Science.gov

Sample records for high affinity ligands

  1. Selective high affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  2. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    SciTech Connect

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  3. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  4. Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition.

    PubMed

    Wortmann, Arno; Jecklin, Matthias C; Touboul, David; Badertscher, Martin; Zenobi, Renato

    2008-05-01

    We describe an approach for the determination of binding constants for protein-ligand complexes with electrospray ionization mass spectrometry, based on the observation of unbound ligands competing for binding to a protein target. For the first time, dissociation constants lower than picomolar could be determined with good accuracy by electrospray ionization mass spectrometry. The presented methodology relies only on the determination of signal intensity ratios for free ligands in the low mass region. Therefore, all the advantages of measuring low masses with mass spectrometry, such as high resolution are preserved. By using a reference ligand with known binding affinity, the affinity of a second ligand can be determined. Since no noncovalently bound species are observed, assumptions about response factors are not necessary. The method is validated with ligands binding to avidin and applied to ligands binding to p38 mitogen-activated protein kinase.

  5. Selective high-affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2013-09-17

    This invention provides polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each binds different regions on the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  6. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  7. Multipurpose ligand, DAKLI (Dynorphin A-analogue Kappa LIgand), with high affinity and selectivity for dynorphin (. kappa. opioid) binding sites

    SciTech Connect

    Goldstein, A.; Nestor, J.J. Jr.; Naidu, A.; Newman, S.R. )

    1988-10-01

    The authors describe a synthetic ligand, DALKI (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as {sup 125}I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin ({kappa} opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites.

  8. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening.

    PubMed

    Wang, Yu-Sen; Liu, Dingjiang; Wyss, Daniel F

    2004-06-01

    The reported competition STD NMR method combines saturation transfer difference (STD) NMR with competition binding experiments to allow the detection of high-affinity ligands that undergo slow chemical exchange on the NMR time-scale. With this technique, the presence of a competing high-affinity ligand in the compound mixture can be detected by the disappearance or reduction of the STD signals of a low-affinity indicator ligand. This is demonstrated on a BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) protein-inhibitor system. This method can also be used to derive an approximate value, or a lower limit, for the dissociation constant of the potential ligand based on the reduction of the signal intensity of the STD indicator, which is illustrated on an HSA (human serum albumin) model system. This leads to important applications of the competition STD NMR method for lead discovery: it can be used (i) for compound library screening against a broad range of drug targets to identify both high- and low-affinity ligands and (ii) to rank order analogs rapidly and derive structure-activity relationships, which are used to optimize these NMR hits into viable drug leads. Copyright 2004 John Wiley & Sons, Ltd.

  9. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  10. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  11. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  12. A 45-amino acid scaffold mined from the Protein Data Bank for high affinity ligand engineering

    PubMed Central

    Kruziki, Max A.; Bhatnagar, Sumit; Woldring, Daniel R.; Duong, Vandon T.; Hackel, Benjamin J.

    2015-01-01

    Summary Small protein ligands can provide superior physiological distribution versus antibodies and improved stability, production, and specific conjugation. Systematic evaluation of the Protein Data Bank identified a scaffold to push the limits of small size and robust evolution of stable, high-affinity ligands: 45-residue T7 phage gene 2 protein (Gp2) contains an α-helix opposite a β-sheet with two adjacent loops amenable to mutation. De novo ligand discovery from 108 mutants and directed evolution towards four targets yielded target-specific binders with affinities as strong as 200 ±100 pM, Tm’s from 65 ±3 °C to 80 ±1 °C, and retained activity after thermal denaturation. For cancer targeting, a Gp2 domain for epidermal growth factor receptor was evolved with 18 ±8 nM affinity, receptor-specific binding, and high thermal stability with refolding. The efficiency of evolving new binding function and the size, affinity, specificity, and stability of evolved domains render Gp2 a uniquely effective ligand scaffold. PMID:26165154

  13. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    PubMed Central

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD <10−8 M), a new challenge arises: to measure these values accurately. Isothermal titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  14. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay.

    PubMed

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-08-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this end, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to 1,000 domain-motif equilibrium binding affinities per day. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from human papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human 'PDZome'. We obtained sharply sequence-dependent binding profiles that quantitatively describe the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has wide potential for quantifying the specificities of interactomes.

  15. High-affinity interactions of ligands at recombinant Guinea pig 5HT7 receptors

    NASA Astrophysics Data System (ADS)

    Wilcox, R. E.; Ragan, J. E.; Pearlman, R. S.; Brusniak, M. Y.-. K.; Eglen, R. M.; Bonhaus, D. W.; Tenner, T. E., Jr.; Miller, J. D.

    2001-10-01

    The serotonin 5HT7 receptor has been implicated in numerous physiological and pathological processes from circadian rhythms [1] to depression and schizophrenia. Clonal cell lines heterologously expressing recombinant receptors offer good models for understanding drug-receptor interactions and development of quantitative structure-activity relationships (QSAR). Comparative Molecular Field Analysis (CoMFA) is an important modern QSAR procedure that relates the steric and electrostatic fields of a set of aligned compounds to affinity. Here, we utilized CoMFA to predict affinity for a number of high-affinity ligands at the recombinant guinea pig 5HT7 receptor. Using R-lisuride as the template, a final CoMFA model was derived using procedures similar to those of our recent papers [2, 3, 4] The final cross-validated model accounted for >85% of the variance in the compound affinity data, while the final non-cross validated model accounted for >99% of the variance. Model evaluation was done using cross-validation methods with groups of 5 ligands. Twenty cross-validation runs yielded an average predictive r2(q2) of 0.779 ± 0.015 (range: 0.669-0.867). Furthermore, 3D-chemical database search queries derived from the model yielded hit lists of promising agents with high structural similarity to the template. Together, these results suggest a possible basis for high-affinity drug action at 5HT7 receptors.

  16. T cell positive selection by a high density, low affinity ligand

    PubMed Central

    Liu, Chih-Pin; Crawford, Frances; Marrack, Philippa; Kappler, John

    1998-01-01

    Interaction of the αβ T cell receptor (TCR) with major histocompatibility (MHC) molecules occupied with any of a large collection of peptides derived from self proteins is a critical step in driving T cell “positive” selection in the thymus. Interaction with this same pool of self-peptide/MHC ligands deletes T cells with potential self-reactivity. To examine how T cells survive both of these processes to form a self-tolerant mature repertoire, mice were constructed whose entire class II MHC IEk specific repertoire was positively selected on a single peptide covalently attached to the IEk molecule. In these mice T cells were identified that could respond to a variant of the positively selecting peptide bound to IEk. The affinities of the TCRs from these T cells for the positively selecting ligand were extremely low and at least 10-fold less than those for the activating ligand. These results support the theory that positive selection is driven by TCR affinities lower than those involved in T cell deletion or activation and that, if present at high concentration, even very low affinity ligands can positively select. PMID:9539770

  17. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  18. Neuroimaging of the serotonin reuptake site requires high-affinity ligands.

    PubMed

    Elfving, Betina; Madsen, Jacob; Knudsen, Gitte M

    2007-11-01

    Numerous attempts have been made to develop suitable radiolabeled tracers for positron emission tomography or single photon emission computed tomography imaging of the serotonin transporter (SERT), but most often, negative outcomes are reported. The aim of this study is to define characteristics of a good SERT radioligand and to investigate species differences. We examined seven different selective serotonin reuptake inhibitors (SSRIs) and that except for one all have been previously tested as emission tomography ligands. The outcome of the ligands as emission tomography tracers was compared in relation with receptor density (Bmax) and/or ligand affinity (Kd) in rat and monkey cerebrum and cerebellum (reference region) membranes. [3H]-(S)-Citalopram and [3H]-(+)-McN5652 display statistically significantly lower affinity, whereas [3H]paroxetine displays statistically significantly higher affinity for SERT in monkey cortex when compared with the rat cerebrum. The affinity of [3H]MADAM, [123I]ADAM, and [11C]DASB for SERT obtained with rat cerebrum and monkey cortex are similar. In monkey cortex, Kd and Bmax could not be determined with [3H]fluoxetine. Of the seven SSRIs, [3H]-(S)-citalopram, [3H]MADAM, and [11C]DASB displayed significant specific binding to SERT in monkey cerebellum, with Bmax cortex:cerebellum ratios being 17, 3, and 4, respectively. In rat brain tissue the ratios were 12, 6, and 3, respectively. In conclusion, it can be estimated that imaging of the human SERT in a high-density region requires radioligands with Kd values between 0.03 and a maximum of 0.3 nM (at 37 degrees C). The differential specific cerebellar binding raises the question of the suitability of cerebellum as a reference region for nonspecific binding.

  19. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment.

    PubMed

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M; Berezhnoy, Alexey

    2015-07-13

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs.

  20. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment

    PubMed Central

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M.; Berezhnoy, Alexey

    2015-01-01

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs. PMID:26007661

  1. Bodilisant-a novel fluorescent, highly affine histamine h3 receptor ligand.

    PubMed

    Tomasch, Miriam; Schwed, J Stephan; Paulke, Alexander; Stark, Holger

    2013-02-14

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

  2. On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities

    PubMed Central

    Wang, Lingle; Berne, B. J.; Friesner, Richard A.

    2012-01-01

    We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives. PMID:22308365

  3. Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I2 Receptor Ligands.

    PubMed

    Abás, Sònia; Erdozain, Amaia M; Keller, Benjamin; Rodríguez-Arévalo, Sergio; Callado, Luis F; García-Sevilla, Jesús A; Escolano, Carmen

    2017-01-04

    The imidazoline I2 receptors (I2-IRs) are widely distributed in the brain, and I2-IR ligands may have therapeutic potential as neuroprotective agents. Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands devoid of α2-adrenoceptor (α2-AR) affinity is likely to provide valuable tools in defining the pharmacological characterization of these receptors. We report the pharmacological characterization of a new family of (2-imidazolin-4-yl)phosphonates. Radioligand binding studies showed that they displayed a higher affinity for I2-IRs than idazoxan, and high I2/α2 selectivity. In vivo studies in mice showed that acute treatments with 1b and 2c significantly increased p-FADD/FADD ratio (an index of cell survival) in the hippocampus when compared with vehicle-treated controls. Additionally, acute and repeated treatments with 2c, but not with 1b, markedly reduced hippocampal p35 cleavage into neurotoxic p25. The present results indicate a neuroprotective potential of (2-imidazolin-4-yl)phosphonates acting at I2-IRs.

  4. LNP 906, the first high-affinity photoaffinity ligand selective for I1 imidazoline receptors

    PubMed Central

    Dragan, Urosevic; Stephan, Schann; Jean-Daniel, Ehrhardt; Pascal, Bousquet; Hugues, Greney

    2004-01-01

    The hypotensive effect of imidazoline-like drugs, such as clonidine, was attributed both to α2-adrenergic receptors and nonadrenergic imidazoline receptors, which are divided into I1, I2 and I3 subtypes. We have recently synthesized a derivative of (2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), the first high-affinity and selective ligand for I1 receptors (I1R), with a photoactivable function (LNP 906). This work aims to test whether this derivative retained the binding properties of LNP 911 and bound irreversibly to I1R. Binding studies showed that LNP 906 exhibited nanomolar affinity for I1R and was selective for I1R over I2 receptors and α2-adrenergic receptors (α2Ars). Upon exposure to u.v. light, LNP 906 irreversibly blocked the binding of [125I]-paraiodoclonidine (PIC) to I1R, time- and dose-dependently, on PC12 cell membranes and interacted with I1R in a reversible and competitive manner in the absence of light. Pharmacological studies showed that this blockade was prevented by the concomitant presence of rilmenidine (a well-known I1 agonist), but not by rauwolscine (an α2 antagonist). Finally, LNP 906 clearly antagonized the decrease in forskolin-stimulated cAMP level induced by rilmenidine, but not by melatonin. These results indicate that LNP 906 is the first high-affinity and selective photoaffinity ligand for I1R and that it behaves as an I1R antagonist. PMID:15178642

  5. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  6. Glycan-based high-affinity ligands for toxins and pathogen receptors.

    PubMed

    Kulkarni, Ashish A; Weiss, Alison A; Iyer, Suri S

    2010-03-01

    Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the molecular level could lead to the development of novel therapeutics and diagnostics. Using Shiga toxin and influenza virus as examples, we describe the complex biological interface between host glycans and these infectious agents, and recent strategies to develop glycan-based high-affinity ligands. These molecules are expected to ultimately be incorporated into diagnostics and therapeutics, and can be used as probes to study important biological processes. Additionally, by focusing on the specific glycans that microbial pathogens target, we can begin to decipher the "glycocode" and how these glycans participate in normal and aberrant cellular communication.

  7. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    PubMed Central

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  8. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    PubMed Central

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  9. Poly-cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials.

    PubMed

    Lu, Chang; Huang, Zhicheng; Liu, Biwu; Liu, Yibo; Ying, Yibin; Liu, Juewen

    2017-05-22

    Attaching DNA to nanomaterials is the basis for DNA-directed assembly, sensing, and drug delivery using such hybrid materials. Poly-cytosine (poly-C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single-walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2 ), metal oxides (Fe3 O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo-DNA sequences, poly-C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly-C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly-A block, especially in the presence of non-specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non-modified DNA and offers new insights into DNA biointerfaces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure-Affinity Properties of a High-Affinity Ligand of FKBP12 Studied by Molecular Simulations of a Binding Intermediate

    PubMed Central

    Olivieri, Lilian; Gardebien, Fabrice

    2014-01-01

    With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant of this intermediate should be decreased, resulting in an increase of the affinity constant . The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i) the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii) symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state. PMID:25502559

  11. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    PubMed

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  12. HIGH-AFFINITY T CELL RECEPTOR DIFFERENTIATES COGNATE PEPTIDE-MHC AND ALTERED PEPTIDE LIGANDS WITH DISTINCT KINETICS AND THERMODYNAMICS

    PubMed Central

    Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.

    2010-01-01

    Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923

  13. Trifluoromethoxyl Substituted Phenylethylene Diamines as High Affinity σ Receptor Ligands with Potent Anti-Cocaine Actions

    PubMed Central

    Smith, Trudy A.; Yang, Xiaowen; Wu, Huifang; Pouw, Buddy; Matsumoto, Rae R.; Coop, Andrew

    2012-01-01

    The phenylethylene diamines are a class of σ receptor ligands with excellent selectivity over other biological systems and with anti-cocaine actions that involve antagonism of σ1 receptors. In order to increase the potency of the aromatic methoxyl substituted analogues, trifluoromethoxyl groups were introduced to prevent metabolic demethylation. The para-substituted trifluoromethoxyl substituted analogues were shown to have increased σ receptor affinity and represent the most potent anti-cocaine phenylethylene diamines yet described. PMID:18461921

  14. NMR-Based screening with competition water-ligand observed via gradient spectroscopy experiments: detection of high-affinity ligands.

    PubMed

    Dalvit, Claudio; Fasolini, Marina; Flocco, Maria; Knapp, Stefan; Pevarello, Paolo; Veronesi, Marina

    2002-06-06

    Water-ligand observed via gradient spectroscopy (WaterLOGSY) represents a powerful method for primary NMR screening in the identification of compounds interacting with macromolecules, including proteins and DNA or RNA fragments. The method is useful for the detection of compounds binding to a receptor with binding affinity in the micromolar range. The Achille's heel of the method, as with all the techniques that detect the ligand resonances, is its inability to identify strong ligands with slow dissociation rates. We show here that the use of a reference compound with a known K(D) in the micromolar range together with properly designed competition binding experiments (c-WaterLOGSY) permits the detection of strong binders. A derived mathematical expression is used for the selection of the appropriate setup NMR experimental conditions and for an approximate determination of the binding constant. The experiment requires low ligand concentration, therefore allowing its application in the identification of potential strong inhibitors that are only marginally soluble. The technique is particularly suitable for rapid screening of chemical mixtures and plant or fungi extracts.

