Ma, Dehua; Chen, Lujun; Liu, Rui
2017-10-01
Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Mounteer, A H; Souza, L C; Silva, C M
2007-02-01
Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.
Li, Yajie; Tabassum, Salma; Zhang, Zhenjia
2016-09-01
An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.
Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.
Buyukkamaci, Nurdan; Koken, Emre
2010-11-15
Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dewi, Ratni; Sari, Ratna; Syafruddin
2017-06-01
Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.
Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie
2016-08-01
The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Suvilampi, J E; Rintala, J A
2004-01-01
Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.
Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.
Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin
2006-03-01
The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model.
Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik
2015-04-15
In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Advanced oxidation processes for treatment of effluents from a detergent industry.
Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M
2011-07-01
Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.
Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L
2016-10-01
To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effluent treatment for nuclear thermal propulsion ground testing
NASA Technical Reports Server (NTRS)
Shipers, Larry R.
1993-01-01
The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.
Drury, Bradley; Rosi-Marshall, Emma
2013-01-01
In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724
Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson
2016-08-02
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.
Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua
2017-07-24
The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.
Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M
2014-01-01
This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.
Alves, L de Carvalho; Cammarota, M C; De França, F P
2006-12-01
The School of Chemistry Environmental Technology Laboratory generates 43.4 1 of effluent with low pH (0.7) and high contents of COD (1908 mgO2 l(-1)), phenol (132.1 mg l(-1)), sulfate (36700 mg l(-1)) and heavy metals (28.2 mg Hg l(-1); 82.1 mg Cr(total) l(-1); 30.8 mg Cu l(-1); 57.4 mg Fe(total) l(-1); 16.2 mg Al l(-1)) weekly. These data show that this effluent presents high toxicity for biological treatment, with a physical-chemical step being necessary before a biological step. Preliminary studies showed that the most toxic constituents of the effluent were sulfate, phenol and total chromium. In this work, a chemical precipitation step with sodium hydroxide or lime was evaluated for the toxicity reduction on anaerobic microbial consortium. These experiments were carried out with increasing concentrations of alkalis in the effluent in order to obtain pH initial values of 8-12. Similar results were obtained for COD (15-28%), turbidity (95-98%), phenol (13-24%) and total chromium (99.8-99.9%) removals in each condition studied with soda or lime. Sulfate was only removed by precipitation with lime, obtaining reductions from 84 to 88%. The toxicity on the anaerobic sludge was studied employing specific methanogenic activity (SMA) analysis of raw and treated effluent (after chemical precipitation step). The SMA experiments showed that chemical precipitation at pH 8 reduces the toxic effect of the effluent on anaerobic microbial consortium three times (with soda) and thirteen times (with lime). These results indicate that precipitation with lime is more efficient at toxicity removal, however the produced sludge volume is around two times higher than that produced with soda.
Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.
2016-01-01
The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall.
A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.
1996-09-01
Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This proceduremore » was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).« less
Bioplastic production using wood mill effluents as feedstock.
Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C
2011-01-01
Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.
Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson
2016-01-01
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563
Santos, J L; Aparicio, I; Alonso, E
2007-05-01
The occurrence of four anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine) in influent and effluent samples from four wastewater treatment plants (WWTPs) in Seville was evaluated. Removal rates in the WWTPs and risk assessment of the pharmaceutically active compounds have been studied. Analytical determination was carried out by high performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (Fl) detectors after sample clean up and concentration by solid phase extraction. All pharmaceutically active compounds, except diclofenac, were detected not only in wastewater influents but also in wastewater effluents. Mean concentrations of caffeine, carbamazepine, ketoprofen and naproxen ranged between 0.28-11.44 microg l(-1) and 0.21-2.62 microg l(-1) in influent and effluent wastewater, respectively. Ibuprofen was present in the highest concentrations in the range 12.13-373.11 microg l(-1) and 0.78-48.24 microg l(-1) in influent and effluent wastewater, respectively. Removal rates of the pharmaceuticals ranged between 6 and 98%. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no effect concentrations (PNEC) were higher than 1 for ibuprofen and naproxen in influent wastewater and for ibuprofen in effluent wastewater.
Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.
Malmqvist, A; Berggren, B; Sjölin, C; Welander, T; Heuts, L; Fransén, A; Ling, D
2004-01-01
A combination of the suspended carrier biofilm process and the activated sludge process (biofilm-activated sludge--BAS) has been shown to be very successful for the treatment of different types of pulp and paper mill effluents. The robust biofilm pre-treatment in combination with activated sludge results in a stable, compact and highly efficient process. Recent findings have shown that nutrient limited operation of the biofilm process greatly improves the sludge characteristics in the following activated sludge stage, while minimising sludge production and effluent discharge of nutrients. The nutrient limited BAS process was implemented at full scale at the Södra Cell Värö kraft mill and taken into operation in July 2002. After start-up and optimisation over about 5 months, the process meets all effluent discharge limits. The removal of COD is close to 70% and the removal of EDTA greater than 90%. Typical effluent concentrations of suspended solids and nutrients during stable operations have been 20-30 mg/L TSS, 0.3-0.5 mg/L phosphorus and 3-5 mg/L nitrogen. The sludge production was 0.09 kgSS/kg COD removed and the sludge volume index was 50-100 mL/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Tomonori; Yamauchi, Kiyoshi
2008-02-01
Thyroid system-disrupting activity in effluents from municipal domestic sewage treatment plants was detected using three in vitro assays and one in vivo assay. Contaminants in the effluents were extracted by solid-phase extraction (SPE) and eluted stepwise with different organic solvents. The majority of the thyroid system-disrupting activity was detected in the dichloromethane/methanol (1/1) fraction after SPE in all three in vitro assays: competitive assays of 3,3',5-[{sup 125}I]triiodo-L-thyronine ([{sup 125}I]T{sub 3}) binding to the plasma protein transthyretin (TTR assay) and thyroid hormone receptor (TR assay) and T{sub 3}-dependent luciferase assay (Luc assay). Subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) of the dichloromethane/methanolmore » (1/1) fraction separated contaminants potent in the TR and Luc assays from those potent in the TTR assay. The contaminants potent in the TR and Luc assays were also potent in an in vivo short-term gene expression assay in Xenopus laevis (Tadpole assay). The present study demonstrated that the effluents from domestic sewage treatment plants contain contaminants with T{sub 3}-like activity of {approx} 10{sup -10} M T{sub 3}-equivalent concentration (T{sub 3}EQ) and that the TR and Luc assays are powerful in vitro bioassays for detecting thyroid system-disrupting activity in effluents. The availability and applicability of these bioassays for screening contaminants with thyroid system-disrupting activity in the water environment are discussed.« less
Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A
2005-06-01
Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.
Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch
2015-11-01
The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.
Complete physico-chemical treatment for coke plant effluents.
Ghose, M K
2002-03-01
Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.
Akizuki, S; Toda, T
2018-04-01
Although combination of denitritation and methanogenesis for wastewater treatment has been widely investigated, an application of this technology to solid waste treatment has been rarely studied. This study investigated an anaerobic-aerobic batch system with simultaneous denitritation-methanogenesis as an effective treatment for marine biofoulings, which is a major source of intermittently discharged organic solid wastes. Preliminary NO 2 - -exposed sludge was inoculated to achieve stable methanogenesis process without NO 2 - inhibition. Both high NH 4 + -N removal of 99.5% and high NO 2 - -N accumulation of 96.4% were achieved on average during the nitritation step. Sufficient CH 4 recovery of 101 L-CH 4 kg-COD -1 was achieved, indicating that the use of NO 2 - -exposed sludge is effective to avoid NO 2 - inhibition on methanogenesis. Methanogenesis was the main COD utilization pathway when the substrate solubilization occurred actively, while denitritation was the main when solubilization was limited because of substrate shortage. The results showed a high COD removal efficiency of 96.0% and a relatively low nitrogen removal efficiency of 64.4%. Fitting equations were developed to optimize the effluent exchange ratio. The estimated results showed that the increase of effluent exchange ratio during the active solubilization period increased the nitrogen removal efficiency but decreased CH 4 content in biogas. An appropriate effluent exchange ratio with high anaerobic effluent quality below approximately 120 mg-N L -1 as well as sufficient CH 4 gas quality which can be used as fuel for gas engine generator was achieved by daily effluent exchange of 80% during the first week and 5% during the subsequent 8 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria
NASA Astrophysics Data System (ADS)
Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya
2013-03-01
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei
2016-02-01
Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.
Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar
2018-04-30
This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.
Immunocompetence analysis of the aquatic snail Lymnaea stagnalis exposed to urban wastewaters.
Boisseaux, Paul; Noury, Patrice; Delorme, Nicolas; Perrier, Lucile; Thomas-Guyon, Helene; Garric, Jeanne
2018-04-02
Wastewater treatment plant effluents from urban area are a well-known source of chronic multiple micropollution to the downstream living organisms. In this study, ecologically relevant laboratory-bred freshwater gastropods, Lymnaea stagnalis, were exposed for 29 days to raw effluents of a wastewater treatment plant in Lyon area (France). A time-course analysis of individual markers of immunocompetence (hemocyte density and viability, hemocyte NADPH activity, phenol oxidase activity, and capacity of phagocytosis) has shown slight trends of inflammatory-like responses induced by the 100% effluents. So far, no short-term hazard for L. stagnalis can be revealed. However, over the long term, such environmental stress-stimulating immune responses could provoke deleterious life history trade-offs because the immune system is known to be highly energy-consuming.
Soil microbial activities in a constructed soil reed-bed under cheese-dairy farm effluents.
Farnet, A M; Prudent, P; Cigna, M; Gros, R
2008-09-01
Soil microbial activities in a reed-bed used for effluent purification of a small cheese-dairy farm under a Mediterranean climate were described and studied. This work aims to demonstrate (i) whether certain enzyme activities used as bioindicators of dairy waste degradation (beta-galactosidase and protease) vary over time, which might influence organic matter degradation and (ii) whether specific microbial communities are selected through contact with the discarded effluent using community level catabolic profiles (CLCPs). beta-galactosidase and protease activities were followed in a 14-month monitoring experiment. These enzyme activities were strongly expressed during the whey-discarding period from February to May. CLCPs using Biolog Ecoplate showed great microbial diversity, as described by Shannon-Weaver index, and no difference was observed in microbial diversity between areas at the receiving end of the reed-bed (where effluent was discarded) and those at the opposite end. This may be explained by successive environmental factors which made enzyme activities vary: whey discarded from February to May and Mediterranean climate conditions (drying-rewetting effects on summer). Microbial enumeration using epifluorescence microscopy also showed a pattern linked to Mediterranean conditions with a drastic decrease in biomass during summer drought. These results on functional biodiversity were correlated with high purification yields: the minimum decrease in Biological Demand in Oxygen was 84% and that in suspended solids was 75%.
Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.
2006-01-01
The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals. PMID:16818252
Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul
2006-03-01
The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, < 0.5 K Daltons [KDa]). The Air-AS effluent DOC exhibited a centrally clustered distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa).
Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul
2016-01-01
Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.
Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen
2016-09-01
This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.
Robinson, Tim; Nigam, Poonam Singh
2008-12-01
A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.
Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.
Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G
2005-04-01
Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.
Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar
2009-08-01
The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.
Kosmala, A; Migeon, B; Flammarion, P; Garric, J
1998-09-01
The impact of a wastewater treatment plant (WWTP) effluent was assessed with the fish biomarker ethoxyresorufin-O-deethylase (EROD) using field and on-site laboratory experiments. EROD activity was measured in chub (Leuciscus cephalus) and stone loach (Noemacheilus barbatulus) caught at three sites of the Chalaronne River (southeast France). Liver somatic index (LSI) and organochloride bioaccumulation in muscle were estimated for chub only. In September, EROD activity and LSI of chub increased significantly between the sites above and below the WWTP effluent discharge. EROD induction detected in chub was confirmed by on-site tank experiments. EROD levels were determined in juvenile rainbow trout (Oncorhynchus mykiss) and mirror carp (Cyprinus carpio) exposed to different concentrations of the WWTP effluent and river water for 16 days. After a 4-day exposure, EROD activities of the carp exposed to the effluent increased significantly compared with the control. The response was linked to the effluent concentration and was stable with exposure time. WWTP effluent induced EROD activity, whereas organic and metal analyses, performed on fish muscle and sediment, did not indicate any difference between upstream and downstream of the discharge. Copyright 1998 Academic Press.
ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE
Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...
Data analysis and interpretation related to space system/environment interactions at LEO altitude
NASA Technical Reports Server (NTRS)
Raitt, W. John; Schunk, Robert W.
1991-01-01
Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.
Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia
2013-03-01
The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.
Hashimoto, T; Onda, K; Nakamura, Y; Tada, K; Miya, A; Murakami, T
2007-05-01
The presence of natural estrogens, 17beta-estradiol (E2), estrone (E1) and estriol (E3), as well as estrogenic activity in wastewater influents and secondary effluents were investigated in 20 full-scale wastewater treatment plants in Japan. In all of the influent samples, natural estrogens were detected at concentrations above the minimum limits of detection (0.5ng/L). The concentrations of natural estrogens detected in the effluent of oxidation ditch plants were generally lower than previously reported values. On the other hand, in the conventional activated sludge plants, increments of E1 during biological treatment were frequently observed although E2 and E3 were removed effectively in the process. The removal rates of natural estrogens or estrogenic activity show no observed statistical relationship with the solids retention time (SRT) and the hydraulic retention time (HRT). However, the plants with high SRT or HRT generally showed high and stable removal of both natural estrogens and estrogenic activity.
Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G
2015-06-01
The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.
Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A
2002-01-01
Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M
2016-05-01
In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.
Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A
2007-01-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.
Detoxification of kraft pulp ECF bleaching effluents by catalytic hydrotreatment.
Calvo, L; Gilarranz, M A; Casas, J A; Mohedano, A F; Rodríguez, J J
2007-02-01
Two different effluents from the D(1) and E(1) stages of the ECF bleaching of Eucalyptus globulus kraft pulp were treated by catalytic hydrogenation in a trickle bed reactor using commercial and homemade Pd/AC catalysts. The reactor was fed with the bleaching effluent and a H(2)/N(2) gas stream. The variables studied were space-time (1.4-5g(cat)min/mL), gas to liquid flow ratio (286-1000vol.), gas feed concentration (H(2):N(2), 1:1-1:7.3vol.), temperature (25-100 degrees C) and pressure (1-11bar). Hydrotreatment performance was evaluated in terms of ecotoxicity, adsorbable organic halogen (AOX), chemical oxygen demand (COD), biological oxygen demand (BOD(5)) and colour removal. In all the runs, the ecotoxicity of the effluents decreased as a result of the treatment, achieving reductions that ranged from 70% to 98%. Simultaneously to the reduction of toxicity, the hydrotreatment led to a decrease of the colour of the effluents, being the decrease significantly higher in the case of E(1) effluent. The AOX content was reduced by 85% and 23% for E(1) and D(1) effluents, respectively. In the case of D(1) effluent the removal of ecotoxicity was significantly higher than that of AOX, which indicates that much of the toxicity of the effluent must be associated to non-chlorinated organics. In spite of the important reduction of ecotoxicity, the biodegradability of the effluents only increased slightly. The homemade catalysts, prepared from activated carbons with a high external or non-microporous surface area and mesopore volume and a convenient surface chemistry showed a higher efficiency than the commercial one.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
McGregor, S J; Brock, J H; Briggs, J D; Junor, B J
1987-01-01
IgG, C3 and transferrin in peritoneal dialysis effluent of patients undergoing continuous ambulatory peritoneal dialysis (CAPD) were 1%-2% of those in serum. In contrast, the values in normal peritoneal fluid were not significantly different from those in serum. The three proteins correlated with each other in peritoneal dialysis effluent, but were independent of the amount in the corresponding patients' sera. There was also an overall inverse correlation between total protein in peritoneal dialysis effluent and time on CAPD during the first 6 months of treatment but not thereafter, which suggests that changes in membrane permeability occur during the early months. In peritoneal dialysis effluent, but not in normal peritoneal fluid, there was a correlation between opsonising capacity and IgG or C3 concentrations. An inverse correlation between opsonic activity of peritoneal dialysis effluent and frequency of peritonitis was also found. Peritoneal dialysis effluent permitted significantly faster multiplication of Staphylococcus epidermidis than sera or normal peritoneal fluid, and the growth rate correlated inversely with the transferrin levels in peritoneal dialysis effluent. Overall IgG, C3 and transferrin in peritoneal dialysis effluent are inadequate for optimal opsonising and bacteriostatic activity, and the peritoneal cavities of CAPD patients are therefore immunocompromised sites.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Packaging Subcategory § 455.43 Effluent limitations guidelines representing the degree of effluent reduction... shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Packaging Subcategory § 455.43 Effluent limitations guidelines representing the degree of effluent reduction... shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Zhang, Wenlong; Li, Yi; Wang, Chao; Wang, Peifang; Wang, Qing
2013-03-01
Simultaneous estrogenic activity removal and hydrogen production from secondary effluent were successfully achieved using TiO(2) microspheres modified with both platinum nanoparticles and phosphates (P-TiO(2)/Pt) for the first time. The coexistence of platinum and phosphate on the surface of TiO(2) microspheres was confirmed by transmission electron microscope, energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses. P-TiO(2)/Pt microspheres showed a significantly higher photocatalytic activity than TiO(2) microspheres and TiO(2) powders (P25) for the removal of estrogenic activity from secondary effluent with the removal ratio of 100%, 58.2% and 48.5% in 200 min, respectively. Moreover, the marked production of hydrogen (photonic efficiency: 3.23 × 10(-3)) was accompanied by the removal of estrogenic activity only with P-TiO(2)/Pt as photocatalysts. The hydrogen production rate was increasing with decreased DO concentration in secondary effluent. Results of reactive oxygen species (ROS) evaluation during P-TiO(2)/Pt photocatalytic process showed that O(2)(-)and OH were dominant ROS in aerobic phase, while OH was the most abundant ROS in anoxic phase. Changes of effluent organic matter (EfOM) during photocatalysis revealed that aromatic, hydrophobic, and high molecular weight fractions of EfOM were preferentially transformed into non-humic, hydrophilic, and low MW fractions (e.g. aldehydes and carboxylic acids), which were continuously utilized as electron donors in hydrogen production process. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Review on Advanced Treatment of Pharmaceutical Wastewater
NASA Astrophysics Data System (ADS)
Guo, Y.; Qi, P. S.; Liu, Y. Z.
2017-05-01
The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.
Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents.
Petala, M; Samaras, P; Zouboulis, A; Kungolos, A; Sakellaropoulos, G P
2008-12-01
Reclamation of municipal effluents by advanced treatment processes is an attractive perspective for facing certain water shortage problems. However, the application of tertiary techniques should be thoroughly examined for their potential hazardous effects. Ozonation is an efficient chemical oxidation method, often used in wastewater reclamation, which may result in by-products that may alter the toxic and mutagenic properties of effluents. In this study, Ames test and Microtox test were used for the evaluation of ozonation efficiency to upgrade secondary effluents quality. In general, the toxic response and mutagenic effect without metabolic activation of test species were influenced mainly by the ozone dose and ozonation duration, whereas the mutagenic effect with metabolic activation was influenced mainly by ozone dose, indicating that ozone conditions strongly affect the formation of by-products. In most cases, the toxicity was increased and reached up to 100% (in relation to that of secondary effluent) after ozonation with 8.0 mg O3/L for 5 min. On the contrary, in most cases the mutagenic activity towards strain TA98 without metabolic activation was reduced, when ozone dose and contact time increased. However, the mutagenicity was also increased after ozonation at low ozone doses and for contact times less than 5 min. The mutagenic activity of treated effluents towards strain TA98 with metabolic activation remained about the same or was reduced, compared to that of secondary effluent, and was even eliminated after ozonation with 8.0 mg O3/L for contact times higher than 5 min.
dos Santos, Luciana Urbano; Alves, Delma Pegolo; Guaraldo, Ana Maria Aparecida; Cantusio Neto, Romeu; Durigan, Mauricio; Franco, Regina Maura Bueno
2013-01-01
Giardia duodenalis is a protozoan of public health interest that causes gastroenteritis in humans and other animals. In the city of Campinas in southeast Brazil, giardiasis is endemic, and this pathogen is detected at high concentrations in wastewater effluents, which are potential reservoirs for transmission. The Samambaia wastewater treatment plant (WWTP) in the city of Campinas employs an activated sludge system for sewage treatment and ultraviolet (UV) light for disinfection of effluents. To evaluate this disinfection process with respect to inactivating G. duodenalis cysts, two sample types were investigated: (i) effluent without UV disinfection (EFL) and (ii) effluent with UV disinfection (EFL+UV). Nude immunodeficient BALB/c mice were intragastrically inoculated with a mean dose of 14 cysts of G. duodenalis recovered from effluent from this WWTP, EFL, or EFL+UV. All animals inoculated with G. duodenalis cysts developed the infection, but animals inoculated with UV-exposed cysts released a lower average concentration of cysts in their faeces than animals inoculated with cysts that were not UV disinfected. Trophozoites were also observed in both groups of animals. These findings suggest that G. duodenalis cysts exposed to UV light were damaged but were still able to cause infection. PMID:27335858
Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja
2016-04-01
Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the protein, amino acid and carbohydrate content of molluscs exposed to both of the treated effluent were found close to that of control. Comet assay revealed no damage in the DNA for MF and MF+RO treated effluent indicating that the membrane based treatment procedure restores environmental condition to control level. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide... this paragraph which may be discharged from the manufacture of metallo-organic active ingredient: There...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide... this paragraph which may be discharged from the manufacture of metallo-organic active ingredient: There...
Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W
2013-06-01
Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.
Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical contamination would be useful. Based on the individual biomarker results’ contributing towards the distinct groupings it is possible to conclude that Site 1 is subjected to organic pollutants, whereas Sites 2 and 3 undergo a combination of metallic and organic pollutant stress. However, it is essential that a rapid and sensitive biomarker that is representative of the responses of a suite of biomarkers be tested before ABM can be implemented as a routine biomonitoring practice in water resource management.
Method and apparatus for treating gaseous effluents from waste treatment systems
Flannery, Philip A.; Kujawa, Stephan T.
2000-01-01
Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Filtration device for active effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M.; Meunier, G.
1994-12-31
Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.
FACTORS AFFECTING THE DISSIPATION OF WINDSCALE RADIOACTIVE EFFLUENT IN THE IRISH SEA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, A.E.; Charlesworth, F.R.
1952-02-20
diffusion, and residual currents was orginally assessed by Seligman and Scott in 1948. Further experimental work is described which has enabled a new assessment to be made. This work has included a measurement of the initial dilution of fresh water from the pipe line, and a study of the movement of water as indicated by drift bottles. lt is now envisaged that initial dilution, by a factor of 10, will be followed by eddy diffusion with the coefficients as measured by Seligman, and bulk movement primarily due to the force of the wind. Exceptions will occur when defined calm conditionsmore » exist. The discharged effluent will then tend to float on the surface with an initial dilution factor of only a few hundred and successive tidal releases will pour into the diffusing remains of the previous activity, there being no indications of residual currents. No work has been done to see if this more concentrated effluent can come ashore without further dilution. lt is recommended that, to avoid floating effluent, water should not be discharged during very calm weather. Maximum storage space can be assured by normally pumping effluent to sea at the next high tide after treatment. (auth)« less
Seasonal Variations and Resilience of Bacterial Communities in a Sewage Polluted Urban River
Ouattara, Nouho Koffi; Anzil, Adriana; Verbanck, Michel A.; Brion, Natacha; Servais, Pierre
2014-01-01
The Zenne River in Brussels (Belgium) and effluents of the two wastewater treatment plants (WWTPs) of Brussels were chosen to assess the impact of disturbance on bacterial community composition (BCC) of an urban river. Organic matters, nutrients load and oxygen concentration fluctuated highly along the river and over time because of WWTPs discharge. Tag pyrosequencing of bacterial 16S rRNA genes revealed the significant effect of seasonality on the richness, the bacterial diversity (Shannon index) and BCC. The major grouping: -winter/fall samples versus spring/summer samples- could be associated with fluctuations of in situ bacterial activities (dissolved and particulate organic carbon biodegradation associated with oxygen consumption and N transformation). BCC of the samples collected upstream from the WWTPs discharge were significantly different from BCC of downstream samples and WWTPs effluents, while no significant difference was found between BCC of WWTPs effluents and the downstream samples as revealed by ANOSIM. Analysis per season showed that allochthonous bacteria brought by WWTPs effluents triggered the changes in community composition, eventually followed by rapid post-disturbance return to the original composition as observed in April (resilience), whereas community composition remained altered after the perturbation by WWTPs effluents in the other seasons. PMID:24667680
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Houtman, Corine J; Ten Broek, Rob; Brouwer, Abraham
2018-07-15
Emission of compounds with biological activities from waste water treatment plant (WWTP) effluents into surface waters is a topic of concern for ecology and drinking water quality. We investigated the occurrence of hormone-like activities in waste water sample extracts from four Dutch WWTPs and pursued to identify compounds responsible for them. To this aim, in vitro reporter gene bioassays for androgenic, anti-androgenic, estrogenic, glucocorticoid and progestogenic activity and a UPLC-tQ-MS target analysis method for 25 steroid hormones used in high volumes in pharmacy were applied. Principal component analysis of the data was performed to further characterize the detected activities and compounds. All five types of activities tested were observed in the WWTP samples. Androgenic and estrogenic activities were almost completely removed during WW treatment, anti-androgenic activity was only found in treated WW. Glucocorticoid and progestogenic activities persisted throughout the treatment. The androgenic activity in both influent could predominantly be attributed to the presence of androstenedione and testosterone. Anti-androgenic activity was explained by the presence of cyproterone acetate. The glucocorticoid activity in influent was fully explained by prednicarbate, triamcinolone acetonide, dexamethasone and amcinonide. In effluent however, detected hormones could only explain 10-32% of the activity, indicating the presence of unknown glucocorticoids or their metabolites in effluent. Progesterone and levonorgestrel could explain the observed progestogenic activity. The principle component analysis confirmed the way in which hormones fit in the spectrum of other emerging contaminants concerning occurrence and fate in WWTPs. Copyright © 2018 Elsevier B.V. All rights reserved.
WHOLE EFFLUENT TOXICITY: A REPORT FROM THE COLONIES
The purpose of this follow-up activity to the SETAC-sponsored Pellston Workshop on Whole Effluent Toxicity (WET) in 1996 is to "provide technical expert support on scientific guidance involving testing, characterization, and identifying sources of toxicity in complex effluents."
Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C
2009-06-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.
Yoosathaporn, S; Tiangburanatham, P; Bovonsombut, S; Chaipanich, A; Pathom-Aree, W
2016-01-01
Application of carbonate precipitation induced by Bacillus pasteurii for improving some properties of cement has been reported. However, it is not yet successful in commercial scale due to the high cost of cultivation medium. This is the first report on the application of effluent from chicken manure bio-gas plant, a high protein content agricultural waste, as an alternative growth medium for carbonate precipitation by B. pasteurii KCTC3558. Urease activity of B. pasteurii KCTC3558 cultured in chicken manure effluent medium and other three standard media were examined using phenate method. The highest urease production was achieved in chicken manure effluent medium (16.756Umg(-1) protein). Cost per liter of chicken manure effluent medium is up to 88.2% lower than other standard media. The most effective cultivation media was selected for carbonate precipitation study in cement cubes. Water absorption, voids, apparent density and compressive strength of cement cubes were measured according to the ASTM standard. The correlation between the increasing density and compressive strength of bacterial added cement cube was evident. The density of bacterial cement cube is 5.1% higher than control while the compressive strength of cement mixed with bacterial cells in chicken manure effluent medium increases up to 30.2% compared with control. SEM and XRD analysis also found the crystalline phase of calcium carbonate within bacterial cement which confirmed that the increasing density and compressive strength were resulted from bacterial carbonate precipitation. This study indicated that the effluent from chicken manure bio-gas plant could be used as an alternative cost effective culture medium for cultivation and biocalcification of B. pasteurii KCTC3558 in cement. Copyright © 2016. Published by Elsevier GmbH.
POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS
Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...
POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS - SLIDES
Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...
Silage effluent management: a review.
Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D
2014-10-01
Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of repeated land application of effluent on soil quality and crop yields, as spreading is a common disposal practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S
2007-12-01
This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.
Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V
2016-04-01
Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recycling crop residues for use in recirculating hydroponic crop production
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Garland, J. L.; Sager, J. C.
1996-01-01
As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.
Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...
Fish living in ecosystems contaminated with effluents from human or domestic animal wastes display reproductive alterations suggesting hormone disruption. Recent research with effluent from cattle feeding operations in the US have associated morphological alterations in fish col...
ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT
Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FL
Recent studies have shown the presence of androgenic activity in water...
Baêta, B E L; Ramos, R L; Lima, D R S; Aquino, S F
2012-01-01
This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.
IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE
Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable
levels of dozens of compounds resulting from human activities. Recent concern over use and
disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...
Manikandan, Muthu; Kannan, Vijayaraghavan; Mahalingam, Kanimozhi; Vimala, A; Chun, Sechul
2016-01-01
Twenty-six native Indian tree species that are used for the enhanced tree cover program of the forest department (Government of Tamilnadu, India) were screened for phytoremediation of tannery effluent-contaminated soil containing high chromium content. Out of 26 tree species tested, 10 timber-yielding tree species were selected for further phytoremediation monitoring. After a series of treatments with tannery effluent sludge, the chromium content was measured in the plant parts. The saplings of Acacia auriculiformis, Azadirachta indica, Albizzia lebbeck, Dalbergia sisso, and Thespesia populnea were identified as efficient bioaccumulators of chromium from Cr-contaminated soil. Acacia auriculiformis accumulates higher amounts of Cr in both the root and stem. Dalbergia sisso and T. populnea were found to accumulate higher quantity of Cr in the roots, whereas A. indica, A. richardiana, and A. lebbeck accumulate Cr in their stem. The stress response of the plant species was assessed by quantifying the antioxidative enzymes such as catalase, superoxide dismutase, glutathione reductase, and DHAR. Activity of all the enzymes was observed to gradually increase following treatment with tannery effluent sludge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Formulating and Packaging Subcategory § 455.44 Effluent limitations guidelines representing the degree of... permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Formulating and Packaging Subcategory § 455.44 Effluent limitations guidelines representing the degree of... permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Formulating and Packaging Subcategory § 455.42 Effluent limitations guidelines representing the degree of... the formulation, packaging or repackaging of pesticides: There shall be no discharge of process... that permitting authorities shall provide no additional discharge allowance for those pesticide active...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Formulating and Packaging Subcategory § 455.42 Effluent limitations guidelines representing the degree of... the formulation, packaging or repackaging of pesticides: There shall be no discharge of process... that permitting authorities shall provide no additional discharge allowance for those pesticide active...
ESTROGENIC AND CYP1A RESPONSE OF MUMMICHOGS AND SUNSHINE BASS TO SEWAGE EFFLUENT
Recent studies demonstrating feminization of effluent-exposed wild-caught male fish in the UK have prompted much research regarding the estrogenic activity of effluent from municipal sewage treatment plants (MSTPs). To investigate the estrogenicity and cytochrome P450 1A (CYP1A) ...
30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-04-01
Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.
Carballeira, Carlos; Cebro, Alesandra; Villares, Rubén; Carballeira, Alejo
2018-05-01
Although intensive marine fish farming is often assumed to be eco-friendly, the associated activity can lead to chronic exposure of marine organisms to potentially toxic discharges. Moreover, despite the increasing popularity of integrated multi-trophic aquaculture (IMTA), studies of the effects of fish farm effluents are almost non-existent. In the present study, the changes in the toxic potential of effluents from five land-based marine fish farms in NW Spain subjected for different lengths of time to a biodegradation procedure (for 0, 48, 120, and 240 h) were assessed in a battery of bioassays including organisms from different trophic levels (Vibrio fischeri, Isochrysis galbana, and Paracentrotus lividus). The results of the bioassays at the different times were then considered together with farm water flow in the Potential Ecotoxic Effects Probe (PEEP) index. Despite the high volumes of effluents discharged, the generally low toxicity of the effluents hinders assessment of potentially toxic effects. However, dose-response curves and statistical analysis demonstrated the existence of toxic effects during the first five days of the biodegradation procedure, especially immediately after sampling. The proposed modification of the PEEP index better reflects the changes in toxicity over time. Graphical abstract ᅟ.
Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico
2017-10-25
Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.
Foladori, P; Bruni, L; Tamburini, S; Ziglio, G
2010-07-01
A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.
Sigge, G O; Britz, T J; Fouri, P C; Barnardt, C A; Strydom, R
2001-01-01
UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.
Viswanath, Gunda; Halder, Sujata; Divya, Gunda; Majumder, Chandrajeet B; Roy, Partha
2008-11-25
The present work describes the identification of (anti)progestin endocrine disrupting chemicals (EDC) using a two step screening system. In the first step a competitive binding assay was developed using recombinant human progesterone receptor (hPR). The tested chemicals were of various classes like insecticides, their metabolites, industrial chemicals and waste water treatment plant (WWTP) effluents. All the tested chemicals demonstrated a high affinity binding for hPR. The average IC50 values of the test chemicals were within the range of 1-25microM. In the second step of screening, a mammalian cell-based hPR transactivation assay was developed where HEK 293 cells were co-transfected with hPR and luciferase reporter gene under the control of progesterone-response element. Stimulation of the cells with progesterone resulted in about 25-fold up regulation of luciferase activity, with EC50 value of 4nM. Potent anti-progesterone, RU486, significantly inhibited progesterone-induced transactivation and non-progestagenic steroids failed to transactivate hPR till 1microM concentrations. The chemicals showing high binding affinities in competitive binding assays were then tested in transactivation assay and all of them were found to be anti-progestative except WWTP effluents. Transactivation assays using extracted water samples from five different WWTP effluents showed that it was rich in progestative compounds. The levels of induction caused by these effluents were in the range of 15-25% of induction by progesterone and they represented about 6ng/l equivalent progesterone activities. In conclusion, we demonstrated that this two step assay provides an efficient screening tool for the detection of (anti)progestative EDC in various samples.
A Rinsing Effluent Evaporator for Dismantling Operations - 13271
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rives, Rachel; Asou-Pothet, Marielle; Chambon, Frederic
2013-07-01
Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facilitymore » of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large quantities of foam were produced, affecting the evaporator operation, and creating the risk of a reduction in its capacity and throughput performance. A task force of AREVA process, operations, and safety experts from Marcoule and the La Hague reprocessing complex was assembled. New operating parameters were defined and tested to improve the process. Since then, the evaporator has performed very satisfactorily. The foam buildup phenomenon has been brought under complete control. All the different types of effluents produced during cleanup operations have been concentrated, and the results obtained in terms of quality and throughput, have ensured a consistent supply to the vitrification unit. The evaporator was operated until the end of April 2012, and enabled the production of 500 cubic meters of very high activity effluent, concentrating the fission products rinsed from the storage tanks. The evaporator will now be deactivated and decommissioned, with the first rinsing and cleanup operations scheduled to begin in 2014. (authors)« less
Analytical methods in environmental effects-directed investigations of effluents.
Hewitt, L Mark; Marvin, Chris H
2005-05-01
Effluent discharges are released into aquatic environments as complex mixtures for which there is commonly either no knowledge of the toxic components or a lack of understanding of how known toxicants interact with other effluent components. Effects-directed investigations consist of chemical extraction and iterative fractionation steps directed by a biological endpoint that is designed to permit the identification or characterization of the chemical classes or compounds in a complex mixture responsible for the observed biological activity. Our review of the literature on effects-directed analyses of effluents for non-mutagenic as well as mutagenic endpoints showed that common extraction and concentration methods have been used. Since the mid-1980s, the methods have evolved from the use of XAD resins to C18 solid-phase extraction (SPE). Blue cotton, blue rayon, and blue chitin have been used specifically for investigations of mutagenic activity where polycyclic compounds were involved or suspected. After isolation, subsequent fractionations have been accomplished using SPE or a high-pressure liquid chromatography (HPLC) system commonly fitted with a C18 reverse-phase column. Substances in active fractions are characterized by gas chromatography/mass spectrometry (GC-MS) and/or other spectrometric techniques for identification. LC-MS methods have been developed for difficult-to-analyze polar substances identified from effects-directed studies, but the potential for LC-MS to identify unknown polar compounds has yet to be fully realized. Salmonella-based assays (some miniaturized) have been coupled with fractionation methods for most studies aimed at identifying mutagenic fractions and chemical classes in mixtures. Effects-directed investigations of mutagens have focused mostly on drinking water and sewage, whereas extensive investigations of non-mutagenic effects have also included runoff, pesticides, and pulp mill effluents. The success of effects-directed investigations should be based on a realistic initial objective of each project. Identification of chemical classes associated with the measured biological endpoint is frequently achievable; however, confirmation of individual compounds is much more difficult and not always a necessary goal of effects-directed chemical analysis.
Influence of operational conditions on the performance of a mesh filter activated sludge process.
Fuchs, W; Resch, C; Kernstock, M; Mayer, M; Schoeberl, P; Braun, R
2005-03-01
Recently, a new type of wastewater treatment system became the focus of scientific research, the mesh filter activated sludge system. It is a modification of the membrane bioreactor where a membrane filtration process serves to separate the sludge from the purified effluent. The difference is that a mesh filter is used instead of the membrane. Due to the much larger pore size of the mesh, the effluent is not of the same excellent quality as with membrane bioreactors. Nevertheless, it still resembles the quality of the now most widely used standard treatment system, where settling tanks are used to retain the activated sludge. At the same time, the new system features all the other advantages of membrane bioreactors including elevated sludge concentrations resulting in decreased volumina of basins and complete substitution of the settling tank. Therefore, this process presents a potential future alternative where a small footprint of the plant is required. However, so far only a few preliminary studies on this innovative process type have been done. In this paper, the effects of suspended solids concentration, flux rate as well as aeration rate on the effluent quality are discussed. Furthermore, the characteristic of the sludge floc was identified as a factor of vital importance. Therefore, another influencing parameter, the food to microorganism (F/M) ratio, which is known to have a significant effect on floc characteristics, was studied. The main result demonstrated that the process was very effective under most of the operation conditions. The suspended solids concentration in the effluent was below 12 mg l(-1), the average COD in the effluent was between 24 and 45 mg l(-1) and the BOD(5) was lower than 5 mg l(-1). High flux rates of up to 150 l m(-2)h(-1) were also achieved.
Stewart, M H; Wolfe, R L; Means, E G
1990-01-01
Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082828
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A
2015-08-15
A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.
Ye, Zhengfang; Wang, Feng; Bi, Haitao; Wang, Zhongyou; Liu, Guo-hua
2012-01-01
A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO(3)(-)-N loading concentration were investigated. The NO(3)(-)-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2-3 and T= 16.8-20 °C, the removal efficiency of NO(3)(-)-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO(3)(-)-N m(-3) d(-1), when the NO(3)(-)-N loading concentration was 50 mg/L. The NO(3)(-)-N concentration of the effluent always met regulatory criteria for drinking water (<10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0-1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.
Catalysts for oxidation of mercury in flue gas
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2010-08-17
Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).
NASA Astrophysics Data System (ADS)
Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin
1986-05-01
A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.
Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda
2015-06-15
Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and therapeutical categories in different types of WS. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrocoagulation for the treatment of textile industry effluent--a review.
Khandegar, V; Saroha, Anil K
2013-10-15
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.
Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen
2017-05-01
In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.
Guo, Jingbo; Fu, Xin; Andrés Baquero, G; Sobhani, Reza; Nolasco, Daniel A; Rosso, Diego
2016-03-15
Over the seasonal cycles, the mean cell retention time (MCRT) of the activated sludge process is varied to compensate the wastewater temperature variations. The effects of these variations on the carbon footprint (CFP) and effluent quality index (EQI) of a conventional activated sludge (CAS) process and a nitrification/denitrification (NDN) process were quantified. The carbon emission included both biogenic and non-biogenic carbon. Carbon emissions of wasted biosolids management were also addressed. Our results confirmed that the effluent quality indicated by EQI was not necessarily improved by increasing MCRT. Higher MCRT increased the carbon emission and reduced excess sludge production, which decreased the potential for biogas energy recovery. The NDN process was preferable to the CAS process from the perspective of effluent quality. This consideration extended to the whole plant CFP if the N2O emitted during NDN was limited ([N2O]<1% [NH4(+)]removed) as the carbon emission per unit effluent quality achieved by NDN process is less than that of the CAS process. By putting forward carbon emission intensity (γ) derived from CFP and EQI, our work provides a quantitative tool for decision makers evaluating process alternatives when there is a trade-off between carbon emission and effluent quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.
2010-01-01
Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, M A.; Karl, H; Murray, Christopher J.
2001-12-01
Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct overmore » most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.« less
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J
2009-02-01
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed. PPCPs were found to be present at high loads reaching 10kgday(-1) in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3kg of PPCPsday(-1)) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.
NASA Astrophysics Data System (ADS)
O'Luanaigh, N. D.; Gill, L. W.; Misstear, B. D. R.; Johnston, P. M.
2012-11-01
An extensive field study on percolation areas receiving both septic tank and secondary treated on-site effluents from single houses in Ireland was carried out to investigate the attenuation capacity of highly permeable subsoils with respect to E. coli bacteria and spiked bacteriophages (MS2, ΦX174 and PR772). The development of biomats across the percolation areas receiving the secondary effluent was restricted compared to the percolation area receiving septic tank effluent, promoting a much higher areal hydraulic loading which created significant differences in the potential microbiological loading to groundwater. Greatest E. coli removal in the subsoil occurred within the first 0.35 m of unsaturated subsoil for all effluent types. Analysis showed, however, that more evidence of faecal contamination occurred at depth in the subsoils receiving secondary treated effluents than that receiving septic tank effluent, despite the lower bacterial influent load. All three bacteriophages were reduced to their minimum detection limit (< 10 PFU/mL) at a depth of 0.95 m below the percolation trenches receiving septic tank effluent, although isolated incidences of ΦX174 and PR772 were measured below one trench. However again, slightly higher breakthroughs of MS2 and PR772 contamination were detected at the same depth under the trenches receiving secondary treated effluent.
Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.
Staicu, Lucian C; Morin-Crini, Nadia; Crini, Grégorio
2017-04-01
Selenium (Se) removal from synthetic solutions and from real Flue Gas Desulfurization (FGD) wastewater generated by a coal-fired power plant was studied for the first time using a commercial iron oxide impregnated strong base anion exchange resin, Purolite ® FerrIX A33E. In synthetic solutions, the resin showed high affinity for selenate and selenite, while sulfate exhibited a strong competition for both oxyanions. The FGD wastewater investigated is a complex system that contains Se (∼1200 μg L -1 ), SO 4 2- (∼1.1 g L -1 ), Cl - (∼9.5 g L -1 ), and Ca 2+ (∼5 g L -1 ), alongside a broad spectrum of toxic trace metals including Cd, Cr, Hg, Ni, and Zn. The resin performed poorly against Se in the raw FGD wastewater and showed moderate to good removal of several trace elements such as Cd, Cr, Hg, and Zn. In FGD effluent, sulfate was identified as a powerful competing anion for Se, having high affinity for the exchange active sites of the resin. The desulfurization of the FGD effluent using BaCl 2 led to the increase in Se removal from 3% (non-desulfurized effluent) to 80% (desulfurized effluent) by combined precipitation and ion exchange treatment. However, complete desulfurization using equimolar BaCl 2 could not be achieved due to the presence of bicarbonate that acts as a sulfate competitor for barium. In addition to selenium and sulfate removal, several toxic metals were efficiently removed (Cd: 91%; Cr: 100%; Zn: 99%) by the combined (desulfurization and ion exchange) treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-05-01
Compared to low concentrations of anionic surfactants (AS) in activated sludge process effluents (ASP) (<0.2 mg/L), upflow anaerobic sludge blanket-polishing pond (UASB-PP) effluents were found to contain very high concentrations of AS (>3.5 mg/L). AS (or linear alkylbenzen sulfonate, LAS) removals >99% have been found for ASP while in case of UASB-PP it was found to be < or = 30%. AS concentrations averaged 7347 and 1452 mg/kg dry wt. in wet UASB and dried sludges, respectively. Treated sewage from UASB based sewage treatment plants (STPs) when discharged to aquatic ecosystems are likely to generate substantial risk. Post-treatment using 1-1.6d detention, anaerobic, non-algal polishing ponds was found ineffective. Need of utilizing an aerobic method of post-treatment of UASB effluent in place of an anaerobic one has been emphasized. Natural drying of UASB sludges on sludge drying beds (SDBs) under aerobic conditions results in reduction of adsorbed AS by around 80%. Application of UASB sludges on SDBs was found simple, economical and effective. While disposal of treated UASB effluent may cause risk to aquatic ecosystems, use of dried UASB sludges is not likely to cause risk to terrestrial ecosystems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Construction Sand and Gravel Subcategory § 436.32 Effluent limitations guidelines representing the degree of... unaltered by man's activities, is or would be less than 6.0 and water quality criteria in water quality... adjusted downward to the pH water quality criterion for the receiving waters. In no case shall a pH...
Toxicity of municipal wastewater effluents contaminated by pentachlorophenol in southwest Missouri
Wylie, G.D.; Finger, S.E.; Crawford, R.W.
1990-01-01
Toxicity of effluents from two sewage treatment plants in Joplin, Missouri, was tested using Ceriodaphnia dubia and Pimephales promelas. No test organisms survived in effluents from either plant, in effluents diluted with water from Turkey Creek (the receiving stream), or in water from Turkey Creek. Mortality was complete in all but the most dilute treatments of effluents, in which reconstituted water was used as the diluent. High concentrations of pentachlorophenol (130–970 μg liter−1) in effluents and the receiving stream likely caused mortality during the 7-day tests. Detectable concentrations of other phenolic compounds indicated the presence in Turkey Creek of other toxic by-products of pentachlorophenol manufacture. This study demonstrated the utility of biological tests of whole effluents to determine toxicity of wastewater effluents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically Achievable (BAT) and Pretreatment Standards for... Economically Achievable (BAT) and Pretreatment Standards for Existing Sources (PSES) Pesticide kg/kkg (lb/1,000...
In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...
The endocrine activity of complex mixtures of chemicals associated with wastewater treatment plant effluents, runoff from concentrated animal feeding operations (CAFOs), and/or other environmental samples can be difficult to characterize based on analytical chemistry. In vitro bi...
Hydroponic system for the treatment of anaerobic liquid.
Krishnasamy, K; Nair, J; Bäuml, B
2012-01-01
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.
Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility
Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.
2008-01-01
Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988
Curneen, S J; Gill, L W
2014-01-15
Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jarošová, Barbora; Bláha, Luděk; Giesy, John P; Hilscherová, Klára
2014-03-01
In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli
2015-09-01
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Granular activated carbon promoted ozonation of a food-processing secondary effluent.
Alvarez, Pedro M; Pocostales, J Pablo; Beltrán, Fernando J
2011-01-30
This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1). Copyright © 2010 Elsevier B.V. All rights reserved.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Overexpression of antibiotic resistance genes in hospital effluents over time.
Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P
2017-06-01
Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ = 0.9, two-tailed P <0.0001) and farm ( ρ = 0.5, two-tailed P <0.0001) effluents and that two β-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Overexpression of antibiotic resistance genes in hospital effluents over time
Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.
2017-01-01
Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital (ρ = 0.9, two-tailed P <0.0001) and farm (ρ = 0.5, two-tailed P <0.0001) effluents and that two β-lactam resistance genes (blaGES and blaOXA) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. PMID:28175320
Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong; Chen, Meixue; Shan, Baoqing
2016-01-01
The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated and compared for treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK membrane. Results showed that the fouling of treating MBR effluent was more severe than that of treating MBR-GAC effluent. After filtering for 216 h, the difference of membrane flux decline was obvious between MBR effluent and MBR-GAC effluent, with 14.9% and 10.3% flux decline, respectively. Further study showed that organic fouling is the main NF membrane fouling in the advanced treatment of antibiotic production wastewater for both of the two different effluents. Soluble microbial by-product like and tyrosine-like substances were the dominant components in the foulants, whereas humic-like substances existing in the effluents had little contribution to the NF membrane fouling. A satisfactory efficiency of NF chemical cleaning could be obtained using combination of acid (HCl, pH 2.0-2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0-10.5). The favorable cleaning strategy is acid-alkali for treating the MBR-GAC effluent, while it is alkali-acid for treating the MBR effluent.
Effluent characterization and different modes of reuse in agriculture-a model case study.
Das, Madhumita; Kumar, Ashwani
2009-06-01
High-quality waters are steadily retreating worldwide. Discharge of industrial effluent in the environment again declines soil/water quality to a great extent. On the other hand, effluent reuse in agriculture could be a means to conserve natural resources by providing assured water supply for growing crops. But industrial effluents are highly variable in nature, containing a variety of substances, and all are not favorable for farming. Appraisal and developing modes of effluent reuse is therefore a prerequisite to enable its proper use in agriculture. Effluents of various industries were assessed and approaches for their use in farming were developed for a particular region in this study. As per availability of effluents, the same could be implemented in other water-scarce areas. Effluents of 20 different industrial units were characterized by 24 attributes. Comparing these with corresponding irrigation water quality standards, the probability of their reuse was interpreted in the first approach. On the basis of relevant properties of major soil types dominated in a particular region, the soil-based usability of effluent was worked out in the second approach. By emphasizing the limitation of groundwater development where it went beyond 50% exploitation level, the land form and major soil type were then identified by applying a soil-based effluent reuse approach; the area-specific suitability of its use was perceived in the third approach. On the basis of irrigation water quality standards, the irrigation potentials of paper mill, fermentation (breweries and distilleries), and sugar factory effluents were recognized. In a soil-based approach, the compatibility of effluent with soil type was marked with A (preferred) and B (moderately preferred) classes and, compiling their recurring presence, the unanimous preference for paper mill effluent followed by rubber goods manufacturing industries/marine shrimp processing units, fermentation, and sugar mills was noted. Usability of these was also evident from a groundwater exploitation status-based approach. The approaches of assessing industrial effluents differing in compositions systematically reflected the ability and applicability of certain effluents in agriculture. The context-specific assessment of effluent offers options to compare effluent from a range of viewpoints and enhances its reasonability of use for growing crops. Chemical characterization of various industrial effluents first disclosed their potential of reuse. The soil-properties-based compatibility of effluent focused their prospects of use and groundwater-exploitation-status-based portrayed its area of use in a specific region. Assessment of effluent through these enhances reliability and appropriateness of its reuse in agriculture. Options of industrial effluent (prospective) reuse in agriculture provide ways to combat freshwater crisis without degrading environmental quality. It may be applied for assessing effluent before its reuse in several water-starved countries.
Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret
2010-03-01
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.
Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent
Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson
2009-01-01
The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438
Treatment of waste water by coagulation and flocculation using biomaterials
NASA Astrophysics Data System (ADS)
Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh
2017-11-01
The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.
Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues
NASA Astrophysics Data System (ADS)
Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.
1997-01-01
Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.
The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F
2010-06-01
Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.
2016-04-01
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.
Power recovery system for coal liquefaction process
Horton, Joel R.
1985-01-01
Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.
Zhang, Chunhui; Ning, Ke; Zhang, Wenwen; Guo, Yuanjie; Chen, Jun; Liang, Chen
2013-04-01
Increased attention is currently being directed towards the potential negative effects of antibiotics and other PPCPs discharged into the aquatic environment via municipal WWTP secondary effluents. A number of analytical methods, such as high performance liquid chromatography technologies, including a high performance liquid chromatography-fluorescence method (HPLC-FLD), high performance liquid chromatography-UV detection method (HPLC-UV) and high performance liquid chromatography-mass spectrometry method (HPLC-MS), have been suggested as determination technologies for antibiotic residues in water. In this study, we implement a HPLC-MS/MS combined method to detect and analyze antibiotics in WWTP secondary effluent and apply a horizontal subsurface flow constructed wetland (CW) as an advanced wastewater treatment for removing antibiotics in the WWTP secondary effluent. The results show that there were 2 macrolides, 2 quinolones and 5 sulfas in WWTP secondary effluent among all the 22 antibiotics considered. After the CW advanced treatment, the concentration removal efficiencies and removal loads of 9 antibiotics were 53-100% and 0.004-0.7307 μg m(-2) per day, respectively.
Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin
2015-03-01
This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.
NASA Technical Reports Server (NTRS)
Erstfield, T. E.; Williams, R. J.
1979-01-01
A thermodynamic analysis discusses the compositions of gaseous effluents from the reaction of carbon and chlorine and of hydrogen with lunar anorthite and ilmenite, respectively. The computations consider the effects of the indigenous volatiles on the solid/gas reactions and on the composition of the effluent gases. A theoretical parameterization of the high temperature electrolysis of such gases is given for several types of solid ceramic electrolytes, and the effect of oxygen removal on the effluents is computed. Potential chemical interactions between the gases and the ceramic electrolytes are analyzed and discussed.
Origin of increased sulfate in groundwater at the ETF disposal site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, E.C.
1997-09-01
Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value ofmore » about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions.« less
Gong, Tingting; Zhang, Xiangru
2015-01-01
The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents.
NASA Astrophysics Data System (ADS)
Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.
2018-04-01
Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.
Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Chu, Hua-Qiang; Guo, Jun
2016-01-01
A freshwater algae Chlorella pyrenoidosa was cultured outdoors using anaerobically digested activated sludge effluent. The effects of pH variations were evaluated. The coupled pH variations and free ammonia toxicity significantly affected the algal growth, lipids accumulation and contamination control during every season. The free ammonia toxicity at high pH levels actually inhibited the algal growth. Compared to an optimal algal growth at a pH of 5.7-6.5, biomass productivity at a high pH of 8.3-8.8 was reduced by 67.15±6.98%, 54.39±6.42% and 83.63±5.71% in the spring, fall and summer, respectively. When the pH rose above 9.1-9.6, algae were unable to grow in the wastewater. However, high pH levels reduced contamination (e.g., bacteria and microalgae grazers) and triggered lipids accumulation in algal cells. These findings suggest that pH control strategies are essential for this type of algal wastewater system, where ammonia is the dominant nitrogen source. Copyright © 2015 Elsevier Ltd. All rights reserved.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.
Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc
2013-09-25
Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. Copyright © 2013 Elsevier B.V. All rights reserved.
Biodegradation of phytosanitary products in biological wastewater treatment.
Massot, A; Estève, K; Noilet, P; Méoule, C; Poupot, C; Mietton-Peuchot, M
2012-04-15
Agricultural activity generates two types of waste: firstly, biodegradable organic effluents generally treated by biological processes and, secondly, phytosanitary effluents which contain residues of plant protection products. The latter are collected and treated. Current technological solutions are essentially based on concentration or physical-chemical processes. However, recent improvements in the biodegradability of pesticides open the way to the consideration of alternative, biological, treatment using mixed liquor from wastewater plant activated sludge. The feasibility of the biological treatment of viticultural effluents has been evaluated by the application of pesticides to activated sludge. The necessity for selection of a pesticide-resistant biomass has been highlighted. The elimination of the phytosanitary products shows the potential of a resistant biomass in the treatment of pesticides. The aerated biological storage ponds at three wineries, followed by a sand or reed-bed filter, were used for the treatment of the total annual volume of the viticulture effluents and validate the laboratory experiments. The results show that the biological purification of pesticides by activated sludge is possible by allowing approximately 8 days for biomass adaptation. Stability of purification occurs between 20 and 30 days. Copyright © 2012 Elsevier Ltd. All rights reserved.
