Joaquin River delta receives ammonium-laden effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP) and nitrate from agriculture runoff. The system provides freshwater to irrigate the Central Valley and drinking water for many millions of people. In recent years, however, this environment has experienced ecological turmoil - the Pelagic Organism Decline (POD) refers to a die-out of fish and other species over the course of three decades. One explanation implicated excessive ammonium input, claiming it limited primary productivity and hurt pelagic fish down the line. A new hypothesis, however, posits that the ecosystem may soon face the opposite problem: over-productivity and hypoxia due to increased light availability and reduced turbidity. Studying the rate of nitrification and the makeup of the microbial community will further elucidate how nutrient loading has impacted this ecosystem. Nitrification rates were calculated from water samples collected in the Sacramento River starting at the SRWTP and moving downstream. Samples were spiked with 15N-labeled ammonium and incubated for 24 hours in triplicate. Four time-points were extracted and the "denitrifier" method was used to measure the isotopic ratio of N over time. DNA and RNA were extracted from filtered water at each site and PCR and qPCR assays were used targeting the amoA gene, which encodes the α-subunit of ammonia monooxygenase, responsible for oxidizing ammonium to nitrite (NO2-). Consistent with previous nitrification data, rates were highest in the lower river downstream of the SRWTP, where nitrate concentrations were correspondingly elevated. AOB predominated in the ammonia oxidizing community, and some clades were unique to this ecosystem. Nitrifying microbes provide an

  7. 324 and 327 Facilities Environmental Effluent Specifications

    SciTech Connect

    JOHNSON, D.L.

    1999-08-30

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs.

  8. Whole Effluent Toxicity (WET)

    EPA Pesticide Factsheets

    Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).

  9. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  10. Passive secondary biological treatment systems reduce estrogens in dairy shed effluent.

    PubMed

    Gadd, Jennifer B; Northcott, Grant L; Tremblay, Louis A

    2010-10-01

    Steroid estrogens are found at high concentrations in untreated dairy shed effluents. Reduction of estrogenic activity and steroid estrogen concentrations was assessed in two systems used to treat dairy shed effluents: the two-pond system and the advanced pond system. Both include anaerobic and aerobic treatment stages. Samples of effluent were collected from the systems and analyzed for free estrogens, conjugated estrogens and total estrogenic activity using E-Screen assay. Both systems showed increases of up to 8000% in aqueous free estrogens and estrogenic activity after anaerobic treatment, followed by decreases after aerobic treatment (36-83%). The complete systems decreased total steroid estrogen concentrations by 50-100% and estrogen activity by 62-100%, with little difference between systems. Removal rates were lower in winter for both systems. Final effluents from the advanced pond system contained total estrogens at <15-1400 ng/L and estrogenic activity at 3.2-43 ng/L. Final effluent from the two-pond system contained total estrogens at <15-300 ng/L and estrogenic activity at 3.3-25 ng/L. At times the final effluent EEQs exceeded guideline values for protection of freshwater fish and suggest further treatment may be required.

  11. Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon.

    PubMed

    Ahmad, A A; Hameed, B H

    2009-12-30

    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.

  12. IN VITRO IDENTIFICATION OF ANDROGENIC AND ESTROGENIC ACTIVITY FROM CONCENTRATED ANIMAL FEEDLOT OPERATIONS (CAFO) AND TERTIARY-TREATED SEWAGE EFFLUENT SAMPLES

    EPA Science Inventory

    Fish living in ecosystems contaminated with human or domestic animal effluents have been shown to display reproductive alterations. Recent research with effluent from cattle feeding operations in the US, for example, have associated morphological alterations in fish collected fr...

  13. IN VITRO SCREENING OF ENVIRONMENT SAMPLES FOR ESTROGENIC AND ANDROGENIC ACTIVITY: CONCENTRATED ANIMAL FEEDLOT OPERATION, PULP MILL AND TREATED SEWAGE EFFLUENTS, GLOBAL WATER RESEARCH COALITION, AND COMBUSTION BYPRODUCTS

    EPA Science Inventory

    Fish living in ecosystems contaminated with human or domestic animal effluents have been shown to display reproductive alterations. Recent research with effluent from cattle feeding operations in the US, for example, have associated morphological alterations in fish collected fro...

  14. IN VITRO SCREENING OF ENVIRONMENT SAMPLES FOR ESTROGENIC AND ANDROGENIC ACTIVITY: CONCENTRATED ANIMAL FEEDLOT OPERATION, PULP MILL AND TREATED SEWAGE EFFLUENTS, GLOBAL WATER RESEARCH COALITION, AND COMBUSTION BYPRODUCTS

    EPA Science Inventory

    Fish living in ecosystems contaminated with human or domestic animal effluents have been shown to display reproductive alterations. Recent research with effluent from cattle feeding operations in the US, for example, have associated morphological alterations in fish collected fro...

  15. IN VITRO IDENTIFICATION OF ANDROGENIC AND ESTROGENIC ACTIVITY FROM CONCENTRATED ANIMAL FEEDLOT OPERATIONS (CAFO) AND TERTIARY-TREATED SEWAGE EFFLUENT SAMPLES

    EPA Science Inventory

    Fish living in ecosystems contaminated with human or domestic animal effluents have been shown to display reproductive alterations. Recent research with effluent from cattle feeding operations in the US, for example, have associated morphological alterations in fish collected fr...

  16. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-03-01

    The impact of long-term (>2 years) biological activated carbon (BAC) treatment for mitigating organic fouling in the microfiltration of biologically treated secondary effluent was investigated. Correlation between the organic constituents and hydraulic filtration resistance was investigated to identify the major components responsible for fouling. Over two years operation, the removal efficiency for dissolved organic carbon (DOC) by the BAC treatment was fairly consistent (30 ± 3%), although the reduction in UVA254 gradually decreased from 56 to 34%. BAC treatment effectively decreased the organic foulants in the effluent and so contributed to the mitigation of membrane fouling as shown by reduction in the unified membrane fouling index (UMFI). BAC consistently removed biopolymers whereas the removal of humic substances decreased from 52 to 25% after two years of BAC operation, and thus led to a gradual decrease in UMFI reduction efficiency from 78 to 43%. This was due to gradual reduction in adsorption capacity of the activated carbon as confirmed by analysis of its pore size distribution. Hence humics also played an important role in membrane fouling. However, there was a good correlation between protein and carbohydrate contents with hydraulically reversible and irreversible filtration resistance, compared with UVA254, turbidity and DOC. Although the mitigation of membrane fouling decreased over time, this study demonstrated that the long-term use of BAC pre-treatment of biologically treated secondary effluent prior to microfiltration has potential to reduce the need for frequent chemical cleaning and so increase membrane life span. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  18. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    PubMed

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.

    PubMed

    Haq, Izharul; Kumar, Sharad; Kumari, Vineeta; Singh, Sudheer Kumar; Raj, Abhay

    2016-03-15

    Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool

    PubMed Central

    Stalder, Thibault; Barraud, Olivier; Jové, Thomas; Casellas, Magali; Gaschet, Margaux; Dagot, Christophe; Ploy, Marie- Cécile

    2014-01-01

    There is increasing evidence that human activity, and especially the resulting effluent, has a major role in the dissemination of bacterial antibiotic-resistance determinants in the environment. Hospitals are the major antibiotic consumers and thus facilitate the spread of antibiotic resistance. Questions are increasingly being raised about the management of hospital effluents, but their involvement in antibiotic-resistance dissemination has never been assessed. Integrons are a paradigm of genetic transfer between the environmental resistome and both commensal and pathogenic bacteria. In order to assess the impact of hospital activities on antibiotic-resistance dissemination in the environment, we monitored integrons and their gene cassettes in hospital effluents, and their release in the environment. We found that bacterial communities present in a hospital effluent contained a high proportion of integrons. In terms of both their gene cassette diversity and gene cassette arrays, the urban effluent and municipal wastewater treatment plant (WWTP) influent were most similar, whereas the hospital effluent and recirculation sludge exhibited very specific patterns. We found that anthropogenic activities led to the release of abundant integrons and antibiotic-resistance gene cassettes, but we observed no specific impact of hospital activities on the receiving environment. Furthermore, although the WWTP did not reduce the normalized integron copy number, it reduced the diversity of gene cassette arrays contained in the raw wastewater, underlining the effect of the biological treatment on the anthropogenic integron pool arriving at the WWTP. PMID:24152716

  1. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    PubMed

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  2. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  3. Microbial decolorization of synthetic dyes and reactive dyes of industrial effluents by using a novel fungus Aspergillus proliferans.

    PubMed

    Kanmani, Paulraj; Satish Kumar, R; Yuvaraj, N; Paari, K A; Pattukumar, V; Aru, Venkatesan

    2011-11-01

    A decolorizing fungal strain was isolated and identified by the morphology and genotypic characterization as Aspergillus proliferans. The effect of A. proliferans on decolorization of synthetic dyes (70 mg ml(-1)) and colored effluent was evaluated in liquid culture medium. A. proliferans expressed their effective decolorization activity in effectual decolorization of synthetic dyes and industrial effluent. Synthetic dyes were decolorized by 76 to 89% within 6 days of treatment and 73.5% of color was removed in industrial effluent within 8 days. The addition of optimum carbon and nitrogen sources were effectively stimulated the decolorization activity. The high concentration of glucose repressed the decolorization activity and supplementation of yeast extract has significantly enhanced the effluent decolorization at p < 0.05. Laccase enzyme was isolated from liquid state fermentation, which showed significant enzyme activity (10,200 Uml(-1)) at p < 0.005. The crude enzyme decolorizes the dyes aniline blue and congo red in 14 hours (40.9 to 70%) and the effluent in 14 hours (88.6%). Moreover, the culture free supernatant without the fungal biomass has also effectively decolorized the effluent and synthetic dyes. The fungi Aspergillus proliferans was used not only for decolorization but also for better bioremediation of industrial effluent.

  4. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents.

    PubMed

    Mailler, R; Gasperi, J; Coquet, Y; Deshayes, S; Zedek, S; Cren-Olivé, C; Cartiser, N; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2015-04-01

    The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (<60%), such as ibuprofen, paracetamol or estrone, while 9 are very well removed (>80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to μg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing

  5. Erosion/corrosion of turbine airfoil materials in the high-velocity effluent of a pressurized fluidized coal combustor

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Rowe, A. P.; Lowell, C. E.

    1978-01-01

    Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions.

  6. Characterisation of the ecotoxicity of hospital effluents: a review.

    PubMed

    Orias, Frédéric; Perrodin, Yves

    2013-06-01

    The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of

  7. Comprehensive two-dimensional liquid chromatography coupled to high resolution time of flight mass spectrometry for chemical characterization of sewage treatment plant effluents.

    PubMed

    Ouyang, Xiyu; Leonards, Pim; Legler, Juliette; van der Oost, Ron; de Boer, Jacob; Lamoree, Marja

    2015-02-06

    For the first time a comprehensive two-dimensional liquid chromatography (LC×LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using environmental standard compound mixtures of e.g. carbamate pesticides and polycyclic aromatic hydrocarbons (PAHs), to characterize the chromatographic system, to test the stability of the retention times and orthogonality. Various stationary phases in the second dimension were compared for the LC×LC analysis of silicon rubber passive sampler extracts of a wastewater effluent. A combination of C18 and Pentafluorophenyl (PFP) was found to be most effective. Finally, the hyphenation of LC×LC with HR-ToF MS was optimized, including splitter settings, transfer of data files between the different software packages and background subtraction using instrument software tools, after which tentative identification of 20 environmental contaminants was achieved, including pesticides, pharmaceuticals and food additives. As examples, three pesticides (isoproturon, terbutryn and diazinon) were confirmed by two-dimensional retention alignment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS.

    PubMed

    Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda

    2015-06-15

    Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and

  9. Application of isolated bacterial consortium in UMBR for detoxification of textile effluent: comparative analysis of resultant oxidative stress and genotoxicity in catfish (Heteropneustes fossilis) exposed to raw and treated effluents.

    PubMed

    Banerjee, Priya; Sarkar, Sandeep; Dey, Tanmoy Kumar; Bakshi, Madhurima; Swarnakar, Snehasikta; Mukhopadhayay, Aniruddha; Ghosh, Sourja

    2014-08-01

    A bacterial consortium isolated from activated sludge was identified to be Bacillus sp., Pseudomonas sp., Shigella sp. and E. coli. and was found capable of 98.62 % decolourization of highly toxic textile effluent, when applied in an ultrafiltration (UF) membrane bioreactor (UMBR). Ceramic capillary UF membranes prepared over low cost support proved to be highly efficient in adverse experimental conditions. The UMBR permeate and untreated textile effluent (40 % (v/v)) was then used to treat Heteropneustes fossilis for a comparative assessment of their toxicity. Micronucleus count in peripheral blood erythrocytes and comet assay carried out in liver and gill cells showed significantly lower nuclear and tissue specific DNA damage respectively in organisms exposed to membrane permeate and was further supported by considerably lower oxidative stress response enzyme activities in comparison to raw effluent treated individuals. The results indicate efficient detoxification of textile effluent by the UMBR treatment using the isolated bacterial consortium.

  10. Quality of effluents from Hattar Industrial Estate

    PubMed Central

    Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were

  11. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.

  12. Growth optimisation of microalga mutant at high CO₂ concentration to purify undiluted anaerobic digestion effluent of swine manure.

    PubMed

    Cheng, Jun; Xu, Jiao; Huang, Yun; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-02-01

    Growth rate of the microalga Chlorella PY-ZU1 mutated by nuclear irradiation was optimised for use in the purification of undiluted anaerobic digestion effluent of swine manure (UADESM) with 3745 mg L(-1) chemical oxygen demand (COD) and 1135 mg L(-1) total nitrogen content. The problem of accessible carbon in UADESM was solved by continuous introduction of 15% (v/v) CO2. Adding phosphorus to UADESM and aeration of UADESM before inoculation both markedly reduced the lag phase of microalgal growth. In addition, the biomass yield and average growth rate of Chlorella PY-ZU1 increased significantly to 4.81 g L(-1) and 601.2 mg L(-1) d(-1), respectively, while the removal efficiencies of total phosphorus, COD and ammonia nitrogen increased to 95%, 79% and 73%, respectively. Thus, the findings indicate that Chlorella PY-ZU1 can be used for effective purification of UADESM, while the biomass can be safely used as animal feed supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Strategy for nutrient control in modern effluent treatment plants.

    PubMed

    Sivard, A; Ericsson, T; Larsson, B

    2007-01-01

    The fate of nutrients in the modern effluent treatment plant depends on several factors, for example type of treatment plant, availability of nutrients in the specific effluent, dosing of nutrients and sludge age/production. New technologies with the aim to increase the efficiency and stability of the conventional activated sludge process have strongly affected the possibilities to control discharge of nutrients in pulp and paper effluents. A paradox is that a reduction of organic material may often lead to an increase of nutrient discharges. It is of the utmost importance that the operators have good knowledge of the factors affecting nutrient uptake and release in order to minimise nutrient discharge and obtain optimal plant performance. Dosing of nitrogen and phosphorus is one key factor in the sensitive balance in most pulp and paper effluent treatment plants. Correct dosing is crucial as high or low doses might lead not only to increased discharge of nutrients but also to severe operational problems with poor sludge quality, which in turn affects the plant performance for longer periods.

  14. An investigation into the extent and bilogcal impacts of endocrine disrupting chemicals (EDCs) in a highly effluent-dominated river in New England

    EPA Science Inventory

    The Assabet River in central Massachusetts is a heavily effluent-dominated river and during low-flow conditions, is composed almost entirely of waterwater effluent (i.e., up to 95%). The U.S EPA Regional New England Laboratory and the U.S. EPA Office of Research and Development ...

  15. An investigation into the extent and bilogcal impacts of endocrine disrupting chemicals (EDCs) in a highly effluent-dominated river in New England

    EPA Science Inventory

    The Assabet River in central Massachusetts is a heavily effluent-dominated river and during low-flow conditions, is composed almost entirely of waterwater effluent (i.e., up to 95%). The U.S EPA Regional New England Laboratory and the U.S. EPA Office of Research and Development ...

  16. Disappearance of chloramines in the presence of bromide and nitrite. [Ammoniacal monochloramine, diethylchloramine, and chloramines produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent

    SciTech Connect

    Valentine, R.L.

    1982-01-01

    Batch experiments were used to study the reduction of chloramines in the presence of bromide and nitrite. Chloramines studies were ammoniacal monochloramine, diethylchloramine (DECA), and those produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent. Oxidant concentrations were measured using the DPD-FAS (N,N-diethyl-p-phenylenediamine, Ferrous Ammonium Sulfate) titrimetric procedure and/or spectrophotometrically. The degradation of NH/sub 2/Cl in the presence of bromide was found to occur via a mechanism consistent with a rate limiting step involving monochlorammonium ion (NH/sub 3/Cl/sup +/) and bromide ion. Experimental evidence suggests that the mixed haloamine, NHBrCl, was produced as an unstable intermediate. The oxidation of bromide by DECA did not occur by a mechanism similar to that describing the oxidation of bromide by NH/sub 2/Cl. The rate was not affected by added ammonia and was slower than that observed for comparable NH/sub 2/Cl-Br/sup -/ reactions. Chloramine loss in organic rich effluents was greatly accelerated by bromide addition. The reaction is not dependent on excess ammonia and is slower than that observed for a pure NH/sub 2/Cl-Br/sup -/ solution. Monochloramine can rapidly disappear in the presence of nitrite. The rates are too fast to be due solely to the hydrolysis of monochloramine. The presence of relatively small concentrations of nitrite can greatly accelerate the loss of NH/sub 2/Cl in the presence of bromide. Nitrite is not significantly consumed. Nitrite appears to increase the rate of bromide oxidation in a parallel acid catalyzed reaction mechanism which involves a rate limiting step described by a first order dependence on nitrite but no dependence on bromide. Empirical rate expressions and rate constants were determined for each reaction. 54 figures, 17 tables.