  15. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  16. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor.

    PubMed

    Candelore, Mari Rios; Wright, Michael J; Tota, Laurie M; Milligan, James; Shei, Gan-ju; Bergstrom, James D; Mandala, Suzanne M

    2002-09-27

    It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.

  17. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general.

  18. Synthesis, structure-affinity relationships, and radiolabeling of selective high-affinity 5-HT4 receptor ligands as prospective imaging probes for positron emission tomography.

    PubMed

    Xu, Rong; Hong, Jinsoo; Morse, Cheryl L; Pike, Victor W

    2010-10-14

    In a search for high-affinity receptor ligands that might serve for development as radioligands for the imaging of brain 5-HT(4) receptors in vivo with positron emission tomography (PET), structural modifications were made to the high-affinity 5-HT(4) antagonist (1-butylpiperidin-4-yl)methyl 8-amino-7-iodo-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate (1, SB 207710). These modifications were made mainly on the aryl side of the ester bond to permit possible rapid labeling of the carboxylic acid component with a positron emitter, either carbon-11 (t(1/2) = 20.4 min) or fluorine-18 (t(1/2) = 109.7 min), and included (i) replacement of the iodine atom with a small substituent such as nitrile, methyl, or fluoro, (ii) methylation of the 8-amino group, (iii) opening of the dioxan ring, and (iv) alteration of the length of the N-alkyl goup. High-affinity ligands were discovered for recombinant human 5-HT(4) receptors with amenability to labeling with a positron emitter and potential for development as imaging probes. The ring-opened radioligand, (([methoxy-(11)C]1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [(11)C]13), showed an especially favorable array of properties for future evaluation as a PET radioligand for brain 5-HT(4) receptors.

  19. Synthesis, Structure-affinity Relationships and Radiolabeling of Selective High-affinity 5-HT4 Receptor Ligands as Prospective Imaging Probes for PET

    PubMed Central

    Xu, Rong; Hong, Jinsoo; Morse, Cheryl L.; Pike, Victor W.

    2010-01-01

    In a search for high-affinity receptor ligands that might serve for development as radioligands for the imaging of brain 5-HT4 receptors in vivo with positron emission tomography (PET), structural modifications were made to the high-affinity 5-HT4 antagonist, (1-butylpiperidin-4-yl)methyl 8-amino-7-iodo-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate (1, SB 207710). These modifications were made mainly on the aryl side of the ester bond to permit possible rapid labeling of the carboxylic acid component with a positron-emitter, either carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.7 min), and included, i) replacement of the iodine atom with a small substituent such as nitrile, methyl or fluoro, ii) methylation of the 8-amino group, iii) opening of the dioxan ring, and iv) alteration of the length of the N-alkyl goup. High-affinity ligands were discovered for recombinant human 5-HT4 receptors with amenability to labeling with a positron-emitter and potential for development as imaging probes. The ring-opened radioligand, (([methoxy-11C]1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [11C]13), showed an especially favorable array of properties for future evaluation as a PET radioligand for brain 5-HT4 receptors. PMID:20812727

  20. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    SciTech Connect

    Klein, M.; Canoll, P.D.; Musacchio, J.M. )

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.

  1. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?

    PubMed Central

    Mehta, R J; Diefenbach, B; Brown, A; Cullen, E; Jonczyk, A; Güssow, D; Luckenbach, G A; Goodman, S L

    1998-01-01

    The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity. PMID:9480902

  2. Parallel synthesis and biological activity of a new class of high affinity and selective delta-opioid ligand.

    PubMed

    Barn, D R; Caulfield, W L; Cottney, J; McGurk, K; Morphy, J R; Rankovic, Z; Roberts, B

    2001-10-01

    A considerable number of research papers describing the synthesis and testing of the delta opioid receptor (DOR) ligands, SNC-80 and TAN-67, and analogues of these two compounds, have been published in recent years. However, there have been few reports of the discovery of completely new structural classes of selective DOR ligand. By optimising a hit compound identified by high throughput screening, a new series of tetrahydroisoquinoline sulphonamide-based delta opioid ligands was discovered. The main challenge in this series was to simultaneously improve both affinity and physicochemical properties, notably aqueous solubility. The most active ligand had an affinity (IC(50)) of 6 nM for the cloned human DOR, representing a 15-fold improvement relative to the original hit 1 (IC(50) 98 nM). Compounds from this new series show good selectivity for the DOR over mu and kappa opioid receptors. However the most active and selective compounds had poor aqueous solubility. Improved aqueous solubility was obtained by replacing the phthalimide group in 1 by basic groups, allowing the synthesis of salt forms. A series of compounds with improved affinity and solubility relative to 1 was identified and these compounds showed activity in an in vivo model of antinociception, the formalin paw test. In the case of compound 19, this analgesic activity was shown to be mediated primarily via a DOR mechanism. The most active compound in vivo, 46, showed superior potency in this test compared to the reference DOR ligand, TAN-67 and similar potency to morphine (68% and 58% inhibition in Phases 1 and 2, respectively, at a dose of 10 mmol/kg i.v.).

  3. Identification and reconstruction of the binding site within alphaMbeta2 for a specific and high affinity ligand, NIF.

    PubMed

    Zhang, L; Plow, E F

    1997-07-11

    Engagement of the alphaMbeta2 (CD11b/CD18, Mac-1) integrin on neutrophils supports adhesion and induces various cellular responses. These responses can be blocked by a specific ligand of alphaMbeta2, neutrophil inhibitory factor (NIF). The molecular basis of alphaMbeta2-NIF interactions was studied. The single chain alphaM subunit, expressed on the surface of human 293 cells, bound NIF with an affinity equivalent to that of alphaMbeta2 heterodimer. This observation, coupled with previous data showing that the alphaMI domain alone supported high affinity NIF binding, indicated that the binding site for NIF is restricted to the I domain. Guided by the crystal structure of the alphaMI domain, 16 segments corresponding to the entire outer hydrated surface of alphaMI domain were switched to their counterparts sequences in alphaL, which does not bind NIF. Surface expression and heterodimer formation were achieved for all mutants, and correct folding was confirmed. Of the 16 switches, only 5 affected NIF binding substantially, reducing affinity by 8-300-fold. These data confined the NIF-binding site to a narrow region composed of Pro147-Arg152, Pro201-Lys217, and Asp248-Arg261 of alphaM. Verifying this localization, when these segments were introduced into the alphaXI-domain, the resulting chimeric receptor was converted into a high affinity NIF-binding protein.

  4. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis

    PubMed Central

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049

  5. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation.

    PubMed

    Hennig, Robert; Pollinger, Klaus; Veser, Anika; Breunig, Miriam; Goepferich, Achim

    2014-11-28

    The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.

  6. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  7. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    SciTech Connect

    Breillat, Christelle; Thoumine, Olivier; Choquet, Daniel . E-mail: Daniel.Choquet@pcs.u-bordeaux2.fr

    2007-08-03

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane.

  8. Multifunctional and High Affinity Polymer Ligand that Provides Bio-Orthogonal Coating of Quantum Dots.

    PubMed

    Wang, Wentao; Kapur, Anshika; Ji, Xin; Zeng, Birong; Mishra, Dinesh; Mattoussi, Hedi

    2016-09-21

    We detail the design of hydrophilic metal-coordinating ligands and their use for the effective coating of luminescent quantum dots (QDs). The ligand design exploits the specific, reagent-free nucleophilic addition reaction of amine-modified molecules toward maleic anhydride to introduce several lipoic acid metal anchors, hydrophilic zwitterion moieties, and specific reactive groups along a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. Tunable reactive groups tested in this study include azide, biotin, carboxyl, and amine. Cap exchange with these multilipoic acid ligands via a photochemical ligation strategy yields homogeneous QD dispersions that are colloidally stable over several biologically relevant conditions and for extended periods of time. The zwitterionic coating yields compact nanoparticle size and imparts nonsticky surface properties onto the QDs, preventing protein absorption. The introduction of a controllable number of reactive groups allows conjugation of the QDs to biomolecules via bio-orthogonal coupling chemistries including (1) attachment of the neurotransmitter dopamine to QDs via amine-isothiocyanate reaction to produce a platform capable of probing interactions with cysteine in proteins, based on charge transfer interactions; (2) self-assembly of biotinylated QDs with streptavidin-dye; and (3) ligation of azide-functionalized QDs to cyclooctyne-modified transferrin via copper-free click chemistry, used for intracellular delivery. This ligand design strategy can be used to prepare an array of metal-coordinating ligands adapted for coating other inorganic nanoparticles, including magnetic and plasmonic nanomaterials.

  9. A new therapeutic approach to erectile dysfunction: urotensin-II receptor high affinity agonist ligands.

    PubMed

    di Villa Bianca, Roberta d'Emmanuele; Mitidieri, Emma; Donnarumma, Erminia; Fusco, Ferdinando; Longo, Nicola; Rosa, Giuseppe De; Novellino, Ettore; Grieco, Paolo; Mirone, Vincenzo; Cirino, Giuseppe; Sorrentino, Raffaella

    2015-01-01

    Urotensin-II (U-II) is a cyclic peptide that acts through a G protein-coupled receptor (urotensin-II receptor [UTR]) mainly involved in cardiovascular function in humans. The urotensinergic system is also implicated in the urogenital tract. Indeed, U-II relaxes human corpus cavernosum strips and causes an increase in intracavernous pressure (ICP) in rats. In light of this, the U-II/UTR pathway can be considered a new target for the treatment of erectile dysfunction. On this hypothesis, herein we report on two new UTR high affinity-agonists, P5U (H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH) and UPG84(H-Asp-c[Pen-Phe-DTrp-Orn-(pNH 2 ) Phe-Cys]-Val-OH). The effects of P5U and UPG84 were each compared separately with U-II by monitoring the ICP in anesthetized rats. Intracavernous injection of U-II (0.03-1 nmol), P5U (0.03-1 nmol) or UPG84 (0.03-1 nmol) caused an increase in ICP. P5U, in particular, elicited a significant increase in ICP as compared to U-II. The observed effect by using P5U at a dose of 0.1 nmol per rat was comparable to the effect elicited by U-II at a dose of 0.3 nmol. Moreover, UPG84 at the lowest dose (0.03 nmol) showed an effect similar to the highest dose of U-II (1 nmol). Furthermore, UPG84 was found to be more effective than P5U. Indeed, while the lowest dose of P5U (0.03 nmol) did not affect the ICP, UPG84, at the same dose, induced a prominent penile erection in rat. These compounds did not modify the blood pressure, which indicates a good safety profile. In conclusion, UPG84 and P5U may open new perspectives for the management of erectile dysfunction.

  10. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.

    PubMed

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J

    2013-07-25

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2'-OH of GMP and 5'-phosphate of AMP, and the other between 3'-OH of AMP and 5'-phosphate of GMP. This molecule, termed 2'3'-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2'3'-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation.

  11. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA.

    PubMed

    Brown, Scott P; Muchmore, Steven W

    2007-01-01

    By employing a modified protocol of the Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology we substantially decrease the required computation time for calculating relative estimates of protein-ligand binding affinities. The modified method uses a generalized Born implicit solvation model during molecular dynamics to enhance conformational sampling as well as a very efficient Poisson-Boltzmann solver and a computational design based on a distributed-computing paradigm. This construction allows for reduction of the computational cost of the calculations by roughly 2 orders of magnitude compared to the traditional formulation of MM-PBSA. With this high-throughput version of MM-PBSA we show that one can produce efficient physics-based estimates of relative binding free energies with reasonable correlation to experimental data and a total computation time that is sufficiently low such that an industrially relevant throughput can be realized given currently accessible computing resources. We demonstrate this approach by performing a comparison of different MM-PBSA implementations on a set of 18 ligands for the protein target urokinase.

  12. Targeting of adenovirus vectors to the LRP receptor family with the high-affinity ligand RAP via combined genetic and chemical modification of the pIX capsomere.

    PubMed

    Corjon, Stéphanie; Wortmann, Andreas; Engler, Tatjana; van Rooijen, Nico; Kochanek, Stefan; Kreppel, Florian

    2008-11-01

    Adenovirus (Ad) vector targeting requires presentation of specific ligands on the virion's surface. Geneti-chemical targeting is based on the genetic introduction of cysteine residues bearing reactive thiol groups into solvent-accessible capsomeres of the virion and subsequent chemical coupling of ligands. Here, we exploited this technology to modify the pIX capsomere with high-affinity ligands. Genetic introduction of C-terminal cysteines to pIX allowed for specific coupling of full-length proteins to the virion, while not affecting vector production. Direct comparison of the two high-affinity ligands receptor- associated protein (RAP) and transferrin (Tf) revealed that targeting after coupling of a high-affinity ligand to pIX presumably requires release of the ligand from its receptor after cell entry. In addition, data obtained by live cell imaging of labeled vector particles demonstrated that coupling of very large proteins to pIX can impair intracellular vector particle trafficking. Finally, we demonstrate that the geneti-chemical targeting technology is suitable for in vivo targeting to liver after intravenous injection. Our data provide significant insight into basic requirements for successful targeting of pIX-modified Ad vectors.

  13. High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors.

    PubMed

    Mitronova, Gyuzel Y; Lukinavičius, Gražvydas; Butkevich, Alexey N; Kohl, Tobias; Belov, Vladimir N; Lehnart, Stephan E; Hell, Stefan W

    2017-09-26

    Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization.

  14. Determination of the peptide binding motif and high-affinity ligands for HLA-DQ4 using synthetic peptide libraries.

    PubMed

    Volz, Thomas; Schwarz, Gerold; Fleckenstein, Burkhard; Schepp, Carsten P; Haug, Markus; Roth, Johannes; Wiesmüller, Karl-Heinz; Dannecker, Günther E

    2004-06-01

    Juvenile idiopathic arthritis (JIA) is considered to be an autoimmune disease. Various human leukocyte antigen (HLA) associations for different subgroups of this heterogeneous disease have been found. For early-onset pauciarticular arthritis (now oligoarthritic JIA), a strong association with the HLA class II haplotype DQA1*0401/DQB1*0402 (DQ4) has been described. We determined the peptide-binding specificities of this HLA-DQ molecule by screening a synthetic acetylated nonapeptide amide library with one defined and eight random sequence positions. A characteristic binding motif could be deduced. By use of these data, we designed defined specific nonapeptides and identified high-affinity ligands binding to HLA-DQ4. The peptide binding motif of HLA-DQ4 is very similar to the motif of HLA-DQ7, also associated with oligoarthritic JIA. It is, however, different from binding motifs of neutral or protective HLA-DQ molecules. Our results further support the idea of differential peptide presentation in the pathogenesis of oligoarthritic JIA.