EPA scientists analyzed 24-hr composite samples from 50 large U.S. municipal wastewater plants (WWTPs) between January 2010 and April 2011. One hundred and twenty analytes were measured in each effluent sample, 63 high-priority active pharmaceutical ingredients and metabolites, ...
Innovative treatment system for digester liquor using anammox process.
Furukawa, Kenji; Inatomi, Yasuhiko; Qiao, Sen; Quan, Lai; Yamamoto, Taichi; Isaka, Kazuichi; Sumino, Tatsuo
2009-11-01
This study demonstrated that partial nitritation using nitrifying activated sludge entrapped in a polyethylene glycol (PEG) gel carrier, as a pretreatment to anammox process, could be successfully applied to digester liquor of biogas plant at a nitrogen loading rate of 3.0 kg-N/m(3)/d. The nitritation process produced an effluent with a NO(2)-N/NH(4)-N ratio between 1.0 and 1.4, which was found to be suitable for the subsequent anammox process. A high SS concentration (2000-3000 mg/l) in the digester liquor did not affect partial nitritation treatment performances. Effluent from this partial nitritation reactor was successfully treated in the anammox reactor using anammox sludge entrapped in the PEG gel carrier with T-N removal rates of greater than 4.0 kg-N/m(3)/d. Influent BOD and SS contents did not inhibit anammox activity of the anammox gel carrier. The combination of partial nitritation and anammox reactors using PEG entrapped nitrifying and anammox bacteria was shown to be effective for the removal of high concentration ammonium in the digester liquor of a biogas plant.
Characterisation of the ecotoxicity of hospital effluents: a review.
Orias, Frédéric; Perrodin, Yves
2013-06-01
The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.). Copyright © 2013 Elsevier B.V. All rights reserved.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar
2013-08-01
The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.
Wang, Lizhang; Zhao, Yuemin
2010-01-01
Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.
Disinfection of wastewater with peracetic acid: a review.
Kitis, Mehmet
2004-03-01
Peracetic acid is a strong disinfectant with a wide spectrum of antimicrobial activity. Due to its bactericidal, virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various industries, the use of peracetic acid as a disinfectant for wastewater effluents has been drawing more attention in recent years. The desirable attributes of peracetic acid for wastewater disinfection are the ease of implementing treatment (without the need for expensive capital investment), broad spectrum of activity even in the presence of heterogeneous organic matter, absence of persistent toxic or mutagenic residuals or by-products, no quenching requirement (i.e., no dechlorination), small dependence on pH, short contact time, and effectiveness for primary and secondary effluents. Major disadvantages associated with peracetic acid disinfection are the increases of organic content in the effluent due to acetic acid (AA) and thus in the potential microbial regrowth (acetic acid is already present in the mixture and is also formed after peracetic acid decomposition). Another drawback to the use of peracetic acid is its high cost, which is partly due to limited production capacity worldwide. However, if the demand for peracetic acid increases, especially from the wastewater industry, the future mass production capacity might also be increased, thus lowering the cost. In such a case, in addition to having environmental advantages, peracetic acid may also become cost-competitive with chlorine.
Lautz, L S; Struijs, J; Nolte, T M; Breure, A M; van der Grinten, E; van de Meent, D; van Zelm, R
2017-02-01
In this study, the removal of pharmaceuticals from wastewater as predicted by SimpleTreat 4.0 was evaluated. Field data obtained from literature of 43 pharmaceuticals, measured in 51 different activated sludge WWTPs were used. Based on reported influent concentrations, the effluent concentrations were calculated with SimpleTreat 4.0 and compared to measured effluent concentrations. The model predicts effluent concentrations mostly within a factor of 10, using the specific WWTP parameters as well as SimpleTreat default parameters, while it systematically underestimates concentrations in secondary sludge. This may be caused by unexpected sorption, resulting from variability in WWTP operating conditions, and/or QSAR applicability domain mismatch and background concentrations prior to measurements. Moreover, variability in detection techniques and sampling methods can cause uncertainty in measured concentration levels. To find possible structural improvements, we also evaluated SimpleTreat 4.0 using several specific datasets with different degrees of uncertainty and variability. This evaluation verified that the most influencing parameters for water effluent predictions were biodegradation and the hydraulic retention time. Results showed that model performance is highly dependent on the nature and quality, i.e. degree of uncertainty, of the data. The default values for reactor settings in SimpleTreat result in realistic predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.
Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M
2007-01-01
The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.
Lohner, T W; Reash, R J; Williams, M
2001-11-01
Sunfish were collected from a fly ash pond-receiving stream and an Ohio River reference site to assess biochemical responses to coal ash effluent exposure. Selenium levels in sunfish from the receiving stream were higher than toxic thresholds associated with adverse population effects and reproductive impairment. Tissue biochemistry was found to be indicative of metal exposure and effect, but varied widely. Liver glycogen was positively correlated with increased liver metal levels, indicating no adverse effect upon stored carbohydrate levels. Lipid levels decreased with increasing metals, indicating possible nutritional stress. Protein levels increased with increasing metal levels, possibly due to the synthesis of proteins to sequester the metals. ATPase, dUTPase, and alkaline phosphatase activity generally decreased with exposure to ash pond metals, but remained within normal physiological ranges. Fish condition factors and liver somatic indices were correlated with liver lipid levels, dUTPase activity, and gill ATPase and alkaline phosphatase activity. Exposure to coal ash effluents produced biochemical markers of exposure that were associated with fish condition indicators; however, the indices themselves were not significantly affected by effluent exposure.
Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents.
Yang, Ying; Xu, Jianfeng; Vail, Daniel; Weathers, Pamela
2011-04-01
The feasibility of growth and oil production by Ettlia oleoabundans fed with anaerobic digester effluents of three agriculture wastes from the Arkansas Delta, catfish processing waste, soybean field waste, and rice hulls, was studied. Compared to standard BBM medium, all three effluents were deficient in phosphate and nitrate, but rich in ammonia and urea. Best growth was on 2% (v/v) soy effluent, but scant oil was produced on any of the effluents. When the three effluents were mixed, growth did not substantially increase, but oil content increased up to sixfold, depending on age of the effluent. Similar to growth in BBM, the main fatty acids produced were palmitic, oleic, and linoleic. These results show that anaerobically digested agricultural wastes can potentially support both growth and high oil productivity in E. oleoabundans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Maier, Diana; Benisek, Martin; Blaha, Ludek; Dondero, Francesco; Giesy, John P; Köhler, Heinz-R; Richter, Doreen; Scheurer, Marco; Triebskorn, Rita
2016-10-01
Efficiency of advanced wastewater treatment technologies to reduce micropollutants which mediate dioxin-like toxicity was investigated. Technologies compared included ozonation, powdered activated carbon and granular activated carbon. In addition to chemical analyses in samples of effluents, surface waters, sediments, and fish, (1) dioxin-like potentials were measured in paired samples of effluents, surface waters, and sediments by use of an in vitro biotest (reporter gene assay) and (2) dioxin-like effects were investigated in exposed fish by use of in vivo activity of the mixed-function, monooxygenase enzyme, ethoxyresorufin O-deethylase (EROD) in liver. All advanced technologies studied, based on degradation or adsorption, significantly reduced dioxin-like potentials in samples and resulted in lesser EROD activity in livers of fish. Results of in vitro and in vivo biological responses were not clearly related to quantification of targeted analytes by use of instrumental analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P
2012-01-01
Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.
Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni
2014-05-01
Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide from the ventilation effluent of postharvest chamber fumigations. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using dif...
Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...
Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz
2010-04-01
A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.
Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.
Tang, S N; Fakhru'l-Razi, A; Hassan, M A; Karim, M I
1999-01-01
Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
NASA Astrophysics Data System (ADS)
Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.
1999-05-01
The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.
Chia, Mathias A; Musa, Rilwan I
2014-03-01
The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.
Fate of individual sewage disposal system wastewater within regolith in mountainous terrain
NASA Astrophysics Data System (ADS)
Dano, Kathleen; Poeter, Eileen; Thyne, Geoff
2008-06-01
In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.
Javed, Mehjbeen; Ahmad, Irshad; Ahmad, Ajaz; Usmani, Nazura; Ahmad, Masood
2016-01-01
The present study was conducted to assess the toxicity of thermal power plant effluent containing heavy metals (Fe > Cu > Zn > Mn > Ni > Co > Cr) on haematological indices, micronuclei, lobed nuclei and activity of pathological marker enzymes [alkaline phosphatase (ALP), aspartate transferase (AST), alanine transferase (ALT) and creatine kinase (CK)] in Channa punctatus. Total erythrocyte count (-54.52 %), hemoglobin (-36.98 %), packed cell volume (-36.25 %), mean corpuscular hemoglobin concentration (-1.41 %) and oxygen (O2) carrying capacity (-37.04 %) declined significantly over reference fish, however total leukocyte count (+25.43 %), mean corpuscular hemoglobin (+33.52 %) and mean corpuscular volume (+35.49 %) showed elevation. High frequency of micronuclei (1133.3 %) and lobed nuclei (150 %) were observed in exposed fish which may indicate mutagenesis. Activities of pathological marker enzymes ALP, AST, ALT and CK increased significantly in serum of exposed fish. The ratio of ALT: AST in exposed fish was beyond 1 which indicates manifestation of pathological processes. These biomarkers show that fish have macrocytic hypochromic anemia. Leukocytosis showed general defence response against heavy metal toxicity and marker enzymes showed tissue degeneration. In conclusion, thermal power plant effluent has strong potential to induce micronuclei, tissue pathology, making the fish anemic, weak, stressed and vulnerable to diseases.
Baldigo, Barry P.; George, Scott D.; Phillips, Patrick J.; Hemming, Joceyln D. C.; Denslow, Nancy D.; Kroll, Kevin J.
2015-01-01
Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R2 = 0.98–1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63–68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA.
Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi
2018-05-04
Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.
Thief carbon catalyst for oxidation of mercury in effluent stream
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2011-12-06
A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.
BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...
ERIC Educational Resources Information Center
Mulik, J. D.; And Others
Reported upon in this research study is the development of two automated chromatographs equipped with flame photometric detectors for the qualitative and quantitative analysis of both low- and high-molecular weight sulfur compounds in kraft mill effluents. In addition the study sought to determine the relationship between total gaseous sulfur and…
Michel, F C; Dass, S B; Grulke, E A; Reddy, C A
1991-08-01
The role of lignin peroxidases (LIPs) and manganese peroxidases (MNPs) of Phanerochaete chrysosporium in decolorizing kraft bleach plant effluent (BPE) was investigated. Negligible BPE decolorization was exhibited by a per mutant, which lacks the ability to produce both the LIPs and the MNPs. Also, little decolorization was seen when the wild type was grown in high-nitrogen medium, in which the production of LIPs and MNPs is blocked. A lip mutant of P. chrysosporium, which produces MNPs but not LIPs, showed about 80% of the activity exhibited by the wild type, indicating that the MNPs play an important role in BPE decolorization. When P. chrysosporium was grown in a medium with 100 ppm of Mn(II), high levels of MNPs but no LIPs were produced, and this culture also exhibited high rates of BPE decolorization, lending further support to the idea that MNPs play a key role in BPE decolorization. When P. chrysosporium was grown in a medium with no Mn(II), high levels of LIPs but negligible levels of MNPs were produced and the rate and extent of BPE decolorization by such cultures were quite low, indicating that LIPs play a relatively minor role in BPE decolorization. Furthermore, high rates of BPE decolorization were seen on days 3 and 4 of incubation, when the cultures exhibit high levels of MNP activity but little or no LIP activity. These results indicate that MNPs play a relatively more important role than LIPs in BPE decolorization by P. chrysosporium.
Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun
2015-07-01
A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.
Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago
2016-01-01
This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. Copyright © 2015 Elsevier Inc. All rights reserved.
Anammox process for nitrogen removal from anaerobically digested fish canning effluents.
Dapena-Mora, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2006-01-01
The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700-1000 g NH4+ -Nm(-3)), organic carbon content (1000-1300 g TOCm(-3)) and salinity up to 8,000-10,000 g NaCl m(-3). In the Sharon reactor, approximately 50% of the NH4+ -N was oxidised to NO2- -N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m(-3) x d(-1). The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO2- -N concentration was higher than the NH4+ -N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340g NH4+ -N m(-3) and 440 g NO2- -N m(-3), respectively. Based on these results, it seems that the Sharon-Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO2- -N/NH4+ -N ratio.
Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng
2011-09-15
The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent. Copyright © 2011 Elsevier B.V. All rights reserved.
Instrumentation of sampling aircraft for measurement of launch vehicle effluents
NASA Technical Reports Server (NTRS)
Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.
1977-01-01
An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristale, Joyce; Ramos, Dayana D.; Dantas, Renato F.
2016-01-15
This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatmentmore » and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were resistant to both secondary and tertiary treatment.« less
Proteolytic extracts of three Bromeliaceae species as eco-compatible tools for leather industry.
Errasti, María Eugenia; Caffini, Néstor Oscar; López, Laura María Isabel
2018-01-02
Most tanneries use high proportions of Na 2 S and CaO during the dehairing step, resulting in effluents of high alkalinity and large amounts of suspended solid, besides the risk of liberating the toxic H 2 S. Solid waste rich in protein is another environmental problem of tanneries. Enzymes are an interesting technological tool for industry due to their biodegradability, nontoxic nature, and nonpolluting effluent generation. In the leather industry, proteases have been chosen as a promising eco-friendly alternative to Na 2 S/CaO dehairing. Extracts with high proteolytic activity have been obtained from fruits of Bromeliaceae species: Bromelia balansae Mez (Bb), Bromelia hieronymi Mez (Bh), and Pseudananas macrodontes (Morr.) Harms (Pm). In this work, Bb, Bh, and Pm have been studied for application in the leather industry, focusing in their dehairing properties. Enzymatic activities were measured against collagen, keratin, elastin, and epidermis while a dehairing assay was performed by employing cowhide. All extracts showed similar activity on collagen and epidermis, while Bh and Pm were the most active against keratin at the same caseinolytic unit (CU) values; Bh was the only extract active against elastin. Bb (1 CU/ml), Bh (1.5 CU/ml), and Pm (0.5 CU/ml) were able to depilate cowhide. Desirable characteristics of dehairing were observed for all extracts since hair pores did not show residual hair, grain surface was clean and intact, and collagen fiber bundles of dermis were not damaged. In conclusion, results here presented show that proteolytic extracts of Bromeliaceae species are promising eco-compatible tools for leather industry.
Behaviour of five pharmaceuticals with high baseline toxicity in wastewater treatment
NASA Astrophysics Data System (ADS)
van Driezum, Inge; McArdell, Christa; Fenner, Kathrin; Helbling, Damian; van Breukelen, Boris
2013-04-01
Many pharmaceuticals enter the aquatic environment through sewer systems and are partially removed in wastewater treatment plants (WWTP) by sorption to sludge biomass or biodegradation. Biodegradation often does not lead to complete mineralization but to the formation of stable transformation products (TPs), which might still be harmful to the environment. Recently, a study was undertaken to assess the risk of the top 100 pharmaceuticals from wastewater of a hospital in Switzerland. The predicted toxicity was linked to the predicted environmental concentration in order to assess overall risk potential. In this study, biodegradation and sorption studies were carried out on the top five selected pharmaceuticals (amiodarone, atorvastatin, clotrimazole, meclozine and ritonavir). Potential TPs that are formed during activated sludge treatment were identified and concentrations of both the parent compounds and TPs were measured in the WWTP. With this data, the fate of these compounds was modeled in a WWTP system using a multi-reactor steady-state WWTP model. This study showed that sorption was the most important loss process for amiodarone and meclozine. They had an elimination of more than 99%. Sorption was also the main loss process for clotrimazole, but it was combined with some biodegradation. For ritonavir, both biodegradation and sorption played a role in the loss of this compound. The most important removal process for atorvastatin was biodegradation. Four TPs, formed through β-oxidation and monohydroxilation, were identified in both the activated sludge batch reactors and the WWTP effluent. In the WWTP effluent, only atorvastatin, clotrimazole and ritonavir were found. All identified TPs of atorvastatin were detected in the effluent. Risk quotients (RQ) of all five pharmaceuticals were estimated based on effluent concentration and baseline toxicity and ranged from zero to 2.14. Only ritonavir potentially poses an ecotoxicological risk for the aquatic environment.
2013-09-01
fraction of SRB could be active in O2 respiration, fermentation of organics, and even NO3- respiration. Therefore, the metabolic diversity of SRB...the case with PRB, which are able to reduce NO3- and ClO4-. To evaluate the model, we simulated effluent H2, UAP, and BAP concentrations, along with...effluent_experiment 56 Figure 36. Model- simulated concentrations of H2, UAP, and BAP in the effluent. Figure 37. Model- simulated
Toxicity evaluation of the process effluent streams of a petrochemical industry.
Reis, J L R; Dezotti, M; Sant'Anna, G L
2007-02-01
The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.
Preliminary Studies on Oleochemical Wastewater Treatment using Submerged Bed Biofilm Reactor (SBBR)
NASA Astrophysics Data System (ADS)
Ismail, Z.; Mahmood, N. A. N.; Ghafar, U. S. A.; Umor, N. A.; Muhammad, S. A. F.
2017-06-01
Wastewater discharge from the industry into water sources is one of the main reason for water pollution. The oleochemicals industry effluent produces high content of chemical oxygen demand (COD) with value between 6000-20,000 ppm. Effective treatment is required before wastewater effluent is discharged to environment. The aim of the study is to develop submerged bed biofilm reactor (SBBR) with packing materials in the cosmoball® carrier. Water quality such as chemical oxygen demands (COD), turbidity and pH were analysed. The result shows that the initial COD of 6000 ppm was reduced below 200 ppm. The optimum conditions for SBBR were obtained when green sponges used as packing material in cosmoball® effluent flowrate set at 100 mL/min; 1:1 ratio of cosmoball® volume to reactor volume and 1:1 ratio of active sludge (mixed culture) volume to reactor volume. Turbidity and pH were recorded with 9.0 NTU and 7.0 respectively, which indicated that SBBR is feasible as an alternative for conventional biological treatment in oleochemical industry.
Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing
2011-01-01
Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.
Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan
2011-05-01
The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.
Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P
2011-05-01
An integrated fluidized bed bioreactor (iFBBR) was designed to incorporate an aerobic sponge FBBR (ASB-FBBR) into an anoxic granular activated carbon FBBR (GAC-FBBR). This iFBBR was operated with and without adding a new starch based flocculant (NSBF) to treat synthetic primary treated sewage effluent (PTSE). The NSBF contains starch based cationic flocculants and trace nutrients. The results indicate that the iFBBR with NSBF addition could remove more than 93% dissolved organic carbon (DOC), 61% total nitrogen (T-N) and 60% total phosphorus (T-P) at just a very short hydraulic retention time of 50 min. The optimum frequency of adding NSBF to the iFFBR is four times per day. As a pretreatment to microfiltration, the iFFBR could increase 5L/m(2)h of critical flux thus reducing the membrane fouling. In addition, better microbial activity was also observed with high DO consumption (>66%) and specific oxygen uptake rate (>35 mg O(2)/g VSS h). Copyright © 2010 Elsevier Ltd. All rights reserved.
Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte
2018-06-01
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auchapt, J.M.
1962-01-01
The conditions in which Sr is fixed on calcite (the object of Geneva report P/395-USA-- 1958) are more closely studied and the work is extended to five fission products in the effluerts and to 17 common rocks and minerals. Although this fixation is not suitsble as a method of treating STE effluents (i.e., those from the effluent treatment plant at MIarcoule), the study shows that all the crystals considered are strongly contaminated by simple contact. (auth)
Wen, Aiping; Li, Zhe; Yu, Junxian; Li, Ren; Cheng, Sheng; Duan, Meili; Bai, Jing
2016-01-01
The primary objective of this pilot study was to investigate whether the therapeutic drug monitoring of imipenem could be performed with spent effluent instead of blood sampling collected from critically ill patients under continuous renal replacement therapy. A prospective open-label study was conducted in a real clinical setting. Both blood and effluent samples were collected pairwise before imipenem administration and 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h after imipenem administration. Plasma and effluent imipenem concentrations were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. Pharmacokinetic and pharmacodynamic parameters of blood and effluent samples were calculated. Eighty-three paired plasma and effluent samples were obtained from 10 patients. The Pearson correlation coefficient of the imipenem concentrations in plasma and effluent was 0.950 (P<0.0001). The average plasma-to-effluent imipenem concentration ratio was 1.044 (95% confidence interval, 0.975 to 1.114) with Bland-Altman analysis. No statistically significant difference was found in the pharmacokinetic and pharmacodynamic parameters tested in paired plasma and effluent samples with Wilcoxon test. Spent effluent of continuous renal replacement therapy could be used for therapeutic drug monitoring of imipenem instead of blood sampling in critically ill patients.
Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia
2009-05-15
By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.
Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.
2005-01-01
An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e
In vitro assessment of estrogenic bioactivity in complex environmental effluents**
Environmental effluents contain a diversity of chemicals, can originate from a variety of sources, and have been found to contain estrogenic and/or androgenic activity. In this study, samples were collected from targeted sites or as runoff from an agriculture field that was spray...
In vitro assessment of estrogenic bioactivity in complex environmental effluents
Environmental effluents contain a diversity of chemicals, can originate from a variety of sources, and have been found to contain estrogenic and/or androgenic activity. In this study, samples were collected from targeted sites or as runoff from an agriculture field that was spray...
THE ROLE OF INORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING
Effluent toxicity testing methods have been well defined, but to a large part have not attempted to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role that various total dissolved solids in effluents have on regula...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana
2016-04-13
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe{sub 3}O{sub 4}.« less
Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun
2011-10-01
Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.
Strategies for decolorization and detoxification of pulp and paper mill effluent.
Garg, Satyendra K; Tripathi, Manikant
2011-01-01
The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various physicochemical remediation treatments in the pulp-paper industry are now used, or have been suggested, but often are not implemented, because of the high cost involved. More recently, the paper and pulp industry has been investigating the use of biological remediation steps to replace or augment current treatment strategies. Certain biological treatments offer opportunities to reduce cost (both capital and operating), reduce energy consumption, and minimize environmental impact. Two primary approaches may be effective to curtail release of toxic effluents: first, development of pulping and bleaching processes that emphasize improved oxygen delignification or biopulping, plus partial or complete replacement of chlorine treatment with hydrogen peroxide or with biobleaching; second, implementation of biological processing that involves sequential two-step anaerobic-aerobic or three-step aerobic-anaerobic treatment technologies at end of pipe. The selection of the specific process will depend upon the type of pollutants/toxicants/mutagens present in the effluent. The use of environmental-friendly technologies in the pulp and paper industry is becoming more popular, partly because of increasing regulation, and partly because of the availability of new techniques that can be used to economically deal with pollutants in the effluents. Moreover, biotechnology research methods are offering promise for even greater improvements in the future. The obvious ultimate goal of the industry and the regulators should be zero emission through recycling of industrial wastewater, or discharge of the bare minimum amount of toxicants or color.
Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie
2015-06-01
The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilén, B M; Lumley, D; Mattsson, A; Mino, T
2006-01-01
The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.
NASA Astrophysics Data System (ADS)
Abdulrazak, Sani; Hussaini, K.; Sani, H. M.
2017-10-01
This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.
Case, F.N.; Ketchen, E.E.
1975-10-14
A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.
Tree production in desert regions using effluent and water harvesting
Martin M. Karpiscak; Gerald J. Gottfried
2000-01-01
Treated municipal effluent combined with water harvesting can be used for land restoration and enhancing the growth of important riparian tree species. Paired studies in Arizona are assessing the potential of growing trees using mixtures of effluent and potable water. Trees are grown in the field and in containers. Initial results from the field show high survival for...
The Assabet River in central Massachusetts is a heavily effluent-dominated river and during low-flow conditions, is composed almost entirely of waterwater effluent (i.e., up to 95%). The U.S EPA Regional New England Laboratory and the U.S. EPA Office of Research and Development ...
NASA Astrophysics Data System (ADS)
Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.
2010-08-01
SummaryHospital wastewaters contain a variety of toxic or persistent substances such as pharmaceuticals, radionuclides, solvents and disinfectants for medical purposes in a wide range of concentrations due to laboratory and research activities or medicine excretion. Most of these compounds belong to the so called emerging contaminants; quite often unregulated pollutants which may be candidates for future regulation depending on research on their potential health effects and monitoring of their occurrence. Their main characteristic is that they do not need to persist in the environment to cause negative effects since their high transformation/removal rates can be compensated for by their continuous introduction into the environment. Some of these compounds, most of them pharmaceuticals and personal care products may also be present in urban wastewaters. Their concentrations in the effluents may vary from ng L -1 to μg L -1. In this paper, hospital effluents and urban wastewaters are compared in terms of quali-quantitative characteristics. On the basis of an in-depth survey: (i) hospital average specific daily water consumptions (L patient -1 day -1) are evaluated and compared to urban ones (L person -1 day -1), (ii) conventional parameters concentrations in hospital effluents are compared to urban ones and (iii) main pharmaceuticals and other emerging compounds contents are compared in the two wastewaters. Finally, an overview of the removal capacity of the different treatments is reported.
UV disinfection for reuse applications in North America.
Sakamoto, G; Schwartzel, D; Tomowich, D
2001-01-01
In an effort to conserve and protect limited water resources, the States of Florida and California have actively promoted wastewater reclamation and have implemented comprehensive regulations covering a range of reuse applications. Florida has a semi-tropical climate with heavy summer rains that are lost due to run off and evaporation. Much of California is arid and suffers periodic droughts, low annual rainfall and depleted ground water supplies. The high population density combined with heavy irrigation demands has depleted ground water supplies resulting in salt-water intrusion. During the past decade, Florida reuse sites have increased dramatically from 118 to 444 plants representing a total flow capacity of 826 MGD. California presently has over 250 plants producing 1 BGD with a projected increase of 160 sites over the next 20 years. To prevent the transmission of waterborne diseases, disinfection of reclaimed water is controlled by stringent regulations. Many states regulate wastewater treatment processes, nutrient removal, final effluent quality and disinfection criteria based upon the specific reuse application. As a rule, the resulting effluents have low turbidity and suspended solids. For such effluents, UV technology can economically achieve the most stringent disinfection targets that are required by the States of California and Florida for restricted and unrestricted reuse. This paper compares UV disinfection for wastewater reuse sites in California and Florida and discusses the effect of effluent quality on UV disinfection.