  17. Wastewater effluent dispersal in Southern California Bays

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Idica, Eileen Y.; McWilliams, James C.; Stolzenbach, Keith D.

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10 km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not.

  18. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  19. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  20. Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant.

    PubMed

    Varela, Ana Rita; Ferro, Giovanna; Vredenburg, Jana; Yanık, Melike; Vieira, Lucas; Rizzo, Luigi; Lameiras, Catarina; Manaia, Célia M

    2013-04-15

    Vancomycin is an important antibiotic to treat serious nosocomial enterococci infections. Human activities, in particular those related with clinical practices performed in hospitals, can potentiate the transfer and selection of clinically-relevant resistant bacteria such as vancomycin resistant enterococci (VRE). Indeed, previous studies demonstrated the occurrence of VRE in urban wastewater treatment plants and related environments (e.g. sewage, rivers). In this study, the occurrence of VRE in a hospital effluent and in the receiving urban wastewater treatment plant was investigated. Vancomycin and ciprofloxacin resistant bacteria occurred in the hospital effluent and in raw municipal inflow at densities of 10(3) to 10(2) CFU mL(-1), being significantly more prevalent in the hospital effluent than in the urban wastewater. Most of the VRE isolated from the hospital effluent belonged to the species Enterococcus faecalis and Enterococcus faecium and presented multidrug-resistance phenotypes to ciprofloxacin, tetracycline, erythromycin, and high-level gentamicin. The same pattern was observed in clinical isolates and in enterococci isolated from the final effluent of the urban wastewater treatment plant. These results show that hospital effluents discharged into urban wastewater treatment plants may be a relevant source of resistance spread to the environment.

  1. Activated carbons from end-products of tree nut and tree fruit production as sorbents for removing methyl bromide in ventilation effluent following postharvest chamber fumigation.

    PubMed

    Hall, Wiley A; Bellamy, David E; Walse, Spencer S

    2015-04-01

    End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide (MB) from ventilation effluent following postharvest chamber fumigation. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using different methods of pyrolysis, activation, and quenching. Each source and preparation was evaluated for yield from starting material (%, m/m) and performance on tests where MB-containing airstreams were directed through a columnar bed of the activated carbon in an experimental apparatus, termed a parallel adsorbent column tester, which was constructed as a scaled-down model of a chamber ventilation system. We report the number of doses needed to first observe the breakthrough of MB downstream of the bed and the capacity of the activated carbon for MB (%, m/m) based on a fractional percentage of MB mass sorbed at breakthrough relative to mass of the bed prior to testing. Results were based on a novel application of solid-phase microextraction with time-weighted averaging sampling of MB concentration in airstreams, which was quantitative across the range of fumigation-relevant conditions and statistically unaffected by relative humidity. Activated carbons from prune pits, prepared either by steam activation or carbon dioxide activation coupled to water quenching, received the greatest number of doses prior to breakthrough and had the highest capacity, approximately 12-14%, outperforming a commercially marketed activated carbon derived from coconut shells. Experimental evidence is presented that links discrepancy in performance to the relative potential for activated carbons to preferentially sorb water vapor relative to MB.

  2. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  3. Solar photocatalytic degradation of textile effluent with TiO2, ZnO, and Nb2O5 catalysts: assessment of photocatalytic activity and mineralization.

    PubMed

    Souza, Renata P; Ambrosio, Elizangela; Souza, Maisa T F; Freitas, Thábata K F S; Ferrari-Lima, Ana M; Garcia, Juliana C

    2017-01-16

    The photocatalytic degradation of textile effluent was investigated using TiO2, ZnO, and Nb2O5 catalysts under solar irradiation. The procedures were carried out at ambient conditions in April 2014, with pH 3.0 and catalyst concentration of 0.250 g L(-1). The photocatalytic activity of the oxides was evaluated by means of kinetic efficiency (rate constant and half-life time), chemical oxygen demand reduction, and absorbance reduction at 228, 254, 284, 310, 350, 500, and 660 nm (λmáx). Mineralization in terms of the formation of inorganic ions and toxicity reduction using bioassays with Artemia salina were performed. TiO2 reduced the absorbance at 660 nm (λmax) after 300 min of solar irradiation around 94 and 93%; and 68 and 60% of COD, respectively. ZnO showed lower photocatalytic activity giving 64 and 42% of absorbance and COD reduction, respectively. The photocatalytic activity of Nb2O5 was very close to TiO2-P25. In this sense, Nb2O5 becomes a promising alternative to replace the commercial TiO2-P25. Bioassays confirmed the efficacy of treatment, increasing the lethal concentration of 27.59 (in natura) to 131.95% in the presence of Nb2O5.

  4. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  5. Genotoxicity of swine effluents.

    PubMed

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  6. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  7. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  8. Effluent Guidelines Plan

    EPA Pesticide Factsheets

    EPA publishes a biennial plan for the annual review & revision of promulgated effluent guidelines, identifying new categories and scheduling promulgation of new & revised regulations; under Clean Water Act sec. 304(m).

  9. Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation.

    PubMed

    Nagel-Hassemer, Maria Eliza; Carvalho-Pinto, Catia Regina S; Matias, William Gerson; Lapolli, Flávio Rubens

    2011-12-01

    This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent.

  10. Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent.

    PubMed

    Abdel Migid, Hala M; Azab, Yehia A; Ibrahim, Waeel M

    2007-01-01

    The toxicity and efficacy of an algal-based bioremediation technology were assessed through bioassays for ecological risk of contaminated industrial effluents. The algal bioremoval of heavy metals was evaluated using an in vitro approach. Phytogenotoxicity tests were conducted with Allium cepa and Vicia faba plants to evaluate the genotoxicity of the industrial effluents before and after treatment with different kinds of algal biofilters (BF). Root cells were exposed for 24 h to different dilutions of both raw and treated effluent of a chemical fertilizer factory. Three cytogenetic endpoints were used to assess the mutagenic potencies of the industrial effluent: mitotic inhibition, mitotic chromosome aberrations, and nuclear irregularities in interphase cells. Before algal treatment, the industrial effluent caused strong genotoxic effects represented by severe inhibition in mitotic activity of meristematic cells and high frequency of both chromosome and nucleus abnormalities. After algal treatment, the cytotoxic effects of 30% and 60% concentrations of the treated effluent were comparable to those of 5% and 10% concentrations before treatment, respectively, and the frequency of both chromosome and nuclear abnormalities declined by approximately 50%. Statistical analysis of the data indicates a significant reduction in genotoxicity associated with a remarkable reduction in heavy metal concentrations after bioremediation by algal BF. The Allium and Vicia genotoxicity approach was effective in monitoring bioremediated effluent for toxicity.

  11. Treatment of effluents from petroleum production by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Duarte, Celina Lopes; Geraldo, Lucia Limoeiro; Junior, Oswaldo de Aquino P.; Borrely, Sueli Ivone; Sato, Ivone Mulako; Sampa, Maria Helena de Oliveira

    2004-09-01

    During the offshore oil production large volumes of aqueous waste with high salinity are produced. The produced water originates mainly from the oil-bearing formation but may also include seawater, which has been injected to maintain reservoir pressure. This water is normally separated from oil on the platform generating aqueous effluent with metals, sulfite, ammonium and organic compounds. The conventional treatment used includes filtration, flotation, ionic change and adsorption in activated charcoal, but the high salinity of this water decreases the treatment efficiency. The high efficiency of electron beam irradiation on removing organic compound in industrial effluent has been shown, and the primary aim of this study is to evaluate the efficiency of this new technology to treat the oil water production. Experiments were conducted using samples from two platforms processed in the radiation dynamics electron beam accelerator with 1.5 MeV energy and 37 kW power. The results showed that the electron beam technology has high efficiency in destroying organic compounds even in the presence of high salinity and complex effluent.

  12. Wastewater treatment plant modeling supported toxicity identification and evaluation of a tank truck cleaning effluent.

    PubMed

    De Schepper, W; Dries, J; Geuens, L; Blust, R

    2010-07-01

    The aim of this work is the Toxicity Identification Evaluation (TIE) of highly toxic tank truck cleaning wastewater effluent. Conventional TIE, using EDTA and activated carbon addition, revealed organic compounds as main source of toxicity. Additional toxicant characteristics could be derived from hydraulic wastewater treatment plant simulation being high intake frequency, low biodegradability and high acute toxicity ratio between Pseudokirchneriella subcapitata and Daphnia magna. The risk probability of compounds present in the influent wastewater was simulated using USEPA Estimation Program Interface (EPI) software. Compound toxicity, solubility and removal rate in a wastewater treatment plant were incorporated into one risk number indicative for the probability of a compound to cause toxicity in the effluent. The herbicide acetochlor was deducted from these TIE procedures as major toxicant and this was confirmed by chemical measurements, concentrations in the effluent samples ranged from 3.73+/-0.52 ppm to 7.8+/-2.1 ppm acetochlor equivalents.

  13. MFO activity in carp (Cyprinus carpio) exposed to treated pulp and paper mill effluent in Lake Coleman, Victoria, Australia, in relation to AOX, EOX, and muscle PCDD/PCDF

    SciTech Connect

    Ahokas, J.T.; Holdway, D.A.; Brennan, S.E. . Key Centre for Applied and Nutritional Toxicology); Goudey, R.W.; Bibrowska, H.B. . Marine Studies Group)

    1994-01-01

    European carp (Cyprinus carpio) exposed to highly treated pulp mill effluent in Lake Coleman, a shallow-water lake in southern Victoria, Australia, had significantly elevated hepatic microsomal EROD levels relative to reference fish from a nearby unexposed water body. Mean hepatic microsomal EROD activity appeared to be correlated with site adsorbable organic halogen (AOX) levels, with a simple linear regression yielding the equation Y = 0.059 X + 1.415 (r[sup 2] = 0.93, n = 5), where Y is mean EROD activity in nanomoles per minute per milligram and X is mean AOX concentration in micrograms per liter. Mean liver EROD activity was poorly related with fish muscle-tissue extractable organic halogen (EOX) and sediment EOX concentrations. Hepatic microsomal EROD activity also appeared to be correlated with the low levels of PCDD/PCDFs measured in carp muscle. Simple linear regression of mean EROD activity in carp liver with the mean fish muscle dioxin content yielded the equation Y = 6.514X + 5.754 (n = 4, r[sup 2] = 0.88), where Y is mean EROD activity in nanomoles per minute per milligram and X is mean dioxin concentration in ppt of TCDD TEs. Hepatic microsomal ECOD activity, however, was not significantly different at any exposure site from the reference sites. Overall, Lake Coleman contained between 4.5 and 9.3 times the water AOX levels, 0.8 and 13.7 times the sediment EOX levels, 1.5 and 2.2 times the carp muscle-fat EOX levels, 5.0 and 5.3 times the carp whole-muscle TCDD toxic equivalents, and 6.5 times the carp fat TCDD toxic equivalents, compared to reference samples. Within Lake Coleman, mean liver microsomal EROD activity levels were 2.3 to 6.3 times higher than the reference sites, respectively.

  14. Estrogen mediated effects in the Sydney rock oyster, Saccostrea glomerata, following field exposures to sewage effluent containing estrogenic compounds and activity.

    PubMed

    Andrew-Priestley, M N; O'Connor, W A; Dunstan, R H; Van Zwieten, L; Tyler, T; Kumar, A; MacFarlane, G R

    2012-09-15

    The Sydney rock oyster, Saccostrea glomerata, has been demonstrated as a useful biomonitor of estrogenic compounds following laboratory exposures, yet its utility in the assessment of estrogenic exposure and effects under field conditions requires investigation. To achieve this aim, S. glomerata were deployed in Newcastle, Australia in the effluent receiving marine waters of Burwood Beach WWTP (Burwood Beach "near", <50 m from outfall and Burwood Beach "far", 100-150 m from outfall) and reference locations (Redhead, Fingal Island 1 and Fingal Island 2) at depths of 4, 8 and 12 m for six weeks. Effluent receiving waters of Burwood Beach WWTP were found to be a suitable impact location, demonstrated via measurement of estrogenic compounds and activity throughout the deployment. Estrogenic compounds were detected (average of combined solids and liquid fractions) at average concentrations of: 1.42 ng/L for estrone, 0.69 ng/L for 17β estradiol, 3.83 ng/L for estriol (E3), 0.56 ng/L for 17α-ethynylestradiol, 64.2 ng/L for bisphenol A, 7.51 ng/L for 4-nonylphenol and 5.93 ng/L for 4-tert-octylphenol. Total estrogenic activity was estimated at 4.48 ng/L EEQ via the Yeast Estrogen Screen (YES(®)) assay (average of combined solid and liquid fractions). Female vitellogenin gene expression was highest at Burwood Beach locations, yet no significant differences were detected among locations for either sex. Vitellogenin protein was significantly higher (p<0.05) in S. glomerata at Burwood Beach Near compared to reference locations for the 4 and 12 m depths. Increased proportions of females were found at Burwood Beach Near, at 4m depth (p<0.05). Both Burwood Beach locations had higher proportions of mature female gonadal development stages compared to reference locations (p<0.05). Oocyte area was highest at both Burwood Beach locations, but no significant differences were detected among locations. Findings provided further evidence that female S. glomerata may be a suitable

  15. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS - SLIDES

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  16. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS - SLIDES

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  17. High-Activity Dealloyed Catalysts

    SciTech Connect

    Kongkanand, Anusorn

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  18. Ammonium removal from anaerobically treated effluent by Chlamydomonas acidophila.

    PubMed

    Escudero, Ania; Blanco, Fernando; Lacalle, Arrate; Pinto, Miriam

    2014-02-01

    Several batch culture studies were carried out to evaluate an anaerobically treated effluent as a low-cost growth medium for the microalga Chlamydomonas acidophila and to study the effectiveness of the microalga in removing NH4-N from the effluent. An initial decrease in the effluent pH to 3 was required for adequate growth of C. acidophila and removal of NH4-N. Growth of the microalgae was inhibited at high light intensity (224μmolphotonsm(-2)s(-1) at the surface of the vessels). However, the growth was not greatly affected by the high solid content and turbidity of the effluent. The microalga was able to grow in media containing NH4-N at concentrations of up to 1000mgL(-1) (50% of effluent) and to remove 88mg of NH4-NL(-1) in 10days. C. acidophila therefore appears a promising agent for the removal of NH4-N from anaerobically treated effluents.

  19. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water.

    PubMed

    Grover, D P; Zhou, J L; Frickers, P E; Readman, J W

    2011-01-30

    Sewage effluents are widely recognised as the main source of emerging contaminants, such as endocrine disrupting chemicals (EDCs) and pharmaceuticals in surface waters. A full-scale granular activated carbon (GAC) plant has been installed as an advanced technology for the removal of these contaminants, in a major sewage treatment works (STW) in South-West England as part of the UK National Demonstration Programme for EDCs. This study presented for the first time, an assessment of the impact of a recently commissioned, post-tertiary GAC plant in the removal of emerging contaminants in a working STW. Through regular sampling followed by solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS), a significant reduction in the concentrations of steroidal estrogens was observed (>43-64%). In addition, significant reductions were observed for many of the pharmaceutical compounds such as mebeverine (84-99%), although the reduction was less dramatic for some of the more widely used pharmaceuticals analysed, including carbamazepine and propranolol (17-23%). Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    SciTech Connect

    Bessa Nisti, Marcelo; Godoy dos Santos, Adir Janete

    2008-08-07

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5xl0{sup 8} Bq, 5.7x10{sup 8} Bq and 2.7xl0{sup 8} Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent.

  1. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    NASA Astrophysics Data System (ADS)

    Nisti, Marcelo Bessa; dos Santos, Adir Janete Godoy

    2008-08-01

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5×l08 Bq, 5.7×108 Bq and 2.7×l08 Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent.

  2. Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and high-performance liquid chromatography with post-column ion-pairing and fluorescence detection.

    PubMed

    Kümmerer, K; Eitel, A; Braun, U; Hubner, P; Daschner, F; Mascart, G; Milandri, M; Reinthaler, F; Verhoef, J

    1997-07-11

    A highly reproducible and specific method for the analysis of the quaternary ammonium compound, benzalkonium chloride, in effluents from European hospitals is presented. Benzalkonium chloride was extracted with end-capped RP-18 solid-phase cartridges and was selectively eluted. The resulting solution was analyzed by high-performance liquid chromatography (HPLC). After elution from the analytical column of the HPLC system, 9,10-dimethoxyanthracene-2-sulfonate was added continuously as a fluorescence marker, forming a hydrophobic ion-pair with benzalkonium chloride. The ion-pair was analyzed by fluorescence detection. The method was applied to highly complex effluent samples from different sized European hospitals. The measured concentrations were between 0.05 and 6.03 mg/l. The amounts emitted per bed and year were 4.5-362 g and did not correlate with the size of the hospital. The total amounts were 2.6-909 kg/year.