  15. CC12, A High Affinity Ligand for 3H-Cimetidine Binding, is an Improgan Antagonist

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Phillips, James G.; Kern, Brian; Shan, Zhixing; Wentland, Mark P.; de Esch, Iwan J.P.; Janssen, Elwin; Barr, Travis; Stadel, Rebecca

    2007-01-01

    Summary Improgan, a chemical congener of cimetidine, is a highly effective non-opioid analgesic when injected into the CNS. Despite extensive characterization, neither the improgan receptor, nor a pharmacological antagonist of improgan has been previously described. Presently, the specific binding of 3H-cimetidine (3HCIM) in brain fractions was used to discover 4(5)-((4-iodobenzyl)thiomethyl)-1H-imidazole, which behaved in vivo as the first improgan antagonist. The synthesis and pharmacological properties of this drug (named CC12) are described herein. In rats, CC12 (50 – 500 nmol, icv) produced dose-dependent inhibition of improgan (200 – 400 nmol) antinociception on the tail flick and hot plate tests. When given alone to rats, CC12 had no effects on nociceptive latencies, or on other observable behavioral or motor functions. Maximal inhibitory effects of CC12 (500 nmol) were fully surmounted with a large icv dose of improgan (800 nmol), demonstrating competitive antagonism. In mice, CC12 (200-400 nmol, icv) behaved as a partial agonist, producing incomplete improgan antagonism, but also limited antinociception when given alone. Radioligand binding, receptor autoradiography, and electrophysiology experiments showed that CC12's antagonist properties are not explained by activity at 25 sites relevant to analgesia, including known receptors for cannabinoids, opioids or histamine. The use of CC12 as an improgan antagonist will facilitate the characterization of improgan analgesia. Furthermore, because CC12 was also found presently to inhibit opioid and cannabinoid antinociception, it is suggested that this drug modifies a biochemical mechanism shared by several classes of analgesics. Elucidation of this mechanism will enhance understanding of the biochemistry of pain relief. PMID:17336343

  16. The Positron Emission Tomography Ligand DAA1106 Binds With High Affinity to Activated Microglia in Human Neurological Disorders

    PubMed Central

    Venneti, Sriram; Wang, Guoji; Nguyen, Jason; Wiley, Clayton A.

    2009-01-01

    Chronic microglial activation is an important component of many neurological disorders, and imaging activated microglia in vivo will enable the detection and improved treatment of neuroinflammation. 1-(2-Chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide (PK11195), a peripheral benzodiazepine receptor ligand, has been used to image neuroinflammation, but the extent to which PK11195 binding distinguishes activated microglia and reactive astrocytes is unclear. Moreover, PK11195 may lack sufficient sensitivity for detecting mild neuroinflammation. We hypothesized that N-(2,5-dimethoxybenzyl)-N-(4-fluoro-2-phenoxyphenyl) acetamide (DAA1106), a new ligand that binds specifically to peripheral benzodiazepine receptor, binds to activated microglia in human neurological diseases with higher affinity than does PK11195. We therefore compared the pharmacological binding properties of [3H](R)-PK11195 and [3H]DAA1106 in postmortem tissues from patients with cerebral infarcts, amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia, and multiple sclerosis (n = 10 each). In all diseases, [3H]DAA1106 showed a higher binding affinity as reflected by lower dissociation constant (KD) values than that of [3H](R)-PK11195. Moreover, specific binding of both ligands correlated with the presence of activated microglia identified by immunohistochemistry in situ. We conclude that 1) ligands that bind peripheral benzodiazepine receptor mainly label activated microglia in human neurological disorders and that 2) DAA1106 may possess binding characteristics superior to those of PK11195, which may be beneficial for in vivo positron emission tomography imaging. PMID:18800007

  17. High throughput screening of high-affinity ligands for proteins with anion-binding sites using desorption electrospray ionization (DESI) mass spectrometry.

    PubMed

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  18. High Throughput Screening of High-Affinity Ligands for Proteins with Anion-Binding Sites using Desorption Electrospray Ionization (DESI) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  19. Pocket detection and interaction-weighted ligand-similarity search yields novel high-affinity binders for Myocilin-OLF, a protein implicated in glaucoma.

    PubMed

    Srinivasan, Bharath; Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2017-09-01

    Traditional structure and ligand based virtual screening approaches rely on the availability of structural and ligand binding information. To overcome this limitation, hybrid approaches were developed that relied on extraction of ligand binding information from proteins sharing similar folds and hence, evolutionarily relationship. However, they cannot target a chosen pocket in a protein. To address this, a pocket centric virtual ligand screening approach is required. Here, we employ a new, iterative implementation of a pocket and ligand-similarity based approach to virtual ligand screening to predict small molecule binders for the olfactomedin domain of human myocilin implicated in glaucoma. Small-molecule binders of the protein might prevent the aggregation of the protein, commonly seen during glaucoma. First round experimental assessment of the predictions using differential scanning fluorimetry with myoc-OLF yielded 7 hits with a success rate of 12.7%; the best hit had an apparent dissociation constant of 99nM. By matching to the key functional groups of the best ligand that were likely involved in binding, the affinity of the best hit was improved by almost 10,000 fold from the high nanomolar to the low picomolar range. Thus, this study provides preliminary validation of the methodology on a medically important glaucoma associated protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High-Affinity Ligand Binding by Wild-Type:Mutant Heteromeric Complexes of the Mannose 6-Phosphate/Insulin-like Growth Factor II Receptors

    PubMed Central

    Hartman, Michelle A.; Kreiling, Jodi L.; Byrd, James C.; MacDonald, Richard G.

    2009-01-01

    Summary The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) has diverse ligand-binding properties contributing to its roles in lysosome biogenesis and growth suppression. Optimal receptor binding and internalization of mannose 6-phosphate (Man-6-P)-bearing ligands requires a dimeric structure leading to bivalent high-affinity binding, presumably mediated by cooperation between sites on both subunits. Insulin-like growth factor II (IGF-II) binds to a single site on each monomer. It is hypothesized that IGF-II binding to cognate sites on each monomer occurs independently, but bivalent Man-6-P ligand binding requires cooperative contributions from sites on both monomers. To test this hypothesis, we co-immunoprecipitated differentially epitope-tagged soluble mini-receptors and assessed ligand binding. Pairing of wild-type and point-mutated IGF-II binding sites between two dimerized mini-receptors had no effect on the function of the contralateral binding site, indicating IGF-II binding to each side of the dimer is independent and manifests no intersubunit effects. As expected, heterodimeric receptors composed of a wild-type monomer and a mutant bearing two Man-6-P-binding knockout mutations form functional IGF-II binding sites. In contrast to prediction, such heterodimeric receptors also bind Man-6-P–based ligands with high affinity, and the amount of binding can be attributed entirely to the immunoprecipitated wild-type receptors. Anchoring of both C-terminal ends of the heterodimer produces optimal binding of both IGF-II and Man-6-P ligands. Thus, IGF-II binds independently to both subunits of the dimeric M6P/IGF2R. Although wild-type/mutant heterooligomers from readily when mixed, it appears that multivalent Man-6-P ligands bind preferentially to wild-type sites, possibly by cross-bridging receptors within clusters of immobilized receptors. PMID:19236480

  1. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds to activated and infected brain macrophages in areas of synaptic degeneration

    PubMed Central

    Venneti, Sriram; Wang, Guoji; Wiley, Clayton A.

    2008-01-01

    HIV encephalitis (HIVE) is characterized by neurodegeneration mediated by toxins derived from infected and activated brain macrophages. Since the peripheral benzodiazepine receptor (PBR) is abundant on brain macrophages, we hypothesized that [3H]DAA1106, a new PBR ligand, can label infected and activated brain macrophages in HIVE. Using cell culture and postmortem brain tissues from HIVE and a macaque model of HIVE, we show that [3H]DAA1106 binds with high affinity to activated and infected macrophages in regions of synaptic damage. Further, binding affinity reflected by lower KD (dissociation constant) values and the Bmax (total number of binding sites) to KD ratios reflective of ligand-binding potential, were significantly higher with [3H]DAA1106 compared to the extensively characterized PBR ligand [3H](R)-PK11195. These data suggest that DAA1106 binds with high affinity to activated and infected brain macrophages and possesses binding characteristics beneficial for in vivo use in the detection and clinical monitoring of HIVE using positron emission tomography. PMID:17920902

  2. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    SciTech Connect

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-02-10

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 /sup 0/C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17..beta..-(/sup 3/H)estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins.

  3. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  4. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  5. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.

    PubMed

    Goncharova, Iryna; Orlov, Sergey; Urbanová, Marie

    2013-01-01

    The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA).

  6. Discovery of high-affinity ligands of sigma1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening.

    PubMed

    Laggner, Christian; Schieferer, Claudia; Fiechtner, Birgit; Poles, Gloria; Hoffmann, Rémy D; Glossmann, Hartmut; Langer, Thierry; Moebius, Fabian F

    2005-07-28

    ERG2, emopamil binding protein (EBP), and sigma-1 receptor (sigma(1)) are enzymes of sterol metabolism and an enzyme-related protein, respectively, that share high affinity for various structurally diverse compounds. To discover novel high-affinity ligands, pharmacophore models were built with Catalyst based upon a series of 23 structurally diverse chemicals exhibiting K(i) values from 10 pM to 100 microM for all three proteins. In virtual screening experiments, we retrieved drugs that were previously reported to bind to one or several of these proteins and also tested 11 new hits experimentally, of which three, among them raloxifene, had affinities for sigma(1) or EBP of <60 nM. When used to search a database of 3525 biochemicals of intermediary metabolism, a slightly modified ERG2 pharmacophore model successfully retrieved 10 substrate candidates among the top 28 hits. Our results indicate that inhibitor-based pharmacophore models for sigma(1), ERG2, and EBP can be used to screen drug and metabolite databases for chemically diverse compounds and putative endogenous ligands.

  7. Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt’s lymphoma (BL) Daudi cells by NMR spectroscopy

    PubMed Central

    Madge, Paul D.; Maggioni, Andrea; Pascolutti, Mauro; Amin, Moein; Waespy, Mario; Bellette, Bernadette; Thomson, Robin J.; Kelm, Sørge; von Itzstein, Mark; Haselhorst, Thomas

    2016-01-01

    Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin’s lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt’s lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt’s lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine. PMID:27808110

  8. Morphing low-affinity ligands into high-avidity nanoparticles by thermally triggered self-assembly of a genetically encoded polymer.

    PubMed

    Simnick, Andrew J; Valencia, C Alexander; Liu, Rihe; Chilkoti, Ashutosh

    2010-04-27

    Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in nontarget tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy--dynamic affinity modulation (DAM)--using elastin-like polypeptide diblock copolymers (ELP(BC)s) that self-assemble from a low-affinity to high-avidity state by a tunable thermal "switch", thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELP(BC)s on their receptor-mediated binding and cellular uptake. The data presented herein show that (1) ligand presentation does not disrupt ELP(BC) self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micrometer-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM and provide rational design parameters for future applications of this technology for targeted drug delivery.

  9. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging

    PubMed Central

    Venneti, Sriram; Wagner, Amy K.; Wang, Guoji; Slagel, Susan L.; Chen, Xiangbai; Lopresti, Brian J.; Mathis, Chester A.; Wiley., Clayton A.

    2007-01-01

    Traumatic brain injury (TBI) is a significant cause of mortality, morbidity, and disability. Microglial activation is commonly observed in response to neuronal injury which, when prolonged, is thought to be detrimental to neuronal survival. Activated microglia can be labeled using PK11195, a ligand that bind the peripheral benzodiazepine receptor (PBR), receptors which are highly expressed in activated microglia and sparse in the resting brain. We compared the binding properties of two PBR ligands PK11195 and DAA1106 in rats using the controlled cortical impact (CCI) model of experimental TBI. While both ligands showed relative increases with specific binding in the cortex ipsilateral to injury compared to the contralateral side, [3H]DAA1106 showed higher binding affinity compared with [3H](R)-PK11195. Combined immunohistochemistry and autoradiography in brain tissues near the injury site showed that [3H]DAA1106 binding co-registered with activated microglia more than astrocytes. Further, increased [3H]DAA1106 specific binding positively correlated with degree of microglial activation, and to a lesser degree with reactive astrocytosis. Finally, in vivo administration of each ligand in rats with TBI showed greater retention of [11C]DAA1106 compared to [11C](R)-PK11195 at the site of the contusion as assessed by ex vivo autoradiography. These results in a rat model of TBI indicate that [11C]DAA1106 binds with higher affinity to microglia when compared with PK11195, suggesting that [11C]DAA1106 may represent a better ligand than [11C](R)-PK11195 for in vivo PET imaging of activated microglia in TBI. PMID:17658516

  10. Structural optimization of an aptamer generated from Ligand-Guided Selection (LIGS) resulted in high affinity variant toward mIgM expressed on Burkitt's lymphoma cell lines.

    PubMed

    Zümrüt, Hasan E; Batool, Sana; Van, Nabeela; George, Shanell; Bhandari, Sanam; Mallikaratchy, Prabodhika

    2017-03-29

    Aptamers are synthetic, short nucleic acid molecules capable of specific target recognition. Aptamers are selected using a screening method termed Systematic Evolution of Ligands by Exponential enrichment (SELEX). We recently have introduced a variant of SELEX called "Ligand-Guided-Selection" (LIGS) that allows the identification of specific aptamers against known cell-surface proteins. Utilizing LIGS, we introduced three specific aptamers against membrane-bound IgM (mIgM), which is the hallmark of B cells. Out of the three aptamers selected against mIgM, an aptamer termed R1, in particular, was found to be interesting due to its ability to recognize mIgM on target cells and then block anti-IgM antibodies binding their antigen. We systematically truncated parent aptamer R1 to design shorter variants with enhanced affinity. Importantly, herein we show that the specificity of the most optimized variant of R1 aptamer is similar to that of anti-IgM antibody, indicating that the specificity of the ligand utilized in selective elution of the aptamer determines the specificity of the LIGS-generated aptamer. Furthermore, we report that truncated variants of R1 are able to recognize mIgM-positive human B lymphoma BJAB cells at physiological temperature, demonstrating that LIGS-generated aptamers could be re-optimized into higher affinity variants. Collectively, these findings show the significance of LIGS in generating highly specific aptamers with potential applications in biomedicine.

  11. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor.

    PubMed

    Polepally, Prabhakar R; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D; Roth, Bryan L; Zjawiony, Jordan K

    2014-10-06

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure-activity relationships, and previous salvinorin A-KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR.

  12. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    PubMed

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  13. The Ketamine Analogue Methoxetamine and 3- and 4-Methoxy Analogues of Phencyclidine Are High Affinity and Selective Ligands for the Glutamate NMDA Receptor

    PubMed Central

    Roth, Bryan L.; Gibbons, Simon; Arunotayanun, Warunya; Huang, Xi-Ping; Setola, Vincent; Treble, Ric; Iversen, Les

    2013-01-01

    In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as ‘designer drugs’ and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects. PMID:23527166

  14. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    NASA Astrophysics Data System (ADS)

    Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke

    2007-04-01

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  15. Development of indazolylpyrimidine derivatives as high-affine EphB4 receptor ligands and potential PET radiotracers.

    PubMed

    Ebert, Kristin; Wiemer, Jens; Caballero, Julio; Köckerling, Martin; Steinbach, Jörg; Pietzsch, Jens; Mamat, Constantin

    2015-09-01

    Due to their essential role in the pathogenesis of cancer, members of the Eph (erythropoietin-producing hepatoma cell line-A2) receptor tyrosine kinase family represent promising candidates for molecular imaging. Thus, the development and preparation of novel radiotracers for the noninvasive imaging of the EphB4 receptor via positron emission tomography (PET) is described. First in silico investigations with the indazolylpyrimidine lead compound which is known to be highly affine to EphB4 were executed to identify favorable labeling positions for an introduction of fluorine-18 to retain the affinity. Based on this, reference compounds as well as precursors were developed and labeled with carbon-11 and fluorine-18, respectively. For this purpose, a protecting group strategy essentially had to be generated to prevent unwanted methylation and to enable the introduction of fluorine-18. Further, a convenient radiolabeling strategy using [(11)C]methyl iodide was established which afforded the isotopically labeled radiotracer in 30-35% RCY (d.c.) which is identical with the original inhibitor molecule. A spiro ammonium precursor was prepared for radiolabeling with fluorine-18. Unfortunately, the labeling did not lead to the desired (18)F-radiotracer under the chosen conditions.