Chiang, Gustavo; Barra, Ricardo; Díaz-Jaramillo, Mauricio; Rivas, Meyling; Bahamonde, Paulina; Munkittrick, Kelly R
2015-07-01
Pulp and paper mill effluents (PPMEs) have been shown to increase gonad size, cause early maturation, and disrupt hormone functions in native and non-native Chilean fish. In this study, we assessed reproductive (plasma vitellogenin; VTG, gonad development) and metabolic (ethoxyresorufin-O-deethylase activity; EROD) end points, relative liver size (LSI) and condition factor (K) of juvenile female and male rainbow trout exposed to effluents. Unlike previous studies, which have focus either on the specific effects of effluent on fish in laboratory exposures or biotic population statuses downstream of discharge sites, we simultaneously assessed the impacts of PPMES on trout using two approaches: (1) laboratory exposures of tertiary treated PPME produced from processing Eucalyptus globulus or Pinus radiata; and (2) in situ bioassay downstream of the combined discharge of the same pulp mill. Despite an increase in the average gonadosomatic index (GSI) in exposed fish, no statistical differences in gonad size between exposed and unexposed individuals was detected. However, both female and male fish exposed to effluents showed significantly higher concentrations of plasma VTG, so more in fish exposed to Eucalyptus-based effluent when compared to Pinus PPME. In addition, male fish showed intersex characteristics in all exposure assays (Eucaliptus and Pinus) and, despite the low concentration of effluent in the river (<1% [v/v]), similar responses were observed in the caged fish. Finally, EROD activity was induced in both in situ exposures and laboratory assays at the higher PPME concentration (60-85% PPME). This study confirms estrogenic effects in Chilean fish exposed to PPME and the necessity for biological effects monitoring in addition to the assessment of physical-chemical endpoints as required in current government regulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Pohl, Johannes; Björlenius, Berndt; Brodin, Tomas; Carlsson, Gunnar; Fick, Jerker; Larsson, D G Joakim; Norrgren, Leif; Örn, Stefan
2018-04-25
Pharmaceutical residues and other micro-contaminants may enter aquatic environments through effluent from sewage treatment plants (STPs) and could cause adverse effects in wild fish. One strategy to alleviate this situation is to improve wastewater treatment by ozonation. To test the effectiveness of full-scale wastewater effluent ozonation at a Swedish municipal STP, the added removal efficiency was measured for 105 pharmaceuticals. In addition, gene expression, reproductive and behavioral endpoints were analyzed in zebrafish (Danio rerio) exposed on-site over 21 days to ozonated or non-ozonated effluents as well as to tap water. Ozone treatment (7 g O 3 /m 3 ) removed pharmaceuticals by an average efficiency of 77% in addition to the conventional treatment, leaving 11 screened pharmaceuticals above detection limits. Differences in biological responses of the exposure treatments were recorded in gene expression, reproduction and behavior. Hepatic vitellogenin gene expression was higher in male zebrafish exposed to the ozonated effluent compared to the non-ozonated effluent and tap water treatments. The reproductive success was higher in fish exposed to ozonated effluent compared to non-ozonated effluent and to tap water. The behavioral measurements showed that fish exposed to the ozonated STP effluent were less active in swimming the first minute after placed in a novel vessel. Ozonation is a capable method for removing pharmaceuticals in effluents. However, its implementation should be thoroughly evaluated for any potential biological impact. Future research is needed for uncovering the factors which produced the in vivo responses in fish. Copyright © 2018 Elsevier B.V. All rights reserved.
Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
Tong, Xuejiao; Xu, Renkou
2013-04-01
The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.
Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse
2011-03-15
Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.
Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H
2015-01-01
A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.
Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M
2008-08-01
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.
Postacchini, Leonardo; Lamichhane, Krishna M; Furukawa, Dennis; Babcock, Roger W; Ciarapica, F E; Cooney, Michael J
2016-01-01
This paper conducts a comparative assessment of the environmental impacts of three methods of treating primary clarifier effluent in wastewater treatment plants (WWTPs) through life cycle assessment methodology. The three technologies, activated sludge (AS), high rate anaerobic-aerobic digestion (HRAAD), and trickling filter (TF), were assessed for treatment of wastewater possessing average values of biochemical oxygen demand and total suspended solids of 90 mg L(-1) and 70 mg L(-1), respectively. The operational requirements to process the municipal wastewater to effluent that meets USEPA regulations have been calculated. The data for the AS system were collected from the East Honolulu WWTP (Hawaii, USA) while data for the HRAAD system were collected from a demonstration-scale system at the same plant. The data for the TF system were estimated from published literature. Two different assessment methods have been used in this study: IMPACT 2002+ and TRACI 2. The results show that TF had the smallest environmental impacts and that AS had the largest, while HRAAD was in between the two but with much reduced impacts compared with AS. Additionally, the study shows that lower sludge production is the greatest advantage of HRAAD for reducing environmental impacts compared with AS.
The feasibility of effluent trading in the oil and gas industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J.A.
1997-09-01
In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades,more » for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less
Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang
2016-08-05
Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. Copyright © 2016 Elsevier B.V. All rights reserved.
Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.
2016-01-01
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.
Oak Ridge Reservation annual site environmental report for 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation`s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the warmore » effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR`s compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment.« less
Fast microbial reduction of ferrihydrite colloids from a soil effluent
NASA Astrophysics Data System (ADS)
Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.
2012-01-01
Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite colloids from soil effluents can be considered as highly reactive electron acceptors in anoxic environments.
Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...
We measured the concentrations of 56 active pharmaceutical ingredients (APIs) and seven metabolites, including 50 prioritized APIs, in 24-hour composite effluent samples collected from 50 very large municipal wastewater treatment plants across the US. Hydrochlorothiazide was foun...
Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...
High-resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales promela...
CORROSION FILM REMOVAL AS AN INDICATION OF DECONTAMINATION EFFECTIVENESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weed, R.D.
1958-11-10
The decontamination of high-temperature, highpressure recirculation loops and components is being investigated. The Turco-4501 process and certain promising modificatibns of this process are being evaluated according to their film-removing qualities. Two of the processes exhibited more promise than others. These were the Turco-4501 process, substituting either oxalic acid or a chromic acid solution lor the nitric acid. Other variations were also tested and results are reported. (W.L.H.) l8636 The dissipation of effluent into sea water by initial dilution eddy diffusion and residual currents was originally assessed by Seligman and Scott in 1948. Further experimental work is described which has enabledmore » a new urement of the initial dilution of fresh water from the pipe line, and a study of the movement of water as indicated by driff bottles. It is now envisaged that initial dilution by a factor of 10/sup 4/, will be followed by eddy diffusion with the coefficients as measured by Seligman and bulk movement primarily due to the force of the wind Exceptions will occur when defined calm conditions exist. The discharged effluent will then tend to float on the surface with an initial dilution factor of only a few diffussing remains of the previous activity there being no incations of residual currents. No work has been done a see if this more concentrated effluent can come ashore without further dilution. It is recommended that, a avoid floating effluent, water should not be discharged July. Thc p1imhry ob!ect of this inveBtigation was 10 gtudy during very calm weather. Maximum storage space can he assured by normaally pumping effluent to sea at the rffi hQh tide affer treatment. (auth) during very calm weather. Maximum storage space can be assured by normally pumping effluent to sea at the« less
Tahar, Alexandre; Tiedeken, Erin Jo; Rowan, Neil J
2018-03-01
This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention. Copyright © 2017 Elsevier B.V. All rights reserved.
Santos, J L; Aparicio, I; Callejón, M; Alonso, E
2009-05-30
Several pharmaceutically active compounds have been monitored during 1-year period in influent and effluent wastewater from wastewater treatment plants (WWTPs) to evaluate their temporal evolution and removal from wastewater and to know which variables have influence in their removal rates. Pharmaceutical compounds monitored were four antiinflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine). All of the pharmaceutically active compounds monitored, except diclofenac, were detected in influent and effluent wastewater. Mean concentrations measured in influent wastewater were 6.17, 0.48, 93.6, 1.83 and 5.41 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean concentrations measured in effluent wastewater were 2.02, 0.56, 8.20, 0.84 and 2.10 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean removal rates of the pharmaceuticals varied from 8.1% (carbamazepine) to 87.5% (ibuprofen). The existence of relationships between the concentrations of the pharmaceutical compounds, their removal rates, the characterization parameters of influent wastewaters and the WWTP control design parameters has been studied by means of statistical analysis (correlation and principal component analysis). With both statistical analyses, high correlations were obtained between the concentration of the pharmaceutical compounds and the characterization parameters of influent wastewaters; and between the removal rates of the pharmaceutical compounds, the removal rates of the characterization parameters of influent wastewaters and the WWTP hydraulic retention times. Principal component analysis showed the existence of two main components accounting for 76% of the total variability.
Pratt, C; Shilton, A
2010-01-01
Active filtration, where effluent is passed through a reactive substrate such as steel slag, offers a simple and cost-effective option for removing phosphorus (P) from effluent. This work summarises a series of studies that focused on the world's only full-scale active slag filter operated through to exhaustion. The filter achieved 75% P-removal during its first 5 years, reaching a retention capacity of 1.23 g P/kg slag but then its performance sharply declined. Scanning electron microscopy, X-ray diffraction, X-ray fluorescence, and chemical extractions revealed that P sequestration was primarily achieved via adsorption onto iron (Fe) oxyhydroxides on the slag's surface. It was concluded that batch equilibrium tests, whose use has been repeatedly proposed in the literature, cannot be used as an accurate predictor of filter adsorption capacity because Fe oxyhydroxides form via chemical weathering in the field, and laboratory tests don't account for this. Research into how chemical conditions affect slag's P retention capacity demonstrated that near-neutral pH and high redox are optimal for Fe oxyhydroxide stability and overall filter performance. However, as Fe oxyhydroxide sites fill up, removal capacity becomes exhausted. Attempts to regenerate P removal efficiency using physical techniques proved ineffective contrary to dogma in the literature. Based on the newly-developed understanding of the mechanisms of P removal, chemical regeneration techniques were investigated and were shown to strip large quantities of P from filter adsorption sites leading to a regenerated P removal efficiency. This raises the prospect of developing a breakthrough technology that can repeatedly remove and recover P from effluent.
Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems
Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.
2000-01-01
The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems. PMID:11097883
Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong
2017-04-01
The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated through a laboratory-scale NF fouling test treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK and NF90 membranes, respectively. Results showed that organic fouling is the main NF membrane fouling for treating both the MBR effluent and MBR-GAC effluent. Soluble microbial by-product (SMP)-like and aromatic protein-like substances were the dominant components in the foulants, whereas humic-like substances had little contribution to the NF fouling. The fouling of DK was more severe than that of NF90. However, foulants respond by UV 254 were more easily to foul NF90 membrane. It could get satisfactory effect using combined cleaning of acid (HCl, pH 2.0∼2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0∼10.5). The favorable cleaning strategy is "acid + alkali" for treating MBR-GAC effluent, while it is "alkali + acid" for treating MBR effluent.
Wen, Aiping; Li, Zhe; Yu, Junxian; Li, Ren; Cheng, Sheng; Duan, Meili; Bai, Jing
2016-01-01
Objectives The primary objective of this pilot study was to investigate whether the therapeutic drug monitoring of imipenem could be performed with spent effluent instead of blood sampling collected from critically ill patients under continuous renal replacement therapy. Methods A prospective open-label study was conducted in a real clinical setting. Both blood and effluent samples were collected pairwise before imipenem administration and 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h after imipenem administration. Plasma and effluent imipenem concentrations were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. Pharmacokinetic and pharmacodynamic parameters of blood and effluent samples were calculated. Results Eighty-three paired plasma and effluent samples were obtained from 10 patients. The Pearson correlation coefficient of the imipenem concentrations in plasma and effluent was 0.950 (P<0.0001). The average plasma-to-effluent imipenem concentration ratio was 1.044 (95% confidence interval, 0.975 to 1.114) with Bland-Altman analysis. No statistically significant difference was found in the pharmacokinetic and pharmacodynamic parameters tested in paired plasma and effluent samples with Wilcoxon test. Conclusion Spent effluent of continuous renal replacement therapy could be used for therapeutic drug monitoring of imipenem instead of blood sampling in critically ill patients. PMID:27093294
Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas
2009-01-01
Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.
Cleanup Verification Package for the 116-K-2 Effluent Trench
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2006-04-04
This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.
Waste treatment of kraft effluents by white-rot fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, R.
1996-10-01
The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular,more » Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.« less
Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N
2014-04-01
The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).
Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru
2012-11-01
Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.
Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto
2012-04-01
The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.
Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto
2012-01-01
The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587
Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.
Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying
2015-05-05
Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.
Yang, Mengting; Zhang, Xiangru
2013-10-01
Using seawater for toilet flushing may introduce high levels of bromide and iodide into a city's sewage treatment works, and result in the formation of brominated and iodinated disinfection byproducts (DBPs) during chlorination to disinfect sewage effluents. In a previous study, the authors' group has detected the presence of many brominated DBPs and identified five new aromatic brominated DBPs in chlorinated saline sewage effluents. The presence of brominated DBPs in chlorinated saline effluents may pose adverse implications for marine ecology. In this study, besides the detection and identification of another seven new aromatic halogenated DBPs in a chlorinated saline sewage effluent, their developmental toxicity was evaluated using the marine polychaete Platynereis dumerilii. For comparison, the developmental toxicity of some commonly known halogenated DBPs was also examined. The rank order of the developmental toxicity of 20 halogenated DBPs was 2,5-dibromohydroquinone > 2,6-diiodo-4-nitrophenol ≥ 2,4,6-triiodophenol > 4-bromo-2-chlorophenol ≥ 4-bromophenol > 2,4-dibromophenol ≥ 2,6-dibromo-4-nitrophenol > 2-bromo-4-chlorophenol > 2,6-dichloro-4-nitrophenol > 2,4-dichlorophenol > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > bromoform ≥ 2,4,6-trichlorophenol > 2,6-dibromophenol > 2,6-dichlorophenol > iodoacetic acid ≥ tribromoacetic acid > bromoacetic acid > chloroacetic acid. On the basis of developmental toxicity data, a quantitative structure-activity relationship (QSAR) was established. The QSAR involved two physical-chemical property descriptors (log P and pKa) and two electronic descriptors (the lowest unoccupied molecular orbital energy and the highest occupied molecular orbital energy) to indicate the transport, biouptake, and biointeraction of these DBPs. It can well predict the developmental toxicity of most of the DBPs tested.
Wilkinson, John L; Swinden, Julian; Hooda, Peter S; Barker, James; Barton, Stephen
2016-09-01
An effective, specific and accurate method is presented for the quantification of 13 markers of anthropogenic contaminants in water using solid phase extraction (SPE) followed by high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Validation was conducted according to the International Conference on Harmonisation (ICH) guidelines. Method recoveries ranged from 77 to 114% and limits of quantification between 0.75 and 4.91 ng/L. A study was undertaken to quantify the concentrations and loadings of the selected contaminants in 6 sewage treatment works (STW) effluent discharges as well as concentrations in 5 rain-driven street runoffs and field drainages. Detection frequencies in STW effluent ranged from 25% (ethinylestradiol) to 100% (benzoylecgonine, bisphenol-A (BPA), bisphenol-S (BPS) and diclofenac). Average concentrations of detected compounds in STW effluents ranged from 3.62 ng/L (ethinylestradiol) to 210 ng/L (BPA). Levels of perfluorinated compounds (PFCs) perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) as well as the plasticiser BPA were found in street runoff at maximum levels of 1160 ng/L, 647 ng/L and 2405 ng/L respectively (8.52, 3.09 and 2.7 times more concentrated than maximum levels in STW effluents respectively). Rain-driven street runoff may have an effect on levels of PFCs and plasticisers in receiving rivers and should be further investigated. Together, this method with the 13 selected contaminants enables the quantification of various markers of anthropogenic pollutants: inter alia pharmaceuticals, illicit drugs and their metabolites from humans and improper disposal of drugs, while the plasticisers and perfluorinated compounds may also indicate contamination from industrial and transport activity (street runoff). Copyright © 2016 Elsevier Ltd. All rights reserved.
[Detection of Physiological Activity of Pharmaceuticals in Wastewater and River Water].
Ihara, Masaru; Zhang, Han; Hanamoto, Seiya; Tanaka, Hiroaki
2018-01-01
Pharmaceuticals are widely found in aquatic environments worldwide. Concern about their potential risks to aquatic species has been raised because they are designed to be biologically active. To address this concern, we must know whether biological activity of pharmaceuticals can be detected in waters. Nearly half of all marketed pharmaceuticals act by binding to the G protein-coupled receptor (GPCR). In this study, we measured the physiological activity of GPCR-acting pharmaceuticals in effluent from a wastewater treatment plant (WWTP) and upstream and downstream of its outfall in Japan during 2 years. We used the in vitro transforming growth factor-α (TGFα) shedding assay, which accurately and sensitively detects GPCR activation, to investigate the antagonistic activities of water extracts against receptors for dopamine (D2) and histamine (H1). Activities detected in waters were quantified as antagonist equivalent quantities (EQs). In WWTP effluent extracts, antagonistic activity was detected at several hundred ng/L of sulpiride-EQ (D2) and several μg/L of diphenhydramine (DIP)-EQ (H1). In downstream river water extracts, antagonistic activity against H1 was around several hundred ng/L of DIP-EQ, higher than that upstream owing to the WWTP effluent. This review discusses the research needed to resolve the concern about potential risks of pharmaceuticals in waters to aquatic species.
Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana
2016-11-15
Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a range
Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub
2016-01-01
ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures. PMID:27107113
Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj
2011-04-01
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle
2018-04-01
It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to domestic discharges. Thanks to the SIPIBEL site, data obtained from this 2-year program are useful to evaluate the relevance of separate hospital wastewater treatment.
Stephen, Dayana Priyadharshini; Ayalur, Bakthavatsalam Kannappan
2017-05-01
The ability of Chlorella pyrenoidosa, a freshwater microalga, to degrade phenolic effluent of coal-based producer gas plant under ambient conditions was investigated. C. pyrenoidosa was able to grow in high-strength phenolic effluent. Major contaminant present in the effluent was phenol (C 6 H 5 OH). The effluent has 1475.3 ± 68 mg/L of initial total phenolic concentration. The effect of nutrients used for algal cultivation in phenol degradation was analyzed by inoculating four different concentrations, viz.,1, 2, 3, and 4 g of wet biomass/L of raw effluent of C. pyrenoidosa mixed with effluent into two batches (with and without nutrients). C. pyrenoidosa was able to degrade more than 95% of the phenol (C 6 H 5 OH) concentration with the algal concentrations of 3 and 4 g/L when supplemented with nutrients. With effluent devoid of nutrients, the average percent reduction in total phenolic compounds was observed to a maximum of 46%. No physical changes in the C. pyrenoidosa were observed during degradation. C. pyrenoidosa was able to consume the organic carbon present in the phenolic compounds as carbon source for its growth despite the inorganic carbon supplemented externally.
Female mosquitofish downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent response. This effect can be introduced in the laboratory with exposure to either paper mill effluent (PME) or to androgenic drugs. Hence, it has been h...
Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...
Naik, Umesh Chandra; Das, Mihir Tanay; Sauran, Swati; Thakur, Indu Shekhar
2014-03-01
The present study compares in vitro toxicity of electroplating effluent after the batch treatment process with that obtained after the sequential treatment process. Activated charcoal prepared from sugarcane bagasse through chemical carbonization, and tolerant indigenous bacteria, Bacillus sp. strain IST105, were used individually and sequentially for the treatment of electroplating effluent. The sequential treatment involving activated charcoal followed by bacterial treatment removed 99% of Cr(VI) compared with the batch processes, which removed 40% (charcoal) and 75% (bacteria), respectively. Post-treatment in vitro cyto/genotoxicity was evaluated by the MTT test and the comet assay in human HuH-7 hepatocarcinoma cells. The sequentially treated sample showed an increase in LC50 value with a 6-fold decrease in comet-assay DNA migration compared with that of untreated samples. A significant decrease in DNA migration and an increase in LC50 value of treated effluent proved the higher effectiveness of the sequential treatment process over the individual batch processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Novoa-Luna, Karen Adriana; Romero-Romero, Rubí; Natividad-Rangel, Reyna; Galar-Martínez, Marcela; SanJuan-Reyes, Nely; García-Medina, Sandra; Martínez-Vieyra, Catalina; Neri-Cruz, Nadia; Gómez-Oliván, Leobardo Manuel
2016-09-01
Production in the pharmaceutical industry has increased and along with it, the amount of wastewater of various characteristics and contaminant concentrations. The main chemicals in these effluents are solvents, detergents, disinfectants-such as sodium hypochlorite (NaClO)-and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the oxidative stress induced in the amphipod Hyalella azteca by the effluent from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. The median lethal concentration (72 h-LC50) was determined and H. azteca were exposed to the lowest observed adverse effect level (0.0732 %) for 12, 24, 48 and 72 h, and biomarkers of oxidative stress were evaluated [hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and the activity of the superoxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)]. Statistically significant increases with respect to the control group (P < 0.05) were observed in HPC, LPX and PCC in H. azteca at all exposure times. Antioxidant enzymes activity SOD, CAT and GPx activity also increased significantly (P < 0.05) with respect to the control group. In conclusion, the industrial effluent analyzed in the present study contains NSAIDs and NaClO, and induces oxidative stress in H. azteca.
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Brix, Kevin V; Gerdes, Robert; Grosell, Martin
2010-10-01
A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.
Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda
2014-01-15
The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.
Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha
2008-09-01
The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (p<0.05) in the weight and structure of sex accessory tissues of castrated rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change (p<0.05) in the expression patterns of the major steroidogenic enzymes in adrenal and testes namely, cytochrome P450scc, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydorgenase in castrated and intact rats. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile demonstrated a dose dependent increase in testicular and adrenal testosterone productions in intact and castrated rats, respectively. This was further supported by decreased level of gonadotrophic hormones (LH and FSH) in treated groups of animals. Further, the effluent treatment resulted in the development of hyperplasia in seminiferous tubules of testes in treated rats as evident from histopathological studies and about two-fold increases in daily sperm production. On analysis of water samples using GC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.
Removal of anaerobic soluble microbial products in a biological activated carbon reactor.
Dong, Xiaojing; Zhou, Weili; He, Shengbing
2013-09-01
The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.
Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri
Smith, Brenda Joyce; Richards, Joseph M.
2008-01-01
The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride concentrations larger than 40 milligrams per liter. The chloride concentration of ground water in the alluvial aquifer reflects several sources, including precipitation, water from the Missouri River, water in the aquifer, and the treated effluent. Chloride concentrations from precipitation, the Missouri River, and water in the alluvial aquifer were less than 40 milligrams per liter. These monitoring wells affected by effluent are located in two general areas - adjacent to treatment wetland unit 1 and near the ground-water high on and north of the Eagle Bluffs Conservation Area. The probable source of the large chloride concentrations in well samples adjacent to treatment wetland unit 1 is leakage from the unit. The source for the large chloride concentrations in the other monitoring well samples is the effluent mixed with ground water and Missouri River water that is used to fill pools on the Eagle Bluffs Conservation Area. One monitoring well had a single sample with a chloride concentration larger than 40 milligrams per liter. That sample may have been affected by the use of road salt because of the presence of ice and snow immediately before the sample was collected. Lateral ground-water flow was dominated by the presence of a persistent ground-water high beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression centered around the city of Columbia well field in the northern part of the study area. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was to the north toward the cone of depression around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high was present throughout the study period, the subsurface expression of the high changed depending on hydrolo
Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth
2014-08-01
The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.
Li, Bo; Wu, Guangxue
2014-01-01
Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities. PMID:24681555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, R.; Grames, L.M.
Pilot Carrousel testing was conducted for about three months on wastewaters generated at a major potato processing facility in 1993. The testing focused toward removal of BOD, NH{sub 3} and NO{sub 3}, and Total-P. After five-six weeks that it took for the system to reach steady state operation, the pilot plant was able to treat the wastewaters quite well. Effluent BOD{sub 5} and TKN values were less than 8 and 4 mg/L, respectively, during the second half of testing. Total-P in the effluent was less than 10 mg/L, although this step was not optimized. Based on the pilot testing, amore » full-scale Carrousel activated sludge plant was designed and commissioned in 1994. This plant is currently treating all the wastewaters from the facility and performing contaminant removals at a very high level.« less
Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R
2017-03-01
The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.
Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R
2017-05-01
In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.
A simple respirogram-based approach for the management of effluent from an activated sludge system.
Li, Zhi-Hua; Zhu, Yuan-Mo; Yang, Cheng-Jian; Zhang, Tian-Yu; Yu, Han-Qing
2018-08-01
Managing wastewater treatment plant (WWTP) based on respirometric analysis is a new and promising field. In this study, a multi-dimensional respirogram space was constructed, and an important index R es/t (ratio of in-situ respiration rate to maximum respiration rate) was derived as an alarm signal for the effluent quality control. A smaller R es/t value suggests better effluent. The critical R' es/t value used for determining whether the effluent meets the regulation depends on operational conditions, which were characterized by temperature and biomass ratio of heterotrophs to autotrophs. With given operational conditions, the critical R' es/t value can be calculated from the respirogram space and effluent conditions required by the discharge regulation, with no requirement for calibration of parameters or any additional measurements. Since it is simple, easy to use, and can be readily implemented online, this approach holds a great promise for applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of leather industry effluents on soil microbial and protease activity.
Pradeep, M Reddi; Narasimha, G
2012-01-01
Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)).
Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I
2018-08-01
The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.
Devault, Damien A; Néfau, Thomas; Levi, Yves; Karolak, Sara
2017-11-01
The consumption of drugs of abuse has been recently investigated in Martinique using the back-calculation approach, also called the "sewage epidemiology" method. Results demonstrated a very high consumption considering the international data. Wastewater treatment plants (WWTPs) are located just behind the Martinique island shoreline, and effluents could impact the vulnerable corals and marine seagrass ecosystem. The present article aims to determine a WWTP's efficiency by comparing the influent and effluent of two WWTPs, with different residence times and biological treatments, located either outdoors or indoors. In parallel, a degradation study is conducted using spiked wastewater exposed to tropical and ambient temperatures. Results demonstrate the consistent efficiency of the two processes, especially for the outdoor WWTP which uses the activated sludge process. The positive effect of the tropical temperature is showed by the increase of cocaine degradation at 31 °C. Thus, low illicit drug residue concentrations in effluent would indicate that wastewater treatment is efficient and even enhanced under tropical context. This fact should be confirmed with others molecules. Furthermore, our results highlight the need for subsequent studies of sludge contamination because of their local recycling as compost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briel, L.I.
1976-01-01
Typical surface water masses in the Santa Fe basin are characterized by a /sup 238/U concentration of 0.224 +- .014 ppB and a /sup 234/U//sup 238/U activity ratio of 1.081 +- .038. The Floridan aquifer in this area is represented by at least two distinct regimes of ground water. The effluent from the Poe Springs group has a nominal uranium concentration of 0.938 +- .014 ppB and an activity ratio of 0.900 +- .012, while the effluent from the Ichetucknee Springs group has a nominal uranium concentration of 0.558 +- .018 ppB and an activity ratio of 0.707 +- .022.more » The effluent from ten additional springs in the Santa Fe system can be represented by hypothetical mixtures of these two ground water regimes and a hypothetical surface water component, which may reflect the extent of local recharge to the aquifer in different parts of the basin.« less
Microbial growth associated with granular activated carbon in a pilot water treatment facility.
Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R
1983-01-01
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
NASA Astrophysics Data System (ADS)
Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.
2014-12-01
Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.
Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.
2012-05-01
Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.
Midorikawa, I; Aoki, H; Omori, A; Shimizu, T; Kawaguchi, Y; Kassai, K; Murakami, T
2008-01-01
High purity phosphorus was recovered from municipal wastewater secondary effluent as phosphate, using a newly developed phosphorus adsorption and recovery system. A high-speed adsorbent having a unique porous structure was used in this system. The secondary effluent, showing total phosphorus (TP) of 0.1-2.1 mg P/L, was passed through an adsorbent packed column at high space velocity (SV) of 15 h(-1). The TP of the treated water was as low as 0.02-0.04 mg P/L, indicating that 97% of phosphorus in the secondary effluent was removed. The removed phosphorus was desorbed from the adsorbent by passing a sodium hydroxide aqueous solution through the column. Calcium hydroxide was added to this solution to precipitate the phosphorus as calcium phosphate. This precipitate was neutralized with hydrochloric acid aqueous solution, washed with water, and then solid-liquid separation was performed for the phosphorus recovery. The main constituent of the recovered phosphorus was apatite-type calcium phosphate, with 16% phosphorus content, which matched that of high-grade phosphorus ore. The hazardous elements content of the recovered phosphorus was exceedingly low. Therefore the recovered phosphorus can be applied to an alternative for phosphorus ore, or to a phosphate fertilizer. IWA Publishing 2008.
Demasculinization of male fish by wastewater treatment plant effluent
Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.
2011-01-01
Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Effluent quality from 200 on-site sewage systems: design values for guidelines.