  3. Improved biodegradation of textile dye effluent by coculture.

    PubMed

    Vijayalakshmidevi, S R; Muthukumar, Karuppan

    2015-04-01

    The present study demonstrates the de-colorization and degradation of textile effluent by coculture consisting of three bacterial species isolated from textile effluent contaminated environment with an aim to reduce the treatment time. The isolates were identified as Ochrobactrum sp., Pseudomonas aeruginosa and Providencia vermicola by 16S rRNA analysis. Their secondary structure was predicted and GC content of the sequence was found to be 54.39, 52.10, and 52.53%. The co-culture showed a prominent increase in the degradation activity due to the action of oxidoreductase enzymatic mechanism of laccase, NADH-DCIP reductase and azoreductase activity. The biodegradability index of 0.75 was achieved with 95% chemical oxygen demand (COD) reduction in 16 h and 78 and 85% reduction in total organic carbon (TOC) and total solids was observed. Bioaccumulation of metals was identified by X-ray diffraction (XRD) analysis. The effective decolorization was confirmed from the results of UV-vis spectroscopy, high performance liquid chromatography and Fourier transformed infrared spectrometer analyzes. The possible degradation pathway was obtained from the analysis of liquid chromatography-mass spectroscopy analysis and the metabolites such as 2-amino naphthalene and N-phenyl-1.3,5 triazine were observed. The toxic nature of the effluent was analyzed using phyto-toxicity, cell-death assay and geno-toxicity tests. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  5. Isolation and characterization of chromate resistant bacteria from tannery effluent.

    PubMed

    Shukla, O P; Rai, U N; Singh, N K; Dubey, Smita; Baghel, V S

    2007-04-01

    The tannery effluent emanating from Common Effluent Treatment Plant (CETP), Unnao (U.P, India) was found toxic in nature, having high BOD, COD, TDS and Cr content (5.88 mg l(-1)), which supported growth of chromate tolerant bacteria. Several chromate tolerant bacteria have been isolated from these effluent and maximum tolerant four strains (NBRIP-1, NBRIP-2, NBRIP-3 and NBRIP-4) were characterized in this study. These strains showed multiple metal and antibiotic resistances. Growth of these strains was reduced at higher Cr concentration with extention of lag phase. Chromium accumlulation by these isolates may have a great potential in recovery and detoxification of Cr from tannery effluent.

  6. Toxic impact of effluents from petrochemical industry

    SciTech Connect

    Nikunen, E.

    1985-02-01

    The toxicity of effluents from a petrochemical industry center in southern Finland was tested by conducting bioassays on organisms from three different trophic levels. In fish tests, rainbow trout (Salmo gairdneri) were caged at the discharge site and simultaneously at a reference area. The only clear differences, among the measurements of 25 metabolic parameters, were observed in fish liver where activities of two detoxication enzymes were significantly increased in the exposed group. The water flea (Daphnia magna) was used both in acute (EC50) and long-term reproduction tests. No acute lethal toxicity was detected in any of the wastewater samples investigated. A combined effluent, however, caused a reduction in the reproduction rate with an EC50 of 3%. No mutagenic activity was observed with the Ames test (Salmonella typhimurium, strains TA 97, TA 98, and TA 100) in concentrated effluents, in sediment samples, or in liver samples from predator fish caught from the discharge site.

  7. WHOLE EFFLUENT TOXICITY: A REPORT FROM THE COLONIES

    EPA Science Inventory

    The purpose of this follow-up activity to the SETAC-sponsored Pellston Workshop on Whole Effluent Toxicity (WET) in 1996 is to "provide technical expert support on scientific guidance involving testing, characterization, and identifying sources of toxicity in complex effluents."

  8. High specific activity silicon-32

    DOEpatents

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  9. High specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  10. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  11. 200 Area treated effluent disposal facility operational test report

    SciTech Connect

    Crane, A.F.

    1995-03-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

  12. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOEpatents

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  13. Cholera: possible infection from aircraft effluent.

    PubMed Central

    Rondle, C. J.; Ramesh, B.; Krahn, J. B.; Sherriff, R.

    1978-01-01

    This paper presents the hypothesis that some cases of cholera might be due to effluent discharge from aircraft. The theoretical case is borne out by inspection of data on the physical conditions pertaining between high altitudes and ground level. A study of the distribution of isolated outbreaks and single cases of disease and their relation to major airline routes showed a reasonable correspondence. Sporadic outbreaks of cholera in Europe between 1970 and 1975 were found to lie within the flight paths of regular airline services from Calcutta, where cholera is endemic, to the Northern Hemisphere. Laboratory studies on the stability of Vibrio cholerae to conditions likely to be encountered in droplets falling from high altitude to the ground suggested that significant numbers of organisms might survive. It should be noted that in this study no account was taken of the effect of ultra-violet light on viability and it is known that at high altitides the ultraviolet light component of solar radiation is much higher than at ground level. Results of experiments where small numbers of organisms were inoculated into relatively poor media showed that rapid growth ensued and that sufficient organisms were produced to give an infective dose of Vibrio cholerae in 1-10 ml/fluid. It could be concluded that human infection could easily occur by ingestion of fluids such as milk or soup which had some time earlier received a fortuitous but slight contamination from the air. Investigation of one disinfectant (chloramine T) showed that it reacted rapidly and in a complex manner with peptone. One effect of this reaction was the elimination of bactericidal activity and it seems likely that, as at present employed, chloramine T is of doubtful value in aeroplane hygiene. One important conclusion that arises from this work is that if cholera can be spread, even only occasionally, by effluent from aircraft then close investigation should be made of the possibility of other bacteria and

  14. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.

    PubMed

    Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

    2014-07-01

    Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    USGS Publications Warehouse

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  16. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis).

    PubMed

    Vajda, Alan M; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S; Barber, Larry B

    2015-05-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L(-1) . Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. © 2015 SETAC.

  17. Development of a quantitative high-performance thin-layer chromatographic method for sucralose in sewage effluent, surface water, and drinking water.

    PubMed

    Morlock, Gertrud E; Schuele, Leonard; Grashorn, Sebastian

    2011-05-13

    Sucralose, a persistent chlorinated substance used as sweetener, can already be found in waste water, and various countries focused on the release of sucralose into the aquatic environment. A quantitative high-performance thin-layer chromatography (HPTLC) method, which is orthogonal to existing methods, was developed to analyze sucralose in water. After sample preparation, separation of up to 17 samples was performed in parallel on a HPTLC plate silica gel 60 F(254) with a mixture of isopropyl acetate, methanol and water (15:3:1, v/v/v) within 15 min. Due to the weak native UV absorption of sucralose (≤200 nm), various post-chromatographic derivatization reactions were compared to selectively detect sucralose in effluent and surface water matrices. Thereby p-aminobenzoic acid reagent was discovered as a new derivatization reagent for sucralose. Compared to the latter and to β-naphthol, derivatization with aniline diphenylamine o-phosphoric acid reagent was slightly preferred and densitometry was performed by absorbance measurement at 400 nm. The limit of quantification (LOQ) of sucralose in drinking and surface water was calculated to be 100 ng/L for a given recovery rate of 80% and the extraction of a 0.5 L water sample. The sucralose content determined in four water samples obtained during an interlaboratory trial in 2008 was in good agreement to the mean laboratory values of that trial. According to the t-test, which compares the results with the target value, the means obtained by HPTLC were not significantly different from the respective means of six laboratories, analyzed by HPLC-MS/MS or HPLC-TOF-MS with the use of mostly isotopically labeled standards. The good accuracy and high sample throughput capacity proved HPTLC as a well suited method regarding quantification of sucralose in various aqueous matrices. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents.

    PubMed

    Liu, SiGuang; Luo, YuanRong; Huang, LingFeng

    2016-07-01

    Everyday huge amount of treated municipal wastewater is discharged into the coastal seawater. However, microbial biomarkers for the municipal effluent instead of the fecal species from raw sewage have not been proposed. Meanwhile, bacterial taxa for degrading large amounts of input organics have not been fully understood. In this study, raw effluent and serial water samples were collected from the coastal dispersal of two sewage treatment plants in Xiamen, China. Free-living (FL) and particle-associated (PA) bacterial communities were analyzed via high-throughput sequencing of 16S rRNA gene and quantitative PCR to measure bacterial abundance. The PA bacterial communities in our samples exhibited higher cell abundance, alpha diversity, and population dynamics than the FL bacterial communities, which supports greater environmental significance of the PA bacterial communities. Two non-fecal but typical genera in activated sludge, Zoogloea and Dechloromonas, exhibited decreased but readily detectable abundance along the effluent dispersal distance. Furthermore, the dominating microbial species near the outfalls were related to well-known marine indigenous taxa, such as SAR11 clade, OM60 clade, low-GC Actinobacteria, and unclassified Flavobacteriales, as well as the less understood taxa like Pseudohongiella and Microbacteriaceae. It is interesting that these taxa exhibited two types of correlation patterns with COD concentration. Our study suggested Zoogloea as a potential indicator of municipal effluents and also proposed potential utilizers of residual effluent COD in marine environments.

  19. High density culture of white bass X striped bass fingerlings in raceways using power plant heated effluent

    SciTech Connect

    Collins, C.M.; Burton, G.L.; Schweinforth, R.L.

    1983-06-01

    White bass (Morone chrysops) X striped bass (M. saxatilis) hybrids weighing 1691/lb were initially stocked in five 24 ft/sup 3/ floating screen cages for 20 days. Hybrids averaging one inch in total length and 361 fish/lb were released in four 614 ft/sup 3/ concrete raceways. Two stocking densities, 2.6 and 5.1 fish/ft/sup 3/, were evaluated in the 94-day study using a flow rate of 300 gpm/raceway. Water temperatures averaged 79/sup 0/F and water quality was adequate throughout the production period. Fish were hand fed to satiation daily. Columnaris and Aeromonas hydrophila caused the most serious disease problems. Gas supersaturation was suspect in high mortality levels during cage culture of hybrid bass fry. Cannibalism may have been responsible for unaccountable losses prior to raceway stocking and at harvest. The study yielded 5773 hybrids weighing 658 lb. The high density treatment showed greater weight gain, average weight, average length and percent survival as well as improved food conversion. Results suggest that higher stocking densities and periodic grading may increase production and suppress cannibalism. 10 references, 3 figures, 3 tables.

  20. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge.

    PubMed

    De la Cruz, N; Giménez, J; Esplugas, S; Grandjean, D; de Alencastro, L F; Pulgarín, C

    2012-04-15

    This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L(-1), and a real global quantity of micropollutants of 29.5 μg L(-1). The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV(254)) alone, dark Fenton (Fe(2+,3+)/H(2)O(2)) and photo-Fenton (Fe(2+,3+)/H(2)O(2)/light). Different irradiation sources were used for the photo-Fenton experiences: UV(254) and simulated sunlight. Iron and H(2)O(2) concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV(254), 50 mg L(-1) of H(2)O(2), with and without adding iron (5 mg L(-1) of Fe(2+) added or 1.48 mg L(-1) of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H(2)O(2) concentration increased (10, 25 and 50 mg L(-1)), best degradations were observed. UV(254), Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal. The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.

  1. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    PubMed

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  2. Tree production in desert regions using effluent and water harvesting

    Treesearch

    Martin M. Karpiscak; Gerald J. Gottfried

    2000-01-01

    Treated municipal effluent combined with water harvesting can be used for land restoration and enhancing the growth of important riparian tree species. Paired studies in Arizona are assessing the potential of growing trees using mixtures of effluent and potable water. Trees are grown in the field and in containers. Initial results from the field show high survival for...

  3. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    PubMed

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  4. Genome sequence of Desulfovibrio sp. A2, a highly copper resistant, sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Karnachuk, Olga V; Solioz, Marc

    2011-12-01

    Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.

  5. Genome Sequence of Desulfovibrio sp. A2, a Highly Copper Resistant, Sulfate-Reducing Bacterium Isolated from Effluents of a Zinc Smelter at the Urals

    PubMed Central

    Mancini, Stefano; Abicht, Helge K.; Karnachuk, Olga V.; Solioz, Marc

    2011-01-01

    Desulfovibrio sp. A2 is an anaerobic Gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms. PMID:22072648

  6. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    PubMed

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  7. Toxicity studies on effluents from conventional and carbon-enhanced treatment of refinery wastewaters

    SciTech Connect

    Borey, R.B.; Parcell, L.J.

    1980-01-01

    In a study conducted for API by Texaco Inc. at the company's Port Arthur, Tex., Class E refinery, short-term (96 h) and long-term (30 day) continuous-flow bioassays on sheepshead killifish were performed to test half-strength and full-strength effluents obtained by each of four different activated sludge unit (ASU) treatments: a conventionally operated ASU plus final filteration; a conventionally operated ASU plus filtration plus granular activated carbon contactors; an ASU to which a blend of commercially available activated carbons was added plus final filtration; and an ASU to which an experimental, noncommercial, high-surface-area, powdered activated carbon was added plus filtration. During normal operation, the fish mortality was too low to indicate significant differences among treatments. During a plant upset, fish mortality was sometimes higher in carbon-treated effluents than in conventionally treated wastewaters. Although not accumulating in the exposed fish, polynuclear aromatics were higher in carbon-treated effluents than in the pretreated refinery wastewater or conventionally treated wastewater. For unknown reasons, cadmium and zinc accumulated in fish exposed to some types of carbon-treated effluents.

  8. Removal of viruses from sewage, effluents, and waters

    PubMed Central

    Berg, Gerald

    1973-01-01

    All sewage and water treatment processes remove or destroy viruses. Some treatment methods are better than others, but none is likely to remove all of the viruses present in sewage or in raw water. Primary settling of solids probably removes a great many of the viruses in sewage because viruses are largely associated with the solids. Long storage of effluents or water is destructive to viruses. Activated sludge is the best biological method for removing viruses from sewage. Trickling filters and oxidation ponds are erratic, the latter probably because of short-circuiting. Coagulation with metal ions is the most effective single treatment method for removing viruses from sewage and from raw waters, according to laboratory studies at least. Lime is the best coagulant for these purposes in the rapidly virucidal high pH range. Polyelectrolytes also can sediment viruses. Rapid filtration through clean sand does not remove viruses, but filtration of coagulated effluents does, probably because the layering floc itself adsorbs viruses. Clays and carbon adsorb viruses to some extent, but the process is not efficient. Ultimately, disinfection should help to produce virus-free waters for drinking and virus-free effluents for discharge into waters with which man may come into contact. Because disinfection is not a simple matter, disinfectants must be selected according to need. Effluents and waters containing solids can probably be disinfected only by heat or by penetrating radiation, waters discharged into streams should not be disinfected with anything that will injure or kill aquatic life (unless the toxic products can be neutralized), and drinking-waters should carry a disinfecting residue. PMID:4607010

  9. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.

    PubMed

    Fang, Di; Zhang, Ruichang; Deng, Wenjing; Li, Jie

    2012-01-01

    A bench-scale, stirred-tank batch precipitator was used to assess the selective removal of Cu2+, Zn2+, Ni2+ and Fe2+ from acidic electroplating wastewater using sulphide from a sulphidogenic bioreactor effluent. At pH approximately 1.7, >99% of Cu was selectively precipitated, over Zn, Ni and Fe, from the wastewater as pure CuS by recycling H2S from the bioreactor effluent via N2 sparging, resulting in a Cu effluent concentration <0.4 mg/L. The rate of Cu precipitation increased from 1.6 to 6.4 mg Cu/(L x min) when the pH of the bioreactor effluent decreased from 7.5 to 5.5. Experiments focusing on the precipitation of Zn, Ni and Fe from the wastewater devoid of Cu (at pH approximately 1.7), using sulphide-rich bioreactor effluent, achieved approximately 85-97% precipitation efficiency for Zn, approximately 25-92% for Ni, and approximately 2-99% for Fe, depending on the initial sulphide/metal molar ratio. The sulphide/metal ratio of 1.76 was found to be optimal for the precipitation of Zn, Ni and Fe with sulphides and, to a lesser extent, with hydroxides, resulting in residual metal concentrations of 1 mg Zn/L, 3 mg Ni/L, and 0.5 mg Fe/L. These findings suggest the potential of waste biogenic sulphides for the selective recovery of valuable metals from acidic metal-rich industrial wastewaters.

  10. Recovery of enthalpy as work from thermal effluents

    NASA Astrophysics Data System (ADS)

    Molini, A. E.

    1982-08-01

    Enthalpy is recovered as work from hot industrial effluents by the controlled expansion of liquids through convergent-divergent nozzles in true reaction turbines. For hot liquid effluents, the effluent itself serves as the working fluid. For gaseous effluents, a high boiling stable liquid is heated by the gas in a scrubbing tower and then the liquid is expanded as the work fluid. If the effluents contain undesirable levels of particulate pollutants, the liquid is cleaned before it is expanded. The results predicted when using both impulse and true reaction turbines are reported. Results predicted when using work fluids as glycerol, tricresyl phosphate, bi-phenyls, and silicone oils are presented. Cycle efficiencies as high as 26% are predicted as possible.