  16. Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor

    SciTech Connect

    Milius, R.A.; Saha, J.K.; Madras, B.K.; Neumeyer, J.L. )

    1991-05-01

    The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. ({sup 3}H)4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for ({sup 3}H)4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for ({sup 3}H)cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of ({sup 3}H)4a was 5-10% of total binding.

  17. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D.

    PubMed

    Carayannopoulos, Leonidas N; Naidenko, Olga V; Fremont, Daved H; Yokoyama, Wayne M

    2002-10-15

    Murine NKG2D is known to recognize H60 and five RAE1 variants. The human homologue recognizes both inducible MHC class I chain-related gene and constitutive (UL16-binding protein (ULBP)) ligands. Widely expressed, the latter are thought to mark transformed or infected cells for destruction by NK cells in the context of down-regulated cell surface class I (i.e., the "missing self"-response). Unlike MIC and ULBP however, mRNA for the murine ligands appears only in very limited contexts in the mature animal. In this study, we describe a NKG2D ligand termed "murine ULBP-like transcript 1 (MULT1) whose mRNA appears to be widely expressed in adult parenchyma. This molecule possesses MHC class I-like alpha1 and alpha2 domains as well as a large cytoplasmic domain. Recombinant MULT1 binds NKG2D with relatively high affinity (K(D) approximately 6 nM) and low k(off) (approximately 0.006s(-1)). Expression of MULT1 by normally resistant RMA cells results in their susceptibility to lysis by C57BL/6 splenocytes.

  18. Pharmacological characterization of N,N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine as a ligand of the serotonin transporter with high affinity and selectivity.

    PubMed

    Chalon, Sylvie; Tarkiainen, Jari; Garreau, Lucette; Hall, Hakan; Emond, Patrick; Vercouillie, Johnny; Farde, Lars; Dasse, Philippe; Varnas, Katarina; Besnard, Jean-Claude; Halldin, Christer; Guilloteau, Denis

    2003-01-01

    Serotonin transporter has a key-role in regulation of serotoninergic function, and is involved in numerous neurodegenerative and psychiatric disorders. To obtain an efficient radioactive ligand allowing the study of this transporter in vitro and in vivo, we synthesized a new diphenyl sulfide derivative, N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine or MADAM. We present here extensive pharmacological characterization of this compound. [3H]MADAM bound to serotonin transporters with a very high affinity in vitro on rat cortical membranes, at least 2 times better than the most commonly used radioactive probes (Kd, 60 pM; Bmax, 543 fmol/mg of protein). Competition studies showed few inhibitory effect of nisoxetine (Ki = 270 nM), no inhibitory effect of desipramine or 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine (GBR 12935) (Ki >1000 nM), and strong effect of paroxetine (Ki = 0.32 nM) and citalopram (Ki = 1.57 nM). Therefore, MADAM has around 1000-fold better selectivity for the serotonin transporter than for other transporters. Autoradiographic studies both on rat and postmortem human brain slices demonstrated that the distribution of [3H]MADAM parallels the localization of serotonin transporters and is prevented by known inhibitors of them. The high affinity and selectivity of [3H]MADAM for the serotonin transporter show that it is very valuable for studies using in vitro approaches. The high selectivity and low nonspecific binding of [3H]MADAM on the postmortem human brain, together with preliminary in vivo results with [11C]MADAM, is a new argument for future use of this ligand in in vivo studies of the distribution, pharmacology, and pathophysiology of the serotonin transporter in the human brain with positron emission tomography.

  19. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.

    PubMed

    Xu, Qiang; Wang, Yanshu; Dabdoub, Alain; Smallwood, Philip M; Williams, John; Woods, Chad; Kelley, Matthew W; Jiang, Li; Tasman, William; Zhang, Kang; Nathans, Jeremy

    2004-03-19

    Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.

  20. Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    PubMed Central

    2014-01-01

    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization. PMID:24641010

  1. Design and synthesis of high affinity inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency dependent lipophilicity (LELP).

    PubMed

    Rackham, Mark D; Brannigan, James A; Rangachari, Kaveri; Meister, Stephan; Wilkinson, Anthony J; Holder, Anthony A; Leatherbarrow, Robin J; Tate, Edward W

    2014-03-27

    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization.

  2. Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and High-Resolution Crystal Structures.

    PubMed

    Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard

    2016-02-04

    Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series.

  3. Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high affinity ligand for TLR4

    PubMed Central

    Teghanemt, Athmane; Weiss, Jerrold P.; Gioannini, Theresa L.

    2013-01-01

    A purified complex of metabolically labeled endotoxin ([3H] lipooligosaccharide, LOS) and insect-cell derived recombinant human myeloid differentiation factor 2, (MD-2), [3H] LOS·MD-2, has been used to demonstrate pM affinity binding interactions with soluble Toll-like receptor 4 ectodomain (TLR4ecd). Measurement of the binding parameters of membrane-bound TLR4 has been hampered by the paucity of TLR4 on cell surfaces and inadequate sensitivity of available reagents. We took advantage of the stability of endotoxin·MD-2 and tyrosine(s) present on the surface of MD-2 to radioiodinate LOS·MD-2. Radioiodinated LOS·MD-2 generated a reagent with an estimated 1:1 molar ratio of [125I] to sMD-2 with 20-fold higher specific radioactivity and TLR4-activating properties comparable to metabolically labeled LOS·MD-2. LOS·MD-2[125I] and [3H]LOS·MD-2 have similar affinities for soluble FLAGTLR4ecd and for membrane-bound TLR4 in transiently transfected HEK293T/TLR4 cells. In a similar dose-dependent manner, sMD-2 and LOS·MD-2 inhibit LOS·MD-2[125I] binding to TLR4 indicating the pM affinity binding of LOS·MD-2[125I] is agonist-independent. LOS·MD-2[125I] allowed measurement of low levels of cell-surface human or murine TLR4 expressed by stable cell lines (2,000–3,000 sites/cell) and quantitatively measures low levels of “MD-2-free” TLR4 (est. 250 molecules/cell) in cells co-expressing TLR4 and MD-2. Occupation of 50–100 TLR4/cell by LOS·MD-2 is sufficient to trigger measurable TLR4-dependent cell activation. LOS·MD-2[125I] provides a powerful reagent to measure quantitatively functional cell-surface TLR4 in human and murine cells, including cells where surface TLR4 are potentially functionally significant but too low to detect by other methods. PMID:23439691

  4. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  5. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  6. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis.

  7. Affinity Screening Using Competition with Fluorine-19 Hyperpolarized Ligands**

    PubMed Central

    Kim, Yaewon; Hilty, Christian

    2015-01-01

    Fluorine-19 NMR and hyperpolarization form a powerful combination for drug screening. Under a competitive equilibrium with a selected fluorinated reporter ligand, the dissociation constant (KD) of other ligands of interest is measurable using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment, without the need for a titration. This method is demonstrated by characterizing the binding of three ligands with different affinities for the serine protease trypsin. Monte Carlo simulations show that the highest accuracy is obtained when about one-half of the bound reporter ligand is displaced in the binding competition. Such conditions can be achieved over a wide range of affinities, allowing for rapid screening of non-fluorinated compounds when a single fluorinated ligand to the binding pocket of interest is known. PMID:25703090

  8. Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands.

    PubMed

    Kim, Yaewon; Hilty, Christian

    2015-04-13

    Fluorine-19 NMR and hyperpolarization form a powerful combination for drug screening. Under a competitive equilibrium with a selected fluorinated reporter ligand, the dissociation constant (K(D)) of other ligands of interest is measurable using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment, without the need for a titration. This method is demonstrated by characterizing the binding of three ligands with different affinities for the serine protease trypsin. Monte Carlo simulations show that the highest accuracy is obtained when about one-half of the bound reporter ligand is displaced in the binding competition. Such conditions can be achieved over a wide range of affinities, allowing for rapid screening of non-fluorinated compounds when a single fluorinated ligand for the binding pocket of interest is known. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High oxygen affinity hemoglobins.

    PubMed

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  10. Anxiolytic-like effect of a serotonergic ligand with high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Delgado, Mercedes; Caicoya, Anne G; Greciano, Virginia; Benhamú, Bellinda; López-Rodríguez, María Luz; Fernández-Alfonso, María Soledad; Pozo, Miguel A; Manzanares, Jorge; Fuentes, José A

    2005-03-21

    S-(-)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-alpha]-pyrazine (CSP-2503) is a serotonin (5-HT) receptor ligand with selectivity and high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. CSP-2503 reduced rectal temperature and 5-HT neuronal hypothalamic activity in mice, decreased electrical activity of raphe nuclei cells in rats and blocked the enhancement of adenylate cyclase activity induced by forskolin in HeLa cells transfected with the human 5-HT1A receptor. This compound also blocked head-twitches induced by the 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Contractions of guinea pig ileum induced by the 5-HT3 receptor agonist 2-methyl-5-HT were prevented by CSP-2503. Moreover, it reduced the bradycardia reflex induced by 2-methyl-5-HT in anaesthetized rats. In the light/dark box and social interaction tests, CSP-2503 presented anxiolytic activity, an action shared by 5-HT1 agonists and 5-HT3 antagonists. Taken together, these results suggest that CSP-2503 is a new 5-HT1 receptor agonist with 5-HT2A and 5-HT3)receptor antagonist activities that might be useful in a number of conditions associated with anxiety.

  11. "Clickable" affinity ligands for effective separation of glycoproteins.

    PubMed

    Suksrichavalit, Thummaruk; Yoshimatsu, Keiichi; Prachayasittikul, Virapong; Bülow, Leif; Ye, Lei

    2010-06-04

    In this paper, we present a new modular approach to immobilize boronic acid ligands that can offer effective separation of glycoproteins. A new "clickable" boronic acid ligand was synthesized by introducing a terminal acetylene group into commercially available 3-aminophenyl boronic acid. The clickable ligand, 3-(prop-2-ynyloxycarbonylamino)phenylboronic acid (2) could be easily coupled to azide-functionalized hydrophilic Sepharose using Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction under mild condition. Compared to other boronic acid affinity gels, the new affinity gel displayed superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from closely related bovine serum albumin and RNase A in the presence of crude Escherichia coli proteins. Because of the simplicity of the immobilization through "click chemistry", the new ligand 2 is expected to not only offer improved glycoprotein separation in other formats, but also act as a useful building block to develop new chemical sensors for analysis of other glycan compounds.

  12. Pharmacological and signaling analysis of human chemokine receptor CCR-7 stably expressed in HEK-293 cells: high-affinity binding of recombinant ligands MIP-3beta and SLC stimulates multiple signaling cascades.

    PubMed

    Sullivan, S K; McGrath, D A; Grigoriadis, D; Bacon, K B

    1999-10-05

    The chemokine receptor CCR-7 is expressed in T, NK, and dendritic cells in a time-ordered and stimulus-dependent manner. Thorough analyses of the pharmacological profiles of the recombinant ligands for CCR-7, MIP-3beta/ELC/CK-beta 11, and SLC/Exodus-2/TCA4/6C-kine, using CCR-7-expressing HEK-293E transfectants determine that ligands both bind with a K(d) in the 100 pM range-10- to 100-fold greater affinities than published K(d) values. High-affinity binding of each ligand is associated with rapid mobilization of intracellular calcium and cell migration as predicted for chemokine GPCRs, and in keeping with more recent evidence, robust activation of mitogen-activated protein kinase (MAPK). Copyright 1999 Academic Press.

  13. Structure-Activity Study of Ghrelin(1-8) Resulting in High Affinity Fluorine-Bearing Ligands for the Ghrelin Receptor.

    PubMed

    Charron, Carlie L; Hou, Jinqiang; McFarland, Mark S; Dhanvantari, Savita; Kovacs, Michael S; Luyt, Leonard G

    2017-09-14

    The ghrelin receptor, also known as the growth hormone secretagogue receptor 1a (GHS-R1a), is a G-protein-coupled receptor that is differentially expressed in healthy tissue and several cancers, including prostate, testicular, and ovarian. Selectively targeting the ghrelin receptor using fluorine-18 tagged entities would allow localization and visualization of ghrelin receptor expressing carcinomas using PET imaging. The endogenous ligand ghrelin, a 28 amino acid peptide with 3.1 nM affinity, has poor in vivo stability. Here we report on ghrelin(1-8) analogues bearing modifications at residues 1, 3, 4, and 8. The lead analogue, [Inp(1),Dpr(3)(6-fluoro-2-naphthoate),1-Nal(4),Thr(8)]ghrelin(1-8), possessed an IC50 value of 0.11 nM that is a 28-fold improvement compared to the natural ligand. A novel 6-fluoro-2-pentafluorophenyl naphthoate (PFPN) prosthetic group was synthesized to incorporate fluorine-18 for PET imaging. This is not only the highest affinity ghrelin analogue reported but also the shortest ghrelin analogue capable of binding GHS-R1a with better affinity than ghrelin(1-28).

  14. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.

    PubMed

    Heck, Gabriela S; Pintro, Val O; Pereira, Richard R; de Ávila, Mauricio B; Levin, Nayara M B; de Azevedo, Walter F

    2017-01-01

    Calculation of ligand-binding affinity is an open problem in computational medicinal chemistry. The ability to computationally predict affinities has a beneficial impact in the early stages of drug development, since it allows a mathematical model to assess protein-ligand interactions. Due to the availability of structural and binding information, machine learning methods have been applied to generate scoring functions with good predictive power. Our goal here is to review recent developments in the application of machine learning methods to predict ligand-binding affinity. We focus our review on the application of computational methods to predict binding affinity for protein targets. In addition, we also describe the major available databases for experimental binding constants and protein structures. Furthermore, we explain the most successful methods to evaluate the predictive power of scoring functions. Association of structural information with ligand-binding affinity makes it possible to generate scoring functions targeted to a specific biological system. Through regression analysis, this data can be used as a base to generate mathematical models to predict ligandbinding affinities, such as inhibition constant, dissociation constant and binding energy. Experimental biophysical techniques were able to determine the structures of over 120,000 macromolecules. Considering also the evolution of binding affinity information, we may say that we have a promising scenario for development of scoring functions, making use of machine learning techniques. Recent developments in this area indicate that building scoring functions targeted to the biological systems of interest shows superior predictive performance, when compared with other approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    SciTech Connect

    Rothman, R.B.; Reid, A.; Mahboubi, A.; Kim, C.H.; De Costa, B.R.; Jacobson, A.E.; Rice, K.C. )

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.

  16. Predicting protein-ligand affinity with a random matrix framework.

    PubMed

    Lee, Alpha A; Brenner, Michael P; Colwell, Lucy J

    2016-11-29

    Rapid determination of whether a candidate compound will bind to a particular target receptor remains a stumbling block in drug discovery. We use an approach inspired by random matrix theory to decompose the known ligand set of a target in terms of orthogonal "signals" of salient chemical features, and distinguish these from the much larger set of ligand chemical features that are not relevant for binding to that particular target receptor. After removing the noise caused by finite sampling, we show that the similarity of an unknown ligand to the remaining, cleaned chemical features is a robust predictor of ligand-target affinity, performing as well or better than any algorithm in the published literature. We interpret our algorithm as deriving a model for the binding energy between a target receptor and the set of known ligands, where the underlying binding energy model is related to the classic Ising model in statistical physics.