Charles, K J; Ashbolt, N J; Roser, D J; McGuinness, R; Deere, D A
2005-01-01
The quality of effluent from an on-site sewage treatment system is a critical factor in designing the disposal area and, hence, ensuring the sustained performance of the system. Contaminant concentrations in effluent are typically specified in regulatory guidelines or standards; however, the accuracy of these guideline values are brought into question due to the poor performance of septic tanks and the high failure rates of disposal systems reported here and elsewhere. Results from studies of septic tank effluent quality indicated that the effluent is of poorer quality than currently suggested by guidelines. Aerated wastewater treatment systems were found to perform to accreditation guidelines; however, insufficient nutrient data is presently available to assess nutrient loads. It is proposed that the 80th percentile of system performance be adopted as the design value for sizing effluent disposal areas to minimise failure associated with overloading. For septic tanks this equates to 660 mg L(-1) SS, 330 mg L(-1) BOD, 250 mg L(-1) TN and 36 mg L(-1) TP.
Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S
1994-12-01
While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).
Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E
2016-05-01
Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream
Bradley, Paul M.; Barber, Larry B.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Hubbard, Laura E.; Hutchinson, Kasey J.; Keefe, Steffanie H.; Kolpin, Dana W.
2014-01-01
Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L−1 at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1991-10-01
In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents themore » results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less
David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette
2013-03-01
This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.
NASA Astrophysics Data System (ADS)
Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal
2017-12-01
Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.
Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu
2017-01-28
Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.
Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja
2016-03-01
Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J
2017-10-01
For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.
Cavalcanti, Rayza Morganna Farias; Jorge, João Atílio; Guimarães, Luis Henrique Souza
2018-06-01
One of the tannase isoforms produced by the fungus Aspergillus fumigatus CAS-21 under submerged fermentation (SbmF) was purified 4.9-fold with a 10.2% recovery. The glycoprotein (39.1% carbohydrate content) showed an estimated molecular mass of 60 kDa. Optimum temperature and pH for its activity were 30-40 °C and 5.0, respectively. It showed a half-life ( t 50 ) of 60 min at 45 and 50 °C, and it was stable at pH 5.0 and 6.0 for 3 h. The tannase activity was insensitive to most salts used, but it reduced in the presence of Fe 2 (SO 4 ) 3 and FeCl 3 . On contrary, in presence of SDS, Triton-X100, and urea the enzyme activity increased. The K m value indicated high affinity for propyl gallate (3.61 mmol L -1 ) when compared with tannic acid (6.38 mmol L -1 ) and methyl gallate (6.28 mmol L -1 ), but the best K cat (362.24 s -1 ) and K cat / K m (56.78 s -1 mmol -1 L) were obtained for tannic acid. The purified tannase reduced 89 and 25% of tannin content of the leather tannery effluent generated by manual and mechanical processing, respectively, after 2-h treatment. The total phenolic content was also reduced. Additionally, the enzyme produced propyl gallate, indicating its ability to do the transesterification reaction. Thus, A. fumigatus CAS-21 tannase presents interesting properties, especially the ability to degrade tannery effluent, highlighting its potential in biotechnological applications.
Ingildsen, P; Olsson, G; Yuan, Z
2002-01-01
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.
Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M
2013-04-01
Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lyu, Tao; He, Keli; Dong, Renjie; Wu, Shubiao
2018-05-01
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2-8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d -1 in the CWs. Simultaneously, up to 91% of NH 4 + -N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ 15 N-NH 4 + in the effluent (47-58‰) strongly supports the occurrence of microbial transformations for NH 4 + -N removal. However, relatively lower enrichment factors of δ 15 N-NH 4 + (-1.8‰ to -11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs. Copyright © 2018 Elsevier Ltd. All rights reserved.
The impact of tertiary wastewater treatment on copper and zinc complexation.
Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B
2015-01-01
Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.
Sigge, G O; Britz, J; Fourie, P C; Barnardt, C A; Strydom, R
2002-01-01
UASB treatment of fruit cannery and winery effluents was shown to be feasible. However, the treated effluents still have residual COD levels well above the legal limit of 75 mg.l(-1) for direct discharge to a water system and a form of post-treatment is necessary to reduce the COD further. Ozone and ozone/hydrogen peroxide were used in combination with a granular activated carbon contacting column to assess the effectiveness as a post-treatment option for the UASB treated fruit cannery and winery effluent. Colour reduction in the effluents ranged from 66 to 90% and COD reductions of 27-55% were achieved. The combination of ozone and hydrogen peroxide gave better results than ozonation alone. Significant progress was thus made in achieving the legal limit of 75 mg.l(-1).
Subha, B.; Muthukumar, M.
2012-01-01
Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666
Moerman, Wim; Carballa, Marta; Vandekerckhove, Andy; Derycke, Dirk; Verstraete, Willy
2009-04-01
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89+/-3% and 75+/-8%, resulting in final effluent levels of 12+/-3 mg PO(4)(3-)-PL(-1) and 11+/-3mg PO(4)(3-)-PL(-1), respectively. In contrast, poor phosphate removal (19+/-8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca(2+)/PO(4)(3-)-P molar ratio (ca. 1.25+/-0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca(2+) interference. A shift in the influent Ca(2+)/PO(4)(3-)-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78+/-7%, corresponding with effluent levels of 14+/-4 mg P(total)L(-1) (9+/-3 mg PO(4)(3-)-PL(-1)). Under these conditions high quality spherical struvite crystals of 2-6mm were produced.
Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan
2012-01-01
A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream
Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.
2011-01-01
Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed. ?? 2011.
Using medically-derived iodine-131 to track sewage effluent in the Laurentian Great Lakes.
Montenero, Michael P; Dilbone, Elizabeth K; Waples, James T
2017-10-15
Tracking sewage wastewater in a large lake is difficult. Concentrations of pharmaceuticals that can be used as indicator compounds are quickly diluted and not easy to measure. In this study, we examined the potential of using medically-derived iodine-131 ( 131 I, t ½ = 8.02 d) as a tracer for Milwaukee sewage effluent in Lake Michigan. 131 I activities in sewage effluent from two Milwaukee wastewater treatment plants (WWTPs) were measured in conjunction with 131 I activities in water, sediment and biota in the Milwaukee Outer Harbor and Lake Michigan. 131 I discharge rates from both WWTPS ranged from 34 ± 15 to 1807 ± 24 MBq d -1 , with average and median 131 I discharges of 278 and 129 MBq d -1 . A budget of 131 I in the Milwaukee Outer Harbor - based on measured sediment and water column inventories - showed that ∼11% of the 131 I discharged to the harbor was scavenged to bottom sediments, ∼19% decayed in the harbor water column, and ∼70% was flushed out of the harbor to Lake Michigan. From this budget, we derived a harbor flushing rate of 3.1 days. In Lake Michigan, 131 I activity was found in Cladophora algae (undetected to 91 ± 2 Bq kg -1 ) along ∼40 km of shoreline. Benthic trawl samples showed 131 I activity up to 8 km from shore. Calculated 131 I length scales were 30 km alongshore and 3.4 km offshore and corresponded to sewage effluent dispersion rates of ∼2.6 km d -1 and ∼0.3 km d -1 in along- and offshore directions. Using 131 I as a tracer of sewage effluent from other coastal municipalities to the Laurentian Great Lakes appears feasible, particularly for larger (>10 5 ) population centers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oak Ridge Reservation Annual Site Environmental Report, 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, JF
2004-08-24
This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the ORR and within the ORR surroundings. The document fulfills the requirement of U.S. Department of Energy (DOE) Order 231.1, ''Environment, Safety and Health Reporting,'' for an annual summary of environmental data to characterize environmental performance. The environmental monitoring criteria are described in DOE Order 450.1, ''Environmental Protection Program''. The results summarized in this report are based on data collected prior to and through 2003. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site andmore » regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessments of ORR operations and effects, if any, on the local environment.« less
Oak Ridge Reservation Annual Site Environmental Report for 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-09-30
This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the ORR and within the ORR surroundings. The document fulfills the requirement of U.S. Department of Energy (DOE) Order 231.1, “Environment, Safety and Health Reporting,” for an annual summary of environmental data to characterize environmental performance. The environmental monitoring criteria are described in DOE Order 450.1, “Environmental Protection Program.” The results summarized in this report are based on data collected prior to and through 2003. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site andmore » regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessments of ORR operations and effects, if any, on the local environment.« less
Basiglini, E; Pintore, M; Forni, C
2018-05-30
The efficacy of the removal of contaminants from wastewater depends on physico-chemical properties of pollutants and the efficiency of treatment plant. Sometimes, low amounts of toxic compounds can be still present in the treated sewage. In this work we considered the effects of contaminant residues in treated wastewaters and of temperatures on Lemna minor L. Treated effluent waters were collected, analyzed and used as duckweed growth medium. In order to better understand the effects of micropollutants and seasonal variation, the plants were grown under ambient conditions for seven days in summer and winter. Relative growth rate, pigments and phenolic compounds concentrations were determined, as well as the activities of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD) and polyphenol oxidase (PPO). The pollutant concentrations varied in the two seasons, depending on the industrial and municipal activities and efficiency of treatments. Treated waters contained heavy metals, nitrogenous and phosphorus compounds, surfactants and hydrocarbons. Compared to the control, duckweed growth of treated plants decreased by 25% in summer, while in the winter due to the lower temperatures and the presence of pollutants was completely impeded. The amounts of photosynthetic pigments of treated plants were not significantly affected in the summer, while they were higher than the control in the winter when the effluent had a high nitrogen amount. High CAT activity was registered in both seasons. Treated plants had significantly lower APX activity in the summer (53%) and winter (59%) respect to the controls. The observed inhibition of the peroxidase activities in the exposed plants, confirms the controversy existing in the literature about the variability of enzymatic response in stress condition. Copyright © 2018 Elsevier Inc. All rights reserved.
Paixão, S M; Anselmo, A M
2002-01-01
The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.
Wojnarowicz, Pola; Ogunlaja, Olumuyiwa O; Xia, Chen; Parker, Wayne J; Helbing, Caren C
2013-12-03
Improved endocrine disrupting compound (EDC) removal is desirable in municipal wastewater treatment plants (MWWTPs) although increased removal does not always translate into reduced biological activity. Suitable methods for determining reduction in biological activity of effluents are needed. In order to determine which MWWTPs are the most effective at removing EDC activities, we operated three configurations of pilot sized biological reactors (conventional activated sludge, CAS; nitrifying activated sludge, NAS; and biological nutrient removal, BNR) receiving the same influent under simulated winter and summer conditions. As frogs are model organisms for the study of thyroid hormone (TH) action, we used the North American species Rana catesbeiana in a cultured tadpole tailfin (C-fin) assay to compare the effluents. TH-responsive (thyroid hormone receptors alpha (thra) and beta (thrb)) and stress-responsive (superoxide dismutase, catalase, and heat shock protein 30) mRNA transcript levels were examined. Effluents infrequently perturbed stress-responsive transcript abundance but thra/thrb levels were significantly altered. In winter conditions, CAS caused frequent TH perturbations while BNR caused none. In summer conditions, however, BNR caused substantial TH perturbations while CAS caused few. Our findings contrast other studies of seasonal variations of EDC removal and accentuate the importance of utilizing appropriate biological readouts for assessing EDC activities.
Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare
2018-02-15
Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodegradation of 17β-estradiol, estrone, and testosterone in stream sediments
Bradley, P.M.; Chapelle, F.H.; Barber, L.B.; McMahon, P.B.; Gray, J.L.; Kolpin, D.W.
2009-01-01
The release of endocrine-disrupting chemicals (EDCs) in wastewater treatment plant (WWTP) effluent poses a significant threat to the ecology of surface water receptors, due to impacts on the hormonal control, sexual development, reproductive success and community structure of the indigenous aquatic organisms and associated wildlife. Among the EDCs commonly observed in WWTP effluent, the natural [e.g., 17??-estradiol (E2) and estrone (E1)] and synthetic [e.g., ethynylestradiol (EE2)] estrogens are particular concerns owing to their high endocrine reactivity in both in vitro and in vivo laboratory models. These reproductive hormones have been identified as the primary cause of estrogenic effects in wastewater effluent, with greater than 95% of the estrogen receptor agonist activity in effluent attributed to this contaminant group. The potentials for in situ biodegradation of 17??-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the "A" ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant "A" ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.
Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S
2014-04-01
Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification. Heterotrophic bacteria levels were elevated (up to 1 log) in the subsurface within the DDS but there was effective elimination of effluent fecal coliform and Escherichia coli bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael
2011-01-01
This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.
Toxicity assessment on combined biological treatment of pharmaceutical industry effluents.
Inanc, B; Calli, B; Alp, K; Ciner, F; Mertoglu, B; Ozturk, I
2002-01-01
This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.
NASA Astrophysics Data System (ADS)
Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.
2009-03-01
Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.
Synder, J W; Mains, C N; Anderson, R E; Bissonnette, G K
1995-01-01
The water quality of 24 rural, domestic groundwater supplies treated with point-of-use, powdered activated carbon (PAC) filters was monitored to determine how such treatment might impact the bacteriological quality of private, residential drinking water supplies. Heterotrophic-plate-count (HPC) and total coliform analyses were performed on raw, PAC-treated, and overnight or stagnant (first-draw) PAC-treated water samples. Densities of HPC bacteria were elevated by 0.86 and 0.20 orders of magnitude for spring and well water systems, respectively, in PAC-treated effluents following overnight stagnation compared with levels in untreated treated effluents. Densities of HPC bacteria in PAC-treated effluents were significantly reduced (P < 0.01) below influent levels, however, after the point-of-use device was flushed for 2 min. While PAC significantly reduced the number of coliforms in product waters (P < 0.01), these indicator organisms were still detected in some effluents. Seasonal variations were evident in microbial counts from spring but not well water systems. It appears that aside from periods following stagnant-water use, such as overnight, PAC treatment does not compromise the bacteriological quality of drinking water obtained from underground sources. PMID:8534096
Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).
Redouane, Fares; Mourad, Lounis
2016-03-01
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.
Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun
2017-09-01
Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.
Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation
Al-Sa’ed, R.
2007-01-01
Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318
Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung
2013-12-01
In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrocoagulation of Palm Oil Mill Effluent
Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai
2008-01-01
Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537
Fate of human viruses in groundwater recharge systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, J.M.; Landry, E.F.
1980-03-01
The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations ofmore » viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.« less
Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming
2015-03-02
In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Díaz-Garduño, B; Pintado-Herrera, M G; Biel-Maeso, M; Rueda-Márquez, J J; Lara-Martín, P A; Perales, J A; Manzano, M A; Garrido-Pérez, C; Martín-Díaz, M L
2017-08-01
Emerging contaminants (ECs) and regulated compounds (RCs) from three different WWTP effluents were measured in the current study. The efficiency of two tertiary treatments, Photobiotreatment (PhtBio) and Multi-Barrier Treatment (MBT), for removing contaminants was determined. Results indicated different percentages of removal depending on the treatment and the origin of the effluent. Risk Quotients (RQs) were determined for different species of algae, Daphnia, and fish. RQ results revealed diverse risk values depending on the bioindicator species. Tonalide, galaxolide (fragrances), and ofloxacin (antibiotic) were the most persistent and harmful substances in tested effluents. "Negligible risk" category was reached since a wide diversity of ECs were removed by MBT with high removal percentages. Contrarily, PhtBio was effective only in the depuration of certain chemical compounds, and its efficiency depended on the composition of the raw effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1991-10-01
In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presentsmore » the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less
Mehdi, Hossein; Dickson, Fiona H; Bragg, Leslie M; Servos, Mark R; Craig, Paul M
2017-11-22
The objective of this study was to assess the effects of municipal wastewater treatment plant effluent on the energetics and stress response of rainbow darter (Etheostoma caeruleum). Male and female rainbow darter were collected upstream and downstream of the Waterloo WWTP in the Grand River watershed, ON, Canada. To assess the effects of wastewater treatment plant effluent on whole-body and tissue specific metabolic capacity, closed-chamber respirometry and muscle-enzyme activity analyses were performed. Plasma cortisol was also collected from fish before and after an acute air-exposure stressor to evaluate the cortisol stress response in fish exposed to additional stressors. Male and female rainbow darter collected downstream of the effluent had higher oxygen consumption rates, while differences in enzyme activities were primarily associated with sex rather than collection site. No impairment in the cortisol stress response between downstream and upstream fish was observed, however baseline cortisol levels in female fish from the downstream site were significantly higher compared to other baseline groups. Stress-induced cortisol levels were also higher in female fish from both sites when compared to their male counterparts. Overall, this study demonstrates that chronic exposure to WWTP effluent impacts whole-body metabolic performance. This study was also able to demonstrate that sex-differences are a key determinant of various metabolic changes in response to physiological stress, thereby, providing a novel avenue to be considered and further explored. Copyright © 2017 Elsevier Inc. All rights reserved.
Testing a biofilter cover design to mitigate dairy effluent pond methane emissions.
Pratt, Chris; Deslippe, Julie; Tate, Kevin R
2013-01-02
Biofiltration, whereby CH(4) is oxidized by methanotrophic bacteria, is a potentially effective strategy for mitigating CH(4) emissions from anaerobic dairy effluent lagoons/ponds, which typically produce insufficient biogas for energy recovery. This study reports on the effectiveness of a biofilter cover design at oxidizing CH(4) produced by dairy effluent ponds. Three substrates, a volcanic pumice soil, a garden-waste compost, and a mixture of the two, were tested as media for the biofilters. All substrates were suspended as 5 cm covers overlying simulated dairy effluent ponds. Methane fluxes supplied to the filters were commensurate with emission rates from typical dairy effluent ponds. All substrates oxidized more than 95% of the CH(4) influx (13.9 g CH(4) m(-3) h(-1)) after two months and continued to display high oxidation rates for the remaining one month of the trial. The volcanic soil biofilters exhibited the highest oxidation rates (99% removal). When the influx CH(4) dose was doubled for a month, CH(4) removal rates remained >90% for all substrates (maximum = 98%, for the volcanic soil), suggesting that biofilters have a high capacity to respond to increases in CH(4) loads. Nitrous oxide emissions from the biofilters were negligible (maximum = 19.9 mg N(2)O m(-3) h(-1)) compared with CH(4) oxidation rates, particularly from the volcanic soil that had a much lower microbial-N (75 mg kg(-1)) content than the compost-based filters (>240 mg kg(-1)). The high and sustained CH(4) oxidation rates observed in this laboratory study indicate that a biofilter cover design is a potentially efficient method to mitigate CH(4) emissions from dairy effluent ponds. The design should now be tested under field conditions.
Morinaga, Hiroshi; Sugiyama, Hitoshi; Inoue, Tatsuyuki; Takiue, Keiichi; Kikumoto, Yoko; Kitagawa, Masashi; Akagi, Shigeru; Nakao, Kazushi; Maeshima, Yohei; Miyazaki, Ikuko; Asanuma, Masato; Hiramatsu, Makoto; Makino, Hirofumi
2012-01-01
♦ Objective: Residual renal function (RRF) is associated with low oxidative stress in peritoneal dialysis (PD). In the present study, we investigated the relationship between the impact of oxidative stress on RRF and patient outcomes during PD. ♦ Methods: Levels of free radicals (FRs) in effluent from the overnight dwell in 45 outpatients were determined by electron spin resonance spectrometry. The FR levels, clinical parameters, and the level of 8-hydroxy-2′-deoxyguanosine were evaluated at study start. The effects of effluent FR level on technique and patient survival were analyzed in a prospective cohort followed for 24 months. ♦ Results: Levels of effluent FRs showed significant negative correlations with daily urine volume and residual renal Kt/V, and positive correlations with plasma β2-microglobulin and effluent 8-hydroxy-2′-deoxyguanosine. A highly significant difference in technique survival (p < 0.05), but not patient survival, was observed for patients grouped by effluent FR quartile. The effluent FR level was independently associated with technique failure after adjusting for patient age, history of cardiovascular disease, and presence of diabetes mellitus (p < 0.001). The level of effluent FRs was associated with death-censored technique failure in both univariate (p < 0.001) and multivariate (p < 0.01) hazard models. Compared with patients remaining on PD, those withdrawn from the modality had significantly higher levels of effluent FRs (p < 0.005). ♦ Conclusions: Elevated effluent FRs are associated with RRF and technique failure in stable PD patients. These findings highlight the importance of oxidative stress as an unfavorable prognostic factor in PD and emphasize that steps should be taken to minimize oxidative stress in these patients. PMID:22215657
The use of PCR-DGGE to determine bacterial fingerprints for poultry and red meat abattoir effluent.
de Smidt, O
2016-01-01
Strict legislation and chemical composition monitoring of effluent may be useful, but the data generated do not allow for source tracking, and enforcing legislation remains problematic in the South African setting. These difficulties emphasize the necessity for effluent source traceability. Denaturing gradient gel electrophoresis (DGGE) targeting the V3 region of the 16S rRNA gene was considered as fingerprinting technique for effluent originating from abattoirs slaughtering different animal species. The influence of treatment to remove excess fat from effluent prior to molecular analyses and different PCR approaches on the detection of bacterial diversity were considered. Use of a treatment option to remove fat and a nested PCR approach resulted in up to 51% difference in inter-sample diversity similarity. A robust approach with no pre-treatment to remove PCR inhibitors, such as fat, and direct amplification from genomic DNA yielded optimal/maximal bacterial diversity fingerprints. Repeatable fingerprints were obtained for poultry abattoir effluent over a 4-month period, but profiles for the red meat abattoir varied with maximum similarity detected only 33·2%. Genetic material from faecal indicators Aeromona spp and Clostridium spp were detected. Genera unique to each effluent were present; Anoxybacillus, Patulibacter and Oleispira in poultry abattoir effluent and Porphyromonas and Peptostreptococcus in red meat abattoir effluent. This study was the first to demonstrate the application of denaturing gradient gel electrophoresis (DGGE) to construct bacterial diversity fingerprints for high-throughput abattoir effluents. Proved redundancy of fat removal as PCR inhibitor and change in diversity similarity introduced by nested PCR approach. The importance of limiting excessive handling/processing which could lead to misrepresented diversity profiles was emphasized. © 2015 The Society for Applied Microbiology.
Removal of organic wastewater contaminants in septic systems using advanced treatment technologies
Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.
2009-01-01
The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla
2014-08-01
The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.
Salakinkop, S R; Shivaprasad, P
2012-01-01
A field experiment was conducted to study the influence of treated coffee effluent irrigation on performance of established robusta coffee, nutrient contribution and microbial activities in the soil. The results revealed that the field irrigated with coffee effluent from aerobic tank having COD of 1009 ppm, did not affect the yield of clean coffee (1309 kg/ha) and it was statistically similar (on par) with the plots irrigated with fresh water (1310 kg/ha) with respect to clean coffee yield. Effluent irrigation increased significantly the population bacteria, yeast, fungi, actinomycetes and PSB (122, 52, 12, 34 and 6 x 104/g respectively)) in the soil compared to the soil irrigated with fresh water (87, 22, 5, 24 and 2 x 10(4)/g respectively). The organic carbon (2.60%), available nutrients in the soil like P (57.2 kg/ha), K (401.6 kg/ha, Ca (695.3 ppm), S (5.3 ppm),Cu (4.09 ppm) and Zn(4.78 ppm) were also increased due to effluent irrigation compared to fresh water irrigation. Thus analysis of coffee effluent for major and minor plant nutrients content revealed its potential as source of nutrients and water for plant growth.
Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes.
Kierkegaard, Amelie; Bignert, Anders; McLachlan, Michael S
2013-10-01
Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent. In the lakes receiving the STP effluent, the D5 concentrations in sediment varied over three orders of magnitude and were correlated with the number of persons connected to the STP normalized to the surface area of the receiving body. In the lakes not receiving effluent, the D5 levels in perch were all below the LOQ, while D5 was above the LOQ in almost all perch from lakes that received effluent. The D5 concentrations in perch and sediment from the lakes receiving STP effluent were correlated. This shows that STP effluent is a much more important source of D5 to aquatic ecosystems than atmospheric deposition, and that the risk of adverse effects of D5 on aquatic life will be greatest in small recipients receiving large amounts of STP effluent. The bioaccumulation of D5 was compared to that of PCB 180 on the basis of multimedia bioaccumulation factors (mmBAFs), which describe the fraction of the contaminant present in the whole aquatic environment (i.e. water and surface sediment) that is transferred to the fish. In four of the six lakes the mmBAF of D5 was >0.3 of the mmBAF of PCB 180. Given that PCB 180 is a known highly bioaccumulative chemical, this indicates that the bioaccumulation of D5 in perch is considerable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Benito-Alcázar, C; Vincent-Vela, M C; Gozálvez-Zafrilla, J M; Lora-García, J
2010-06-15
Conventionally treated petrochemical wastewaters contain substantial quantities of hazardous pollutants. In addition, wastewater reuse is being enhanced as a consequence of the shortage of fresh water. Advanced petrochemical wastewater treatment for water reuse will reduce hazardous pollutants discharges as well as water consumption. Reverse osmosis is a suitable technology to obtain pure water. This work studies the adequacy of different pretreatments applied to a petrochemical secondary effluent to produce a suitable feeding for reverse osmosis treatment. The permeate obtained can be used in the petrochemical industry for different processes. In this work, several experiments (granulated activated carbon filtration, ultrafiltration, nanofiltration and granulated activated carbon filtration coupled with nanofiltration) were performed to improve the conventional pretreatment. Total organic carbon, chemical oxygen demand, turbidity and silt density index were used to evaluate water quality for reverse osmosis feeding. In granulated activated carbon filtration, all the measured parameters but silt density index indicated a good filtrate quality to feed reverse osmosis membranes. Although the ultrafiltration permeate obtained was suitable for reverse osmosis, nanofiltration and granulated activated carbon filtration coupled with NF provided a better effluent quality for reverse osmosis than the other pretreatments studied. Copyright 2010 Elsevier B.V. All rights reserved.
Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.
Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina
2017-12-01
Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... only when a high rate of wet scrubbing is in operation which produces more waste water than can be....0 to 9.0. (c) For fast turnaround operation of a spray tower, the following values pertain: The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn
Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less
Resilience of coral-associated bacterial communities exposed to fish farm effluent.
Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq
2009-10-06
The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival.
Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent
Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq
2009-01-01
Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival. PMID:19806190
Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa
2013-01-01
Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316
Yang, Xin; Flowers, Riley C; Weinberg, Howard S; Singer, Philip C
2011-10-15
The occurrence of nineteen pharmaceutically active compounds and personal care products was followed monthly for 12 months after various stages of treatment in an advanced wastewater reclamation plant in Gwinnett County, GA, U.S.A. Twenty-four hour composite samples were collected after primary clarification, activated sludge biological treatment, membrane filtration, granular media filtration, granular activated carbon (GAC) adsorption, and ozonation in the wastewater reclamation plant. Compounds were identified and quantified using high performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC-MS) after solid-phase extraction. Standard addition methods were employed to compensate for matrix effects. Sixteen of the targeted compounds were detected in the primary effluent; sulfadimethoxine, doxycycline, and iopromide were not found. Caffeine and acetaminophen were found at the highest concentrations (∼10(5) ng/L), followed by ibuprofen (∼10(4) ng/L), sulfamethoxazole and DEET (∼10(3) ng/L). Most of the other compounds were found at concentrations on the order of hundreds of ng/L. After activated sludge treatment and membrane filtration, the concentrations of caffeine, acetaminophen, ibuprofen, DEET, tetracycline, and 17α-ethynylestradiol (EE2) had decreased by more than 90%. Erythromycin and carbamazepine, which were resistant to biological treatment, were eliminated by 74 and 88%, on average, by GAC. Primidone, DEET, and caffeine were not amenable to adsorption by GAC. Ozonation oxidized most of the remaining compounds by >60%, except for primidone and DEET. Of the initial 16 compounds identified in the primary effluent, only sulfamethoxazole, primidone, caffeine and DEET were frequently detected in the final effluent, but at concentrations on the order of 10-100 ng/L. Removal of the different agents by the various treatment processes was related to the physical-chemical properties of the compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wen-wu, Liu; Xiu-ping, Wang; Xue-yan, Tu; Chang-yong, Wang
2014-10-01
The coking wastewater generally comprises highly concentrated, recalcitrant, and toxic organic pollutants, so its treatment has been of great importance to prevent living beings and their environment from these hazardous contaminations. The treatment of pretreated coking wastewater by flocculation-coagulation, alkali out, air stripping, and three-dimensional (3-D) electrocatalytic oxidation was performed (gap between the used β-PbO2/Ti anode and titanium cathode, 12 mm; mass ratio of Cu-Mn/granular activated carbon (GAC) to effluent, 1:4; cell voltage, 7 V). The results showed that the pH adjusting from 3.7 to 6.1 was necessary for coagulants; alkali out played an important role because it brought up precipitation containing higher fatty acids as well as other contaminants to decrease the chemical oxygen demand (COD) in the effluent, and it had also forced the reduction of ammonia nitrogen (NH3-N) by incorporating with air stripping; for 3-D electrocatalytic oxidation with a bleaching liquid assisting, the initial pH 8.5 of effluent was suitable for Cu-Mn/GAC; moreover, it was considered that its Cu component was dedicated to the decrease of COD and NH3-N, while the Mn component specialized in the decay of NH3-N. The residual COD and NH3-N values in the final effluent with pH 6.5 were 95.8 and 8.8 mg/L, respectively, demonstrating that the whole processes applied were feasible and low in cost.