  11. Characterizing the genotoxicity of hazardous industrial wastes and effluents using short-term bioassays

    SciTech Connect

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    This paper demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. Petrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile and dye effluents. However, there is little information on effluents from pesticide manufacturers. The most extensive evaluations have been conducted on effluents from pulp and paper mills. These studies have shown which pulping plants generate the most genotoxic effluents, which process wastes are most hazardous, have isolated and identified the compounds responsible for the genotoxic activity, have described the environmental fate of these compounds, have evaluated the types of genetic damage likely to occur upon exposure to the effluents, and have identified several treatment methods that effectively reduce the genotoxicity of the effluents. The coupling of bioassays for biological analysis with chemical evaluation provides the most powerful approach to assessing the overall health effects of complex industrial wastes and effluents.

  12. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia).

    PubMed

    Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik

    2015-04-15

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics.

  13. Removal of dissolved estrogen in sewage effluents by β-cyclodextrin polymer.

    PubMed

    Oishi, Kyoko; Moriuchi, Ayumi

    2010-12-01

    Substances with estrogenic activity are found in effluents of municipal sewage plants and dairy farms. These effluents have the potential to induce feminization in male fish. In this study, cyclodextrin polymers (CDPs) that are insoluble in both polar and non-polar solvents were selected for the removal of dissolved estrogens in the effluent of a municipal sewage plant. The removal capacity of CDPs was high in the order of β-CDP≥γ-CDP≫α-CDP. The mechanism for adsorption of estrogens to β-CDP was not only due to a host-guest interaction as molecular recognition by β-cyclodextrin (β-CD), but also due to adsorption by the polymer matrix. β-CDP of 0.2% (w/v) removed 17β-estradiol (E2) of about 70% from 10(-11)mol/L, and more than 90% from ≥10(-10)mol/L. The removal ratios of E2 in the presence of cholesterols, which are contained at higher concentrations than estrogens in sewage effluents and are adsorptive competitor for β-CDP, were about 85% at a cholesterol/E2 molar ratio of 100 and >90% at molar ratios of 0.1, 1, and 10. The effluent from a municipal sewage plant had estrogenic activity corresponding to 5.5×10(-11)molE2/L by yeast two-hybrid assay. The estrogens in the effluent were also removed >90% by the β-CDP treatment. Therefore, β-CDP is able to remove dissolved estrogens over a wide range of concentrations in the presence of various contaminants such as wastewaters. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system.

    PubMed

    Nachiappan, Senthilnathan; Muthukumar, Karuppan

    2013-01-01

    In this study, sonolysis (US), a dual oxidant system (DOX), and ultrasound coupled with a dual oxidant system (US/DOX) were employed to degrade real pharmaceutical effluent. In a DOX system, two effective oxidizing agents such as hydrogen peroxide and activated persulphate were used simultaneously. In this work, for the first time, an easily available waste material, iron swarf, was used as an activator for persulphate oxidation. Iron swarf coupled with an ultrasound system showed better activation. High iron dosage, acidic pH and high temperature favoured degradation with both DOX and US/DOX. Sequential addition of iron swarf produced better results compared to single-step addition. The activation energy was found to be 47.25 and 23.47 kJ/mol for DOX and US/DOX, respectively. The biodegradability index of the effluent was enhanced from 0.13 to 0.81 after treatment with US/DOX.

  15. Effect of distillery effluents on some physiological aspects in maize.

    PubMed

    Ramana, S; Biswas, A K; Singh, A B

    2002-09-01

    A field experiment was conducted for two years to study the effect of application of different distillery effluents: raw spent wash (RSW), biomethanated spent wash (BSW), lagoon sludge (LS), recommended NPK + FYM (farm yard manure) and control (no fertilizer and effluent) on some physiological aspects in maize. The study revealed that the application of distillery effluents resulted in increased leaf area, chlorophyll content, nitrate reductase activity total dry weight and grain yield. Among the effluents, the highest grain yield (36.9 qha(-1)) was obtained in BSW followed by RSW (32.2 qha(-1)) and LS (28.3 qha(-1)). Overall, NPK + FYM treatment recorded the highest grain yield (51.8 qha(-1)). However, to achieve the full manurial potential of the effluents, some amount of fertilizer should be supplemented.

  16. Liquid Effluent Monitoring Information System (LEMIS) System Construction

    SciTech Connect

    Adams, R.T.

    1994-10-11

    The liquid effluent sampling program is part of the effort to minimize adverse environmental impact during the cleanup operation at the Hanford Site. Of the 33 Phase I and Phase II liquid effluents, all streams actively discharged to the soil column will be sampled. The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Construction document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

  17. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  18. Paper Mill Effluent Decolorization by Fifty Streptomyces Strains

    PubMed Central

    Hernández, Manuel; Rodríguez, Juana; Soliveri, Juan; Copa, José L.; Pérez, María I.; Arias, María E.

    1994-01-01

    Fifty actinomycete strains isolated from lignocellulosic substrates were examined for the ability to remove the color from a paper mill effluent obtained after semichemical alkaline pulping of wheat straw. Streptomyces sp. strains UAH 15, UAH 23, UAH 30, and UAH 51 were selected for their ability to decolorize the effluent in a liquid medium containing 1% (wt/vol) glycerol, 0.2% (wt/vol) ammonium sulfate, and 80% (vol/vol) effluent. The highest levels of decolorization achieved after the strains grew were 60 to 65%. Strains UAH 30 and UAH 51 were selected for further study because of their different patterns of effluent decolorization during growth. Fractionation of the decolorized effluent by gel permeation chromatography demonstrated that there were reductions in the levels of absorbance of the high- and medium-molecular-weight compounds. These fractions were mainly responsible for the color of the effluent, while the last fractions, the low-molecular-weight compounds, could have been responsible for the residual color of the decolorized effluent. Thin-layer chromatography revealed significant differences among the patterns of bands corresponding to the acidified supernatants obtained after precipitation of alkali-lignin from the effluent samples decolorized by different Streptomyces strains. Images PMID:16349426

  19. Constructed wetlands design for enhanced phytoremediation of effluents

    SciTech Connect

    Stewart, A.J.; Sparks, B.J.; Carder, J.P.; Sumner, J.R.

    1996-12-31

    The Oak Ridge National Laboratory (ORNL) uses constructed wetlands to solve an environmental compliance problem. Effluents from a coal yard runoff treatment facility (CYRTF) and a sewage treatment plant are both intermittently toxic based on effluent testing conducted under ORNL`s wastewater discharge permit. The CYRTF uses conventional technology (lime neutralization, flocculation); its effluent is toxic due primarily to the presence of high concentrations of calcium. Effluent from the sewage treatment plant is occasionally toxic due to a semivolatile, low-molecular weight constituent, perhaps generated when the wastewater is chlorinated prior to discharge. The two effluent are blended (about 2:8, volume:volume) before being passed through a pair of constructed wetland (CW) cells, each 1.8 m wide and 20 m long, for final equilibration. The CW system treats about 1,800 gallons of blended effluent per day. The effluent blend`s toxicity, as determined by testing with Ceriodaphnia dubia, is reduced by passage through the CW system. This simple aqueous-phase phytoremediation system is environmentally benign and provides the necessary minimal level of treatment for both effluents at low cost. We provide {open_quotes}lessons learned{close_quotes} in building and operating the CW system, and summarize the results of the chemical and toxicological tests used to demonstrate this technology`s application.

  20. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    SciTech Connect

    CAMPBELL, L.R.

    1999-01-15

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  1. Shifts of live bacterial community in secondary effluent by chlorine disinfection revealed by Miseq high-throughput sequencing combined with propidium monoazide treatment.

    PubMed

    Pang, Yu-Chen; Xi, Jin-Ying; Xu, Yang; Huo, Zheng-Yang; Hu, Hong-Ying

    2016-07-01

    Chlorine disinfection is a commonly used disinfection process in wastewater treatment, but its effects on the indigenous bacterial community in treated wastewater have not been fully elucidated. In this study, secondary effluent samples collected in four wastewater treatment plants (WWTPs) were selected for chlorine disinfection. Shifts in the bacterial community compositions in secondary effluent samples upon chlorine disinfection, both immediately and after 24 h of storage, were investigated using Illumina MiSeq sequencing combined with propidium monoazide (PMA) treatment. The results showed that the phylum Proteobacteria was sensitive to chlorine, with the relative proportions of Proteobacteria decreased from 39.2 to 75.9 % in secondary effluent samples to 7.5 to 62.2 % immediately after chlorine disinfection. The phylogenetic analysis indicated that the most dominant genera belonging to Proteobacteria were sensitive to chlorine. In contrast, the phyla Firmicutes and Planctomycetes showed a certain resistance to chlorine, with their relative proportions increasing from 5.1 to 23.1 % and 0.8 to 9.3 % to 11.3 to 44.6 % and 1.5 to 13.3 %, respectively. Most dominant genera belonging to Firmicutes showed resistance to chlorine. A significant reduction in the richness and diversity of the bacterial community was observed after 24 h of storage of chlorinated secondary effluent. During the 24-h storage process, the relative proportions of most dominant phyla shifted in reverse from the changes induced by chlorine disinfection. Overall, chlorine disinfection not only changes the bacterial community compositions immediately after the disinfection process but also exerts further impacts over a longer period (24 h).

  2. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    PubMed

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  3. Environmental Activities, Junior High School.

    ERIC Educational Resources Information Center

    Edwards, William C.; Larson, Robert J.

    This guide, for use at the junior high level, is aimed at helping our youth become more knowledgeable concerning the environment and associated problems, thus making them aware of how to solve these problems and motivating them to work toward their solution. Among the subjects discussed are art in nature, erosion, body pollution, water pollution,…

  4. 40 CFR 455.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating... authorities shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are...

  5. 40 CFR 455.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating... authorities shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are...

  6. 40 CFR 455.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide... means that permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when...

  7. 40 CFR 455.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide... means that permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when...

  8. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  9. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  10. Monitoring of xenobiotic ligands for human estrogen receptor and aryl hydrocarbon receptor in industrial wastewater effluents.

    PubMed

    Chou, Pei-Hsin; Liu, Tong-Cun; Lin, Yi-Ling

    2014-07-30

    Industrial wastewater contains a variety of toxic substances, which may severely contaminate the aquatic environment if discharged without adequate treatment. In this study, effluents from a thin film transistor liquid crystal display wastewater treatment plant and the receiving water were analyzed by bioassays and liquid chromatography-tandem mass spectrometry to investigate the presence of estrogenic compounds, aryl hydrocarbon receptor (AhR) agonists, and genotoxicants. Xenobiotic AhR agonists were frequently detected and, in particular, strong AhR agonist activity and genotoxicity were found in the suspended solids of the aeration tank outflow. The high AhR agonist activity in the final effluent (FE) and the downstream river water suggested that the treatment plant failed to remove the wastewater-related AhR agonists. In contrast, although significant estrogenic potency could be detected in raw wastewater or effluents from different treatment processes, the FE and the receiving river water exhibited no or weak estrogenicity. Instrumental analysis showed that bisphenol A was often detected in water samples. However, the investigated estrogenic compounds could only account for a small portion of the estrogenicity in the collected samples. Therefore, further investigation is necessary to identify the major estrogenic compounds and AhR agonist contaminants in the wastewater effluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  12. Effluent characterization and different modes of reuse in agriculture-a model case study.

    PubMed

    Das, Madhumita; Kumar, Ashwani

    2009-06-01

    High-quality waters are steadily retreating worldwide. Discharge of industrial effluent in the environment again declines soil/water quality to a great extent. On the other hand, effluent reuse in agriculture could be a means to conserve natural resources by providing assured water supply for growing crops. But industrial effluents are highly variable in nature, containing a variety of substances, and all are not favorable for farming. Appraisal and developing modes of effluent reuse is therefore a prerequisite to enable its proper use in agriculture. Effluents of various industries were assessed and approaches for their use in farming were developed for a particular region in this study. As per availability of effluents, the same could be implemented in other water-scarce areas. Effluents of 20 different industrial units were characterized by 24 attributes. Comparing these with corresponding irrigation water quality standards, the probability of their reuse was interpreted in the first approach. On the basis of relevant properties of major soil types dominated in a particular region, the soil-based usability of effluent was worked out in the second approach. By emphasizing the limitation of groundwater development where it went beyond 50% exploitation level, the land form and major soil type were then identified by applying a soil-based effluent reuse approach; the area-specific suitability of its use was perceived in the third approach. On the basis of irrigation water quality standards, the irrigation potentials of paper mill, fermentation (breweries and distilleries), and sugar factory effluents were recognized. In a soil-based approach, the compatibility of effluent with soil type was marked with A (preferred) and B (moderately preferred) classes and, compiling their recurring presence, the unanimous preference for paper mill effluent followed by rubber goods manufacturing industries/marine shrimp processing units, fermentation, and sugar mills was noted

  13. Potential treatment alternative for laboratory effluents.

    PubMed

    Alves, Larissa C; Henrique, Humberto M; Xavier, Alcina M F; Cammarota, Magali C

    2005-10-01

    The Chemical Analysis Laboratory under study weekly generates 46.5 L effluent with low pH (0.7), high COD concentration (6535 mg O2/L), sulphate (10390 mg/L) and heavy metals (213 mg Hg/L, 55 mg Cr/L, 28 mg Al/L, 22 mg Fe/L, 10mg Cu/L, 4 mg Ag/L). A treatment sequence has been proposed using a physical chemical step (coagulation/flocculation or chemical precipitation) followed by a biological step (anaerobic treatment). Removals of COD (18%), turbidity (76%) and heavy metals (64-99%) were attained only after adjusting pH to 6.5, without requiring the addition of Al2(SO4)3 and FeCl3. Due to the low COD:sulphate ratio (0.9-1.3), it was possible to efficiently operate the UASB reactor (at the biological step) only upon mixing the effluent with household wastewater. COD, sulphate and heavy metals removals of 60%, 23% and 78% to 100%, respectively, were attained for 30% effluent in the reactor feed. The results pointed to the need of a pretreatment step and mixing the effluent in household wastewater prior to the biological step. This alternative is feasible as this can be achieved using sanitary wastewater generated in the university campus.

  14. Separation methods for high specific activity radioarsenic

    NASA Astrophysics Data System (ADS)

    Jurisson, S. S.; Wycoff, D. E.; DeGraffenreid, A.; Embree, M. F.; Ketring, A. R.; Cutler, C. S.; Fassbender, M. E.; Ballard, B.

    2012-12-01

    Radiopharmaceuticals require the use of high specific activity radionuclides, especially when targeting limited numbers of receptors on tumor surfaces. Two radioisotopes of arsenic (72As and 77As) are potentially useful in diagnostic and therapeutic radiopharmaceuticals. Methods for the production, separation, and isolation of high specific activity 72As and 77As are presented.

  15. Trends in emerging and high risk activities

    Treesearch

    Robert C. White; Richard Schreyer; Kent Downing

    1980-01-01

    Newly emerging and high risk activities have increased markedly in the last generation, yet little is known about trends in participation. Factors such as technological innovation and creative experimentation with traditional activities appear to play a major role in the development of new activities. Christy's criteria for mass demand in recreation are used to...

  16. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    PubMed

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production.

  17. Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Deligiannis, Andreas; Samaras, Petros

    2016-12-01

    The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electrocoagulation of palm oil mill effluent.

    PubMed

    Agustin, Melissa B; Sengpracha, Waya P; Phutdhawong, Weerachai

    2008-09-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME.

  19. Whole effluent risk estimation for a small recipient watercourse.

    PubMed

    Refaey, Maha; Kováts, Nóra; Kárpáti, A; Thury, P

    2009-09-01

    Whole effluent toxicity is most often considered as a static parameter. However, toxicity might change as degradation processes, especially biodegradation goes by and intermediate products appear. These intermediates can even be more toxic than the original effluent was, posing higher risk to the ecosystem of the recipient water body. In our test series it was assessed how toxicity of a municipal wastewater sample changes during biodegradation taking into consideration different temperature regimes (10, 20 and 30 degrees C). Results proved our null hypothesis: after the high initial toxicity of the fresh effluent sample toxicity did show a further increase. Biodegradation resulted in toxicity reduction only after an approx. 2 week-period.

  20. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  1. Performance evaluation of biofil toilet waste digester technologies in Ghana: the efficacy of effluent treatment options.

    PubMed

    Amoah, Philip; Gbenatey Nartey, Eric; Schrecongost, Alyse

    2016-12-01

    The study was carried out to assess the efficacy of a standard Biofil toilet digester with regard to its effluent quality and to evaluate the performance of new effluent polishing options being developed by BiofilCom. Influent and effluent were collected from 18 standard Biofil digesters connected to full-flush toilets. Effluent from five pilot installations with improved effluent polishing options were also taken for analyses. Ten other Biofil installations were selected to assess the impact of digester effluent discharge on the surrounding soil. Pollutant concentrations in the Biofil effluent exceeded both Ghana EPA and WHO standards for discharge though pollutant removal efficiencies were high: 84% for biochemical oxygen demand, 86.1% for chemical oxygen demand and 82.4% for total suspended solids. Escherichia coli and total coliform levels were significantly reduced by 63% and 95.6%, respectively, and nutrients were the least removed from effluents. Generally, effluents from the majority of the pilot polishing options met most of the discharge standards. E. coli were present in the soil at all study sites, except one. Biofil digester effluent is discharged subsurface but comparing their effluent quality with standards for discharge into water courses is relevant especially in areas of frequent flooding and high water tables.

  2. Thief carbon catalyst for oxidation of mercury in effluent stream

    SciTech Connect

    Granite, Evan J; Pennline, Henry W

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  3. Disinfection of secondary effluents by infiltration percolation.