  17. Creating Protein Affinity Reagents by Combining Peptide Ligands on Synthetic DNA Scaffolds

    PubMed Central

    Williams, Berea A. R.; Diehnelt, Chris W.; Belcher, Paul; Greving, Matthew; Woodbury, Neal W.; Johnston, Stephen A.; Chaput, John C.

    2009-01-01

    A full understanding of the proteome will require ligands to all of the proteins encoded by genomes. While antibodies represent the principle affinity reagents used to bind proteins, their limitations have created a need for new ligands to large numbers of proteins. Here we propose a general concept to obtain protein affinity reagents that avoids animal immunization and iterative selection steps. Central to this process is the idea that small peptide libraries contain sequences that will bind to independent regions on a protein surface, and that these ligands can be combined on synthetic scaffolds to create high affinity bivalent reagents. To demonstrate the feasibility of this approach, an array of 4,000 unique 12-mer peptides was screened to identify sequences that bind to non-overlapping sites on the yeast regulatory protein Gal80. Individual peptide ligands were screened at different distances using a novel DNA linking strategy to identify the optimal peptide pair and peptide pair separation distance required to transform two weaker ligands into a single high affinity protein capture reagent. A synthetic antibody or synbody was created with 5 nM affinity to Gal80 that functions in conventional ELISA and pull-down assays. We validated our synthetic antibody approach by creating a second synbody to human transferrin. In both cases, we observed an increase in binding affinity of ∼1000-fold (ΔΔG = ∼4.1 kcal/mol) between the individual peptides and final bivalent synbody construct. PMID:19894711

  18. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.

    PubMed

    Reinstein, Oren; Yoo, Mina; Han, Chris; Palmo, Tsering; Beckham, Simone A; Wilce, Matthew C J; Johnson, Philip E

    2013-12-03

    The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.

  19. Synthesis and Characterization of High-Affinity 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene-Labeled Fluorescent Ligands for Human β-Adrenoceptors

    PubMed Central

    2011-01-01

    The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human β-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity β-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of −9.53 and −8.46 as an antagonist of functional β2- and β1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human β2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent β2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol.1983, 5, 430–437.) PMID:21870877

  20. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 8. High affinity ligands for opioid receptors in the picomolar Ki range: oxygenated N-(2-[1,1'-biphenyl]-4-ylethyl) analogues of 8-CAC.

    PubMed

    Wentland, Mark P; Jo, Sunjin; Gargano, Joseph M; VanAlstine, Melissa A; Cohen, Dana J; Bidlack, Jean M

    2012-12-15

    N-[2-(4'-methoxy[1,1'-biphenyl]-4-yl)ethyl]-8-CAC (1) is a high affinity (K(i)=0.084 nM) ligand for the μ opioid receptor and served as the lead compound for this study. Analogues of 1 were made in hopes of identifying an SAR within a series of oxygenated (distal) phenyl derivatives. A number of new analogues were made having single-digit pM affinity for the μ receptor. The most potent was the 3',4'-methylenedioxy analogue 18 (K(i)=1.6 pM). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Identification and synthesis of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to the alpha 2 delta-1 subunit of voltage gated calcium channel.

    PubMed

    Lebsack, Alec D; Gunzner, Janet; Wang, Bowei; Pracitto, Richard; Schaffhauser, Hervé; Santini, Angelina; Aiyar, Jayashree; Bezverkov, Robert; Munoz, Benito; Liu, Wensheng; Venkatraman, Shankar

    2004-05-17

    We have identified and synthesized a series of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to alpha 2 delta-1 subunit of voltage gated calcium channels. Structure-activity relationship studies directed toward improving the potency and physical properties of 2 lead to the discovery of 20 (IC(50)=15 nM) and (S)-22 (IC(50)=30 nM). A potent and selective radioligand, [(3)H]-(S)-22 was also synthesized to demonstrate that this ligand binds to the same site as gabapentin.

  2. Discovery of high affinity ligands for β2-adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking.

    PubMed

    Yakar, Ruya; Akten, Ebru Demet

    2014-09-01

    Novel high affinity compounds for human β2-adrenergic receptor (β2-AR) were searched among the clean drug-like subset of ZINC database consisting of 9,928,465 molecules that satisfy the Lipinski's rule of five. The screening protocol consisted of a high-throughput pharmacophore screening followed by an extensive amount of docking and rescoring. The pharmacophore model was composed of key features shared by all five inactive states of β2-AR in complex with inverse agonists and antagonists. To test the discriminatory power of the pharmacophore model, a small-scale screening was initially performed on a database consisting of 117 compounds of which 53 antagonists were taken as active inhibitors and 64 agonists as inactive inhibitors. Accordingly, 7.3% of the ZINC database subset (729,413 compounds) satisfied the pharmacophore requirements, along with 44 antagonists and 17 agonists. Afterwards, all these hit compounds were docked to the inactive apo form of the receptor using various docking and scoring protocols. Following each docking experiment, the best pose was further evaluated based on the existence of key residues for antagonist binding in its vicinity. After final evaluations based on the human intestinal absorption (HIA) and the blood brain barrier (BBB) penetration properties, 62 hit compounds have been clustered based on their structural similarity and as a result four scaffolds were revealed. Two of these scaffolds were also observed in three high affinity compounds with experimentally known Ki values. Moreover, novel chemical compounds with distinct structures have been determined as potential β2-AR drug candidates.

  3. Synthesis of high affinity fluorine-substituted ligands for the androgen receptor. Potential agents for imaging prostatic cancer by positron emission tomography.

    PubMed

    Liu, A; Carlson, K E; Katzenellenbogen, J A

    1992-05-29

    We have prepared nine androgens substituted with fluorine at C-16 or C-20 to evaluate their potential, as positron emission tomographic (PET) imaging agents for prostatic cancer when labeled with the positron emitting radionuclide fluorine-18 (t1/2 = 110 min). These compounds represent members from the following classes of androgens: testosterone (T), 5 alpha-dihydrotestosterone (DHT), 7 alpha-methyl-19-nortestosterone (MNT), mibolerone (Mib), and metribolone (R1881). All of these compounds were prepared by functionalization of suitable androgen precursors, and the synthetic routes were developed to allow the introduction of fluorine by a fluoride ion displacement reaction late in the synthesis, as is required for the preparation of these compounds in fluorine-18 labeled form. We have also prepared four androgens in which the C-3 carbonyl or 17 beta-hydroxyl groups are replaced by fluorine. Most of the fluorine-substituted androgens show high affinity for the androgen receptor (AR), although fluorine substitution lowers their affinity by a small factor. None of the androgens where fluorine replaces oxygen functions at C-3 or C-17 have substantial affinity for AR. Derivatives of the natural androgens (T and DHT) as well as MNT have little affinity for other steroid hormone receptors (progesterone and mineralocorticoid receptors), whereas the Mib and R1881 derivatives have somewhat greater heterologous binding. With sex steroid binding protein, a human serum binding protein, the pattern of binding affinities is nearly the reverse, with derivatives of Mib, R1881 and MNT having low affinity, and DHT and T, high affinity. From these fluorine-substituted compounds, we can select several whose preparation in fluorine-18 labeled form for further tissue distribution studies is merited.

  4. Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: the performance of PEGylated protein A.

    PubMed

    González-Valdez, José; Yoshikawa, Alex; Weinberg, Justin; Benavides, Jorge; Rito-Palomares, Marco; Przybycien, Todd M

    2014-01-01

    Chemical modification of macromolecular affinity chromatography ligands with polyethylene glycol chains or "PEGylation" can potentially improve selectivity by sterically suppressing non-specific binding interactions without sacrificing binding capacity. For a commercial protein A affinity media and with yeast extract (YE) and fetal bovine serum (FBS) serving as mock contaminants, we found that the ligand accounted for more than 90% of the media-associated non-specific binding, demonstrating an opportunity for improvement. The IgG static binding affinity of protein A mono-PEGylated with 5.0 and 20.7 kDa poly(ethylene glycol) chains was found to be preserved using a biomolecular interaction screening platform. Similar in situ PEGylations of the commercial protein A media were conducted and the modified media was functionally characterized with IgG solutions spiked with YE and FBS. Ligand PEGylation reduced the mass of media-associated contaminants by a factor of two to three or more. Curiously, we also found an increase of up to 15% in the average recovery of IgG on elution after PEGylation. Combined, these effects produced an order of magnitude increase in the IgG selectivity on average when spiked with YE and a two- to three-fold increase when spiked with FBS relative to the commercial media. Dynamic binding capacity and mass-transfer resistance measurements revealed a reduction in dynamic capacity attributed to a decrease in IgG effective pore diffusivity and possibly slower IgG association kinetics for the PEGylated protein A ligands. Ligand PEGylation is a viable approach to improving selectivity in affinity chromatography with macromolecular ligands. © 2014 American Institute of Chemical Engineers.

  5. Effects of the novel high-affinity 5-HT(1B/1D)-receptor ligand frovatriptan in human isolated basilar and coronary arteries.

    PubMed

    Parsons, A A; Raval, P; Smith, S; Tilford, N; King, F D; Kaumann, A J; Hunter, J

    1998-08-01

    The contractile actions of the novel high-affinity 5-hydroxytryptamine (5-HT(1B/1D)) ligand, frovatriptan (formerly VML 251/SB-209509) were investigated in human isolated basilar and coronary arteries in which the endothelium had been removed. Basilar arteries were obtained post mortem, and coronary arteries were obtained from patients undergoing heart transplant (recipient) or from donor hearts that were not suitable for transplant. Frovatriptan was a potent contractile agent in isolated basilar artery with a -log mean effective concentration (EC50) value of 7.86 +/- 0.07 and intrinsic activity of 1.25 +/- 0.10 relative to 5-HT (n = 4). Frovatriptan was 8.5-fold more potent than sumatriptan, which produced a -log EC50 value of 6.93 +/- 0.09 and intrinsic activity 11.1 +/- 0.08 relative to 5-HT (n = 4). In coronary arteries, frovatriptan produced contraction with -log EC50 values of 7.38 +/- 0.12 and 7.81 +/- 0.2 in recipient (n = 7) and donor (n = 3) arteries, respectively. The relative degree of contraction of frovatriptan was lower than that of 5-HT, with relative intrinsic activities of 0.42 +/- 0.06 and 0.40 +/- 0.09, respectively. Sumatriptan produced contraction of human recipient and donor arteries with -log EC50 values (intrinsic activity) of 6.57 +/- 0.13 (0.79 +/- 0.27; n = 6) and 7.35 (1.41; n = 2), respectively. Furthermore, marked bell-shaped responses were apparent for frovatriptan in coronary arteries, with relaxation occurring at concentrations >6 microM in some tissues. In contrast, no bell-shaped concentration-response curves were apparent for sumatriptan or 5-HT. Threshold concentrations for frovatriptan-induced contractions were also different between basilar (>2 nM) and coronary arteries (>20 nM). No separation of threshold activity was observed with sumatriptan or 5-HT. These data show that frovatriptan produces constriction of human isolated basilar and coronary arteries. However, frovatriptan produces a complex pharmacologic response in the

  6. Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands

    PubMed Central

    Owen, David R.J.; Gunn, Roger N.; Rabiner, Eugenii A.; Bennacef, Idriss; Fujita, Masahiro; Kreisl, William C.; Innis, Robert B.; Pike, Victor W.; Reynolds, Richard; Matthews, Paul M.; Parker, Christine A.

    2011-01-01

    11C-PBR28 PET can detect the 18-kDa translocator protein (TSPO) expressed within macrophages. However, quantitative evaluation of the signal in brain tissue from donors with multiple sclerosis (MS) shows that PBR28 binds the TSPO with high affinity (binding affinity [Ki], ~4 nM), low affinity (Ki, ~200 nM), or mixed affinity (2 sites with Ki, ~4 nM and ~300 nM). Our study tested whether similar binding behavior could be detected in brain tissue from donors with no history of neurologic disease, with TSPO-binding PET ligands other than 11C-PBR28, for TSPO present in peripheral blood, and with human brain PET data acquired in vivo with 11C-PBR28. Methods The affinity of TSPO ligands was measured in the human brain post-mortem from donors with a history of MS (n = 13), donors without any history of neurologic disease (n = 20), and in platelets from healthy volunteers (n = 13). Binding potential estimates from thirty-five 11C-PBR28 PET scans from an independent sample of healthy volunteers were analyzed using a gaussian mixture model. Results Three binding affinity patterns were found in brains from subjects without neurologic disease in similar proportions to those reported previously from studies of MS brains. TSPO ligands showed substantial differences in affinity between subjects classified as high-affinity binders (HABs) and low-affinity binders (LABs). Differences in affinity between HABs and LABs are approximately 50-fold with PBR28, approximately 17-fold with PBR06, and approximately 4-fold with DAA1106, DPA713, and PBR111. Where differences in affinity between HABs and LABs were low (~4-fold), distinct affinities were not resolvable in binding curves for mixed-affinity binders (MABs), which appeared to express 1 class of sites with an affinity approximately equal to the mean of those for HABs and LABs. Mixed-affinity binding was detected in platelets from an independent sample (HAB, 69%; MAB, 31%), although LABs were not detected. Analysis of 11C-PBR28 PET

  7. The high affinity ALK1-ligand BMP9 induces a hypertrophy-like state in chondrocytes that is antagonized by TGFβ1.

    PubMed

    van Caam, A; Blaney Davidson, E; Garcia de Vinuesa, A; van Geffen, E; van den Berg, W; Goumans, M-J; ten Dijke, P; van der Kraan, P

    2015-06-01

    In osteoarthritic cartilage, expression of the receptor ALK1 correlates with markers of deleterious chondrocyte hypertrophy. Recently, bone morphogenetic protein 9 (BMP9) was identified as a high affinity ligand for ALK1. Therefore, we studied if BMP9 signaling results in expression of hypertrophy markers in chondrocytes. Furthermore, because transforming growth factorß1 (TGFβ1) is a well known anti-hypertrophic factor, the interaction between BMP9 and TGFβ1 signaling was also studied. Primary chondrocytes were isolated from bovine cartilage and stimulated with BMP9 and/or TGFβ1 to measure intracellular signaling via pSmads with the use of Western blot. Expression of Smad-responsive genes or hypertrophy-marker genes was measured using qPCR. To confirm observations on TGFβ/Smad3 responsive genes, a Smad3-dependent CAGA12-luc transcriptional reporter assay was performed in the chondrocyte G6 cell line. In primary chondrocytes, BMP9 potently induced phosphorylation of Smad1/5 and Smad2 to a lesser extent. BMP9-induced Smad1/5 phosphorylation was rapidly (2 h) reflected in gene expression, whereas Smad2 phosphorylation was not. Remarkably, BMP9 and TGFβ1 dose-dependently synergized on Smad2 phosphorylation, and showed an additive effect on expression of Smad3-dependent genes like bSerpine1 after 24 h. The activation of the TGFβ/Smad3 signaling cascade was confirmed using the CAGA12-luc transcriptional reporter. BMP9 selectively induced bAlpl and bColX expression, which are considered early markers of cellular hypertrophy, but this was potently antagonized by addition of a low dose of TGFβ1. This study shows that in vitro in chondrocytes, BMP9 potently induces pSmad1/5 and a chondrocyte hypertrophy-like state, which is potently blocked by TGFβ1. This observation underlines the importance of TGFβ1 in maintenance of chondrocyte phenotype. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Triazine dyes as inhibitors and affinity ligands of glycosyltransferases.