Zhang, Yu; Chen, Zhimin; An, Wei; Xiao, Shumin; Yuan, Hongying; Zhang, Dongqing; Yang, Min
2015-04-01
Membrane bioreactors (MBR) are highly efficient at intercepting particles and microbes and have become an important technology for wastewater reclamation. However, many pathogens can accumulate in activated sludge due to the long residence time usually adopted in MBR, and thus may pose health risks when membrane integrity problems occur. This study presents data from a survey on the occurrence of water-borne Giardia pathogens in reclaimed water from a full-scale wastewater treatment plant with MBR experiencing membrane integrity failure, and assessed the associated risk for green space irrigation. Due to membrane integrity failure, the MBR effluent turbidity varied between 0.23 and 1.90 NTU over a period of eight months. Though this turbidity level still met reclaimed water quality standards (≤5 NTU), Giardia were detected at concentrations of 0.3 to 95 cysts/10 L, with a close correlation between effluent turbidity and Giardia concentration. All β-giardin gene sequences of Giardia in the WWTP influents were genotyped as Assemblages A and B, both of which are known to infect humans. An exponential dose-response model was applied to assess the risk of infection by Giardia. The risk in the MBR effluent with chlorination was 9.83×10(-3), higher than the acceptable annual risk of 1.0×10(-4). This study suggested that membrane integrity is very important for keeping a low pathogen level, and multiple barriers are needed to ensure the biological safety of MBR effluent. Copyright © 2015. Published by Elsevier B.V.
[Effect of polymeric aluminum-iron on EPS and bio-flocculation in A2/O system].
Wen, Qin-Xue; Liu, Ai-Cui; Chen, Zhi-Qiang; Shi, Han-Chang; Lü, Bing-Nan
2012-04-01
Polymeric aluminum-iron (PAFC) was added at the end of aeration tank to enhance phosphorus removal, so that the phosphorus concentration in the effluent could meet the calss A standard in municipal sewage treatment plant pollutant discharge standard (GB 18918-2002). The characteristics of extracellular polymer substances (EPS) and bio-flocculation for the activated sludge in the A2/O system were analyzed in the experiment. The results showed that, the gross of EPS varied little with the increase in PAFC dosage, while, the ratio of albumen to polysaccharide declined from 3.30 to 2.30. When the PAFC dosage increased, the concentration of Al3+ in EPS increased during the whole anaerobic-anoxic-aerobic cycle. The flocs of activated sludge became larger after PAFC addition, Zeta potential of the effluent dropped significantly from - 15.83 mV to -21.20 mV and sludge yield increased. Therefore, bio-flocculation of the activated sludge in the A2/O system improved when a proper amount of PAFC was added, subsequently improve the water quality of the effluent.
Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.
Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang
2009-08-15
A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.
Required ozone doses for removing pharmaceuticals from wastewater effluents.
Antoniou, Maria G; Hey, Gerly; Rodríguez Vega, Sergio; Spiliotopoulou, Aikaterini; Fick, Jerker; Tysklind, Mats; la Cour Jansen, Jes; Andersen, Henrik Rasmus
2013-07-01
The aim of the this study was to investigate the ozone dosage required to remove active pharmaceutical ingredients (APIs) from biologically treated wastewater of varying quality, originated from different raw wastewater and wastewater treatment processes. Secondary effluents from six Swedish wastewater treatment plants (WWTP) were spiked with 42 APIs (nominal concentration μg/L) and treated with different O₃ doses (0.5-12.0 mg/L ozone) in bench-scale experiments. In order to compare the sensitivity of APIs in each matrix, the specific dose of ozone required to achieve reduction by one decade of each investigated API (DDO₃) was determined for each effluent by fitting a first order equation to the remaining concentration of API at each applied ozone dose. Ozone dose requirements were found to vary significantly between effluents depending on their matrix characteristics. The specific ozone dose was then normalized to the dissolved organic carbon (DOC) of each effluent. The DDO₃/DOC ratios were comparable for each API between the effluents. 15 of the 42 investigated APIs could be classified as easily degradable (DDO₃/DOC ≤ 0.7), while 19 were moderately degradable (0.7 < DDO₃/DOC ≤ 1.4), and 8 were recalcitrant towards O₃-treatment (DDO₃/DOC >1.4). Furthermore, we predict that a reasonable estimate of the ozone dose required to remove any of the investigated APIs may be attained by multiplying the experimental average DDO₃/DOC obtained with the actual DOC of any effluent. Copyright © 2013 Elsevier B.V. All rights reserved.
Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L
2016-07-01
Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Recovery and Utilization of Palm Oil Mill Effluent Source as Value-Added Food Products.
Teh, Soek Sin; Hock Ong, Augustine Soon; Mah, Siau Hui
2017-01-01
The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13 C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.
The development of a code of practice for single house on-site wastewater treatment in Ireland.
Gill, L W
2011-01-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent. This created significant differences in terms of the hydraulic loading on the percolation areas with implications for the transport and attenuation of indicator microorganisms and nitrogen down through the subsoils and into the groundwater. The results of this work have formed a large input into the production of a new Code of Practice Wastewater Treatment and Disposal Systems Serving Single Houses. This has led to changes in the design of on-site hydraulic loading from 180 L per capita per day (L/c.d) down to 150 L/c.d. The range of acceptable subsoils receiving septic tank effluent has narrowed for more highly permeable subsoils following a series of tracer studies using bacteriophages. However, the range has been extended for lower permeability subsoils (range 0.08 down to 0.06 m/d) receiving secondary treated effluent in order to encourage the effluent to spread further along the trenches. The maximum individual length of percolation trenches receiving secondary effluent has also been reduced to 10 m to encourage dispersion on a wider area. This paper thus highlights how research can directly feed into a Code of Practice.
Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R
2018-06-01
High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.
Chonova, Teofana; Keck, François; Labanowski, Jérôme; Montuelle, Bernard; Rimet, Frédéric; Bouchez, Agnès
2016-01-15
Hospital wastewaters (HWW) contain wider spectrum and higher quantity of pharmaceuticals than urban wastewaters (UWW), but they are generally discharged in sewers without pretreatment. Since traditional urban wastewater treatment plants (WWTP) are not designed to treat HWWs, treated effluents may still contain pollutants that could impair receiving aquatic environments. Hence, a better understanding of the effect of pharmaceuticals in the environment is required. Biofilms are effective "biological sensors" for assessing the environmental effects of pharmaceuticals due to their ability to respond rapidly to physical, chemical and biological fluctuations by changes in their structure and composition. This study evaluated the efficiency of biological treatment with conventional activated sludge system performed parallel on HWW and UWW. Furthermore, six successive monthly colonizations of biofilms were done on autoclaved stones, placed in grid-baskets in the hospital treated effluents (HTE) and urban treated effluents (UTE). The biomass of these biofilms as well as the structure and diversity of their bacterial communities were investigated. Results showed better treatment efficiency for phosphate and nitrite/nitrate during the treatment of UWW. Pharmaceuticals from all investigated therapeutic classes (beta-blockers, nonsteroidal anti-inflammatory drugs, antibiotics, analgesics and anticonvulsants) were efficiently removed, except for carbamazepine. The removal efficiency of the antibiotics, NSAIDs and beta-blockers was higher during the treatment of HWW. HTE and UTE shaped the bacterial communities in different ways. Higher concentrations of pharmaceuticals in the HTE caused adapted development of the microbial community, leading to less developed biomass and lower bacterial diversity. Seasonal changes in solar irradiance and temperature, caused changes in the community composition of biofilms in both effluents. According to the removal efficiency of pharmaceuticals, the separate treatment was beneficial. However, their high concentrations in the HTE and the following adaptations of biofilm communities identify the importance of adapting wastewater treatment to specific hospital pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Recovery of ammonia and production of high-grade phosphates from digester effluents
USDA-ARS?s Scientific Manuscript database
Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...
USDA-ARS?s Scientific Manuscript database
We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...
Students as Scientists: A Study of the Effects of Sewage Plant Effluent.
ERIC Educational Resources Information Center
Wilkes, James W.
1983-01-01
Since 1977, six different classes of Ashland High School (Ohio) biology students have been monitoring a local river for the presence of sewage treatment plant effluent. Several project results, physicochemical parameters, and data on biota collected at two stations are presented. (JN)
Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work
Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian
2017-01-01
Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437
Simsek, Halis; Kasi, Murthy; Ohm, Jae-Bom; Murthy, Sudhir; Khan, Eakalak
2016-04-01
Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention due to increased regulatory requirements on effluent quality to protect receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs) (0.3, 0.7, 2, 3, 4, 5, 7, 8, and 13 days) to examine whether SRT could be used to control DON, biodegradable DON (BDON), and DON biodegradability (BDON/DON) levels in treated wastewater. Results indicated no trend between effluent DON and SRTs. Effluent BDON was comparable for SRTs of 0.3-4 days and had a decreasing trend with SRT after that. Effluent DON biodegradability (effluent BDON/effluent DON) ranging from 23% to 59% tended to decrease with SRT. Chemostat during longer SRTs, however, was contributing to non-biodegradable DON (NBDON) and this fraction of DON increased with SRT above 4 days. Model calibration results indicated that ammonification rate, and growth rates for ordinary heterotrophs, ammonia oxidizing bacteria and nitrite oxidizing bacteria were not constants but have a decreasing trend with increasing SRT. This study indicates the benefit of high SRTs in term of producing effluent with less DON biodegradability leading to relatively less oxygen consumption and nutrient support in receiving waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Jingting; Wang, Kai-Sung; Liang, Chenju
2017-07-29
Tetramethylammonium hydroxide (TMAH) is widely used in high-tech industries as a developing agent. Ultraviolet (UV) light-activated persulfate (PS, S 2 O 8 2- ) can be used to generate strongly oxidative sulfate radicals, and it also exhibits the potential to treat TMAH-containing wastewater. This study initially investigated the effect of S 2 O 8 2- concentration and UV strength on the UV/S 2 O 8 2- process for the degradation of TMAH in a batch reactor. The results suggested that 15 watts (W) of UV-activated S 2 O 8 2- at concentrations of 10 or 50 mM resulted in pseudo-first-order TMAH degradation rate constants of 3.1-4.2 × 10 -2 min -1 , which was adopted for determining the hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR). The operating conditions (15 W UV/10 mM S 2 O 8 2- ) with a HRT of 129 min resulted in stable residual concentrations of S 2 O 8 2- and TMAH at approximately 2.6 mM and 20 mg L -1 in effluent, respectively. Several TMAH degradation intermediates including trimethylamine, dimethylamine, and methylamine were also detected. The effluent was adjusted to a neutral pH and evaluated for its biological acute toxicity using Cyprinus carpio as a bioassay organism. The "bio-acute toxicity unit" (TU a ) was determined to be 1.41, which indicated that the effluent was acceptable for being discharged into an aquatic ecosystem.
Rocket effluent: Its ice nucleation activity and related properties
NASA Technical Reports Server (NTRS)
Parungo, F. P.; Allee, P. A.
1978-01-01
To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.
Sepulveda, M.S.; Gallagher, E.P.; Wieser, C.M.; Gross, T.S.
2004-01-01
The objective of this study was to evaluate the effects of bleached/unbleached kraft mill effluents (B/UKME) on the reproductive parameters of free-ranging Florida largemouth bass (Micropterus salmoides floridanus). The reproductive parameters measured included gonadosomatic index (GSI), histological evaluation of gonads, and plasma concentrations of vitellogenin (VTG), 17??-estradiol, and 11-ketotestosterone (11-KT). Hepatic ethoxyresorufin-O-deethylase (EROD) activity was measured as a marker of exposure to cytochrome P450-inducing agents in these effluents. Endpoints were compared among adult bass sampled from tributary and mainstream effluent-contaminated and reference sites. Females sampled from the site closest to the mill outfall had a significant five-fold increase in EROD activity compared to bass sampled from reference streams. Although sex hormones were significantly reduced in bass from exposed sites, there were no differences in VTG and GSI across sites. The absence of organism-level responses was probably not related to a lack of sensitivity, as previous studies in our laboratory have shown that bass exposed to these effluents exhibit changes in GSI and in other measures associated with reproductive success. In females, inverse relationships were observed between VTG and GSI and EROD activity. These relationship, however, were not consistent within all of the sites studied. Collectively, our findings indicate that hepatic EROD induction is an effective marker of B/UKME exposure in largemouth bass and that it might be associated with antiestrogenic effects in this species. ?? 2003 Elsevier Inc. All rights reserved.
Hong, Shen; Xian-Chun, Tang; Nan-Xiang, Wu; Hong-Bin, Chen
2018-07-01
The application of ozone-biological activated carbon (O 3 -BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O 3 -BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV 254 , DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pecly, José Otavio Goulart
2018-01-01
The alternative use of effluent turbidity to determine the dilution field of a domestic marine outfall located off the city of Rio de Janeiro was evaluated through field work comprising fluorescent dye tracer injection and tracking with simultaneous monitoring of sea water turbidity. A preliminary laboratory assessment was carried out with a sample of the outfall effluent whose turbidity was measured by the nephelometric method before and during a serial dilution process. During the field campaign, the dye tracer was monitored with field fluorometers and the turbidity was observed with an optical backscattering sensor interfaced to an OEM data acquisition system. About 4,000 samples were gathered, covering an area of 3 km × 3 km near the outfall diffusers. At the far field - where a drift towards the coastline was observed - the effluent plume was adequately labeled by the dye tracer. The turbidity plume was biased due to the high and variable background turbidity of sea water. After processing the turbidity dataset with a baseline detrending method, the plume presented high correlation with the dye tracer plume drawn on the near dilution field. However, dye tracer remains more robust than effluent turbidity.
[Pilot study on the treatment of ultrafiltration for laundry wastewater recycling and reuse].
Wang, Jin; Jiang, Jin-Hui
2007-02-01
A pilot study of the treatment for laundry wastewater recycling and reuse on the spot was carried out by ultrafiltration (UF) with different membrane material of PAN, PS and PP. According to the analysis of membrane fouling combined with UF effluent quality, PAN membrane was superior to the others. It removed the turbidity, suspended solid, fat oil and grease effectively, but kept anionic surfactant (LAS) to a certain degree in the UF effluent which is beneficial to recycling and reuse. By correlation analysis, it was found the high COD concentration of effluent was caused by LAS remained. The whiteness and softness of cotton cloth washed by UF effluent for a long-term was not different with that washed by tap water. The removal of bacteria and E. coli by UF membrane was not very high, and so UF effluent was disinfected by ultraviolet (UV) further. As the dosage of UV was not less than 3 750 J/m2, the microbial level reached the China national standard of drinking water. The optimal UF operation condition is to backwash two minutes every thirty minutes' filtration. Adopted alkali liquor of pH 11 to 13 to carry out chemical cleaning, the membrane flux was recovered completely.
Soluble microbial products (SMPs) release in activated sludge systems: a review
2012-01-01
This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231
Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.
Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric
2015-04-01
Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soluble microbial products (SMPs) release in activated sludge systems: a review.
Azami, Hamed; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza
2012-12-18
This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as "the pool of organic compounds that are released into solution from substrate metabolism and biomass decay"'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.
NASA Astrophysics Data System (ADS)
Blackstock, J.
1980-03-01
Loch Creran and Loch Eil, sea lochs in the west of Scotland, both receive discharges of particulate organic effluent from industrial installations. Glycera alba (Müller) is widely distributed in the sediments of both lochs, and assays of activities of enzymes associated with energy-yielding metabolism have been done on crude extracts of specimens collected from variously affected areas. Mean phosphofructokinase activities were low in extracts of G. alba collected some 400 m from the source of effluent from a seaweed processing factory, increased to a maximum at 900 m and declined slightly at 1150 m where the sediment is little affected by the effluent. Pyruvate kinase activities exhibited qualitatively similar changes of lesser magnitude and no differences in a-glycerophosphate or malate dehydrogenase activities were observed. In G. alba from Loch Eil a relationship was established between phosphofructokinase activity and Eh at 4 cm in the sediment and the maximum change in phosphofructokinase was found at low Eh, below -50 mV. The data are interpreted with reference to results from biological and environmental monitoring in Lochs Eil and Creran. It is suggested that the low phosphofructokinase activities in G. alba from the most affected areas of each loch may constitute a consistent biochemical response to effects of the organic inputs.
[Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].
Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying
2012-11-01
The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.
Filby, Amy L; Shears, Janice A; Drage, Briane E; Churchley, John H; Tyler, Charles R
2010-06-01
Whether the implementation of additional treatments for the removal of estrogens from wastewater treatment works (WwTWs) effluents will eliminate their feminizing effects in exposed wildlife has yet to be established, and this information is crucial for future decisions on investment into WwTWs. Here, granular activated carbon (GAC), ozone (O(3)), and chlorine dioxide (ClO(2)) were investigated for their effectiveness in reducing steroidal estrogen levels in a WwTW effluent and assessments made on the associated estrogenic and reproductive responses in fathead minnows (Pimephales promelas) exposed for 21 days. All treatments reduced the estrogenicity of the standard-treated (STD) effluent, but with different efficacies; ranging between 70-100% for total estrogenicity and 53-100% for individual steroid estrogens. In fish exposed to the GAC- and ClO(2)- (but not O(3)-) treated effluents, there was no induction of plasma vitellogenin (VTG) or reduction in the weight of the fatpad, a secondary sex character in males, as occurred for fish exposed to STD effluent. This finding suggests likely benefits of employing these treatment processes for the reproductive health in wild fish populations living in rivers receiving WwTW discharges. Exposure of pair-breeding minnows to the GAC-treated effluent, however, resulted in a similar inhibition of egg production to that occurring for exposure to the STD effluent (34-40%). These data, together with a lack of effect on egg production of the estrogen, ethinylestradiol (10 ng/L), alone, suggest that chemical/physical properties of the effluents rather than their estrogenicity were responsible for the reproductive effect and that these factor(s) were not remediated for through GAC treatment. Collectively, our findings illustrate the importance of assessing integrative biological responses, rather than biomarkers alone, in the assessment and improvement of WwTW technologies for the protection of wild fish populations.
Draft framework for watershed-based trading
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-30
Effluent trading is an innovative way for water quality agencies and community stakeholders to develop common-sense, cost-effective solutions for water quality problems in their watersheds. Trading can allow communities to grow and prosper while retaining their commitment to water quality. The bulk of this framework discusses effluent trading in watersheds. Remaining sections discuss transactions that, while not technically fulfilling the definition of `effluent` trade, do involve the exchange of valued water quality or other ecological improvements between partners responding to market initiatives. This document therefore includes activities such as trades within a facility (intra-plant trading) and wetland mitigation banking, effluentmore » trading/watersheds/watershed management/water quality protection/water quality management.« less
Ma, Dehua; Chen, Lujun; Wu, Yuchao; Liu, Rui
2016-06-01
Antiestrogens and antiandrogens are relatively rarely studied endocrine disrupting chemicals which can be found in un/treated wastewaters. Antiestrogens and antiandrogens in the wastewater treatment effluents could contribute to sexual disruption of organisms. In this study, to assess the removal of non-specific antiestrogens and antiandrogens by advanced treatment processes, ozonation and adsorption to granular activated carbon (GAC), the biological activities and excitation emission matrix fluorescence spectroscopy of wastewater were evaluated. As the applied ozone dose increased to 12 mg/L, the antiestrogenic activity dramatically decreased to 3.2 μg 4-hydroxytamoxifen equivalent (4HEQ)/L, with a removal efficiency of 84.8%, while the antiandrogenic activity was 23.1 μg flutamide equivalent (FEQ)/L, with a removal efficiency of 75.5%. The removal of antiestrogenic/antiandrogenic activity has high correlation with the removal of fulvic acid-like materials and humic acid-like organics, suggesting that they can be used as surrogates for antiestrogenic/antiandrogenic activity during ozonation. The adsorption kinetics of antiestrogenic activity and antiandrogenic activity were well described by pseudo-second-order kinetics models. The estimated equilibrium concentration of antiestrogenic activity is 7.9 μg 4HEQ/L with an effective removal efficiency of 70.5%, while the equilibrium concentration of antiandrogenic activity is 33.7 μg FEQ/L with a removal efficiency of 67.0%. Biological activity evaluation of wastewater effluents is an attractive way to assess the removal of endocrine disrupting chemicals by different treatment processes. Fluorescence spectroscopy can be used as a surrogate measure of bioassays during ozonation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water
2010-10-01
Science NCP National Contingency Plan NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDPA N-Nitrosodi-n-propylamine NFESC Naval Facilities...nitrosodimethylamine [ NDMA ], N-nitrosodiethylamine [NDEA], and N-nitrosodi-n-propylamine [NDPA]) by EPA method 521 5.5.6 Demobilization Spent TGAC and...and monthly Influent Bed 1 and Effluent Bed 2. AFIT Conductivity 120.1 Once weekly at Influent Bed 1 and Effluent Bed 2. Weck Laboratories NDMA
Deactivation of Oxidation Catalysts
1991-05-01
used, with potassium sulfate on a silica support, in the commercial production of sulfuric acid (Satterfield, 1980). It also exhibits some activity...of 0.1 N sulfuric acid and the second contained 25 cc of 0.1 N sodium hydroxide. The effluent gases were passed through the impingers for 15 minutes... acid medium, only hydrogen chloride dissolves in the sulfuric acid . The chlorine in the effluent gas then dissolves in the sodium hydroxide. Knowing the
Schneider, E E; Cerqueira, A C F P; Dezotti, M
2011-01-01
This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.
Environmental Releases for Calendar Year 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
DYEKMAN, D L
2002-08-01
This report fulfills the annual reporting requirements of US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program. The report contains tabular data summaries on air emissions and liquid effluents released to the environment as well as nonroutine releases during calendar year (CY) 2001. These releases, bearing radioactive and hazardous substances, were from Bechtel Hanford, Inc. (BHI), CH2M HILL Hanford Group, Inc. (CHG), and Fluor Hanford (FH) managed facilities and activities. These data were obtained from direct sampling and analysis and from estimates based upon approved release factors. This report further serves as a supplemental resource to the Hanfordmore » Site Environmental Report (HSER PNNL-13910), published by the Pacific Northwest National Laboratory. HSER includes a yearly accounting of the impacts on the surrounding populace and environment from major activities at the Hanford Site. HSER also summarizes the regulatory compliance status of the Hanford Site. Tables ES-1 through ES-5 display comprehensive data summaries of CY2001 air emission and liquid effluent releases. The data displayed in these tables compiles the following: Radionuclide air emissions; Nonradioactive air emissions; Radionuclides in liquid effluents discharged to ground; Total volumes and flow rates of radioactive liquid effluents discharged to ground; and Radionuclides discharged to the Columbia River.« less
Yoshida, N; Sasaki, R-K; Kasai, H; Yoshimizu, M
2013-12-01
Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks. © 2013 John Wiley & Sons Ltd.
Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi.
Tegli, Stefania; Cerboneschi, Matteo; Corsi, Massimo; Bonnanni, Marco; Bianchini, Roberto
2014-02-01
Textile dye effluents are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Low cost and ecocompatible bioremediation processes offer a promising alternative to the conventional and aspecific physico-chemical procedures adopted so far. Here, microorganisms resident on three real textile dyeing effluent were isolated, characterized, and tested for their decolorizing performances. Although able to survive on these real textile-dyeing wastewaters, they always showed a very low decolorizing activity. On the contrary, several plant-associated fungi (Bjerkandera adusta, Funalia trogii, Irpex lacteus, Pleurotus ostreatus, Trametes hirsuta, Trichoderma viride, and Aspergillus nidulans) were also assayed and demonstrated to be able both to survive and to decolorize to various extents the three effluents, used as such in liquid cultures. The decolorizing potential of these fungi was demonstrated to be influenced by nutrient availability and pH. Best performances were constantly obtained using B. adusta and A. nidulans, relying on two strongly different mechanisms for their decolorizing activities: degradation for B. adusta and biosorption for A. nidulans. Acute toxicity tests using Daphnia magna showed a substantial reduction in toxicity of the three textile dyeing effluents when treated with B. adusta and A. nidulans, as suggested by mass spectrometric analysis as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oropesa, Ana Lourdes; Novais, Sara C; Lemos, Marco F L; Espejo, Azahara; Gravato, Carlos; Beltrán, Fernando
2017-01-01
Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO 2 , Fe 3 O 4 ) and solar photocatalytic oxidation (TiO 2 )) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O 2 · - ) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.
Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi
2007-01-01
The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.
Livesley, S J; Adams, M A; Grierson, P F
2007-01-01
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.
A Conceptual Model For Effluent-Dependent Riverine Environments
NASA Astrophysics Data System (ADS)
Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.
2001-12-01
The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.
1976-01-01
Trickling Filter Fairchild A.F.B. Trickling Filter Town of Medical Lake Lagoon Town of Fairfield Lagoon Town of Millwood Activated Sludge (Extended Aeration...sewer system is subject to high levels of in- filtration. The treatment plant has ice problems in winter, trickling filter spreading arm clogging...lagoons. There is need of a routine effluent quan- tity/quality monitoring program. Tekoa. The trickling filter plant is poorly maintained to the point
Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.
Tripathi, Smriti; Tripathi, B D
2011-07-01
The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, Hyun-Chul; Choi, Wook Jin; Maeng, Sung Kyu; Kim, Hyung Joo; Kim, Han Soo; Song, Kyung Guen
2014-05-01
The feasibility of using ozonation pretreatment was investigated for a better performance of post microalgae-based wastewater remediation when treating piggery effluent which was anaerobically digested and subsequently micro-filtered. Ozonation pretreatment at a dose of 1.1mg-O3 mg-C(-1) or higher significantly improved the transmittance of light illumination through the mixed liquor by decolorizing the piggery effluent as culture media, which resulted in increasing both the productivity of algal biomass and the associated removal of inorganic nutrients from the effluent. Ozonation also converted refractory organic constituents in the piggery effluent to a large number of biodegradable fractions via both partial-mineralization and low-molecularization. These fractions were facilely removed through biological assimilation during the mixotrophic cultivation of a microalga S. quadricauda. The results revealed that ozonation could be one of the most promising strategies for the pretreatment of highly-colored piggery effluent prior to algae-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Batch study of manganese removal from mine effluent using mixture of ferromanganese ore and humus
NASA Astrophysics Data System (ADS)
Kamal, Norinsafrina Mustaffa; Aziz, Hamidi Abdul; Sulaiman, Shamsul Kamal; Hussin, Hashim
2017-10-01
Environmental problem related to mining industry always associates with high heavy metal contents in mine effluent. Manganese is among the metals that need to be reduced before the mine effluent entering receiving waterways. In this batch study, mixture of ferromanganese ore and humus had been applied to remove manganese from mine effluent. Effect of particle size of ferromanganese ore, dosage, mix ratio, pH and contact time had been studied to examine the effectiveness of the mixture in removing manganese. Results from the study have shown that optimum manganese removal was 93.54% by using particle size of 0.25-0.5 mm of ferromanganese ore, 3g of dosage mixture, mix ratio of 20%;80%, solution pH of 7 and 210 minutes (3.5 hours) of contact time. Thus, it is proven that mixture of ferromanganese ore and humus has potential to be used for removal of manganese in mine effluent.