    PubMed

    Makni, H

    2001-01-01

    Among the most attractive applications of reclaimed wastewater are: irrigation of public parks, sports fields, golf courses and market gardening. These uses require advanced wastewater treatment including disinfection. According to WHO guidelines (1989) and current rules and regulations in Tunisia, faecal coliform levels have to be reduced to < 10(3) or 10(2) CFU/100 mL. In Tunisia, most wastewater plants are only secondary treatment and, in order to meet health related regulations, the effluents need to be disinfected. However, it is usual for secondary effluents to need filtration prior to disinfection. Effectiveness of conventional disinfection processes, such as chlorination and UV radiation, are dependent upon the oxidation level and the levels of suspended solids of the treated water. Ozonation is relatively expensive and energy consuming. The consideration of the advantages and disadvantages of conventional techniques, their reliability, investment needs and operational costs will lead to the use of less sophisticated alternative techniques for certain facilities. Among alternative techniques, soil aquifer treatment and infiltration percolation through sand beds have been studied in Arizona, Israel, France, Spain and Morocco. Infiltration percolation plants have been intermittently fed with secondary or high quality primary effluents which percolated through 1.5-2 m unsaturated coarse sand and were recovered by under-drains. In such infiltration percolation facilities, microorganisms were eliminated through numerous physical, physicochemical and biological inter-related processes (mechanical filtration, adsorption and microbial degradation respectively). Efficiency of faecal coliform removal was dependent upon the water detention times in the filtering medium and on the oxidation of the filtered water. Effluents of Sfax town aerated ponds were infiltrated through 1.5 m deep sand columns in order to determine the performance of infiltration percolation in the

  4. Removal of radioiodine from liquid effluents

    SciTech Connect

    Sinha, P.K.; Lal, K.B.; Ahmed, J.

    1997-12-31

    Various methods have been evaluated for the removal of {sup 131}I from actual liquid waste received from a reactor and from simulated effluents containing the isotope. The options included both precipitation (along with silver iodide and bismuth hydroxide) and ion-exchange/adsorption (using anionic exchangers and activated carbon) processes. Of all the schemes, passing through anion exchange resin columns was found to be the most effective, indicating that iodine was present mostly as anions.

  5. Rapid quantification of bacteria and viruses in influent, settled water, activated sludge and effluent from a wastewater treatment plant using flow cytometry.

    PubMed

    Ma, Lili; Mao, Guannan; Liu, Jie; Yu, Hui; Gao, Guanghai; Wang, Yingying

    2013-01-01

    As microbiological parameters are important in monitoring the correct operation of wastewater treatment plants and controlling the microbiological quality of wastewater, the abundances of total bacteria (including intact and damaged bacterial cells) and total viruses in wastewater were investigated using a combination of ultrasonication and flow cytometry. The comparisons between flow cytometry (FCM) and other cultivation-independent methods (adenosine tri-phosphate (ATP) analysis for bacteria enumeration and epifluorescence microscopy (EFM) for virus enumeration) gave very similar patterns of microbial abundance changes, suggesting that FCM is suitable for targeting and obtaining reliable counts for bacteria and viruses in wastewater samples. The main experimental results obtained were: (1) effective removal of total bacteria in wastewater, with a decrease from an average concentration of 1.74 × 10(8)counts ml(-1) in raw wastewater to 3.91 × 10(6)counts ml(-1) in the effluent, (2) compared to influent raw wastewater, the average concentration of total viruses in the treated effluent (3.94 × 10(8)counts ml(-1)) exhibited no obvious changes, (3) the applied FCM approach is a rapid, easy, and convenient tool for understanding the microbial dynamics and monitoring microbiological quality in wastewater treatment processes.

  6. Bio-oxidation of thiocyanates typical of coal conversion effluents. Final report

    SciTech Connect

    Neufeld, R. D.; Mattson, L.; Lubon, P.

    1981-01-08

    Thiocyanates have been found in most coal conversion and coke plant effluents. The objectives of this study were to develop data for the biological degradation fate kinetics of thiocyanate removal, and to develop material balance information for the fate of sulfur and nitrogen resulting from such bio-decomposition of aqueous thiocyanates. A literature review of thiocyanate bio-degradation indicates that while much biochemistry information is available, little information in the biological processing arena is known. Based on both batch and continuous culture experiments utilizing an activated sludge type of system with strictly thiocyanate degradating organisms, the specific utilization rate for SCN degradation was found to follow a substrate inhibition biokinetic relationship as: d(SCN)/dt-X = 2.24/(1 + (5/SCN) + (SCN/1340)/sup 6/) where; d(SCN)/dt-X = lb SCN used/lb biomass-day, SCN = mg/L SCN in effluent. The observed biomass sludge production rate was quantified as a function of sludge age in the bio-reactor. The major metabolic by-products of SCN aerobic biodegradation are ammonia and sulfate, with such formation being stochiometric with SCN. High levels of SCN in coal conversion and Stretford system effluents may lead to biological nitrification process requirements to be added to the wastetreatment scheme for compliance with BAT effluent ammonia discharge restrictions.

  7. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation.

    PubMed

    Balaji, S; Kalaivani, T; Sushma, B; Pillai, C Varneetha; Shalini, M; Rajasekaran, C

    2016-08-02

    Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents.

  8. Removal of melanoidin present in distillery effluent as a major colorant: a review.

    PubMed

    Agarwal, Radhika; Lata, Sneh; Gupta, Meera; Singh, Pratibha

    2010-07-01

    Effluent originating from distilleries contain large amount of dark brown coloured wastewater called molasses spent wash (MSW). This MSW is the unwanted residual liquid waste to dispose because of low pH, high temperature, dark brown colour, high ash content, unpleasant odour and high percentage of organic and inorganic matter. Dark brown colour of MSW is due to the presence of melanoidin pigment. It reduces sunlight penetration in rivers and lakes which in turn decrease both photosynthetic activity and dissolved oxygen concentration affecting aquatic life. So the disposal of this effluent is one of the critical environmental issues. A number of treatment processes have been employed for the distillery waste management. This review paper present an overview of the pollution problems caused by melanoidin and the technologies employed globally for its removal.

  9. Toxicity of municipal wastewater effluents contaminated by pentachlorophenol in southwest Missouri

    USGS Publications Warehouse

    Wylie, G.D.; Finger, S.E.; Crawford, R.W.

    1990-01-01

    Toxicity of effluents from two sewage treatment plants in Joplin, Missouri, was tested using Ceriodaphnia dubia and Pimephales promelas. No test organisms survived in effluents from either plant, in effluents diluted with water from Turkey Creek (the receiving stream), or in water from Turkey Creek. Mortality was complete in all but the most dilute treatments of effluents, in which reconstituted water was used as the diluent. High concentrations of pentachlorophenol (130–970 μg liter−1) in effluents and the receiving stream likely caused mortality during the 7-day tests. Detectable concentrations of other phenolic compounds indicated the presence in Turkey Creek of other toxic by-products of pentachlorophenol manufacture. This study demonstrated the utility of biological tests of whole effluents to determine toxicity of wastewater effluents.

  10. A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme

    SciTech Connect

    Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.; Efler, S.

    1996-09-01

    Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This procedure was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).

  11. Advanced oxidation processes for treatment of effluents from a detergent industry.

    PubMed

    Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M

    2011-07-01

    Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.

  12. Environmental Education Activities Manual, Book 5: Junior High Activities.

    ERIC Educational Resources Information Center

    Stapp, William B., Ed.; Cox, Dorothy A., Ed.

    This activities book for the junior high level is the fifth book of a series of six books designed to provide developmental K-12 experiences designed to support the basic environmental philosophy of spaceship earth presented in Book 1. The aims of the four activity sections of this book are to aid in developing students to make them more sensitive…

  13. Environmental Education Activities Manual, Book 6: Senior High Activities.

    ERIC Educational Resources Information Center

    Stapp, William B., Ed.; Cox, Dorothy A., Ed.

    This activities book for the senior high school level is the sixth book of a series of six books designed to provide developmental K-12 experiences designed to support the basic environmental philosophy of spaceship earth presented in Book 1. The aims of the four activity sections of this book are to aid in developing students to make them more…

  14. Development of a bioreactor for remediation of textile effluent and dye mixture: a plant-bacterial synergistic strategy.

    PubMed

    Kabra, Akhil N; Khandare, Rahul V; Govindwar, Sanjay P

    2013-03-01

    The objective of the present work was to develop a plant-bacterial synergistic system for efficient treatment of the textile effluents. Decolorization of the dye Scarlet RR and a dye mixture was studied under in vitro conditions using Glandularia pulchella (Sweet) Tronc., Pseudomonas monteilii ANK and their consortium. Four reactors viz. soil, bacteria, plant and consortium were developed that were subjected for treatment of textile effluents and dye mixture. Under in vitro conditions G. pulchella and P. monteilii showed decolorization of the dye Scarlet RR (SRR) by 97 and 84%, within 72 and 96 h respectively, while their consortium showed 100% decolorization of the dye within 48 h. In case of dye mixture G. pulchella, P. monteilii and consortium-PG showed an ADMI removal of 78, 67 and 92% respectively within 96 h. During decolorization of SRR G. pulchella showed induction in the activities of enzymes lignin peroxidase and DCIP reductase while P. monteilii showed induction of laccase, DCIP reductase and tyrosinase, indicating their involvement in the dye metabolism. High Performance Liquid Chromatography (HPLC), Fourier Transform Infra Red Spectroscopy (FTIR) and High Performance Thin Layer Chromatography (HPTLC) confirmed the biotransformation of SRR and dye mixture into different metabolites. Soil, bacteria, plant and consortium reactors performed an ADMI removal of 42, 46, 62 and 93% in the first decolorization cycle while it showed an average ADMI removal of 21, 27, 59 and 93% in the next three (second, third and fourth) decolorization cycles respectively for the dye mixture within 24 h. Consortium reactor showed an average ADMI removal of 95% within 48 and 60 h for textile effluents A and B respectively for three decolorization cycles, while it showed an average TOC, COD and BOD removal of 74, 70 and 70%, 66, 72 and 67%, and 70, 70 and 66% for three decolorization cycles of the dye mixture (second, third and fourth decolorization cycles), effluent A and

  15. Toxic compounds biodegradation and toxicity of high strength wastewater treated under elevated nitrogen concentration in the activated sludge and membrane bioreactor systems.

    PubMed

    Boonnorat, Jarungwit; Boonapatcharoen, Nimaradee; Prachanurak, Pradthana; Honda, Ryo; Phanwilai, Supaporn

    2017-03-16

    This research has assessed the removal efficiencies of toxic compounds in the high strength wastewater (the leachate and agriculture wastewater mixture) using the activated sludge (AS) and membrane bioreactor (MBR) technologies under two carbon to nitrogen (C/N) ratios (C/N 14 and 6) and two toxic compounds concentrations (8-396μg/L and 1000μg/L). In addition, the toxicity evaluations of the AS and MBR effluents to the aquatic environment were undertaken at five effluent dilution ratios (10, 20, 30, 50 and 70% v/v). The findings indicate that the AS treatment performance could be enhanced by the elevation of the nitrogen concentration. Specifically, the C/N 6 environment helps promote the bacterial growth, particularly heterotrophic nitrifying bacteria (HNB) and nitrifying bacteria (NB), which produce the enzymes crucial to the toxic compounds degradation. The improved biodegradation makes the effluents less toxic to the aquatic environment, as evidenced by the lower mortality rates of both experimental fish species raised in the nitrogen-elevated diluted AS effluents. On the other hand, the elevated nitrogen concentration minimally enhances the MBR treatment performance, given the fact that the MBR technology is in itself a biological treatment scheme with very high compounds removal capability. Despite its lower toxic compounds removal efficiency, the AS technology is simple, inexpensive and operationally-friendly, rendering the system more applicable to the treatment operation constrained by the financial, manpower and technological considerations.

  16. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    PubMed

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  17. Purpose and Meaning in Highly Active Seniors

    ERIC Educational Resources Information Center

    Penick, Jeffrey M.; Fallshore, Marte

    2005-01-01

    The authors investigated the sources of meaning for active seniors. Results indicated that seniors who were most active were relatively high in a wide range of sources of meaning as well as in life satisfaction in general. The importance of meaning and purpose in relation to counseling with older adults is discussed.

  18. Energy Activities for Junior High Science.

    ERIC Educational Resources Information Center

    Beaver, David; And Others

    This document is a collection of six energy education activities for junior high school science. Its purpose is to help promote knowledge about energy, provide laboratory experiences, provoke inquiry, and relate energy to society through the science curriculum. The six activities are designed to take one to three class periods. Two of the…

  19. Energy Activities for Junior High Science.

    ERIC Educational Resources Information Center

    Beaver, David; And Others

    This document is a collection of six energy education activities for junior high school science. Its purpose is to help promote knowledge about energy, provide laboratory experiences, provoke inquiry, and relate energy to society through the science curriculum. The six activities are designed to take one to three class periods. Two of the…

  20. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  1. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented.

  2. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We

  3. Pulp mill effluent color removal process

    SciTech Connect

    Newman, H.L.; Adams, W.S. Jr.; Boyden, B.

    1991-07-16

    This paper describes a method for removing color from an effluent having a low pH and containing organic chromophores. It comprises: increasing the pressure of the effluent to between 200 and 600 psi to prevent the liquid within the effluent from changing phase; heating the effluent to a temperature between 200{degrees} and 250{degrees} C. for a retention time up to 20 minutes in accordance with the temperature to alter the chemical structure of lignin chromophores in the effluent; cooling the effluent to a temperature between 35{degrees} and 60{degrees} C.; adjusting the pressure of the effluent to between 0 to 10 psi; adjusting the pH of the effluent to between 10 and 12 to initiate flocculation of the altered chromophores in the effluent; and separating the chromophores from effluent.

  4. A Rinsing Effluent Evaporator for Dismantling Operations - 13271

    SciTech Connect

    Rives, Rachel

    2013-07-01

    Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facility of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large quantities of

  5. Radiation treatment of municipal effluent

    NASA Astrophysics Data System (ADS)

    Sawai, Teruko; Sekiguchi, Masayuki; Shimokawa, Toshinari; Sawai, Takeshi

    1993-10-01

    The recycling of municipal wastewater is an effective means of coping with the water shortage in Tokyo. After irradiation, the refractory organic substances in wastewater were decomposed. COD, light brown color, offensive odor and foaminess in the effluents were reduced with increasing dose. Inactivation efficiencies (D 10) of six microorganisms added to the secondary effluents and return sludge supernatant by irradiation were investigated. The survival curves of total bacteria, total coliforms and enterococci in the secondary effluents were compared. The number of total coliforms exponentially decreased with increasing dose and fell to undetectable levels at 0.5 kGy. The elimination of suspended solids in the secondary effluents is effective in diminishing the dose required to disinfect and prevent bacteria regrowth.

  6. Waste treatment of kraft effluents by white-rot fungi

    SciTech Connect

    Kondo, R.

    1996-10-01

    The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular, Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.

  7. Decreasing effluent loads through bleaching modification.

    PubMed

    Tran, Ai Van

    2006-02-01

    Almost all of the kraft pulp bleach plants worldwide are now practicing elemental chlorine-free (ECF) process to comply with environmental regulations in different countries. Usually, these conventional ECF bleaching sequences contain one or two alkaline extraction stages of which the first one is often the principal source of color and chemical oxygen demand (COD) in the resulting effluent. However, the results of this study showed that the ECF sequences which did not include any alkaline extraction stage and contained solely chlorine dioxide decreased both the color and COD loads of the effluent. On the other hand, the ECF sequences containing both chlorine dioxide and hydrogen peroxide but excluding the alkaline extraction stage could lower only the color but not the COD load. It is suggested that the total kappa factor (the ratio of the total active chlorine to the kappa number) affected the COD load and that the content of hexeneuronic acid groups influenced the color of the bleach effluent. Compared to the reference pulp, the viscosity of the pulp from the exclusively chlorine-dioxide-based ECF sequence without the alkaline extraction stage was lower but the tear index and sheet density at a given tensile index were similar.

  8. The effect of the natural bentonite to reduce COD in palm oil mill effluent by using a hybrid adsorption-flotation method

    NASA Astrophysics Data System (ADS)

    Dewi, Ratni; Sari, Ratna; Syafruddin

    2017-06-01

    Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.

  9. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Chou, Charissa J.; Johnson, Vernon G.

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  10. Management of synchronized network activity by highly active neurons

    NASA Astrophysics Data System (ADS)

    Shein, Mark; Volman, Vladislav; Raichman, Nadav; Hanein, Yael; Ben-Jacob, Eshel

    2008-09-01

    Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)—short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.

  11. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan.

  12. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    PubMed Central

    Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian

    2017-01-01

    Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437

  13. [Detoxification of textile industry effluents by photocatalytic treatment].