    PubMed

    Kamińska, J; Dziecioł, J; Kościelak, J

    1999-11-01

    The triazine dyes: Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Green 19, Reactive Blue 4, Reactive Brown 10 inhibited the activity of a purified preparation of alpha1,6fucosyltransferase (GDP-L-fucose: N-acetyl beta-glucosaminide 6-alpha-L-fucosyltransferase, EC 2.4.1.68) from human blood platelets. Cibacron Blue 3GA and Reactive Red 120 were examined for the nature of the inhibition and both were found to be competitive inhibitors of the enzyme, with Ki = 11 microM and 2 microM, respectively. The two dyes inhibited also serum glycosyltransferases: alpha1,2fucosyltransferase (GDP-L-fucose: beta-D-galactosyl-R2-alpha-L-fucosyltransferase, EC 2.4.1.69), beta1,4galactosyltransferase (UDP-galactose: N-acetyl-D-glucosamine 4-beta-D-galactosyltransferase, EC 2.4.1.90) and beta1,3N-acetylglucosaminyltransferase (UDP-GlcNAc: 4-beta-D-galactosyl-D-glucose). Cibacron Blue 3GA was a more effective inhibitor of the glycosyltransferases that use UDP-linked sugar donors than Reactive Red 120 while the latter was a stronger inhibitor of the fucosyltransferases that use GDP-linked donor. All four glycosyltransferases could be affinity purified on Cibacron Blue 3GA-Agarose columns. The order of elution of glycosyltransferases from the columns with solutions of 0.25-1.0 M potassium iodide also depended upon the structure of nucleotide sugar donor, i.e. whether it contained UDP or GDP. Thus, triazine dyes should interact with the sugar donor binding sites of glycosyltransferases. The main advantages of the use of triazine dyes as affinity ligands for isolation of glycosyltransferases are their universal applicability regardless of enzyme specificity, low cost, and insensitivity to high concentration of other proteins present in the solution.

  9. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  10. The quest for affinity chromatography ligands: are the molecular libraries the right source?

    PubMed

    Perret, Gérald; Santambien, Patrick; Boschetti, Egisto

    2015-08-01

    Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre-established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side-by-side comparison is also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tuned-Affinity Bivalent Ligands for the Characterization of Opioid Receptor Heteromers

    PubMed Central

    2012-01-01

    Opioid receptors, including the μ- and δ-opioid receptors (MOR and DOR), are important targets for the treatment of pain. Although there is mounting evidence that these receptors form heteromers, the functional role of the MOR/DOR heteromer remains unresolved. We have designed and synthesized bivalent ligands as tools to elucidate the functional role of the MOR/DOR heteromer. Our ligands (L2 and L4) are comprised of a compound with low affinity at the DOR tethered to a compound with high affinity at the MOR, with the goal of producing ligands with “tuned affinity” at MOR/DOR heteromers as compared to DOR homomers. Here, we show that both L2 and L4 demonstrate enhanced affinity at MOR/DOR heteromers as compared to DOR homomers, thereby providing unique pharmacological tools to dissect the role of the MOR/DOR heteromer in pain. PMID:23585918

  12. Michael Acceptor Approach to the Design of New Salvinorin A-based High Affinity Ligands for the Kappa-Opioid Receptor

    PubMed Central

    Polepally, Prabhakar R.; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D.; Roth, Bryan L.; Zjawiony, Jordan K.

    2014-01-01

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand–receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure–activity relationships, and previous salvinorin A–KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR. PMID:25193297

  13. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.

    PubMed

    Matsunaga, Ken-Ichiro; Kimoto, Michiko; Hirao, Ichiro

    2017-01-11

    The novel evolutionary engineering method ExSELEX (genetic alphabet expansion for systematic evolution of ligands by exponential enrichment) provides high-affinity DNA aptamers that specifically bind to target molecules, by introducing an artificial hydrophobic base analogue as a fifth component into DNA aptamers. Here, we present a newer version of ExSELEX, using a library with completely randomized sequences consisting of five components: four natural bases and one unnatural hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). In contrast to the limited number of Ds-containing sequence combinations in our previous library, the increased complexity of the new randomized library could improve the success rates of high-affinity aptamer generation. To this end, we developed a sequencing method for each clone in the enriched library after several rounds of selection. Using the improved library, we generated a Ds-containing DNA aptamer targeting von Willebrand factor A1-domain (vWF) with significantly higher affinity (KD = 75 pM), relative to those generated by the initial version of ExSELEX, as well as that of the known DNA aptamer consisting of only the natural bases. In addition, the Ds-containing DNA aptamer was stabilized by introducing a mini-hairpin DNA resistant to nucleases, without any loss of affinity (KD = 61 pM). This new version is expected to consistently produce high-affinity DNA aptamers.

  14. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  15. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%.

  16. The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering

    PubMed Central

    Chen, Bing-Mae; Al-Aghbar, Mohammad Ameen; Lee, Chien-Hsin; Chang, Tien-Ching; Su, Yu-Cheng; Li, Ya-Chen; Chang, Shih-En; Chen, Chin-Chuan; Chung, Tsai-Hua; Liao, Yuan-Chun; Lee, Chau-Hwang; Roffler, Steve R.

    2017-01-01

    T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR) triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs) is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11) in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv) did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs. PMID:28740495

  17. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands

    PubMed Central

    Shou, Yulin; Schmidt, Emily N.; Paavola, Chad D.; Naranjo, Leslie; Bemdich, Sara; Swanson, Basil I.; Bradbury, Andrew R. M.; Martinez, Jennifer S.

    2016-01-01

    Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding. The “helper cell” packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands. PMID:27626637

  18. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity

    PubMed Central

    Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.

    2011-01-01

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288

  19. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  20. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    PubMed

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  1. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening.

    PubMed

    Qin, Shanshan; Ren, Yiran; Fu, Xu; Shen, Jie; Chen, Xin; Wang, Quan; Bi, Xin; Liu, Wenjing; Li, Lixin; Liang, Guangxin; Yang, Cheng; Shui, Wenqing

    2015-07-30

    Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.

  2. Estimation of Ligand-Receptor Binding Affinity from Fluctuation of Their Interface

    NASA Astrophysics Data System (ADS)

    Iwamoto, Koji; Ode, Hirotaka; Ohta, Masami; Misu, Takashi; Hata, Masayuki; Neya, Saburo; Hoshino, Tyuji

    2005-10-01

    It is necessary for the understanding of protein interactions or in silico drug designs to accurately estimate ligand-receptor affinity. The energy calculation based on the electrostatic force, van der Waals force, and solvation effect is a direct method of computing the magnitude of the interaction between ligand and receptor. By this conventional method, however, it is difficult to estimate a slight difference in binding affinity with sufficient accuracy. We propose a novel concept for the evaluation of binding affinity between a ligand and its receptor by functionalizing the fluctuation at the ligand-receptor interface. This method enables an adequate estimation with a high accuracy compared with the conventional energetic approach. Human immunodeficiency virus type 1 (HIV-1) protease and its inhibitor are used to explain how binding affinity is extracted from the fluctuation in interfacial energy, and a combination of an antigen and its antibody is examined to demonstrate the compatibility between the estimation from the interfacial fluctuation and the experimentally measured binding energy.

  3. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  4. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    PubMed Central

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection. PMID:12084912

  5. Reversible cyclic peptide libraries for the discovery of affinity ligands.

    PubMed

    Menegatti, Stefano; Ward, Kevin Lawrence; Naik, Amith Dattatray; Kish, William Stanley; Blackburn, Robert Kevin; Carbonell, Ruben Guillermo

    2013-10-01

    A novel strategy is presented for the identification of cyclic peptide ligands from combinatorial libraries of reversible cyclic depsipeptides. A method for the solid-phase synthesis of individual cyclic depsipeptides and combinatorial libraries of these compounds is proposed, which employs lactic acid (Lact) and the dipeptide ester (Nα-Ac)-Ser(Ala)- as linkers for dilactonization. Upon alkaline treatment of the beads selected by screening a model library, the cyclic depsipeptides are linearized and released from the solid support to the liquid phase, to be sequenced via single-step tandem mass spectrometry (MS/MS). The protocol presented for library synthesis provides for wide structural diversity. Two model sequences, VVWVVK and AAWAAR, were chosen to present different structural examples for depsipeptide libraries and demonstrate the process of sequence determination by mass spectrometry. Further, a case study using the IgG binding cyclic depsipeptide cyclo[(Nα-Ac)-S(A)-RWHYFK-Lact-E] is presented to demonstrate the process of library screening and sequence determination on the selected beads. Finally, a method is shown for synthesis of the irreversible cyclic peptide corresponding to the proposed depsipeptide structure, to make the ligand stable to the aqueous acid and alkaline conditions encountered in affinity chromatographic applications. The cyclic peptide ligand was synthesized on a poly(methacrylate) resin and used for chromatographic binding of the target IgG.

  6. Octapeptide-based affinity chromatography of human immunoglobulin G: comparisons of three different ligands.

    PubMed

    Zhao, Wei-Wei; Liu, Fu-Feng; Shi, Qing-Hong; Sun, Yan

    2014-09-12

    In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH.

    PubMed

    Rowe, Laura; El Khoury, Graziella; Lowe, Christopher R

    2016-05-01

    Developing ligands capable of carbohydrate recognition has become increasingly important as the essential roles of glycoproteins and glycolipids in a diverse array of cellular signaling, pathophysiology, and immune response mechanisms are elucidated. Effective ligands for the glycan portion of glycoproteins and glycolipids are needed for pre-enrichment proteomics strategies, as well as for the purification of individual glycoproteins from complex biological milieu encountered both in biochemistry research and bio-pharmaceutical development. In this work, we developed a carbohydrate specific affinity ligand for glycoprotein purification using a one-pot, multi-component synthesis reaction (Ugi synthesis) and an amine-functionalized benzoboroxole moiety immobilized on agarose beads. Benzoboroxoles are unique boronic acid derivatives that have recently been found to bind specifically to the cis-diol groups of carbohydrates at physiological pH, with superior affinity to any other Wulff-type boronic acid. The solid-phase affinity ligand developed herein specifically binds the carbohydrate moiety of the glycoprotein glucose oxidase, as well as a fluorescein isothiocyanate-dextran, as shown through deglycosylation binding studies. Additionally, the ligand is able to purify glucose oxidase from crude Escherichia coli lysate, at physiological pH, equitably to commercially available boronic acid-functionalized agarose beads that required alkaline pH conditions. Thus, this affinity ligand is a marked improvement on current, commercially available boronic acid-based glycoprotein enrichment matrices and has the potential to exhibit high individual glycoprotein specificity because of the additional functional groups available for variation on the Ugi scaffold.

  8. Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I]epidepride: resolving conflicting findings.

    PubMed

    Erlandsson, Kjell; Bressan, Rodrigo A; Mulligan, Rachel S; Ell, Peter J; Cunningham, Vincent J; Pilowsky, Lyn S

    2003-07-01

    Recent studies of limbic cortical dopamine D(2) receptor occupancy by clozapine using high-affinity PET and SPET radioligands have produced conflicting findings. It has been suggested that these divergent findings are due to between-study differences in the method used to estimate D(2) receptor-binding potential. We compared different methods for estimating striatal and temporal cortical D(2) receptor occupancy with high-affinity tracers. In vivo experimental SPET data, obtained with [(123)I]epidepride were analysed with reference tissue kinetic modeling and with the ratio method, applied to data corresponding to short (60 min) and long (240 min) acquisition times. Dopamine D(2) receptor occupancy by the atypical antipsychotic drug risperidone was evaluated. Simulation experiments were also performed, comparing occupancy values obtained for different receptor densities in relation to different data acquisition times. The simulation results revealed that previously published data regarding errors in occupancy estimation by analysis of time activity data acquired for 60 min cannot be extrapolated to studies performed over 240 min. The ratio method provided accurate temporal cortical D(2) receptor occupancy values when applied to data from a late time period, but underestimated the occupancy with earlier data. In striatum, both the late data ratio method and reference tissue kinetic modeling using all data underestimated D(2) receptor occupancy. However, more accurate analyses of striatal D(2) occupancy still showed selective limbic/cortical occupancy by risperidone. Our results substantiate the previous [(123)I]epidepride findings of high temporal cortical occupancy by other atypical antipsychotic drugs and suggest that a potential source of conflicting findings might be short scanning times imposed by [(11)C]FLB 457, leading to underestimation of temporal cortical D(2) receptor occupancy by this method.

  9. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site?

    PubMed Central

    Vos, Marten H.; Borisov, Vitaliy B.; Liebl, Ursula; Martin, Jean-Louis; Konstantinov, Alexander A.

    2000-01-01

    Interaction of the two high-spin hemes in the oxygen reduction site of the bd-type quinol oxidase from Escherichia coli has been studied by femtosecond multicolor transient absorption spectroscopy. The previously unidentified Soret band of ferrous heme b595 was determined to be centered around 440 nm by selective excitation of the fully reduced unliganded or CO-bound cytochrome bd in the α-band of heme b595. The redox state of the b-type hemes strongly affects both the line shape and the kinetics of the absorption changes induced by photodissociation of CO from heme d. In the reduced enzyme, CO photodissociation from heme d perturbs the spectrum of ferrous cytochrome b595 within a few ps, pointing to a direct interaction between hemes b595 and d. Whereas in the reduced enzyme no heme d-CO geminate recombination is observed, in the mixed-valence CO-liganded complex with heme b595 initially oxidized, a significant part of photodissociated CO does not leave the protein and recombines with heme d within a few hundred ps. This caging effect may indicate that ferrous heme b595 provides a transient binding site for carbon monoxide within one of the routes by which the dissociated ligand leaves the protein. Taken together, the data indicate physical proximity of the hemes d and b595 and corroborate the possibility of a functional cooperation between the two hemes in the dioxygen-reducing center of cytochrome bd. PMID:10660685

  10. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 9: Synthesis, characterization and molecular modeling of pyridinyl isosteres of N-BPE-8-CAC (1), a high affinity ligand for opioid receptors.

    PubMed

    VanAlstine, Melissa A; Wentland, Mark P; Alvarez, Juan; Cao, Qing; Cohen, Dana J; Knapp, Brian I; Bidlack, Jean M

    2013-04-01

    Derivatives of the lead compound N-BPE-8-CAC (1) where each CH of the biphenyl group was individually replaced by N were prepared in hopes of identifying high affinity ligands with improved aqueous solubility. Compared to 1, binding affinities of the five possible pyridinyl derivatives for the μ opioid receptor were between threefold lower to fivefold higher with the Ki of the most potent compound being 0.064 nM. Docking of 8-CAC (2) into the unliganded binding site of the mouse μ opioid receptor (pdb: 4DKL) revealed that 8-CAC and β-FNA (from 4DKL) make nearly identical interactions with the receptor. However, for 1 and the new pyridinyl derivatives 4-8, binding is not tolerated in the 8-CAC binding mode due to the steric constraints of the large N-substituents. Either an alternative binding mode or rearrangement of the protein to accommodate these modifications may account for their high binding affinity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution.

    PubMed

    Ahmad, Kareem M; Xiao, Yi; Soh, H Tom

    2012-12-01

    Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.