Cloth media filtration and membrane microfiltration: serial operation.
Tooker, Nicholas Brewster; Darby, Jeannie L
2007-02-01
A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.
Treatment of industrial effluent water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskii, Yu.N.
1982-09-01
This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate hasmore » developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.« less
Effect of textile industrial effluent on tree plantation and soil chemistry.
Singh, G; Bala, N; Rathod, T R; Singh, B
2001-01-01
A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.
UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction.
Tokumura, Masahiro; Ohta, Ayano; Znad, Hussein T; Kawase, Yoshinori
2006-12-01
The photochemical decolorization of coffee effluent has been examined by photo-Fenton (UV/Fe2+/H2O2) process. Effects of UV light intensity, initial coffee concentration, iron dose and H2O2 dose on the color removal of model coffee effluent have been investigated. The rate of decolorization increased with decreasing initial coffee effluent concentration. It was found that the Fe ion dose and UV light intensity enhanced the decolorization rate. The decolorization process of coffee effluent could be divided into three established phases. At the beginning of the photo-Fenton process, the instantaneous and significant increase in color of the solution was found (Phase-I). In the subsequent phase (Phase-II), the decolorization rate was initially fast and subsequently decreased. In Phase-III, the rate was accelerated and then the complete decolorization of model coffee effluent was achieved. In order to elucidate the mechanisms of coffee effluent color removal process, the concentration changes in Fe3+ and Fe2+ besides H2O2 were measured during the course of the photo-Fenton process. The rate-determining step in Phase-II was the photo-Fenton reaction or photoreduction of Fe3+. On the other hand, the decolorization process in Phase-III was highly affected by Fenton reaction or decomposition of H2O2 with Fe2+. About 93% mineralization of 250 mg L(-1) model coffee effluent was achieved after 250 min. A comparative study for TiO2, ZnO and photo-Fenton oxidation processes has been also carried out and the photo-Fenton process was found to be the most effective for color removal of coffee effluent.
Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants.
Metcalfe, Chris D; Koenig, Brenda G; Bennie, Don T; Servos, Mark; Ternes, Thomas A; Hirsch, Roman
2003-12-01
Samples of influent (untreated) and effluent (treated) from 18 sewage treatment plants (STPs) in 14 municipalities in Canada were analyzed for residues of selected prescription and nonprescription drugs. Several neutral and acidic drugs were detected in effluents, including analgesic/anti-inflammatory agents, lipid regulators, and an antiepileptic drug, carbamazepine. Residues were extracted from effluents by solid-phase extraction, followed by either methylation and analysis of acidic drugs by gas chromatography/mass spectrometry or direct analysis of neutral drugs by liquid chromatography/tandem mass spectrometry. Analgesic/anti-inflammatory drugs such as ibuprofen and naproxen, as well as the metabolite of acetylsalicyclic acid, salicylic acid, were often detected in final effluents at microg/L concentrations. The acidic lipid regulator, clofibric acid, and the analgesic/anti-inflammatory drug diclofenac were not detected in any final effluent samples, which is not consistent with data from Europe. The precursor to clofibric acid, clofibrate, is not widely prescribed as a lipid regulator in Canada. However, the lipid regulators bezafibrate and gemfibrozil were detected in some samples of influent and effluent. The chemotherapy drugs ifosfamide and cyclophosphamide and the anti-inflammatory phenazone were not detected in influent or effluent samples, but the vasodilator drug pentoxyfylline was detected at ng/L concentrations in some final effluents. The widespread occurrence of carbamazepine at concentrations as high as 2.3 microg/L may be explained by use of this drug for other therapeutic purposes besides treatment of epilepsy and its resistance to elimination in STPs. The rates of elimination of ibuprofen and naproxen appeared to be elevated in STPs with hydraulic retention times for sewage greater than 12 h.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.
2010-01-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.
Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T
2010-02-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.
Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula
2018-08-01
Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.
1995-06-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP formore » PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.« less
Singh, Rajender; Ahlawat, O P; Rajor, Anita
2012-12-01
The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meiofauna distribution in a mangrove forest exposed to shrimp farm effluents (New Caledonia).
Della Patrona, L; Marchand, C; Hubas, C; Molnar, N; Deborde, J; Meziane, T
2016-08-01
Meiofauna abundance, biomass and individual size were studied in mangrove sediments subjected to shrimp farm effluents in New Caledonia. Two strategies were developed: i) meiofauna examination during the active (AP) and the non-active (NAP) periods of the farm in five mangrove stands characteristics of the mangrove zonation along this coastline, ii) meiofauna examination every two months during one year in the stand the closest to the pond (i.e. Avicennia marina). Thirteen taxonomic groups of meiofauna were identified, with nematodes and copepods being the most abundant ones. Meiofauna abundance and biomass increased from the land side to the sea side of the mangrove probably as a result of the increased length of tidal immersion. Abundance of total meiofauna was not significantly different before and after the rearing period. However, the effluent-receiving mangrove presented twice the meiofauna abundance and biomass than the control one. Among rare taxa, mites appeared extremely sensitive to this perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I
2017-01-01
Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes).
Zha, Jinmiao; Wang, Zijian
2006-03-15
To develop the whole effluent toxicity testing methods (WET), embryo larval stage toxicity test using Japanese medaka (Oryzias latipes) was conducted to evaluate an effluent from a banknote printing plant (BPP). The method is based on acute toxicity using endpoint of 96-h larval morality and on chronic toxicity using endpoints such as the time to hatch, hatching success, deformity, growth rate, swim-up failure, accumulative mortality and sexual ratio. In test for 96-h larval mortality, LC50 (the concentration was lethal to 50% of newly hatching medaka larvae) was 72.9%. In chronic toxicity test, newly fertilized embryos (<5-h old) were exposed to 1%, 6.25%, 12.5%, 25%, 50% effluent concentrations and to 200 mug/l BPA in a 24-h static renewal system at 25+/-1 degrees C until 15 day post-hatch. The results showed that all chronic endpoints were significantly different from the control at 50% dilution (p < 0.01). Embryos began to show lesions on 4th day at higher concentrations (12.5%, 25%, 50% BPP effluent concentrations). Treatment group of 25% dilution showed delayed time to hatch. A reduction in body weight was observed at 25% dilutions for males and females, respectively. Deformities were observed in newly hatched larvae at 25% and 50% BPP effluent concentrations. At 25% dilution, sex ratio of larvae was alternated and there was feminization phenomenon. We conclude that embryo larval stage test using medaka is feasible to evaluate both acute and chronic toxicities and potential endocrine disrupting activity of industrial effluents.
Jourjon, F; Khaldi, S; Reveillere, M; Thibault, C; Poulard, A; Chretien, P; Bednar, J
2005-01-01
In a more and more regulated and socially pressured environment, the durable management of winery effluents must take into account their characteristics and their potential impact on their natural setting. The object of this exploratory study is to establish an inventory of the microbiological composition of winery effluents coming from different treatment systems. We have observed that winery effluents are charged with micro-organisms, by a factor that ranges from 10(5) to 10(8) UFC/ml, and that the level of "microbiological pollution" is independent of the type of system. The composition of the flora is closely tied to the time of year and therefore to winery activities, so certain micro-organisms will be favoured in certain periods and others will have a tendency to decrease. We have seen that from one year to another our observations remain identical; the flora equilibrium therefore occurs systematically and naturally. Faecal germs are found in very small quantities in winery effluent treatment systems. They represent minor sanitary risks. Good correlations were observed between some micro-organisms and some physical-chemical parameters (COD). It is, however, difficult to use these "easy-to-measure" parameters as reliable markers of certain microbial populations.
Rodrigues, Edson; Feijó-Oliveira, Mariana; Suda, Cecília Nohome Kawagoe; Vani, Gannabathula Sree; Donatti, Lucélia; Rodrigues, Edson; Lavrado, Helena Passeri
2015-10-01
The present study aimed to assess the sewage effects of the Brazilian Antarctic Station Comandante Ferraz, Admiralty Bay, King George Island, on the hepatic metabolism (energetic, antioxidant, and arginase levels) and levels of plasma constituents of two Antarctic fish species Notothenia rossii and N. coriiceps. The bioassays were conducted under controlled temperature (0 °C) and salinity (35 psu), exposing the fish for 96 h, to sewage effluent diluted in seawater to 0.5 % (v/v). Liver homogenates were tested for the specific activities of the enzymes glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GPase), hexokinase, citrate synthase, lactate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, superoxide dismutase, glutathione reductase, catalase, and arginase. Plasma levels of glucose, triacylglycerides, cholesterol, total protein, albumin, chloride, magnesium, calcium, and inorganic phosphate were also determined. In N. rossii, the decrease in citrate synthase and the increase in G6Pase and GPase suggested that the sewage effluent activated glycogenolysis and hepatic gluconeogenesis, whereas is N. coriiceps, only G6Pase levels were increased. In N. rossii, sewage effluent induced hypertriglyceridemia without modulating glucose plasma levels, in contrast to N. coriiceps, which developed hypoglycemia without elevating plasma triglyceride levels. The decrease in glutathione reductase levels in N. coriiceps and in superoxide dismutase and catalase in N. rossii suggest that these two species are susceptible to oxidative stress stemming from the production of reactive oxygen species. An increase in magnesium in N. rossii and a decrease in N. coriiceps showed that sewage effluent compromised the control of plasma levels of this cation. Although phylogenetically close, both species of Antarctic fish exhibited different metabolic responses to the sewage effluent, with N. coriiceps showing greater susceptibility to the toxic effects of the pollutants. The present study suggests that the biochemical responses of these two species are potential indicators of metabolic changes caused by sewage effluents.
Oak Ridge Reservation: Annual Site Environmental Report for 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochelle, James; Rogers, Ben; Roche, Paula R.
The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2015. This report is not intended to nor does it present the results of all environmentalmore » monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments of the potential effects of ORR operations, if any, on the local environment.« less
Barañao, P A; Hall, E R
2004-01-01
Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.
Optimization of a mainstream nitritation-denitritation process and anammox polishing.
Regmi, Pusker; Holgate, Becky; Fredericks, Dana; Miller, Mark W; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2015-01-01
This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.
Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos
2016-09-01
Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2000-09-26
This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.
Tatsi, Kristi; Turner, Andrew
2014-03-01
Thallium is a highly toxic heavy metal whose concentrations and distributions in the aquatic environment are poorly defined. In this study, concentrations of aqueous and total Tl have been measured in water samples from a variety of rivers and effluents (the latter related to historical metal mining) in the county of Cornwall, SW England. Aqueous concentrations ranged from about 13 ng L(-1) in a river whose catchment contained no metal mines to 2,640 ng L(-1) in water abstracted directly from an abandoned mine shaft. Concentrations of Tl in rivers were greatest in the vicinity of mine-related effluents, with a maximum value measured of about 770 ng L(-1). Thallium was not efficiently removed by the conventional, active treatment of mine water, and displayed little interaction with suspended particles. Its mobility in surface waters, coupled with concentrations that are close to a quality guideline of 800 ng L(-1), is cause for concern. Accordingly, we recommend that the metal is more closely monitored in this and other regions impacted by mining activities. Copyright © 2013 Elsevier B.V. All rights reserved.
Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C
2001-07-01
An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor.
Biowaste resistojet propellant system biological and functional analysis, task 3
NASA Technical Reports Server (NTRS)
1972-01-01
Exhaust flow contamination aspects of the biowaste resistojet are studied by evaluating effects of operating pressure, temperature and composition. Biowaste propellant mixtures considered are comprised of: (1) The Sabatier reactor effluent; (2) the effluent of the cabin carbon dioxide molecular sieve; and (3) water and water vapor from various sources. Results show that plume shapes of resistojet thrusters in the 25 to 100 mlb range exhibit greater apex angles for a given density contour than a scaled inviscid jet. Operation at low thrust, low pressure and high temperature accentuates this pluming due to viscous effects in the nozzle flow. Since the biowaste resistojet effluent is traveling at high velocity in the plume away from the aircraft it is found to be a superior method of damping than the ambient venting.
Hölgye, Z; Filgas, R
2006-04-01
Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.
Lehmann, Katja; Bell, Thomas; Bowes, Michael J; Amos, Gregory C A; Gaze, Will H; Wellington, Elizabeth M H; Singer, Andrew C
2016-12-01
Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cai, Michael M; Smith, Edward R; Kent, Annette; Huang, Louis; Hewitson, Tim D; McMahon, Lawrence P; Holt, Stephen G
2018-05-23
The accumulation of fetuin-A-containing calciprotein particles (CPP) in the serum of patients with renal disease and those with chronic inflammation may be involved in driving sterile inflammation and extraosseous mineral deposition. We previously showed that both fetuin-A and CPP were present in the peritoneal dialysis (PD) effluent of stable PD patients. It is unknown whether different PD fluids might affect the formation of CPP in vivo Method: Peritoneal effluent from 12 patients was collected after a 6-hour dwell with 7 different commercial PD fluids. Calciprotein particles and inflammatory cytokines were measured by flow cytometry. High inter-subject variability in CPP concentration was observed. Peritoneal dialysis fluids containing 1.75 mmol/L calcium were associated with enhanced formation of CPP in vivo , compared with fluids containing 1.25 mmol/L calcium. Osmotic agent, fluid pH, and glucose concentration did not affect CPP formation. Peritoneal dialysis effluent CPP levels were not associated with changes in inflammatory cytokines. High calcium-containing PD fluids favor intraperitoneal CPP formation. This finding may have relevance for future PD fluid design.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2016-09-01
The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.
Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie
2016-05-01
The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.
Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France).
Servais, P; Garnier, J
1993-01-01
Bacterial activity was measured in the river Seine by two methods, (3)H-thymidine incorporation into DNA and (3)H-leucine incorporation into proteins. Both incorporation rates are characterized by low values upstream of Paris, a large increase just downstream of the outfall of the Achères treatment plant effluents, and then decreasing values further downstream. The covariation of both activities is demonstrated by the constancy of the molar ratio (leucine to thymidine incorporation rate) in the range of 6 to 8 for all the samples, except in the perturbed area where it is higher (15 to 35). These high values of molar ratio are linked to the introduction into the river of large sized bacteria ([Symbol: see text]1 µm) with higher incorporation rates per cell or biomass unit than the small autochthonous bacteria (< 1 µm). Growth rates of large bacteria were on average 3.7 times higher than those of small bacteria. Bacterial production was calculated with experimentally determined conversion factors (0.5 × 10(18) cells per mole of thymidine incorporated and 900 gC per mole of leucine incorporated) and by taking into account the activity of both size classes of bacteria measured through fractionation experiments (post-incubation filtration). Production estimated in the perturbed area downstream of Ach6res was very high, up to 60 µgC liter(-1)h(-1) in the summer. Carbon consumption by bacteria in the area perturbed by the Ach6res effluents was calculated assuming a growth yield of 0.2 and compared to the load of biodegradable organic matter discharged by the treatment plant. In summer, an additional supply of organic matter is required to account for the intense bacterial activity, suggesting the importance of phytoplankton production in the carbon budget.
Johannessen, Sophia C; Macdonald, Robie W; Burd, Brenda; van Roodselaar, Albert; Bertold, Stan
2015-03-01
To predict the likely effects of management action on any point source discharge into the coastal ocean, it is essential to understand both the composition of the effluent and the environmental conditions in the receiving waters. We illustrate a broadly-applicable approach to evaluating the comprehensive environmental footprint of a discharge, using regional geochemical budgets and nearfield monitoring. We take as a case study municipal effluent discharged into the Strait of Georgia (west coast of Canada), where there has been public controversy over the discharge of screened or primary-treated effluent directly into the ocean. Wastewater contributes ≤ 1% of the nitrogen, organic carbon and oxygen demand in the Strait and is unlikely to cause eutrophication, harmful algal blooms or hypoxia in this region. Metals (Hg, Pb, Cd) are controlled by natural cycles augmented by past mining and urbanization, with 0.3-5% of the flux contributed by wastewater. Wastewater contributes ~5% of PCBs but ≤ 60% of PBDEs and is likely also important for pharmaceuticals and personal care products. Effects of high organic flux on benthos are measurable in the immediate receiving environment. The availability of particle-active contaminants to enter the food chain depends on how long those contaminants remain in the sediment surface mixed layer before burial. Secondary treatment, slated for completion in Vancouver in 2030, will reduce fluxes of some contaminants, but will have negligible effect on regional budgets for organic carbon, nitrogen, oxygen, metals and PCBs. Removal of PBDEs from wastewater will affect regional budgets, depending on how the sludge is sequestered. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin
2018-04-01
Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.
Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E
2018-02-26
This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.
Dairy shed effluent treatment and recycling: Effluent characteristics and performance.
Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru
2016-09-15
Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Production of bacterial cellulose from alternate feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. N. Thompson; M. A. Hamilton
2000-05-07
Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.
Production of Bacterial Cellulose from Alternate Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David Neil; Hamilton, Melinda Ann
2000-05-01
Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.
Apparatus and method for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.
2002-01-01
An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
Method and system for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.
2003-01-01
A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.
2009-01-01
Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.
Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W
2009-08-01
Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
Agriculturally induced environmental changes in the Burren Karst, Western Ireland
NASA Astrophysics Data System (ADS)
Drew, D.
1996-10-01
The Burren plateau of County Clare is a classic example of a plateau karst characterised by patchy, thin soils, a lack of defined surface drainage, and in the instance of the Burren, a rich floristic, archaeological and landscape heritage. Since accession to the European Union and, in particular, as a result of Common Agricultural Policy initiatives, attempts have been made to raise farm incomes and to modernise agriculture in areas such as the Burren. Due to the encouragement of land reclamation and silage production has largely replaced hay farming for winter fodder. These changes pose a threat to groundwater quality by enhancing the leaching of artificial fertilizers or of organic pollutants. The Burren is highly vulnerable to water pollution from silage effluent because of its thin or absent soils and its highly karstified aquifers. A full survey of silage clamps was made in the summers of 1991 and 1992. For each site data were collected to derive the following: mass of silage, effluent produced, hazard rating of site to groundwater, likely discharge of effluent to groundwater and groundwater dilution index. About 60% of clamps were considered to be high risk and 23% medium risk. About 92% of all sites probably allow some effluent to infiltrate groundwater.
Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes.
Fongaro, G; Viancelli, A; Magri, M E; Elmahdy, E M; Biesus, L L; Kich, J D; Kunz, A; Barardi, C R M
2014-05-01
Swine production is an important economic activity in Brazil, and there is interest in the development of clean production mechanisms to support sustainable agro-industrial activities. The biomass derived from swine manure has good potential to be used as a biofertilizer due to its high nutrient concentration. However, the land application of manure should be based on safety parameters such as the presence of pathogens that can potentially infect animals and people. This study was designed to assess the presence of porcine circovirus-2 (PCV2), porcine adenovirus (PAdV), rotavirus-A (RV-A) and Salmonella spp. in liquid manure, as well the infectivity of two genotypes of circovirus-2 (PCV2a and PCV2b) present in liquid manure. Three swine farms were evaluated: 1) a nursery production farm (manure analyzed before and after anaerobic biodigestion), 2) a grow-finish production farm (analyzed before and after anaerobic biodigestion), and 3) a second grow-finish production farm (raw manure-affluent). PCV2, PAdV and RV-A were present before and after anaerobic biodigestion (either affluent or effluent) at all farms. Salmonella spp. were detected at farm 1 (affluent and effluent) and farm 3 (raw manure-affluent) but not farm 2 (affluent and effluent). When the ability of the anaerobic biodigestion process to reduce viral concentration was evaluated, no significant reduction was observed (P>0.05). Both the PCV2a and PCV2b genotypes were detected, suggesting viral co-infection in swine production. The results revealed infectious PCV2 even after anaerobic biodigestion treatment. The presence of Salmonella spp. and enteric viruses, especially infectious PCV2, in the final effluent from the anaerobic biodigester system suggests that the process is inefficient for pathogen inactivation. Due to the prevalence and infectivity of PCV2 and considering the successful use of molecular methods coupled to cell culture for detecting infectious PCV2, we suggest that this virus can be used as a bioindicator in swine manure treatment systems to check the efficiency of pathogen inactivation and ensure the production of safe biofertilizers from swine manure. Copyright © 2014 Elsevier B.V. All rights reserved.
Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J
2015-05-01
The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.
Vasconcellos, S. P; Cereda, M. P.; Cagnon, J. R.; Foglio, M.A.; Rodrigues, R.A.; Manfio, G. P.; Oliveira, V. M.
2009-01-01
This study aimed at isolating and characterizing of microorganisms able to use linamarin as sole carbon source. Thirty one microbial strains were isolated from manipueira, a liquid effluent of cassava processing factories. Among these strains, Bacillus licheniformis (isolate 2_2) and Rhodotorulla glutinis (isolate L1) were able to degrade 71% and 95% of added linamarin, respectively, within 7 days, showing high biodegradation activity and great potential for detoxification of cassava processing wastewaters. PMID:24031436
NASA Astrophysics Data System (ADS)
Aissa Grouz, Najla; Billen, Gilles; Garnier, Josette; Mercier, Benjamin; Martinez, Anun
2014-05-01
The major branch of the Seine river from the confluence with the Marne river to the entrance of the estuary is deeply affected by the release of wastewater from the huge Paris agglomeration. In the first years of 2000, the largest part of the effluents were still discharged at the Seine-Aval (Achères) treatment plant with only a standard, low residence time, activated sludge treatment, thus releasing a high ammonium load. NH4 concentration as high as 7 mgN/l were frequently observed downstream from Paris agglomeration. Cébron et al. (2003, 2005) and Garnier et al. 2007 described in details how this massive reduced nitrogen concentrations triggered the growth of nitrifying bacteria, already present in the upstream Seine and Marne rivers, but also brought in large amount by the effluents of the wastewater treatment plant themselves. The decrease of ammonium concentration was slow, however, and was only completed 200 km downstream, in the upper estuarine area, where it causes a severe oxygen deficiency. Since 2007, important changes occurred in the treatment of nitrogen in the Parisian wastewater purification plants. In 2007, the Seine-Aval plant treated up to 90% of the ammonium contained in wastewater through nitrification, and 30% of the total supply of nitrates is treated by denitrification. These modifications have of course favorably affected the water quality of the Seine river: ammonium concentrations are reduced by a factor of 5 and the area of oxygen depletion in the upstream estuary is no more observed. However, nitrites, still released in the effluents, are a matter of concern for the water quality of the Seine downstream from Paris. Using measurements of potential microbial activities carried out with the same experimental protocol for the 2000-2003 and 2012-2013 periods, we here examine and model the dynamics of ammonium oxidizing and nitrite oxidizing microbial populations before and after the implementation of nitrification treatment of Paris wastewaters. We show that, although large amounts of ammonium oxidizing microbes are still released in large amounts with the treated effluents, they no longer grows up in the Seine water by lack of substrate in sufficiently high concentration. The same is true for nitrite oxidizing micro-organisms, which explains the slow disappearance of nitrites from the downstream sector of the Seine River. The maximum turbidity zone of the downstream estuary acts as a concentrator of particulate material. The concentration of nitrifying bacteria observed there is therefore a good indicator of the development of nitrifiers in the downstream sector of the Seine. Comparison of the levels observed in the 2000-2003 period and in 2012 fully confirms our interpretation. In August-September 2013, a dysfunction of the Seine-Aval treatment plant occurred, and large amounts of incompletely nitrified effluents were released, so that high ammonium concentrations were still observed in the river. Interestingly, the dynamics of nitrifying microbial populations recorded during this event, contrasted with that observed in the preceding months, and more closely resembled that observed ten year ago, before the implementation of the new treatment in the wastewater purification plant.
Baek, Gahyun; Jung, Heejung; Kim, Jaai; Lee, Changsoo
2017-10-01
Promotion of direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and electron-utilizing methanogens has recently been discussed as a new method for enhanced biomethanation. This study evaluated the effect of magnetite-promoted DIET in continuous anaerobic digestion of dairy effluent and tested the magnetic separation and recycling of magnetite to avoid continuous magnetite addition. The applied magnetite recycling method effectively supported enhanced DIET activity and biomethanation performance over a long period (>250days) without adding extra magnetite. DIET via magnetite particles as electrical conduits was likely the main mechanism for the enhanced biomethanation. Magnetite formed complex aggregate structures with microbes, and magnetite recycling also helped retain more biomass in the process. Methanosaeta was likely the major methanogen group responsible for DIET-based methanogenesis, in association with Proteobacteria and Chloroflexi populations as syntrophic partners. The recycling approach proved robust and effective, highlighting the potential of magnetite recycling for high-rate biomethanation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silva, Felipe Thales Moreira; Moreira, Luiza Rojas; de Souza Ferreira, Juliana; Batista, Fabiana Regina Xavier; Cardoso, Vicelma Luiz
2016-01-01
Hydrogen is a promising alternative for the increased global energy demand since it has high energy density and is a clean fuel. The aim of this work was to evaluate the photo-fermentation by Rhodobacter capsulatus, using the dark fermentation effluent as substrate. Different systems were tested by changing the type of sugar in the dark fermentation, investigating the influence of supplementing DFE with sugar and adding alternate and periodically lactose and glucose throughout the process. The supplementation of the DFE with sugar resulted in higher H2 productivity and the replacement of the sugars repeatedly during the photo-fermentation process was important to maintain the cell culture active. By controlling the residual amount of sugar, bacteria inhibition was avoided; lactic acid, that was toxic to the biomass, was consumed and the metabolic route of butyric acid production was predominant. Under optimum conditions, the H2 productivity reached 208.40mmolH2/Ld in 52h. Copyright © 2015 Elsevier Ltd. All rights reserved.
García-Mancha, N; Monsalvo, V M; Puyol, D; Rodriguez, J J; Mohedano, A F
2017-10-05
This work presents a sustainable and cost-competitive solution for hardly biodegradable pesticides-bearing wastewater treatment in an anaerobic expanded granular sludge bed (EGSB) reactor at mesophilic (35°C) and thermophilic (55°C). The reactor was operated in continuous mode during 160days, achieving an average COD removal of 33 and 44% under mesophilic and thermophilic conditions, respectively. The increase of temperature improved the biomass activity and the production of methane by 35%. Around 96% of pesticides identified in raw wastewater were not detected in both mesophilic and thermophilic effluents. A dramatic selection of the microbial population in anaerobic granules was caused by the presence of pesticides, which also changed significantly when the temperature was increased. Pesticides caused a significant inhibition on methanogenesis, especially over acetoclastic methanogens. Aerobic biodegradability tests of the resulting anaerobic effluents revealed that aerobic post-treatment is also a feasible and effective option, yielding more than 60% COD reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite.
Shailaja, M S; Rajamanickam, Rani; Wahidulla, Solimabi
2006-09-01
Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.
Zou, Xiao-Ling
2017-10-01
A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.