    PubMed

    Gebrati, L; Idrissi, L Loukili; Mountassir, Y; Nejmeddine, A

    2010-05-01

    In Morocco the textile industry, representing 31% of all Moroccan industries, is accompanied by high water consumption and important wastewater discharges rejected without any treatment. The focus of this study was to characterize the effluent from the textile industry, to test separately the effect of UV light and TiO2 catalyst and to determine the optimum conditions (pH, concentration and reaction time) in photocatalytic treatment to reduce chemical oxygen demand (COD) and colour. The biodegradability of the effluent was also studied using a toxicity test before and after treatment. After 90 min of reaction time at pH 4 and with 1.5 g F' of TiO2 catalyst, the photocatalytic treatment reached a global removal rate of 53% for COD and 89% for discoloration of the effluent. The relation BOD5/COD increased from around 0 to 0.3. The effluent became accessible to a biological treatment. The toxicity was studied by the Daphnia magna test over 24 hours. The results have shown the important toxicity of these effluents, which are rich in organic matter and other chemical compounds. After treatment by photocatalytic oxidation, the CI50 24 increased from 3.8% to 22.8%. This reduction of toxicity is related to the reduction of COD (53%) and colour (89%). Photocatalytic treatment has been shown to have an environmental benefit and, in combination with a secondary biological treatment, can be important for a significant reduction in the pollution of textile effluents.

  14. A review of membrane fouling in municipal secondary effluent reclamation.

    PubMed

    Ke, Xu; Hongqiang, Ren; Lili, Ding; Jinju, Geng; Tingting, Zhang

    2013-02-01

    Reclamation of municipal secondary effluent for non-potable purposes is considered vital in alleviating the demand for existing limited water supplies while helping to protect remaining water sources from being polluted. In recent decades, reverse osmosis and nanofiltration membrane technologies have become increasingly attractive for reclamation of municipal secondary effluent because they are highly efficient, easy to operate, and economical. However, membrane fouling is a major obstacle in the development of membrane technology in municipal secondary effluent reclamation. This paper reviews three types of membrane fouling in municipal secondary effluent reclamation, namely, effluent organic matter (EfOM) membrane fouling, microbial membrane fouling, and inorganic membrane fouling, as well as their correlation. Membrane fouling by EfOM and microbes are found to be severe, and they are significantly correlated. Most previous studies conducted laboratory-scale experiments of membrane fouling with model organic matters and bacteria, but these model organic matters and bacteria might still be unrepresentative. More studies on membrane fouling in municipal secondary effluent reclamation with actual wastewater are essential.

  15. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent.

    PubMed

    Köchling, Thorsten; Ferraz, Antônio Djalma Nunes; Florencio, Lourdinha; Kato, Mario Takayuki; Gavazza, Sávia

    2017-03-01

    Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.

  16. Catalytic wet oxidation of 2,4-dichlorophenol solutions: activity of the manganese-cerium composite catalyst and biodegradability of the effluent stream.

    PubMed

    Lee, Bing-Nan; Lou, Jie-Chung; Yen, Po-Chung

    2002-01-01

    Aqueous solutions containing 100 to 1000 mg/L of 2,4-dichlorophenol (2,4-DCP) were oxidized in an upflowing fixed-bed reactor in this study of manganese-cerium composite catalysts, which were prepared by the coprecipitation of both manganese nitrate and ceric nitrate at various molar concentrations. Results showed that 2,4-DCP conversion by wet oxidation in the presence of the manganese-cerium composite catalysts was a function of the molar ratio of the manganese-cerium catalyst. The kinetic behavior of 2,4-DCP oxidation with catalysis could be explained by using a zero-order rate expression. Total organic carbon (TOC) removal by wet oxidation in the absence of any catalyst was nil, while approximately 68% TOC reduction was achieved during wet oxidation over a manganese-cerium (7:3 mol/mol) catalyst at 160 degrees C and an oxygen partial pressure of 1.0 MPa. Moreover, the 5-day biochemical oxygen demand/chemical oxygen demand ratios of all the effluent streams were determined to be greater than 0.45 as the wet catalytic processes were carried out at a liquid hourly space velocity less than 24 h (-1), indicating that they could be made more amenable to further biological treatment.

  17. Chromium in tannery industry effluent and its effect on plant metabolism and growth.

    PubMed

    Nath, Kamlesh; Saini, Sonia; Sharma, Yogesh Kumar

    2005-04-01

    Different dilution levels of tannery treated effluent and their corresponding concentration of chromium (Cr6+) were studied in a petridish culture experiment on seed germination and seedling growth in radish (Raphanus sativus L). The different concentrations of Cr6+ (2, 5 and 10 ppm) and treated tannery effluent (10, 25 and 50%) showed reduction in seedling growth and related enzymatic activities with increase in concentration of Cr6+ in treatments and effluent both. The low concentration of chromium (2 ppm) and effluent dilution (10%) showed significant growth reduction separately. At this concentration of chromium and effluent dilution chlorophyll content, amylase, catalase and protein contents remained unchanged while with increase in Cr6+ concentration (>2ppm) and effluent dilution (> 10%) in treatments showed growth inhibitory effects.

  18. Effluent from bulk drug production is toxic to aquatic vertebrates.

    PubMed

    Carlsson, Gunnar; Orn, Stefan; Larsson, D G Joakim

    2009-12-01

    Very high levels of a range of pharmaceuticals have been reported recently in the effluent from a wastewater treatment plant near Hyderabad, India. The plant serves approximately 90 manufacturers of bulk drugs that primarily are exported to the world market. Fluoroquinolone antibiotics were found at levels that are highly toxic to various microorganisms. Even though milligram-per-liter levels of drugs targeting human proteins also have been found, it is difficult to conclude whether these levels are sufficiently high to adversely affect fish or amphibians due to the lack of relevant chronic toxicity data for most human pharmaceuticals. To assess potential effects on aquatic vertebrates, tadpoles of Xenopus tropicalis were exposed to three dilutions of effluent (0.2, 0.6, and 2%) over 14 d, starting at developmental stage 51. Additionally, newly fertilized zebrafish (Danio rerio) were exposed to diluted effluent in 96-well plates for up to 144 h postfertilization (hpf). The tadpoles' body lengths, weights, and developmental stages were recorded, whereas a larger number of sublethal and lethal endpoints were studied in the zebrafish. A 40% reduced growth of the exposed tadpoles was demonstrated at the lowest tested effluent concentration (0.2%), indicating potent constituents in the effluent that can adversely affect aquatic vertebrates. The median lethal concentration (LC50) for zebrafish at 144 hpf was between 2.7 and 8.1% in different experiments. Reduced spontaneous movements, pigmentation, and heart rate were recorded within 48 hpf at 8 and 16% effluent concentrations. Treated effluent from a plant that serves as an important link in the global supply chain for bulk drugs is thus shown to cause adverse effects to aquatic vertebrates even at very high dilutions.

  19. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  20. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  1. Energy Activities for Junior High Social Studies.

    ERIC Educational Resources Information Center

    Minnesota State Energy Agency, St. Paul.

    The document contains seven learning activities for junior high students on the energy situation. Objectives are to help students gain understanding and knowledge about the relationships between humans and their social and physical environments; solve problems and clarify issues; examine personal beliefs and values; and recognize the relationships…

  2. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  3. Therapy of highly active pediatric multiple sclerosis.

    PubMed

    Huppke, Peter; Huppke, Brenda; Ellenberger, David; Rostasy, Kevin; Hummel, Hannah; Stark, Wiebke; Brück, Wolfgang; Gärtner, Jutta

    2017-09-01

    Study aims were to determine the frequency of highly active disease in pediatric multiple sclerosis (MS), the response to natalizumab (NTZ) and fingolimod (FTY) treatment, and the impact of current treatment modalities on the clinical course. Retrospective single-center study in the German Center for MS in Childhood and Adolescence. Of 144 patients with first MS manifestation between 2011 and 2015, 41.6% fulfilled the criteria for highly active MS. In total, 55 patients treated with NTZ and 23 with FTY demonstrated a significant reduction in relapse rate (NTZ: 95.2%, FTY: 75%), new T2 lesions (NTZ: 97%, FTY: 81%), and contrast-enhancing lesions (NTZ: 97%, FTY: 93%). However, seven patients switched from NTZ to FTY experienced an increase in disease activity. Comparing pediatric MS patients treated in 2005 with those treated in 2015 showed a 46% reduction in relapse rate and a 44% reduction in mean Expanded Disability Status Scale (EDSS). The rate of highly active disease among pediatric MS patients is high; more than 40% in our cohort. Response to NTZ and FTY treatment is similar if not better than observed in adults. Current treatment modalities including earlier treatment initiation and the introduction of NTZ and FTY have significantly improved the clinical course of pediatric MS.

  4. Chromatographic purification of highly active yeast ribosomes.

    PubMed

    Meskauskas, Arturas; Leshin, Jonathan A; Dinman, Jonathan D

    2011-10-24

    Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.

  5. High-activity liquid packaging design criteria

    SciTech Connect

    Not Available

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions.

  6. 40 CFR 426.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.62 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  8. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  9. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  10. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  11. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  12. 40 CFR 463.27 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.27 Effluent limitations guidelines representing the degree of effluent...

  13. 40 CFR 427.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos-Cement Pipe Subcategory § 427.13 Effluent limitations guidelines representing the degree of effluent reduction...

  14. 40 CFR 427.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos-Cement Pipe Subcategory § 427.13 Effluent limitations guidelines representing the degree of effluent reduction...

  15. 40 CFR 430.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Deink Subcategory § 430.92 Effluent limitations representing the degree of effluent...

  16. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  17. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  18. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  19. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  3. 40 CFR 426.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.67 Effluent limitations guidelines representing the degree of effluent...

  4. 40 CFR 426.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.67 Effluent limitations guidelines representing the degree of effluent...

  5. 40 CFR 464.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Aluminum Casting Subcategory § 464.17 Effluent limitations guidelines representing the degree of effluent reduction...

  6. 40 CFR 414.63 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.63 Effluent limitations representing the degree of effluent reduction attainable by...

  7. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  8. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  9. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  10. 40 CFR 414.63 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.63 Effluent limitations representing the degree of effluent reduction attainable by...

  11. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  12. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  13. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  14. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  15. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  16. 40 CFR 414.83 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.83 Effluent limitations representing the degree of effluent reduction attainable by...

  17. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  18. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  19. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  20. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  1. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  2. 40 CFR 414.83 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.83 Effluent limitations representing the degree of effluent reduction attainable by...

  3. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  5. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  6. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  8. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  9. 40 CFR 405.37 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Cultured Products Subcategory § 405.37 Effluent limitations guidelines representing the degree of effluent...

  10. 40 CFR 420.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous Casting Subcategory § 420.62 Effluent limitations representing the degree of effluent reduction...

  11. 40 CFR 420.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous Casting Subcategory § 420.62 Effluent limitations representing the degree of effluent reduction...

  12. 40 CFR 427.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.62 Effluent limitations guidelines representing the degree of effluent...

  13. 40 CFR 427.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.52 Effluent limitations guidelines representing the degree of effluent...

  14. 40 CFR 420.117 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....117 Section 420.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... § 420.117 Effluent limitations representing the degree of effluent reduction attainable by...

  15. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.43 Effluent limitations and guidelines representing the degree of effluent...

  16. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.43 Effluent limitations and guidelines representing the degree of effluent...

  17. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.43 Effluent limitations and guidelines representing the degree of effluent...

  18. 40 CFR 422.62 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates Subcategory § 422.62 Effluent limitations and guidelines representing the degree of effluent...

  19. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.43 Effluent limitations and guidelines representing the degree of effluent...

  2. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent...

  3. 40 CFR 422.62 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates Subcategory § 422.62 Effluent limitations and guidelines representing the degree of effluent...

  4. 40 CFR 422.62 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates Subcategory § 422.62 Effluent limitations and guidelines representing the degree of effluent...

  5. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent...

  6. 40 CFR 422.62 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates Subcategory § 422.62 Effluent limitations and guidelines representing the degree of effluent...

  7. 40 CFR 422.62 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates Subcategory § 422.62 Effluent limitations and guidelines representing the degree of effluent...

  8. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent reduction...

  9. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent...

  10. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent reduction...

  11. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent...

  12. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent...

  13. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  14. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture.

    PubMed

    Cheng, Liang; Cord-Ruwisch, Ralf

    2013-10-01

    In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 μmol min⁻¹ ml⁻¹ culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field.

  15. Modelling defined mixtures of environmental oestrogens found in domestic animal and sewage treatment effluents using an in vitro oestrogen-mediated transcriptional activation assay (T47D-KBluc).

    PubMed

    Bermudez, Dieldrich S; Gray, L Earl; Wilson, Vickie S

    2012-06-01

    There is growing concern of exposure of fish, wildlife and humans to water sources contaminated with oestrogens and the potential impact on reproductive health. Environmental oestrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipal waste, agricultural and industrial effluents. US EPA's drinking water contaminant candidate list 3 (CCL3) includes several oestrogenic compounds. Although these contaminants are currently not subject to any proposed or promulgated national primary drinking water regulations, they are known or anticipated to occur in public water systems and may require future regulation under the Safe Drinking Water Act. Using an in vitro transcriptional activation assay, this study evaluated oestrogens from CCL3 both individually and as a seven oestrogen mixture (fixed ray design) over a broad range of concentrations, including environmentally relevant concentrations. Log EC(50) and Hillslope values for individual oestrogens were as follows: estrone, -11.92, 1.283; estradiol-17α, -9.61, 1.486; estradiol-17β, 11.77, 1.494; estriol, -11.14, 1.074; ethinyl estradiol-17α, -12.63, 1.562; Mestranol, -11.08, 0.809 and Equilin, -11.48, 0.946. In addition, mixtures that mirrored the primary oestrogens found in swine, poultry and dairy CAFO effluent (fixed-ratio ray design), and a ternary mixture (4 × 4 × 4 factorial design) of oestrogens found in hormone replacement therapy and/or oral contraceptives were tested. Mixtures were evaluated for additivity using both the concentration addition (CA) model and oestrogen equivalence (EEQ) model. For each of the mixture studies, a broad range of concentrations were tested, both above and below environmentally relevant concentrations. Results show that the observed data did not vary consistently from either the CA or EEQ predictions for any mixture. Therefore, either the CA or EEQ model should be useful predictors for modelling oestrogen mixtures. © 2012 The Authors

  16. 200 area effluent treatment facility opertaional test report

    SciTech Connect

    Crane, A.F.

    1995-10-26

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

  17. Effluent blending in constructed wetlands: Pollution prevention applications at a coal yard treatment facility

    SciTech Connect

    Carder, J.P.; Hoylman, A.M.; Sparks, B.J.

    1995-12-31

    Effluent blending, in combination with constructed wetland biotechnology, is a promising method for reducing the loading rates of pollution to receiving streams. At Oak Ridge National Laboratory, a project is underway to demonstrate this principle. An 8:2 ratio of sewage treatment plant to coal yard runoff treatment facility (CYRTF) effluent will be polished by 2 constructed wetland cells containing emergent wetland plants in saturated pea gravel at a rate of 3600 gallons per day. The relatively high concentration of nutrients in the STP effluent should stimulate biological processes leading to the reduction of chemical oxygen demand and the conversion of excess sulfate (in the CYRTF effluent) to alkalinity. Chlorine, which is added to the STP effluent to control bacteria, should also be eliminated. Measurements of wastewater toxicity, before and after the effluent blend has passed through the constructed wetlands, will be used to assess the technology`s effectiveness at reducing pollution.

  18. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna.

    PubMed

    Chamorro, Soledad; López, Daniela; Brito, Pablina; Jarpa, Mayra; Piña, Benjamin; Vidal, Gladys

    2016-12-01

    The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.

  19. Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.

    PubMed

    Sarma, Loka Subramanyam; Kumar, Jyothi Rajesh; Reddy, Koduru Janardhan; Thriveni, Thenepalli; Reddy, Ammireddy Varada

    2008-01-01

    Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) is proposed as a new sensitive reagent for the extractive spectrophotometric determination of nickel(II). PPT reacts with nickel(II) in the pH range 4.0-6.0 to form a reddish brown colored complex, which was well-extracted into n-butanol. The absorbance value of the Ni(II)-PPT complex was measured at different time intervals at 430nm, to ascertain the stability of the complex. The system obeyed Beer's law up to 0.5-5.0microgmL(-1) of nickel(II), with an excellent linearity in terms of the correlation coefficient value of 0.99. The molar absorptivity and Sandell's sensitivity of the extracted species are 1.92 x 10(4)Lmol(-1)cm(-1) and 0.003057microgcm(-2) respectively at 430nm. The detection limit of the method is 0.069microgmL(-1). To assess precision and accuracy of the developed method, determinations were carried out at different concentrations. The relative standard deviation of all measurements does not exceed 2.62%. The developed method has been satisfactorily applied for the determination of nickel(II), when present alone or in the presence of diverse ions, which are usually associated with nickel(II) in medicinal leaves, soil and industrial effluent samples. Various standard and certified reference materials (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have also been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are compared with those obtained from an atomic absorption spectrometer (AAS).

  20. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    PubMed

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated.

  1. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance.

    PubMed

    Loderer, Christian; Wörle, Anna; Fuchs, Werner

    2012-04-03

    Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional

  2. Active interrogation of highly enriched uranium

    SciTech Connect

    Moss, C. E.; Hollas, C. L.; Myers, W. L.

    2004-01-01

    Active interrogation techniques provide reliable detection of highly enriched uranium (HEU) even when passive detection is difficult. We use 50-Hz pulsed beams of bremsstrahlung photons from a 10-MeV linac or 14-MeV neutrons from a neutron generator for interrogation, thus activating the HEU. Detection of neutrons between pulses is a positive indicator of the presence of fissionable material. We detect the neutrons with three neutron detector designs based on {sup 3}He tubes. This report shows examples of the responses in these three detectors, for unshielded and shielded kilogram quantities of HEU, in containers as large as cargo containers.