  12. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A

    PubMed Central

    Matagne, A; Margineanu, D-G; Kenda, B; Michel, P; Klitgaard, H

    2008-01-01

    Background and purpose: Screening of 12 000 compounds for binding affinity to the synaptic vesicle protein 2A (SV2A), identified a high-affinity pyrrolidone derivative, brivaracetam (ucb 34714). This study examined its pharmacological profile in various in vitro and in vivo models of seizures and epilepsy, to evaluate its potential as a new antiepileptic drug. Experimental approach: The effects of brivaracetam and levetiracetam on epileptiform activity and seizure expression were examined in rat hippocampal slices, corneally kindled mice, audiogenic seizure–susceptible mice, maximal electroshock and pentylenetetrazol seizures in mice, hippocampal-kindled rats, amygdala-kindled rats and genetic absence epilepsy rats. Key results: Brivaracetam and levetiracetam reduced epileptiform responses in rat hippocampal slices, brivaracetam being most potent. Brivaracetam also differed from levetiracetam by its ability to protect against seizures in normal mice induced by a maximal electroshock or maximal dose of pentylenetetrazol. In corneally kindled mice and hippocampal-kindled rats, brivaracetam induced potent protection against secondarily generalized motor seizures and showed anti-kindling properties superior to levetiracetam. In amygdala-kindled rats, brivaracetam induced a significant suppression in motor-seizure severity and, contrary to levetiracetam, reduced the after-discharge at a higher dose. Audiogenic seizure–susceptible mice were protected more potently against the expression of clonic convulsions by brivaracetam than by levetiracetam. Brivaracetam induced a more complete suppression of spontaneous spike-and-wave discharges in genetic absence epilepsy rats than levetiracetam. Conclusions and implications: Brivaracetam has higher potency and efficacy than levetiracetam as an anti-seizure and anti-epileptogenic agent in various experimental models of epilepsy, and a wide therapeutic index. PMID:18500360

  13. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    SciTech Connect

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W. )

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.

  14. Synthesis and pre-clinical evaluation of a new class of high-affinity (18)F-labeled PSMA ligands for detection of prostate cancer by PET imaging.

    PubMed

    Kelly, James; Amor-Coarasa, Alejandro; Nikolopoulou, Anastasia; Kim, Dohyun; Williams, Clarence; Ponnala, Shashikanth; Babich, John W

    2017-04-01

    Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features (68)Ga-labeled tracers, notably [(68)Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer. Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The [(18)F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and [(18)F]fluoroethylazide. The (18)F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to [(68)Ga]Ga-PSMA-HBED-CC and [(18)F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific. F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20-40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/μmol. PSMA binding (IC50) ranged from 3-36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6-14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of [(68)Ga]Ga-PSMA-HBED-CC and [(18)F]DCFPyL was 5-6 %ID/g at 1-3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for [(68)Ga]Ga-PSMA-HBED-CC. Six [(18)F]triazolylphenyl ureas were prepared in

  15. Direct measurement of equilibrium constants for high-affinity hemoglobins.

    PubMed

    Kundu, Suman; Premer, Scott A; Hoy, Julie A; Trent, James T; Hargrove, Mark S

    2003-06-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (K(D) < 1 micro M) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and approximately 100 micro M(-1) respectively, indicate that they are not capable of facilitating oxygen transport.

  16. Beyond helper phage: Using "helper cells" to select peptide affinity ligands

    DOE PAGES

    Phipps, Mary Lisa; Lillo, Antoinetta M.; Shou, Yulin; ...

    2016-09-14

    Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding. The “helper cell” packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report onmore » the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Here, based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands.« less

  17. Dextran as a generally applicable multivalent scaffold for improving immunoglobulin-binding affinities of peptide and peptidomimetic ligands.

    PubMed

    Morimoto, Jumpei; Sarkar, Mohosin; Kenrick, Sophia; Kodadek, Thomas

    2014-08-20

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors.

  18. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    PubMed Central

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  19. Design and Synthesis of Potent HIV-1 Protease Inhibitors Incorporating Hexahydrofuropyranol-derived High Affinity P2 ligands: Structure-activity Studies and Biological Evaluation

    PubMed Central

    Ghosh, Arun K.; Chapsal, Bruno D.; Baldridge, Abigail; Steffey, Melinda P.; Walters, D. Eric; Koh, Yasuhiro; Amano, Masayuki; Mitsuya, Hiroaki

    2011-01-01

    The design, synthesis, and evaluation of a new series of hexahydrofuropyran-derived HIV-1 protease inhibitors are described. We have designed a stereochemically defined hexahydrofuropyranol-derived urethane as the P2-ligand. The current ligand is designed based upon the X-ray structure of 1a-bound HIV-1 protease. The synthesis of (3aS,4S,7aR)-hexahydro-2H-furo[2,3-b] pyran-4-ol (−)-7 was carried out in optically active form. Incorporation of this ligand provided inhibitor 35a, which has shown excellent enzyme inhibitory activity and antiviral potency. Our structure activity studies have indicated that the stereochemistry and the position of oxygens in the ligand are important to the observed potency of the inhibitor. Inhibitor 35a has maintained excellent potency against multidrug-resistant HIV-1 variants. An active site model of 35a was created based upon the X-ray structure of 1b-bound HIV-1 protease. The model offers molecular insights regarding ligand-binding site interactions of the hexahydrofuropyranol-derived novel P2-ligand. PMID:21194227

  20. PC3-secreted microprotein is a novel chemoattractant protein and functions as a high-affinity ligand for CC chemokine receptor 2.

    PubMed

    Pei, Xiaolei; Sun, Qianying; Zhang, Yan; Wang, Pingzhang; Peng, Xinjian; Guo, Changyuan; Xu, Enquan; Zheng, Yi; Mo, Xiaoning; Ma, Jing; Chen, Dixin; Zhang, Yang; Zhang, Yingmei; Song, Quansheng; Guo, Shuai; Shi, Taiping; Zhang, Zhixin; Ma, Dalong; Wang, Ying

    2014-02-15

    PC3-secreted microprotein (PSMP) or microseminoprotein is a newly discovered secreted protein whose function is currently unknown. In this study, PSMP was found to possess chemotactic ability toward monocytes and lymphocytes, and its functional receptor was identified as CCR2B. PSMP was identified as a chemoattractant protein from a PBMC chemoattractant platform screen that we established. The mature secreted PSMP was able to chemoattract human peripheral blood monocytes, PBLs, and CCR2B-expressing THP-1 cells, but not peripheral blood neutrophils, even though it does not contain the classical structure of chemokines. CCR2B was identified as one receptor for PSMP-mediated chemotaxis by screening HEK293 cells that transiently expressed classical chemokine receptors; results obtained from the chemotaxis, calcium flux, receptor internalization, and radioligand-binding assays all confirmed this finding. To further identify the major function of PSMP, we analyzed its expression profile in tissues. PSMP is highly expressed in benign prostatic hyperplasia and in some prostate cancers, and can also be detected in breast tumor tissue. In response to PSMP stimulation, phosphorylated ERK levels downstream of CCR2B signaling were upregulated in the PC3 cell line. Taken together, our data collectively suggest that PSMP is a chemoattractant protein acting as a novel CCR2 ligand that may influence inflammation and cancer development.

  1. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle.

    PubMed

    Li, Yanying; Liu, Xiaodan; Dong, Xiaoyan; Zhang, Lin; Sun, Yan

    2014-07-22

    Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.

  2. AT–1001: a high-affinity α3β4 nAChR ligand with novel nicotine-suppressive pharmacology

    PubMed Central

    Cippitelli, Andrea; Wu, Jinhua; Gaiolini, Kelly A; Mercatelli, Daniela; Schoch, Jennifer; Gorman, Michelle; Ramirez, Alejandra; Ciccocioppo, Roberto; Khroyan, Taline V; Yasuda, Dennis; Zaveri, Nurulain T; Pascual, Conrado; Xie, Xinmin (Simon); Toll, Lawrence

    2015-01-01

    Background and Purpose The α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating nicotine reinforcement processes. AT-1001 has been recently described as a high-affinity and selective α3β4 nAChR antagonist that blocks nicotine self-administration in rats. The aim of this study was to investigate the mechanism of action underlying the nicotine-suppressive effects of AT-1001. Experimental Approach Effects of AT-1001 were determined using in vitro assays and rat models of nicotine addiction, and compared with varenicline. Key Results AT-1001 and its analogue AT-1012 were functionally selective as antagonists for α3β4 over α4β2 nAChRs, but not to the same extent as the binding selectivity, and had partial agonist activity at α3β4 nAChRs. In contrast, varenicline was a partial agonist at α4β2, a weak agonist at α3β4 and inhibited α4β2 at a much lower concentration than it inhibited α3β4 nAChRs. AT-1001 and varenicline also had very different in vivo properties. Firstly, AT-1001 did not exhibit reinforcing properties per se while varenicline was self-administered. Secondly, systemic treatment with AT-1001 did not induce reinstatement of nicotine seeking but rather attenuated reinstatement induced by varenicline, as well as nicotine. Finally, unlike varenicline, AT-1001 selectively blocked nicotine self-administration without altering alcohol lever pressing as assessed in an operant co-administration paradigm. Conclusions and Implications These findings describe a more complex AT-1001 in vitro profile than previously appreciated and provide further support for the potential of AT-1001 and congeners as clinically useful compounds for smoking cessation, with a mechanism of action distinct from currently available medications. PMID:25440006

  3. A current perspective on applications of macrocyclic‐peptide‐based high‐affinity ligands

    PubMed Central

    Leenheer, Daniël; ten Dijke, Peter

    2016-01-01

    Abstract Monoclonal antibodies can bind with high affinity and high selectivity to their targets. As a tool in therapeutics or diagnostics, however, their large size (∼150 kDa) reduces penetration into tissue and prevents passive cellular uptake. To overcome these and other problems, minimized protein scaffolds have been chosen or engineered, with care taken to not compromise binding affinity or specificity. An alternate approach is to begin with a minimal non‐antibody scaffold and select functional ligands from a de novo library. We will discuss the structure, production, applications, strengths, and weaknesses of several classes of antibody‐derived ligands, that is, antibodies, intrabodies, and nanobodies, and nonantibody‐derived ligands, that is, monobodies, affibodies, and macrocyclic peptides. In particular, this review is focussed on macrocyclic peptides produced by the Random non‐standard Peptides Integrated Discovery (RaPID) system that are small in size (typically ∼2 kDa), but are able to perform tasks typically handled by larger proteinaceous ligands. PMID:27352774

  4. Regulation of protein-ligand binding affinity by hydrogen bond pairing

    PubMed Central

    Chen, Deliang; Oezguen, Numan; Urvil, Petri; Ferguson, Colin; Dann, Sara M.; Savidge, Tor C.

    2016-01-01

    Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power. PMID:27051863

  5. Regulation of protein-ligand binding affinity by hydrogen bond pairing.

    PubMed

    Chen, Deliang; Oezguen, Numan; Urvil, Petri; Ferguson, Colin; Dann, Sara M; Savidge, Tor C

    2016-03-01

    Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power.

  6. Interaction between alkaline earth cations and oxo ligands: a DFT study of the affinity of Mg2+ for carbonyl ligands.

    PubMed

    Moreira da Costa, Leonardo; Stoyanov, Stanislav R; Walkimar de M Carneiro, José

    2012-09-01

    The affinities of Mg(2+) for various substituted carbonyl ligands were determined at the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) levels of theory. Two sets of carbonyl ligands were studied: monosubstituted [aldehydes R-CHO and RPh-CHO] and homodisubstituted [ketones R(2)C=O and (RPh)(2)C=O], where R = NH(2), OCH(3), OH, CH(3), H, F, Cl, Br, CN, or NO(2)). In the (RPh)(2)CO case, the R group was bonded to the para position of a phenyl ring. The enthalpies of interaction between the ligands and a pentaaquomagnesium(II) complex were calculated to determine the affinity of each ligand for the Mg(2+) cation and to correlate with geometrical and electronic parameters. These parameters exhibited the same trends for all of the ligands studied, showing that the affinity of Mg(2+) for electron-donating ligands is higher than its affinity for electron-withdrawing ligands. In the complexes, electron-donating groups increase both the electrostatic and the covalent components of the Mg-ligand interaction. This behavior correlates with the Mg-O(carbonyl) distance and the ligand electron-donor strength.

  7. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1

    PubMed Central

    Garcia-Beltran, Wilfredo F.; Hölzemer, Angelique; Martrus, Gloria; Chung, Amy W.; Pacheco, Yovana; Simoneau, Camille R.; Rucevic, Marijana; Lamothe-Molina, Pedro A.; Pertel, Thomas; Kim, Tae-Eun; Dugan, Haley; Alter, Galit; Dechanet-Merville, Julie; Jost, Stephanie; Carrington, Mary; Altfeld, Marcus

    2016-01-01

    The activating NK-cell receptor KIR3DS1 has been implicated in the outcome of various human diseases, including delayed HIV-1 disease progression, yet a ligand that accounts for its biological effects remained unknown. We screened 100 HLA-I proteins and found that KIR3DS1 binds HLA-F, which was validated biochemically and functionally. Primary human KIR3DS1+ NK cells degranulated and produced antiviral cytokines upon encountering HLA-F, and inhibited HIV-1 replication in vitro. CD4+ T-cell activation triggered HLA-F transcription and expression and induced KIR3DS1 ligand expression. HIV-1 infection further increased HLA-F transcription, but decreased KIR3DS1 ligand expression, indicating an immune-evasion mechanism. Altogether, we established HLA-F as a ligand of KIR3DS1, and demonstrated cell-context-dependent expression of HLA-F that may explain the widespread influence of KIR3DS1 in human diseases. PMID:27455421

  8. Improvising 5-HT7R homology model for design of high affinity ligands: model validation with docking, embrace minimization, MM-GBSA, and molecular dynamic simulations.

    PubMed

    Jha, Preeti; Chaturvedi, Shubhra; Swastika; Pal, Sunil; Jain, Nidhi; Mishra, Anil K

    2017-08-09

    The subtype, 5-HT7R has been implicated in neurological disorders and presents itself as a promising target for antidepressant drugs. Design of targeted selective ligands, require a sound knowledge of 3D-receptor structure. In absence of receptor structure, structure-based design of targeted ligands relies on generation of 5-HT7R homology model. In this study, the impact of template choice, alignment, and model building methods on the homology model of 5-HT7R is addressed. The compactness and model quality due to the presence of cholesterol (lipidic receptor) have also been observed. The results suggest good stereochemical quality of the final model. Ramachandran Plot Analysis indicated more than 97.5% amino acid residues in the favorable region. The overall quality factor was 91.8% using ERRAT. The Z-score for backbone confirmation and packing quality were -1.248 and -1.427, respectively, using WHATCHECK. The RMS Z-score for side chain planarity was .711. Other validation results for the final model include binding site analysis in which Asp162, Val163, Phe343, Phe344, Arg350, Arg367, and Leu370 conserved residues were found in the active site, correlation coefficient of .82 in ligand-based screening and .85 in embrace minimization. Further, the model showed good correlation for agonist and antagonist in docking ([Formula: see text] ≈ .76, [Formula: see text] ≈ .82), embrace minimization ([Formula: see text] ≈ .73, [Formula: see text] ≈ .72), and MM-GBSA ([Formula: see text] ≈ .69, [Formula: see text] ≈ .75) studies. The model was subjected to Molecular Dynamics (MD) simulation of 20 ns both in ligand-free and ligand-bound receptor (agonist and antagonist) system in order to assess its stability.