Shanmugam, Bhuvanesh Kumar; Mahadevan, Surianarayanan
2015-11-01
Effluents from leather and textile industries are difficult for treatment owing to its recalcitrant nature. Since the volume of effluent generated are high, a robust and active microbial consortia is required for effective treatment. The focus in the present study is the calorimetric traceability of the metabolic behaviors of mixed microbial consortia, while it grows and degrades recalcitrant substance such as an azo dye acid blue 113. The consortium exhibited a syntrophic division of substrate and was effective in degrading dye up to 0.8g/l. Notably, it was able to degrade 93.7% of the azo dye in 12-16h whereas its monocultures required 48-72h to reach 82.1%. The products of biodegradation were analyzed and the chemical pathway substantiated using chemical thermodynamic and energy release patterns. MTT assay confirmed that emanates are eco-friendly. Heat profile pattern and bioenergetics provide fundamental data for a feasible application in commercial level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Santhanam, Manikandan; Selvaraj, Rajeswari; Annamalai, Sivasankar; Sundaram, Maruthamuthu
2017-11-01
This study presents a combined electrochemical, sunlight-induced oxidation and biological process for the treatment of textile effluent. In the first step, RuO 2 -TiO 2 /Ti and Titanium were used as the electrodes in EO process and color removal was achieved in 40 min at an applied current density of 20 mA cm -2 . The EO process generated about 250 mg L -1 of active chlorine which hampered the subsequent biological treatment process. Thus, in the second step, sun light-induced photolysis (SLIP) is explored to remove hypochlorite present in the EO treated effluent. In the third step, the SLIP treated effluent was fed to laccase positive bacterial consortium for biological process. To assess the effect of SLIP in the overall process, experiments were carried out with and without SLIP process. In experiments without SLIP, sodium thiosulfate was used to remove active chlorine. HPLC analysis showed that SLIP integrated experiments achieved an overall dye component degradation of 71%, where as only 22% degradation was achieved in the absence of SLIP process. The improvement in degradation with SLIP process is attributed to the presence of ClO radicals which detected by EPR analysis. The oxidation of organic molecules during process was confirmed by FT-IR and GC-MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chandra, Ram; Sharma, Pooja; Yadav, Sangeeta; Tripathi, Sonam
2018-01-01
Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.
Radiological effluents released from US continental tests, 1961 through 1992. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoengold, C.R.; DeMarre, M.E.; Kirkwood, E.M.
1996-08-01
This report documents all continental tests from September 15, 1961, through September 23, 1992, from which radioactive effluents were released. The report includes both updated information previously published in the publicly available May, 1990 report, DOE/NV-317, ``Radiological Effluents Released from Announced US Continental Tests 1961 through 1988``, and effluent release information on formerly unannounced tests. General information provided for each test includes the date, time, location, type of test, sponsoring laboratory and/or agency or other sponsor, depth of burial, purpose, yield or yield range, extent of release (onsite only or offsite), and category of release (detonation-time versus post-test operations). Wheremore » a test with simultaneous detonations is listed, location, depth of burial and yield information are given for each detonation if applicable, as well as the specific source of the release. A summary of each release incident by type of release is included. For a detonation-time release, the effluent curies are expressed at R+12 hours. For a controlled releases from tunnel-tests, the effluent curies are expressed at both time of release and at R+12 hours. All other types are listed at the time of the release. In addition, a qualitative statement of the isotopes in the effluent is included for detonation-time and controlled releases and a quantitative listing is included for all other types. Offsite release information includes the cloud direction, the maximum activity detected in the air offsite, the maximum gamma exposure rate detected offsite, the maximum iodine level detected offsite, and the maximum distance radiation was detected offsite. A release summary incudes whatever other pertinent information is available for each release incident. This document includes effluent release information for 433 tests, some of which have simultaneous detonations. However, only 52 of these are designated as having offsite releases.« less
Rivera, Isaac; Bakonyi, Péter; Cuautle-Marín, Manuel Alejandro; Buitrón, Germán
2017-05-01
In this study single-chamber microbial electrolysis cells (MECs) were applied to treat cheese whey (CW), an industrial by-product, and recover H 2 gas. Firstly, this substrate was fed directly to the MEC to get the initial feedback about its H 2 generation potential. The results indicated that the direct application of CW requires an adequate pH control to realize bioelectrohydrogenesis and avoid operational failure due to the loss of bioanode activity. In the second part of the study, the effluents of anaerobic (methanogenic) digester and hydrogenogenic (dark fermentative H 2 -producing) reactor utilizing the CW were tested in the MEC process (representing the concept of a two-stage technology). It turned out that the residue of the methanogenic reactor - with its relatively lower carbohydrate- and higher volatile fatty acid contents - was more suitable to produce hydrogen bioelectrochemically. The MEC operated with the dark fermentation effluent, containing a high portion of carbohydrates and low amount of organic acids, produced significant amount of undesired methane simultaneously with H 2 . Overall, the best MEC behavior was attained using the effluent of the methanogenic reactor and therefore, considering a two-stage system, methanogenesis is an advisable pretreatment step for the acidic CW to enhance the H 2 formation in complementary microbial electrohydrogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sweetapple, Christine; Fu, Guangtao; Butler, David
2014-05-15
This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vilela, Paulina; Liu, Hongbin; Lee, SeungChul; Hwangbo, Soonho; Nam, KiJeon; Yoo, ChangKyoo
2018-08-15
The release of silver nanoparticles (AgNPs) to wastewater caused by over-generation and poor treatment of the remaining nanomaterial has raised the interest of researchers. AgNPs can have a negative impact on watersheds and generate degradation of the effluent quality of wastewater treatment plants (WWTPs). The aim of this research is to design and analyze an integrated model system for the removal of AgNPs with high effluent quality in WWTPs using a systematic approach of removal mechanisms modeling, optimization, and control of the removal of silver nanoparticles. The activated sludge model 1 was modified with the inclusion of AgNPs removal mechanisms, such as adsorption/desorption, dissolution, and inhibition of microbial organisms. Response surface methodology was performed to minimize the AgNPs and total nitrogen concentrations in the effluent by optimizing operating conditions of the system. Then, the optimal operating conditions were utilized for the implementation of control strategies into the system for further analysis of enhancement of AgNPs removal efficiency. Thus, the overall AgNP removal efficiency was found to be slightly higher than 80%, which was an improvement of almost 7% compared to the BSM1 reference value. This study provides a systematic approach to find an optimal solution for enhancing AgNP removal efficiency in WWTPs and thereby to prevent pollution in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Nikoonahad, Ali; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Ehrampoush, Mohammad Hassan; Ebrahimi, Ali Asghar; Lotfi, Mohammad Hassan; Salamehnejad, Sima
2017-12-01
Biological Aerated Filter (BAF) reactors due to their plentiful biomass, high shockability, high efficiency, good filtration, availability and lack of need for large land areas, are enjoying from great importance in advanced wastewater treatment. Therefore, in this study, Polystyrene Coated by Sand (PCS) was produced as a novel media and its application in a modified down-flow BAF structure for advanced wastewater treatment was assessed in two steps. In step one, the backwash effluent did not return to the system, while in step two backwash effluent returned to increase the water reuse efficiency. The backwash process was also studied through three methods of Top Backwashing (TB), Bottom Backwashing (BB), as well as Top and Bottom Backwashing Simultaneously (TBBS). The results showed that return of backwash effluent had no significant effect on the BAF effluent quality. In the second step similar to the first one with slight differences, the residual average concentrations of TSS, BOD 5 , and COD at the effluent were about 2.5, 8.2, and 25.5 mg/L, respectively. Additionally, in step two, the mean volume of disposal sludge/volume of treated water (v ds /v tw ) decreased a large extent to about 0.088%. In other words, the water reuse has increased to more than 99.91%. The backwash time in methods of TB and BB were 65 and 35 min, respectively; however, it decreased in TBBS methods to 25 min. The concentrations of most effluent parameters in this system are in concordance with the 2012 EPA Agriculture Standards, even for irrigation of Non-processed agricultural crops and livestock water consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monitoring hospital wastewaters for their probable genotoxicity and mutagenicity.
Sharma, Pratibha; Mathur, N; Singh, A; Sogani, M; Bhatnagar, P; Atri, R; Pareek, S
2015-01-01
Cancer is a leading cause of death worldwide. Excluding the genetic factors, environmental factors, mainly the pollutants, have been implicated in the causation of the majority of cancers. Wastewater originated from health-care sectors such as hospitals may carry vast amounts of carcinogenic and genotoxic chemicals to surface waters or any other source of drinking water, if discharged untreated. Humans get exposed to such contaminants through a variety of ways including drinking water. The aim of the present study was, thus, to monitor the genotoxic and mutagenic potential of wastewaters from three big hospitals located in Jaipur (Rajasthan), India. One of them was operating an effluent treatment plant (ETP) for treatment of its wastewater and therefore both the untreated and treated effluents from this hospital were studied for their genotoxicity. Two short-term bacterial bioassays namely the Salmonella fluctuation assay and the SOS chromotest were used for the purpose. Results of fluctuation assay revealed the highly genotoxic nature of all untreated effluent samples with mutagenicity ratios (MR) up to 23.13 ± 0.18 and 42.25 ± 0.35 as measured with Salmonella typhimurium strains TA98 and TA100, respectively. As determined with the chromotest, all untreated effluents produced significant induction factors (IF) ranging from 3.29 ± 1.11 to 13.35 ± 3.58 at higher concentrations. In contrast, treated effluent samples were found to be slightly genotoxic in fluctuation test only with an MR = 3.75 ± 0.35 for TA100 at 10 % concentration. Overall, the results indicated that proper treatment of hospital wastewaters may render the effluents safe for disposal contrary to the untreated ones, possessing high genotoxic potential.
NASA Astrophysics Data System (ADS)
Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent
Varying conditions are required for different species of microorganisms for the complex biological processes taking place within the activated sludge treatment system. It is against the requirement to manage this complex dynamic system that computer simulators were developed to aid in optimising activated sludge treatment processes. These computer simulators require calibration with quality data input that include wastewater fractionation among others. Thus, this research fractionated raw sewage, at Firle Sewage Treatment Works (STW), for calibration of the BioWin simulation model. Firle STW is a 3-stage activated sludge system. Wastewater characteristics of importance for activated sludge process design can be grouped into carbonaceous, nitrogenous and phosphorus compounds. Division of the substrates and compounds into their constituent fractions is called fractionation and is a valuable tool for process assessment. Fractionation can be carried out using bioassay methods or much simpler physico-chemical methods. The bioassay methods require considerable experience with experimental activated sludge systems and associated measurement techniques while the physico-chemical methods are straight forward. Plant raw wastewater fractionation was carried out through two 14-day campaign periods, the first being from 3 to 16 July 2013 and the second was from 1 to 14 October 2013. According to the Zimbabwean Environmental Management Act, and based on the sensitivity of its catchment, Firle STW effluent discharge regulatory standards in mg/L are COD (<60), TN (<10), ammonia (<0.2), and TP (<1). On the other hand Firle STW Unit 4 effluent quality results based on City of Harare records in mg/L during the period of study were COD (90 ± 35), TN (9.0 ± 3.0), ammonia (0.2 ± 0.4) and TP (3.0 ± 1.0). The raw sewage parameter concentrations measured during the study in mg/L and fractions for raw sewage respectively were as follows total COD (680 ± 37), slowly biodegradable COD (456 ± 23), (0.7), readily biodegradable COD (131 ± 11), (0.2), soluble unbiodegradable COD (40 ± 3), (0.06), particulate unbiodegradable COD (53 ± 3) (0.08), total TKN (40 ± 4) mg/L, ammonia (28 ± 6), (0.68), organically bound nitrogen (12 ± 2), (0.32), TP (15 ± 1.4), orthophosphates (9.6 ± 1.4), (0.64), and organically bound TP (5.4 ± 1.4), (0.36), soluble unbiodegradable TP (0.4 ± 0), (0.03), particulate unbiodegradable TP (0.05 ± 0), (0.003). Thus, wastewater at Firle STW was found to be highly biodegradable suggesting optimisation of biological nutrient removal process will generally achieve effluent regulatory standards compliance. Thus, opportunities for plant optimisation do exist of which modelling with the use of a simulator is recommended to achieve recommended effluent standards in addition to reduction of operating costs.
Ground cloud related weather modification effects. [heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Lee, J.
1980-01-01
The principal concerns about inadvertent weather modification by the solar power satellite system rocket effluents are discussed, namely the possibility that the ground cloud might temporarily modify local weather and the cumulative effects of nearly 500 launches per year. These issues are discussed through the consideration of (1) the possible alteration of the microphysical processes of clouds in the general area due to rocket effluents and debris and cooling water entrained during the launch and (2) the direct dynamical and thermodynamical responses to the inputs of thermal energy and moisture from the rocket exhaust for given ambient meteorological conditions. The huge amount of thermal energy contained in the exhaust of the proposed launch vehicle would in some situations induce a saturated, wet convective cloud or enhance an existing convective activity. Nevertheless, the effects would be limited to the general area of the launch site. The observed long lasting high concentrations of cloud condensation nuclei produced during and after a rocket launch may appreciably affect the frequency of occurrence and persistence of fogs and haze. In view of the high mission frequency proposed for the vehicle launches, a potential exists for a cumulative effect.
Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F
2013-04-01
The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.
Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu
NASA Astrophysics Data System (ADS)
Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish
2017-09-01
The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.
Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti
2008-09-01
Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.
Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G
2003-01-01
We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.
NASA Astrophysics Data System (ADS)
Hama, Takehide; Aoki, Takeru; Osuga, Katsuyuki; Nakamura, Kimihito; Sugiyama, Sho; Kawashima, Shigeto
Implementation of collective crop rotation in a paddy-field district may increase nutrients effluent load. We have investigated a paddy-field district implementing collective crop rotation of wheat and soybeans, measured temporal variations in nutrients concentration of drainage water and the amount of discharged water for consecutive three years, and estimated nutrients effluent load from the district during the irrigation and non-irrigation periods. As a result, the highest concentration of nutrients was observed during the non-irrigation period in every investigation year. It was shown that high nutrients concentration of drainage water during the non-irrigation period was caused by runoff of fertilizer applied to wheat because the peaks of nutrients concentration of drainage water were seen in rainy days after fertilizer application in the crop-rotation field. The effluent load during the non-irrigation periods was 16.9-22.1 kgN ha-1 (nitrogen) and 0.84-1.42 kgP ha-1 (phosphorus), which respectively accounted for 46-66% and 27-54% of annual nutrients effluent load.
Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.
2014-01-01
Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs were present in both WWTP effluents and receiving streams, (3) some effluents may be important sources of estrogenicity in weakly diluted streams, (4) measured levels of biological estrogenicity were often higher than estimated levels of chemical estrogenicity, and (5) the type of treatment had a large effect on the removal efficacy, and consequently, the estrogenicity levels observed in treated effluents.
Parrott, Joanne L.; Tillitt, Donald E.
1997-01-01
Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those from secondary-treated effluent. Little is known about the nature and identity of the MFO inducers from pulp mill and refinery effluents, but the use of SPMDs as concentrators of MFO-inducing substances appears a promising avenue for future research.
NASA Astrophysics Data System (ADS)
McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.
2007-12-01
N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the recharged NDMA mass was biodegraded in groundwater with the remaining mass pumped out by extraction wells. To reproduce the observation data, a groundwater flow and transport model was developed and calibrated against groundwater elevation and NDMA concentration data. The calibrated half-life of NDMA in groundwater is 69 days, which is consistent with the values obtained through laboratory incubation using soil samples from the Montebello Forebay Spreading Grounds. Given the photolysis of NDMA in surface water and biodegradation in groundwater observed during this study, reclaimed wastewater with limited NDMA concentrations can be safely used for groundwater recharge under the study area conditions.
Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.
van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico
2010-08-01
Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.
The fate of wastewater-derived NDMA precursors in the aquatic environment.
Pehlivanoglu-Mantas, Elif; Sedlak, David L
2006-03-01
To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.
Bioremediation of an iron-rich mine effluent by Lemna minor.
Teixeira, S; Vieira, M N; Espinha Marques, J; Pereira, R
2014-01-01
Contamination of water resources by mine effluents is a serious environmental problem. In a old coal mine, in the north of Portugal (São Pedro da Cova, Gondoma),forty years after the activity has ended, a neutral mine drainage, rich in iron (FE) it stills being produced and it is continuously released in local streams (Ribeiro de Murta e Rio Ferreira) and in surrounding lands. The species Lemna minor has been shown to be a good model for ecotoxicological studies and it also has the capacity to bioaccumulate metals. The work aimed test the potential of the species L. minor to remediate this mine effluent, through the bioaccumulation of Fe, under greenhouse experiments and, at the same time, evaluate the time required to the maximum removal of Fe. The results have shown that L. minor was able to grow and develop in the Fe-rich effluent and bioaccumulating this element. Throughout the 21 days of testing it was found that there was a meaningful increase in the biomass of L. minor both in the contaminated and in the non-contaminated waters. It was also found that bioaccumulation of Fe (iron) occurred mainly during the first 7 days of testing. It was found that L. minor has potential for the bioremediation of effluents rich in iron.
Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B
2006-08-01
This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.
Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés
2013-12-01
The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. © 2013 Elsevier Inc. All rights reserved.
Suvilampi, J; Lehtomäki, A; Rintala, J
2003-07-01
A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.
Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua
2014-10-15
Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tertiary treatment of landfill leachates by adsorption.
Marañón, Elena; Castrillón, Leonor; Fernández-Nava, Yoland; Fernández-Méndez, Alejandro; Fernández-Sánchez, Arcadio
2009-08-01
The leachates produced at the municipal solid waste (MSW) landfill of Asturias (Spain) were submitted to a biological treatment consisting of a pressurized nitrification-denitrification process followed by ultrafiltration. The effluent from this treatment plant has a high chemical oxygen demand : biochemical oxygen demand (COD : BOD( 5)) ratio (about 25 : 1). The COD values of the effluent are above the discharge limits permitted by current legislation and therefore require a final treatment. In the present study, adsorption was investigated as a possible post-treatment. Three activated carbons (Organosorb 10, Organosorb 10MB and Filtracarb CC65/1240) were selected and equilibrium and column data were obtained. The best results were obtained with Organosorb 10MB, although adsorption capacities obtained were low and equilibrium was unfavourable. Adsorption capacities ranged between 150 and 157 mg COD g(-1) for an activated carbon dosage of 1 mg L(-1) and between 13.3 and 18.4 mg COD g(-1) for a dosage of 20 mg L(-1). As regards colour, adsorption capacities ranged between 145 and 175 UPtCo g(-1) for the lower dosage and between 16 and 29 UPtCo g(-1) for the higher dosage. Removal efficiency increased with the dosage of activated carbon employed, obtaining maximum COD and colour removals of 63 and 45%, respectively, for a dosage of 20 mg L(-1) after 5 h contact time.
Woodard, Kenneth R; Sollenberger, Lynn E; Sweat, Lewin A; Graetz, Donald A; Nair, Vimala D; Rymph, Stuart J; Walker, Leighton; Joo, Yongsung
2007-01-01
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.
NASA Astrophysics Data System (ADS)
Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.
2014-12-01
Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
2014-01-01
Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605
Effect of sugar factory effluent on some physico-chemical properties of soils--a case study.
Roy, Ratna P; Prasad, Jagdish; Joshi, A P
2007-10-01
The effect of irrigation by sugar factory effluent (spentwash) and the well water from adjoining area has been studied in Wardha district, Maharashtra. The effluent had high TDS (422-608 mgL(-1)), COD (1152-17680 mgL(-1)) and BOD(380-650 mgL(-1)) than well water (TDS 240 mgL(-1), COD 3.8 mgL(-1) and BOD 1.2 mgL(-1)). There found some nutrients, viz. N, P, K, Zn, Cu, Fe, Mn in surface layer of soil in different seasons. Heavy metals (Cd, Co, Cr, Ni, Pb) were found to be within the permissible limits.
Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.
Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K
2018-05-01
Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.
Cyanobacterial flora from polluted industrial effluents.
Parikh, Amit; Shah, Vishal; Madamwar, Datta
2006-05-01
Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.
Sachan, Sanjay; Singh, S K; Srivastava, P C
2007-10-01
Accumulation of heavy metals in soil-water-plant continuum as a result of irrigation with metals contaminated effluent has been studied. Effluents being used for irrigating agricultural fields had normal pH 7.3-7.5, high Cr and Cl content as per the prescribed standards for irrigation. Among the heavy metals, buildup of total Iron was highest (9 times) and that of cadmium (1.3 times) was lowest in effluent irrigated soil as compared to tubewell irrigated soils. In most of the hand pump water samples, Pb, Cd and Cr were above the permissible limits for drinking. Bioaccumulation of Pb and Cr in vegetables was found to be above the critical concentrations for plant growth while Pb and Cd were above the prescribed limit in the diet of animals. Most of the heavy metals were above the maximum allowable limit in soil.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-09-12
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199
Effects of drain wells on the ground-water quality of the western Snake Plain Aquifer, Idaho
Moreland, Joe A.; Seitz, Harold R.; LaSala, Albert Mario
1976-01-01
Approximately 3,100 drain wells injects irrigation waste water, urban runoff, septic-tank effluent, and industrial waste water into the Snake Plain aquifer in Minidoka, Gooding, Jerome, and Lincoln Counties, Idaho. About 29,000 acre-feet of irrigation waste water, 100 acre-feet of urban runoff, 400 acre-feet of septic-tank effluent, and 1,000 acre-feet of industrial waste water are injected annually. The quality of irrigation waste water is highly variable, depending upon its source, method and rate of application, amount of fertilizer added, and other factors. The quality of urban runoff water is generally much better than irrigation waste water. Septic-tank effluent is relatively high in nutrient concentrations. Chloride concentrations also are high, and bacterial concentrations are exceedingly high. The only industrial waste water sampled during this study had been used for cooling. No chemical changes were noted, but temperature was significantly increased. The data indicate that drain-well inflow does move appreciable distances through the aquifer and can be detected in downgradient wells. (Woodard-USGS)
Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François
2017-10-01
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
2011-08-01
sodium nitrate NaOCl sodium hypochlorite NAVFAC-ESC Naval Facilities Engineering Command-Engineering Service Center NDMA n-nitrosodimethylamine NL...nitrosodimethylamine ( NDMA ) was measured in effluent from the second TGAC bed at 39 ng/L. No other nitrosamines were detected in any other sampling event...was 6.3 ng/L NDMA in an effluent sample of the prechlorination/oxidant train. 6.6.3.4 General Chemistry Results With a few exceptions, values of pH
Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon
2015-05-01
The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioprospecting of lipolytic microorganisms obtained from industrial effluents.
Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S
2016-01-01
The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.
Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim
2015-01-01
Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.
NASA Astrophysics Data System (ADS)
Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura
2011-04-01
SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.
Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J
2014-10-01
Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Environmental analysis for pipeline gas demonstration plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinton, L.H.
1978-09-01
The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plantmore » of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.« less
Cheung, K C; Venkitachalam, T H
2004-01-01
Fly ash has been found to be a potential material for the treatment of municipal and industrial wastewater, and may be useful in the treatment of septic tank effluent. Laboratory columns (30 cm) were used to determine the sorption capacity and hydraulic properties of lagoon fly ash, loamy sand, sand, and sand amended by lagoon fly ash (30 and 60%) and red mud gypsum (20%). The removal of chemical oxygen demand (COD) was high in all column effluents (71-93%). Extent of nitrification was high in Spearwood sand, Merribrook loamy sand and 20% red mud gypsum amended Spearwood sand. However, actual removal of nitrogen (N) was high in columns containing lagoon fly ash. Unamended Spearwood sand possessed only minimal capacity for P sorption. Merribrook loamy sand and red mud gypsum amended sand affected complete P removal throughout the study period of 12 weeks. Significant P leakage occurred from lagoon fly ash amended sand columns following 6-10 weeks of operation. Neither lagoon fly ash nor red mud gypsum caused any studied heavy metal contamination including manganese (Mn), lead (Pb), zinc (Zn), cadmium (Cd) and chromium (Cr) of effluent. It can be concluded that Merribrook loamy sand is better natural soil than Spearwood sand as a filter medium. The addition of lagoon fly ash enhanced the removal of P in Spearwood sand but the efficiency was lower than with red mud gypsum amendment.
Planas, Carles; Palacios, Oscar; Ventura, Francesc; Rivera, Josep; Caixach, Josep
2008-08-15
A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (<15%) and MDLs (0.08-1.7 ng/L). Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
2013-01-01
The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199
Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N
2017-07-03
The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.
Assessment of peracetic acid disinfected effluents by microbiotests.
Antonelli, M; Mezzanotte, V; Panouillères, M
2009-09-01
Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.
Sun, Ying-Xue; Hu, Hong-Ying; Shi, Chun-Zhen; Yang, Zhe; Tang, Fang
2016-09-01
The characteristics of dissolved organic matter (DOM) and the biotoxicity of these components were investigated in a municipal wastewater reclamation reverse osmosis (mWRRO) system with a microfiltration (MF) pretreatment unit. The MF pretreatment step had little effect on the levels of dissolved organic carbon (DOC) in the secondary effluent, but the addition of chlorine before MF promoted the formation of organics with anti-estrogenic activity. The distribution of excitation emission matrix (EEM) fluorescence constituents exhibited obvious discrepancies between the secondary effluent and the reverse osmosis (RO) concentrate. Using size exclusion chromatography, DOM with low molecular weights of approximately 1.2 and 0.98 kDa was newly formed during the mWRRO. The normalized genotoxicity and anti-estrogenic activity of the RO concentrate were 32.1 ± 10.2 μg4-NQO/mgDOC and 0.36 ± 0.08 mgTAM/mgDOC, respectively, and these values were clearly higher than those of the secondary effluent and MF permeate. The florescence volume of Regions I and II in the EEM spectrum could be suggested as a surrogate for assessing the genotoxicity and anti-estrogenic activity of the RO concentrate.
Oak Ridge Reservation Annual Site Environmental Report for 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Jacobs
2010-09-01
The Oak Ridge Reservation Annual Site Environmental Report is prepared animally and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1 A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2009. This report is not intended to nor does it present the results of allmore » environmental monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections to the 2008 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments regarding the potential effects of ORR operations, if any, on the local environment.« less
Oak Ridge Reservation Annual Site Environmental Report for 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Sharon D
2011-10-01
The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2010. This report is not intended to nor does it present the results of all environmentalmore » monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections to the 2009 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments of the potential effects of ORR operations, if any, on the local environment.« less
Oak Ridge Reservation Annual Site Environmental Report for 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Sharon D; Loffman, Regis S
2010-10-01
The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2009. This report is not intended to nor does it present the results of all environmentalmore » monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections for the 2008 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments regarding the potential effects of ORR operations, if any, on the local environment.« less
Oak Ridge Reservation Annual Site Environmental Report for 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Wayne; Hughes, Joan; Coffey, Mike
2007-09-01
This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the Oak Ridge Reservation (ORR) and within the ORR surroundings. The document fulfills the requirement of Department of Energy (DOE) Order 23l.IA, 'Environment, Safety and Health Reporting,' for an annual summary of environmental data to characterize environmental performance. The environmental-monitoring criteria are described in DOE Order 450.1, 'Environmental Protection Program.' The results summarized in this report are based on data collected prior to and through 2006. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other sitemore » and regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assess ments of ORR operations and effects, if any, on the local environment.« less
Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger
2017-09-01
Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
LEVELS OF SYNTHETIC MUSK COMPOUNDS IN ...
To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for LakeMead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake Mead. Data obtained from analyses of combined effluent streams from three municipal sewage treatment plants, from the effluent-receiving lake water, and from whole carp (Cyprinus carpio) tissue, indicated bioconcentration of synthetic musks in carp (1400-4500 pg/g). That same data were evaluated for the prediction of levels of synthetic musk compounds in fish, using values from the source (sewage treatment plant effluent [STP]). This study confirmed the presence of polycyclic and nitro musks in STP effluent, Lake Mead water, and carp. The concentrations of the polycyclic and nitro musks found in Lake Mead carp were considerably lower than previous studies in Germany, other European countries, and Japan. The carp samples were found to have mostly the mono-amino-metabolites of the nitro musks and intact polycyclic musks, principally HHCB (Galaxolide®) and AHTN (Tonalide®). Finally, the determination of sufficiently high levels of Galaxolide® and 4-amino musk xylene in STP effluent may be used to infer the presence of trace levels of other classes of musk compounds in the lake water. To be presented is an overview of the chemistry, the monitoring methodology, andthe statistical evaluation of con
[Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].
Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao
2012-11-01
Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.
Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L
2006-01-01
The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.