  3. Distillery effluent induced alterations in the haematological profile of fingerlings of Colisa fasciatus.

    PubMed

    Shukla, Anuradha; Shukla, J P

    2013-09-01

    Present study deals with the impact of Gorakhpur distillery effluent at various concentration levels (5, 10 and 20%) on the blood profile of fingerling of, Colisa fosciotus after 30 days of exposure. Observations revealed that 5% of effluent concentration produced no significant alterations in various haematological parameters except for clotting time and immature erythrocytes. However, 10% of effluent concentration brought significant alterations in hematocrit as well as clotting time and 20% of effluent concentration produced highly significant (P<0.001) alteration in most of the haematological parameters except for hemoglobin percentage.

  4. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2015-01-01

    The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents.

  5. Reuse of washing effluent containing oxalic acid by a combined precipitation-acidification process.

    PubMed

    Lim, Mihee; Kim, Myoung-Jin

    2013-01-01

    This study aims at evaluating the reuse feasibility of effluent produced by the soil washing of mine tailings with oxalic acid. Alkaline chemicals such as NaOH, Ca(OH)(2), and Na(2)CO(3) are used for the precipitation of arsenic and heavy metals in the effluent containing oxalic acid. All of the target contaminants are removed with very high efficiency (up to 100%) at high pH. The precipitation using NaOH at pH 9 is determined to be the most cost-effective method for the removal of arsenic as well as heavy metals in the effluent. The effluent decontaminated by NaOH is consecutively reused for the soil washing of raw mine tailings, resulting in considerable efficiency. Furthermore, even more arsenic and heavy metals are extracted from raw mine tailings by acidifying the decontaminated effluent under the alkaline condition, compared with direct reuse of the decontaminated effluent. Here, the oxalic acid, which is a weak complex-forming ligand as well as a weak acid, has noticeable effects on both soil washing and effluent treatment by precipitation. It extracts efficiently the contaminants from the mine tailings without adverse change of soil and also makes possible the precipitation of the contaminants in the effluent unlike strong chelating reagent. Reuse of the washing effluent containing oxalic acid would make the existing soil washing process more environment-friendly and cost-effective. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. ESTROGENIC AND CYP1A RESPONSE OF MUMMICHOGS AND SUNSHINE BASS TO SEWAGE EFFLUENT

    EPA Science Inventory

    Recent studies demonstrating feminization of effluent-exposed wild-caught male fish in the UK have prompted much research regarding the estrogenic activity of effluent from municipal sewage treatment plants (MSTPs). To investigate the estrogenicity and cytochrome P450 1A (CYP1A) ...

  7. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  8. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  9. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  10. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  11. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  12. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  13. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  14. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  15. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  16. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  17. Effluent Charts Help | ECHO | US EPA

    EPA Pesticide Factsheets

    Effluent Charts present dynamic charts and tables of permitted effluent limits, releases, and violations over time for Clean Water Act (CWA) wastewater discharge permits issued under the National Pollutant Discharge Elimination System (NPDES).

  18. Production of high specific activity silicon-32

    SciTech Connect

    Phillips, D.R.; Brzezinski, M.A.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  19. Memory and depressive effect on male and female Swiss mice exposed to tannery effluent.

    PubMed

    Guimarães, Abraão Tiago Batista; de Oliveira Ferreira, Raíssa; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-03-10

    Although tannery industries generate substantial profits to the countries they are located in, they work with one of the most environmentally harmful human activities. Tannery effluents (TE) are highly toxic; thus, their improper release into water bodies may cause severe problems to individuals depending on this water. Therefore, the aim of the current study is to assess the effects of oral exposure to TE on the anxiety-, memory deficit- and depression-predictive behaviors in male and female Swiss adult mice. The following experimental groups were set in order to do so, control, positive control (reference drugs) and effluent. The animals in the effluent group were treated with 5% TE diluted in potable water for 15 consecutive days. The neurobehavioral tests started on the 12th experimental day. The results found through the elevated plus-maze test (for anxiety prediction) showed no anxiogenic or anxiolytic effects on animals exposed to TE. On the other hand, animals treated with TE showed short- and long-term memory deficit in the object recognition test, as well as depression-predictive behavior in the forced swimming test. These results may concern the high concentration of heavy metals and neurotoxic organic compounds in the TE. Therefore, the oral exposure to TE, even for a short period-of-time, has effects on the central nervous system (CNS) that lead to neurobehavioral changes. Thus, the current study broadens the knowledge on this research field by demonstrating the neurotoxicity of xenobiotics to male and female Swiss mice.

  20. Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process.

    PubMed

    Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S

    2007-12-01

    This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.

  1. Polyenylcyclopropane carboxylic esters with high insecticidal activity.

    PubMed

    Ferroni, Claudia; Bassetti, Lucio; Borzatta, Valerio; Capparella, Elisa; Gobbi, Carlotta; Guerrini, Alberto; Varchi, Greta

    2015-05-01

    Pyrethroids are synthetic derivatives of naturally occurring pyrethrum. These molecules are widely used in agriculture for ant, fly and mosquito control and for lawn and garden care. Pyrethroids are the optically active esters of 2,2-dimethyl-3-(2-methylpropenyl)-cyclopropane carboxylic acid, also known as chrysanthemic acid. However, their intense use has resulted in the development of resistance in many insect species. Herein, specific structural modifications of the pyrethroid scaffold and their effect on insecticidal activity, especially on resistant pests strains, are reported. The exposure to (1R)-trans-(E/Z)-2,3,5,6-tetrafluorobenzyl-3-(buta-1,3-dienyl)-2,2-dimethyl cyclopropanecarboxylate and its diastereomers produced 100% mortality in yellow fever mosquitoes (Aedes aegypti), house mosquitoes (Culex quinquefasciatus) and houseflies (Musca domestica). Moreover, this compound provided complete knockdown within 15 min of exposure against cockroaches (Blattella germanica) and maintained an excellent knockdown activity at 10 days after treatment. Novel pyrethroid derivatives obtained from 2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylic acid are described. These derivatives display high insecticidal activity, a wide spectrum of action and no toxicity towards mammalians. The proposed synthetic procedures are highly efficient and inexpensive, and therefore suitable for industrial scale-up. © 2014 Society of Chemical Industry.

  2. CYP1A andother biomarker responses to effluents from a textile mill in the Volta River (Ghana) using caged tilapia (Oreochromis niloticus) andsediment-exposed mudfish (Clarias anguillaris).

    PubMed

    Gadagbui, B K; Goksrøyr, A

    1996-01-01

    Abstract The ecotoxicological effects of a textile mill effluent were investigated by caging tilapia (Oreochromis niloticus) in the Volta River, Ghana, andby exposing mudfish (Clarias anguillaris) to sediment collected from the same river. Tilapia were caged for 3 weeks at three locations (0.6, 4, and8 km) downstream from the effluent outlet. Mudfish were exposed in the laboratory for 2 weeks to sediment collected from the vicinity of the effluent outlet and8 km downstream. Upstream reference locations 2 km (tilapia) and10.2 km (mudfish) were included. Liver cytochrome P4501A (CYP1A) monooxygenase activity (measured as activity of 7-ethoxyresorufin O-deethylase, EROD, andCYP1A protein level) andtwo conjugation enzymes, UDP-glucuronosyl transferase (UDP-GT) andglutathione Stransferase (GST), were analysed. A distance-related decrease in EROD activity andCYP1A protein level was observed. EROD activity was 21-fold higher in tilapia caged at the site nearest the effluent outlet and25-fold higher in mudfish exposed to sediment collected from the vicinity of the outlet, compared with the respective reference values. UDP-GT andGST levels increased significantly by 70 and27%, respectively, in tilapia while the respective levels in mudfish were 73 and28%, compared with reference values. The results clearly indicate that the textile mill effluent contains some highly potent inducers of biotransformation enzymes. This first assessment of the biological effects of organic pollutants in the Volta River demonstrates the utility of the CYP1A system as a valuable early warning biomarker of industrial effluents andalso as a biomarker to detect exposure of aquatic resources to environmental chemical contamination in tropical waters.

  3. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    PubMed

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various

  4. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum for...

  5. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum for...

  6. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum for...

  7. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum for...

  8. 40 CFR 408.267 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best conventional pollutant... guidelines representing the degree of effluent reduction attainable by the application of the best... application of the best conventional pollutant control technology: Effluent characteristic Effluent...

  9. 40 CFR 408.257 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best conventional pollutant... representing the degree of effluent reduction attainable by the application of the best conventional pollutant... best conventional pollutant control technology: Effluent characteristic Effluent limitations Maximum...

  10. Environmental regulatory guide for radiological effluent monitoring and environmental surveillance

    SciTech Connect

    Not Available

    1991-01-01

    Under the Atomic Energy Act of 1954, as amended, the US Department of Energy (DOE) is obligated to regulate its own activities so as to provide radiation protection for both workers and the public.'' Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards,'' further requires the heads of executive agencies to ensure that all Federal facilities and activities comply with applicable pollution control standards and to take all actions necessary for the prevention, control, and abatement of environmental pollution. This regulatory guide describes the elements of an acceptable effluent monitoring and environmental surveillance program for DOE sites involving radioactive materials. These elements are applicable to all DOE and contractor activities for which the DOE exercises environmental, safety, and health responsibilities, and are intended to be applicable over the broad range of DOE facilities and sites. In situations where the high-priority elements may not provide sufficient coverage of a specific monitoring or surveillance topic, the document provides additional guidance. The high-priority elements are written as procedures and activities that should'' be performed, and the guidance is written as procedures and activities that should'' be performed. The regulatory guide both incorporates and expands on requirements embodied in DOE 5400.5 and DOE 5400.1. 221 refs., 2 figs., 6 tabs.

  11. Characterisation of acute toxicity, genotoxicity and oxidative stress posed by textile effluent on zebrafish.

    PubMed

    Zhang, Wenjuan; Liu, Wei; Zhang, Jing; Zhao, Huimin; Zhang, Yaobin; Quan, Xie; Jin, Yihe

    2012-01-01

    Textile industries are important sources of toxic discharges and contribute enormously to water deterioration, while little attention has been paid to the toxicity of textile effluents in discharge regulation. Bioassays with zebrafish were employed to evaluate the toxicity of wastewater samples collected from different stages at a textile factory and sewage treatment plants (STPs). Physico-chemical parameters, acute toxicity, genotoxicity and oxidative stress biomarkers were analyzed. The wastewater samples from bleaching, rinsing and soaping of the textile factory exhibited high acute toxicity and genotoxicity. The coexisting components of dye compounds, as assistants and oxidants, seemed to cause some effect on the toxic response. After treatment employing the anoxic-oxic (A/O) process in STPs, the color and the chemical oxygen demand (COD) were reduced by 40% and 84%, respectively, falling within the criteria of the Chinese Sewage Discharge Standard. In contrast, increases in acute toxicity and genotoxicity were observed in the anaerobic tank, indicating the formation of toxic intermediates. The genotoxicity of the effluent of the STP was not significantly different from that of the influent, suggesting the wastewater treatment processes were not effective in removing the genotoxicity of the dye wastewater. Results indicated that the effluent contains pro-oxidants since the activities of glutathione (GSH), malondialdehyde (MDA), and total anti-oxidation capacity (T-AOC) were all elevated. In addition, decreases in superoxide dismutase (SOD) and glutathione-S transferase (GST) activities observed can be interpreted as a cytotoxicity sign due to an over-production of reactive oxygen species (ROS). The results of the present study suggest that the STPs were not capable of reducing the toxicity of wastewater sufficiently. Further treatment is needed to remove the potential risks posed by textile effluent to ecosystems and human health, and employing a toxicity index

  12. Lipases That Activate at High Solvent Polarities.

    PubMed

    Skjold-Jørgensen, Jakob; Vind, Jesper; Svendsen, Allan; Bjerrum, Morten J

    2016-01-12

    Thermomyces lanuginosus lipase (TlL) and related lipases become activated in low-polarity environments that exist at the water-lipid interface where a structural change of the "lid" region occurs. In this work, we have investigated the activation of TlL (Lipase_W89) and certain lid mutants, containing either a single positive charge mutation, E87K (Lipase_K87_W89), within the lid region or a lid residue composition of both lipase and esterase character (Hybrid_W89) as a function of solvent polarity. Activation differences between the variants and TlL were studied by a combination of biophysical and theoretical methods. To investigate the structural changes taking place in the lid region upon lipase activation, we used a fluorescence-based method measuring the efficiency of Trp89 in the lid to quench the fluorescence of a bimane molecule attached in front (C255) and behind (C61) the lid. These structural changes were compared to the enzymatic activity of each variant at the water-substrate interface and to theoretical calculations of the energies associated with lid opening as a function of the dielectric constant (ε) of the environment. Our results show that the lid in Lipase_K87_W89 undergoes a pronounced structural transition toward an open conformation around ε = 50, whereas only small changes are detected for Lipase_W89 ascribed to the stabilizing effect of the positive charge mutation on the open lid conformation. Interestingly, Hybrid_W89, with the same charge as Lipase_W89, shows a stabilization of the open lid even more pronounced at high solvent polarities than that of Lipase_K87_W89, allowing activation at ε < 80. This is further indicated by measurement of the lipase activity for each variant showing that Hybrid_W89 is more quickly activated at the water-lipid interface of a true, natural substrate. Combined, we show that a correlation exists between structural changes and enzymatic activities detected on one hand and theoretical calculations on lid

  13. Fermentative effluents from hydrogen producing bioreactor as substrate for poly(beta-OH) butyrate production with simultaneous treatment: an integrated approach.

    PubMed

    Venkata Mohan, S; Reddy, M Venkateswar; Subhash, G Venkata; Sarma, P N

    2010-12-01

    The feasibility of bioplastics production as poly(beta-OH)butyrate (PHB) was studied with individual volatile fatty acids (VFA) and acid-rich effluents from a biohydrogen producing reactor (HBR) as primary substrates employing aerobic consortia as biocatalyst under anoxic microenvironment. Butyrate as substrate showed higher PHB productivity (33%) followed by acetate (32%), acids mixture (16%) and propionate (11%) among synthetic VFA studied. Acid-rich effluents from HBR yielded higher PHB productivity (25%) especially at lower substrate loading conditions. Decrement observed in PHB production (from 25% to 6%) with increase in substrate load might be due to the presence of high concentration of residual carbon along with acid metabolites. Neutral redox operation showed effective PHB production compared to acidic and basic conditions due to associated higher metabolic activity of the biocatalyst. The integrated approach helped to treat additional COD from acid-rich HBR effluents apart from by-product recovery.

  14. Anammox process for nitrogen removal from anaerobically digested fish canning effluents.

    PubMed

    Dapena-Mora, A; Campos, J L; Mosquera-Corral, A; Méndez, R

    2006-01-01

    The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700-1000 g NH4+ -Nm(-3)), organic carbon content (1000-1300 g TOCm(-3)) and salinity up to 8,000-10,000 g NaCl m(-3). In the Sharon reactor, approximately 50% of the NH4+ -N was oxidised to NO2- -N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m(-3) x d(-1). The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO2- -N concentration was higher than the NH4+ -N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340g NH4+ -N m(-3) and 440 g NO2- -N m(-3), respectively. Based on these results, it seems that the Sharon-Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO2- -N/NH4+ -N ratio.

  15. Normal water irrigation as an alternative to effluent irrigation in improving rice grain yield and properties of a paper mill effluent affected soil.

    PubMed

    Boruah, D; Hazarika, S

    2010-07-01

    Rice crop (var. Luit) was grown under controlled conditions in paper mill effluent contaminated soil and irrigated with undiluted paper mill effluent as well as normal water and compared the results against a control treatment consisting of similar unaffected soil irrigated with normal water. The effluent was alkaline (pH 7.5), containing high soluble salts (EC 2.93 dS m(-1)), chloride (600 mg L(-1)) and total dissolved solids (1875 mg L(-1)). At maximum tillering (MT) stage effluent irrigation significantly (P < 0.05) reduced the leaf numbers per hill and leaf area by 19.8 and 36.4 %, respectively. Tiller number and maximum root length were reduced by 19.3% and 12.5%, respectively at fifty percent flowering (FF) stage. Effluent irrigated crop recorded significant reduction in the dry matter production (17.5-24.9%) and grain yield (19%). Unfilled grain was increased by 10.7%. Higher concentration of sodium, calcium and magnesium in the effluent irrigated soil affected K uptake. Available soil P was lowest while available N, K, S and exchangeable and water soluble Na, K, Ca, Mg were highest in effluent irrigated soil. Chloride content found to increase (3-7 folds) while microbial biomass carbon reduced (10-37%). The adverse effect of the paper mill effluent on the crop as well as on the affected soil could be reduced significantly through normal water irrigation.

  16. Modelling studies by adsorption for the removal of sunset yellow azo dye present in effluent from a soft drink plant.

    PubMed

    Vasques, Erika de Castro; Carpiné, Danielle; Dagostin, João Luiz Andreotti; Canteli, Anderson Marcos Dias; Igarashi-Mafra, Luciana; Mafra, Marcos Rogério; Scheer, Agnes de Paula

    2014-01-01

    This paper reports a study on the adsorption of the dye sunset yellow, present in an aqueous synthetic solution and a real effluent from a soft drink plant, onto granular-activated carbon derived from coconut husks, using a batch system. The kinetic equilibrium was investigated using two different dye concentrations (10(2) and 10(3) mg L(-1)) at 25 degrees C and 150 rpm. The adsorption isotherms and thermodynamics parameters were evaluated at 25 degrees C, 35 degrees C, 45 degrees C and 55 degrees C, using the synthetic and real effluents (5-10(3) mg L(-1)). Experimental data showed that the adsorbent was effective in the removal of sunset yellow dye and the contact time required to attain the adsorption equilibrium did not exceed 10 h. The adsorption capacity was not influenced within a wide range of pH values (1-12), although at high dye concentrations it increased with increasing temperature for both the synthetic and real effluents. The Redlich-Peterson isotherm best represented the equilibrium data of the system. The negative values obtained for DeltaG0 and DeltaH0 suggest that this adsorption process is spontaneous, favourable, and exothermic. The positive values for DeltaS0 indicate an increase in the entropy at the solid/liquid interface. Based on the results of this study, adsorption appears to be a promising method for the removal of sunset yellow azo dye from effluent generated at soft drink plants.

  17. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    PubMed

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-04-03

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO2. This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process.

  18. Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor.

    PubMed

    Driessel, B V; Christov, L

    2001-01-01

    Bleach plant effluents from the pulp and paper industry generated during bleaching with chlorine-containing chemicals are highly colored and also partly toxic due to the presence of chloro-organics, hence the need for pretreatment prior to discharge. In a rotating biological contactor (RBC) reactor effluent decolorization was studied using Coriolus versicolor, a white-rot fungus and Rhizomucor pusillus strain RM7, a mucoralean fungus. Decolorization by both fungi was directly proportional to initial color intensities. It was found that the extent of decolorization was not adversely affected by color intensity, except at the lowest level tested. It was shown that decolorization of 53 to 73% could be attained using a hydraulic retention time of 23 h. With R. pusillus, 55% of AOX were removed compared to 40% by C. versicolor. Fungal treatment with both R. pusillus and C. versicolor rendered the effluent essentially nontoxic. Addition of glucose to decolorization media stimulated color removal by C. versicolor, but not with R. pusillus. Ligninolytic enzymes (manganese peroxidase and laccase) were only detected in effluent treated by C. versicolor. It seems that there are definite differences in the decoloring mechanisms between the white-rot fungus (adsorption + biodegradation) and the mucoralean fungus (adsorption). This aspect needs to be investigated in greater detail to verify the mode responsible for the decolorization activity in both types of fungi.

  19. Demasculinization of male fish by wastewater treatment plant effluent

    USGS Publications Warehouse

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  20. Impact of environmental conditions on bacterial photoreactivation in wastewater effluents.

    PubMed

    Shafaei, Shirin; Klamerth, Nikolaus; Zhang, Yanyan; McPhedran, Kerry; Bolton, James R; Gamal El-Din, Mohamed

    2017-01-25

    Photoreactivation is a process where ultraviolet (UV)-induced damage to the DNA of microorganisms can be reversed by exposure to near UV and visible light. To date, most photoreactivation experiments have been carried out under laboratory conditions using standard microorganisms that do not reflect the natural conditions of municipal wastewater effluents. Photoreactivation could increase the concentration of pathogens released into natural systems, leading to negative impacts on fish, shellfish, and clams. In addition, pathogen release can increase health risks of downstream activities, such as swimming. This study focused on the photoreactivation of total coliforms in municipal wastewater effluents under natural sunlight conditions. The concept of 'effective reactivation fluence' (ERF) is used to evaluate and normalize the results from various light sources for a direct comparison. ERF values higher than 30 J cm(-2), in conjunction with lowered nutrient concentrations (dilution of effluents with river water), decreased the photoreactivation of total coliforms. In contrast, higher temperatures (up to 25 °C) and blocking the UV-B portion of natural sunlight using a polyethylene terephthalate (PET) bottle increased their photoreactivation. The results of this research will provide guidance to wastewater plant operators on the potential need to minimize the level of photoreactivation in effluents before the effluents were released into receiving water bodies.

  1. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.

  2. Evaluating the potential of effluent extracts from pulp and paper mills in Canada, Brazil, and New Zealand to affect fish reproduction: Estrogenic effects in fish.

    PubMed

    Orrego, Rodrigo; Milestone, Craig B; Hewitt, L Mark; Guchardi, John; Heid-Furley, Tatiana; Slade, Alison; MacLatchy, Deborah L; Holdway, Douglas

    2017-06-01

    The authors examined the potential of pulp mill effluent from pulp-producing countries (Canada, Brazil, New Zealand) to affect fish reproduction. Specifically, the estrogenic effects in juvenile rainbow trout (Oncorhynchus mykiss) pulse-exposed to 11 different mill effluent extracts (intraperitoneal injections of solid-phase extraction-dichloromethane nonpolar fraction). The results indicated that effluent extracts were estrogenic in juvenile trout irrespective of the gender, as reflected by increasing level of plasma vitellogenin (VTG; Brazil > New Zealand > Canada). Despite the high variability observed among mills, differences in VTG levels were related to the type of mill process (kraft > elementary chlorine-free kraft > thermomechanical pulping). Moreover, effluent treatments did not appear to significantly decrease VTG induction. A consistent estrogenic effect was observed in those mills that process a combination of feedstocks (softwood and hardwood), with the highest increase in VTG related to eucalyptus feedstock. The results demonstrate significant estrogenic effects of pulp mill effluents on chronically exposed juvenile trout, suggesting that in vivo metabolic activation of precursors is necessary to cause the observed increases in VTG levels. This molecular estrogenic response provides a useful starting point for predicting population-level impacts through the adverse outcome pathway methodology. Environ Toxicol Chem 2017;36:1547-1555. © 2016 SETAC. © 2016 SETAC.

  3. Reduction of trihalomethane precursors of dissolved organic matter in the secondary effluent by advanced treatment processes.

    PubMed

    Wei, Liang-Liang; Zhao, Qing-Liang; Xue, Shuang; Chang, Chein-Chi; Tang, Feng; Liang, Guan-Liang; Jia, Ting

    2009-09-30

    Wastewater effluent collected from the Wenchang Wastewater Treatment Plant (Harbin, China) was used as source water for advanced treatment and reclamation. Since dissolved organic matter (DOM) in the secondary effluent contains a high concentration of trihalomethanes (THMs) precursors, several processes of advanced treatments including granular activated carbon (GAC) adsorption, sand column biodegradation, horizontal subsurface flow wetland (HSFW) treatment, laboratory-scale soil aquifer treatment (SAT) and GAC+SAT were used in this study to compare and differentiate the removal mechanisms of DOM. DOM in the secondary effluent and the treated effluents was fractionated into five classes using XAD resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). Results showed that HPO-A and HPI were two main fractions of the DOM in the secondary effluent, accounting for 30.0% and 45.5% of the bulk DOM, respectively. HPO-A exhibited higher trihalomethane formation potential (THMFP) and specific THMFP (STHMFP) than HPI during the chlorination process. The order of the dissolved organic carbon (DOC) removal with respect to different advanced treatments was observed to be GAC+SAT>SAT>GAC>sand column>HSFW. As for the DOM removal mechanisms, the advanced treatment processes of GAC adsorption, SAT and GAC+SAT tended to adsorb more HPO-A, HPO-N and TPI-A and could reduce the aromaticity of those DOM fractions efficiently. Correspondingly, the advanced treatment processes of sand column, SAT, HSFW and GAC+SAT removed more HPI and TPI-N through biodegradation and each of the DOM fractions had an increased aromaticity. The removal order of the THMs precursor by the advanced treatment processes was GAC+SAT>GAC>SAT>sand column>HSFW. The adsorption reduced the STHMFP of the DOM fractions effectively, whereas the biodegradation mechanism of the treatments (sand column, SAT, GAC+SAT and HSFW

  4. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  5. Cleanup Verification Package for the 116-K-2 Effluent Trench

    SciTech Connect

    J. M. Capron

    2006-04-04

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  6. Nonradiological Liquid Effluent Monitoring Program FY 1991, annual report

    SciTech Connect

    Peterson-Wright, L.J.; Meachum, T.R.; Einerson, J.J.

    1992-06-01

    A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG&G Idaho, Inc., for the US Department of Energy at the Idaho National engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 12 liquid effluent streams from fiscal year 1987 through fiscal year 1991 are presented with emphasis on fiscal year 1991 (October 1990 through September 1991) activities.

  7. Nonradiological Liquid Effluent Monitoring Program FY 1991, annual report

    SciTech Connect

    Peterson-Wright, L.J.; Meachum, T.R.; Einerson, J.J.

    1992-06-01

    A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG G Idaho, Inc., for the US Department of Energy at the Idaho National engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 12 liquid effluent streams from fiscal year 1987 through fiscal year 1991 are presented with emphasis on fiscal year 1991 (October 1990 through September 1991) activities.

  8. Nonradiological liquid effluent monitoring program. 1992 annual report

    SciTech Connect

    Johnson, J.A.; Peterson-Wright, L.J.; Meachum, T.R.

    1993-08-01

    A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG&G Idaho, Inc., for the U.S. Department of Energy at the Idaho National Engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 28 liquid effluent streams from (October 1991 through December 1992) are presented with emphasis on calendar year 1992 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits.

  9. Facility effluent monitoring plan for the 324 Facility

    SciTech Connect

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  10. Reverse osmosis separation of radiocontaminants from ammonium diuranate effluents

    SciTech Connect

    Prabhakar, S.; Misra, B.M.; Roy, S.B.; Meghal, A.M.; Mukherjee, T.K. )

    1994-05-01

    A reverse osmosis process has been found to be effective for the separation of radiocontaminants from ammonium diuranate effluents in a uranium metal plant. Pilot-plant-scale experiments were conducted using cellulosic membranes in a plate module system and actual plant effluents containing more than about 40,000 ppm of ammonium and nitrate species and having radiocontaminants corresponding to specific activities of about 10[sup [minus]3] Ci/m[sup 3] beta/gamma emitters. The results indicated that more than 95% by volume of the treated effluents were within disposal limits, while the remaining contained the concentrate, which can be treated for possible containment. 6 refs., 2 figs., 5 tabs.

  11. Decolorization of textile dye effluent by genetically improved bacterial strains.

    PubMed

    Sukumar, M; Sivasamy, A; Swaminathan, G

    2007-01-01

    Synthetic dyes are released into the environment from textile industrial effluents. The discharge of this colored wastewater into rivers and lakes leads to a reduction in sunlight penetration in natural water bodies, which, in turn, decreases both photosynthetic activity and dissolved oxygen concentration and is toxic to living beings. Bacterial isolates are optimized for growth and biomass production before using them for decolorizing dye effluent. The bacterial isolates Bacillus sp. 1 and Bacillus sp. 2 were employed at different percentages by volume with standard nutrient concentration. Of these bacterial isolates Bacillus sp. 2 recorded maximum color reduction. The pH and electrical conductivity (EC) were reduced in the decolorized effluent, and a reduction in biologic oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids (TDS) were also observed.

  12. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  13. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  14. Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent.

    PubMed

    Ciputra, Sandra; Antony, Alice; Phillips, Ross; Richardson, Des; Leslie, Greg

    2010-09-01

    Recycling paper mill effluent by conventional water treatment is difficult due to the persistence of salt and recalcitrant organics. Elimination of dissolved organic matter (DOM) from paper mill effluent was studied using three treatment options, ion exchange resin (IER), granular activated carbon (GAC) and nanofiltration (NF). The removal efficiency was analysed based on hydrophobicity, molecular weight and fluorogenic origin of the DOM fractions. For IER, GAC and NF treatments, overall removal of dissolved organic carbon was 72%, 76% and 91%, respectively. Based on the hydrophobicity, all the three treatment methods majorly removed hydrophobic acid fractions (HPhoA). Further, IER acted on all fractions, 57% of HPhoA, 44% of transphilic acid and 18% of hydrophilics, substantiating that the removal is by both ion exchange and adsorption. Based on the molecular weight, IER and GAC treatments acted majorly on the high molecular weight fractions, whereas NF eliminated all molecular weight fractions. After GAC adsorption, some amount of humic hydrolysates and low molecular weight neutrals persisted in the effluent. After IER treatment, amount of low molecular weight compounds increased due to resin leaching. Qualitative analysis of fluorescence excitation emission matrices showed that the fulvic acid-like fluorophores were more recalcitrant among the various DOM fractions, considerable amount persisted after all the three treatment methods. Three treatment methods considerably differed in terms of removing different DOM fractions; however, a broad-spectrum process like NF would be needed to achieve the maximum elimination. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options

    NASA Astrophysics Data System (ADS)

    Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.

    2010-08-01

    SummaryHospital wastewaters contain a variety of toxic or persistent substances such as pharmaceuticals, radionuclides, solvents and disinfectants for medical purposes in a wide range of concentrations due to laboratory and research activities or medicine excretion. Most of these compounds belong to the so called emerging contaminants; quite often unregulated pollutants which may be candidates for future regulation depending on research on their potential health effects and monitoring of their occurrence. Their main characteristic is that they do not need to persist in the environment to cause negative effects since their high transformation/removal rates can be compensated for by their continuous introduction into the environment. Some of these compounds, most of them pharmaceuticals and personal care products may also be present in urban wastewaters. Their concentrations in the effluents may vary from ng L -1 to μg L -1. In this paper, hospital effluents and urban wastewaters are compared in terms of quali-quantitative characteristics. On the basis of an in-depth survey: (i) hospital average specific daily water consumptions (L patient -1 day -1) are evaluated and compared to urban ones (L person -1 day -1), (ii) conventional parameters concentrations in hospital effluents are compared to urban ones and (iii) main pharmaceuticals and other emerging compounds contents are compared in the two wastewaters. Finally, an overview of the removal capacity of the different treatments is reported.

  16. An ecotoxicological approach to assessing the impact of tanning industry effluent on river health.

    PubMed

    Mwinyihija, Mwinyikione; Meharg, Andy; Dawson, Julian; Strachan, Norval J C; Killham, Ken

    2006-04-01

    A study was conducted to investigate the sediment health and water quality of the River Sagana, Kenya, as impacted by the local tanning industry. Chemical analysis identified the main chemical pollutants (pentachlorophenols and chromium) while a bioassay addressed pollutant bioavailability. The bioassay, exploiting the luminescence response of a lux marked bacterial biosensor, was coupled to a dehydrogenase and Dapnia magna test to determine toxicity effects on sediments. Results highlighted the toxicity of the tannery effluent to the sediments at the point of discharge (64% of control bioluminescence) with gradual improvement downstream. There was a significant increase in dehydrogenase downstream, with the enzyme activity attaining a peak at 600 m, also indicating a gradual reduction of toxicity. Biological oxygen demand (19.56 mg L(-1)) dissolved oxygen (3.97 mg L(-1)) and high lethal dose value (85%) of D. magna also confirmed an initial stress at the point of discharge and recovery downstream. Optical density of surface water demonstrated an increase in suspended particulates and colour after the discharge point, eventually decreasing beyond 400 m. In conclusion, the study highlighted the importance of understanding the biogeochemistry of river systems impacted by industries discharging effluent into them and the invaluable role of a biosensor-based ecotoxicological approach to address effluent hazards, particularly in relation to river sediments.

  17. Microbial community structure of a freshwater system receiving wastewater effluent.

    PubMed

    Hladilek, Matthew D; Gaines, Karen F; Novak, James M; Collard, David A; Johnson, Daniel B; Canam, Thomas

    2016-11-01

    Despite our dependency on treatment facilities to condition wastewater for eventual release to the environment, our knowledge regarding the effects of treated water on the local watershed is extremely limited. Responses of lotic systems to the treated wastewater effluent have been traditionally investigated by examining the benthic macroinvertebrate assemblages and community structure; however, these studies do not address the microbial diversity of the water systems. In the present study, planktonic and benthic bacterial community structure were examined at 14 sites (from 60 m upstream to 12,100 m downstream) and at two time points along an aquatic system receiving treated effluent from the Charleston Wastewater Treatment Plant (Charleston, IL). Total bacterial DNA was isolated and 16S rRNA sequences were analyzed using a metagenomics platform. The community structure in planktonic bacterial communities was significantly correlated with dissolved oxygen concentration. Benthic bacterial communities were not correlated with water quality but did have a significant geographic structuring. A local restructuring effect was observed in both planktonic and benthic communities near the treated wastewater effluent, which was characterized by an increase in abundance of sphingobacteria. Sites further downstream from the wastewater facility appeared to be less influenced by the effluent. Overall, the present study demonstrated the utility of targeted high-throughput sequencing as a tool to assess the effects of treated wastewater effluent on a receiving water system, and highlighted the potential for this technology to be used for routine monitoring by wastewater facilities.

  18. Effects of spray-irrigated treated effluent on water quantity and quality, and the fate and transport of nitrogen in a small watershed, New Garden Township, Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.

    2005-01-01

    An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application

  19. In vitro assessment of estrogenic bioactivity in complex environmental effluents**

    EPA Science Inventory

    Environmental effluents contain a diversity of chemicals, can originate from a variety of sources, and have been found to contain estrogenic and/or androgenic activity. In this study, samples were collected from targeted sites or as runoff from an agriculture field that was spray...

  20. In vitro assessment of estrogenic bioactivity in complex environmental effluents

    EPA Science Inventory

    Environmental effluents contain a diversity of chemicals, can originate from a variety of sources, and have been found to contain estrogenic and/or androgenic activity. In this study, samples were collected from targeted sites or as runoff from an agriculture field that was spray...