  9. Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 3α

    PubMed Central

    Fala, Angela M.; Oliveira, Juliana F.; Adamoski, Douglas; Aricetti, Juliana A.; Dias, Marilia M.; Dias, Marcio V. B.; Sforça, Maurício L.; Lopes-de-Oliveira, Paulo S.; Rocco, Silvana A.; Caldana, Camila; Dias, Sandra M. G.; Ambrosio, Andre L. B.

    2015-01-01

    Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia. PMID:26237540

  10. Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 3α.

    PubMed

    Fala, Angela M; Oliveira, Juliana F; Adamoski, Douglas; Aricetti, Juliana A; Dias, Marilia M; Dias, Marcio V B; Sforça, Maurício L; Lopes-de-Oliveira, Paulo S; Rocco, Silvana A; Caldana, Camila; Dias, Sandra M G; Ambrosio, Andre L B

    2015-08-03

    Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia.

  11. Cadherin-dependent mechanotransduction depends on ligand identity but not affinity

    PubMed Central

    Tabdili, Hamid; Langer, Matthew; Shi, Quanming; Poh, Yeh-Chuin; Wang, Ning; Leckband, Deborah

    2012-01-01

    Summary This study investigates the relationship between classical cadherin binding affinities and mechanotransduction through cadherin-mediated adhesions. The mechanical properties of cadherin-dependent intercellular junctions are generally attributed to differences in the binding affinities of classical cadherin subtypes that contribute to cohesive energies between cells. However, cell mechanics and mechanotransduction may also regulate intercellular contacts. We used micropipette measurements to quantify the two-dimensional affinities of cadherins at the cell surface, and two complementary mechanical measurements to assess ligand-dependent mechanotransduction through cadherin adhesions. At the cell surface, the classical cadherins investigated in this study form both homophilic and heterophilic bonds with two-dimensional affinities that differ by less than threefold. In contrast, mechanotransduction through cadherin adhesions is strongly ligand dependent such that homophilic, but not heterophilic ligation mediates mechanotransduction, independent of the cadherin binding affinity. These findings suggest that ligand-selective mechanotransduction may supersede differences in cadherin binding affinities in regulating intercellular contacts. PMID:22718345

  12. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1.

    PubMed

    Garcia-Beltran, Wilfredo F; Hölzemer, Angelique; Martrus, Gloria; Chung, Amy W; Pacheco, Yovana; Simoneau, Camille R; Rucevic, Marijana; Lamothe-Molina, Pedro A; Pertel, Thomas; Kim, Tae-Eun; Dugan, Haley; Alter, Galit; Dechanet-Merville, Julie; Jost, Stephanie; Carrington, Mary; Altfeld, Marcus

    2016-09-01

    The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.

  13. Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand.

    PubMed

    Teng, S F; Sproule, K; Husain, A; Lowe, C R

    2000-03-31

    A synthetic bifunctional ligand (22/8) comprising a triazine scaffold substituted with 3-aminophenol (22) and 4-amino-1-naphthol (8) has been designed, synthesised, characterised and immobilized on agarose beads to create a robust, highly selective affinity adsorbent for human immunoglobulin G (IgG). Scatchard analysis of the binding isotherm for IgG on immobilized 22/8 (90 micromol 22/8/g moist weight gel) indicated an affinity constant (Ka) of 1.4 x 10(5) M(-1) and a theoretical maximum capacity of 151.9 mg IgG/g moist weight gel. The adsorbent shows similar selectivity to immobilized protein A and binds IgG from a number of species. An apparent capacity of 51.9 mg human IgG/g moist weight gel was observed under the experimental conditions selected for adsorption. Human IgG was eluted with glycine-HCl buffer with a recovery of 67-69% and a purity of 97.3-99.2%, depending on the pH value of the buffer used for elution. Preparative chromatography of IgG from human plasma showed that under the specified conditions, 94.4% of plasma IgG was adsorbed and 60% subsequently eluted with a purity of 92.5%. The immobilized ligand was able to withstand incubation in 1 M NaOH for 7 days without loss of binding capacity for IgG.

  14. Effects of Midgut-Protein-Preparative and Ligand Binding Procedures on the Toxin Binding Characteristics of BT-R1, a Common High-Affinity Receptor in Manduca sexta for Cry1A Bacillus thuringiensis Toxins

    PubMed Central

    Keeton, Timothy P.; Francis, Brian R.; Maaty, Walid S. A.; Bulla, Lee A.

    1998-01-01

    The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins. PMID:9603829

  15. High affinity α3β4 nicotinic acetylcholine receptor ligands AT-1001 and AT-1012 attenuate cocaine-induced conditioned place preference and behavioral sensitization in mice.

    PubMed

    Khroyan, Taline V; Yasuda, Dennis; Toll, Lawrence; Polgar, Willma E; Zaveri, Nurulain T

    2015-10-15

    Cholinergic signaling via the nicotinic acetylcholine receptors (nAChRs) in the mesolimbic circuitry is involved in the rewarding effects of abused drugs such as cocaine and opioids. In mouse studies, nonselective nAChR antagonist mecamylamine blocks cocaine-induced conditioned place preference (CPP) and behavioral sensitization. Among subtype-selective nAChR antagonists, the β2-selective antagonist dihydrobetaerythroidine and α7 antagonist methyllycaconitine (MLA), but not MLA alone prevent behavioral sensitization to cocaine. Since the role of the α3β4 nAChR subtype in the rewarding and behavioral effects of cocaine is unknown, the present study investigated the effect of two potent and selective α3β4 nAChR ligands, AT-1001 and AT-1012, on the acquisition of cocaine-induced CPP and behavioral sensitization in mice. At 5-30mg/kg, cocaine produced robust CPP, whereas behavioral sensitization of locomotor activity was only observed at the higher doses (20-30mg/kg). Pretreatment with AT-1001 (1-10mg/kg) or AT-1012 (3-10mg/kg) blocked CPP induced by 5mg/kg cocaine, but not by 30mg/kg cocaine. Lower doses of AT-1001 (0.3-1mg/kg) and AT-1012 (1-3mg/kg) did not affect the increase in locomotor activity induced by 5 or 30mg/kg cocaine. But AT-1001, at these doses, blocked locomotor sensitization induced by 30mg/kg cocaine. These results indicate that the α3β4 nAChR play a role in the rewarding and behavioral effects of cocaine, and that selective α3β4 nAChR ligands can attenuate cocaine-induced behavioral phenomena. Since the selective α3β4 nAChR functional antagonist AT-1001 has also been shown to block nicotine self-administration in rats, the present results suggest that α3β4 nAChRs may be a target for the treatment of cocaine addiction as well as for cocaine-nicotine comorbid addiction. Copyright © 2015. Published by Elsevier Inc.

  16. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities.

    PubMed

    Silva, John-Paul; Lelianova, Vera G; Ermolyuk, Yaroslav S; Vysokov, Nickolai; Hitchen, Paul G; Berninghausen, Otto; Rahman, M Atiqur; Zangrandi, Alice; Fidalgo, Sara; Tonevitsky, Alexander G; Dell, Anne; Volynski, Kirill E; Ushkaryov, Yuri A

    2011-07-19

    Latrophilin 1 (LPH1), a neuronal receptor of α-latrotoxin, is implicated in neurotransmitter release and control of presynaptic Ca(2+). As an "adhesion G-protein-coupled receptor," LPH1 can convert cell surface interactions into intracellular signaling. To examine the physiological functions of LPH1, we used LPH1's extracellular domain to purify its endogenous ligand. A single protein of ∼275 kDa was isolated from rat brain and termed Lasso. Peptide sequencing and molecular cloning have shown that Lasso is a splice variant of teneurin-2, a brain-specific orphan cell surface receptor with a function in neuronal pathfinding and synaptogenesis. We show that LPH1 and Lasso interact strongly and specifically. They are always copurified from rat brain extracts. Coculturing cells expressing LPH1 with cells expressing Lasso leads to their mutual attraction and formation of multiple junctions to which both proteins are recruited. Cells expressing LPH1 form chimerical synapses with hippocampal neurons in cocultures; LPH1 and postsynaptic neuronal protein PSD-95 accumulate on opposite sides of these structures. Immunoblotting and immunoelectron microscopy of purified synapses and immunostaining of cultured hippocampal neurons show that LPH1 and Lasso are enriched in synapses; in both systems, LPH1 is presynaptic, whereas Lasso is postsynaptic. A C-terminal fragment of Lasso interacts with LPH1 and induces Ca(2+) signals in presynaptic boutons of hippocampal neurons and in neuroblastoma cells expressing LPH1. Thus, LPH1 and Lasso can form transsynaptic complexes capable of inducing presynaptic Ca(2+) signals, which might affect synaptic functions.

  17. Synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro- 1H-3- benzazepine (TISCH): A high affinity and selective iodinated ligand for CNS D1 dopamine receptor

    SciTech Connect

    Chumpradit, S.; Kung, M.P.; Billings, J.J.; Kung, H.F. )

    1991-03-01

    The synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3- benzazepine, (+/-)-TISCH (8) has been achieved by resolution of intermediate 4, the O-methoxyl, 3'-bromo derivative, as the diastereomeric camphor sulfonate salt. The final products, R-(+)-8 and S-(-)-8, were prepared by treatment of R-(+)- or S-(-)-7, the 3'-tributyltin intermediates, with iodine in chloroform, followed by O-demethylation. By using HPLC with a chiral column, the optical purity (greater than 99%) of the intermediates and the final compounds was determined. Radioiodination was achieved by an iodo-destannylation reaction with sodium (125I)iodide and hydrogen peroxide. As expected, the R-(+)-(125I)-8 (the active isomer) displayed high affinity and selectivity to the CNS D-1 receptor in rat striatum tissue preparation (Kd = 0.205 nM). The rank order of potency was as follows: SCH-23390 (1a) greater than (+/-)-8 greater than (+)-butaclamol greater than spiperone, WB4101 greater than dopamine, 5-HT. After an iv injection, the R-(+)-(125I)-8 penetrated the blood-brain barrier with ease and displayed specific regional distribution corresponding to the D-1 receptor density, while the S-(-)-(125I)-8 showed no specific uptake. The data suggest that the ligand may be useful as a pharmacological tool for characterizing the D-1 dopamine receptor. When labeled with I-123, this ligand is a potential agent for in vivo imaging of CNS D-1 dopamine receptor.

  18. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay.

    PubMed

    Kotera, Naoko; Granzhan, Anton; Teulade-Fichou, Marie-Paule

    2016-01-01

    Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.

  19. Solution assembly of the pseudo-high affinity and intermediate affinity interleukin-2 receptor complexes.

    PubMed Central

    Wu, Z.; Goldstein, B.; Laue, T. M.; Liparoto, S. F.; Nemeth, M. J.; Ciardelli, T. L.

    1999-01-01

    The high affinity interleukin-2 receptor is composed of three cell surface subunits, IL-2Ralpha, IL-2Rbeta, and IL-2Rgamma. Functional forms of the IL-2 receptor exist, however, that enlist only two of the three subunits. On activated T-cells, the alpha- and beta-subunits combine as a preformed heterodimer (the pseudo-high affinity receptor) that serves to capture IL-2. On a subpopulation of natural killer cells, the beta- and gamma-subunits interact in a ligand-dependent manner to form the intermediate affinity receptor site. Previously, we have demonstrated the feasibility of employing coiled-coil molecular recognition for the solution assembly of a heteromeric IL-2 receptor complex. In that study, although the receptor was functional, the coiled-coil complex was a trimer rather than the desired heterodimer. We have now redesigned the hydrophobic heptad sequences of the coiled-coils to generate soluble forms of both the pseudo-high affinity and the intermediate affinity heterodimeric IL-2 receptors. The properties of these complexes were examined and their relevance to the physiological IL-2 receptor mechanism is discussed. PMID:10091650

  20. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors.

    PubMed

    Bosnyak, Sanja; Jones, Emma S; Christopoulos, Arthur; Aguilar, Marie-Isabel; Thomas, Walter G; Widdop, Robert E

    2011-10-01

    AT1R (angiotensin type 1 receptor) and AT2R (angiotensin type 2 receptor) are well known to be involved in the complex cardiovascular actions of AngII (angiotensin II). However, shorter peptide fragments of AngII are thought to have biological activity in their own right and elicit effects that oppose those mediated by AngII. In the present study, we have used HEK (human embryonic kidney)-293 cells stably transfected with either AT1R or AT2R to perform a systematic analysis of binding affinities of all the major angiotensin peptides. Additionally, we tested the novel AT2R agonist Compound 21, as well as the MasR (Mas receptor) agonist and antagonist AVE0991 and A-779 respectively, for their ability to bind to AT1R or AT2R. Candesartan, CGP42214 and PD123319 were used as reference compounds. Binding studies using 125I-[Sar1Ile8]AngII on the AT1R-transfected HEK-293 cells revealed only AngII, AngIII [angiotensin III; angiotensin-(2-8)] and candesartan to have high affinity for AT1R. In the AT2R-transfected HEK-293 cells, competition for 125I-[Sar1Ile8]AngII binding was observed for all ligands except candesartan, AVE0991 and A-779, the latter two compounds having negligible affinity at either AT1R or AT2R. The rank order of affinity of ligands at AT2R was CGP42112>AngII≥AngIII>Compound 21≥PD123319≫AngIV [angiotensin IV; angiotensin-(3-8)]>Ang-(1-7) [angiotensin-(1-7)]. Of note, although AngIV and Ang-(1-7) exhibited only modest affinity at AT2R compared with AngII, these two angiotensin peptides, together with AngIII, had substantial AT2R selectivity over AT1R. Collectively, our results suggest that shorter angiotensin peptides can act as endogenous ligands at AT2R.

  1. A mutation in the first ligand-binding repeat of the human very-low-density lipoprotein receptor results in high-affinity binding of the single V1 module to human rhinovirus 2.

    PubMed

    Nizet, Stephane; Wruss, Juergen; Landstetter, Nathalie; Snyers, Luc; Blaas, Dieter

    2005-12-01

    Minor group human rhinoviruses (HRVs) bind members of the low-density lipoprotein receptor family for cell entry. The ligand-binding domains of these membrane proteins are composed of various numbers of direct repeats of about 40 amino acids in length. Residues involved in binding of module 3 (V3) of the very-low-density lipoprotein receptor (VLDLR) to HRV2 have been identified by X-ray crystallography (N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, Nat. Struct. Mol. Biol. 11:429-434, 2004). Sequence comparisons of the eight repeats of VLDLR with respect to the residues implicated in the interaction between V3 and HRV2 suggested that (in addition to V3) V1, V2, V5, and V6 also fulfill the requirements for interacting with the virus. Using a highly sensitive binding assay employing phage display, we demonstrate that single modules V2, V3, and V5 indeed bind HRV2. However, V1 does not. A single mutation from threonine 17 to proline converted the nonbinding wild-type form of V1 into a very strong binder. We interpret the dramatic increase in affinity by the generation of a hydrophobic patch between virus and receptor; in the presence of threonine, the contact area might be disturbed. This demonstrates that the interaction between virus and its natural receptors can be strongly enhanced by mutation.

  2. A selective high affinity ligand (SHAL) designed to bind to an over-expressed human antigen on non-Hodgkin's lymphoma also binds to canine B-cell lymphomas.

    PubMed

    Balhorn, Rod L; Skorupski, Katherine A; Hok, Saphon; Balhorn, Monique Cosman; Guerrero, Teri; Rebhun, Robert B

    2010-10-15

    Therapies using antibodies directed against cell surface proteins have improved survival for human patients with non-Hodgkin's lymphoma (NHL). It is possible that similar immuno-therapeutic approaches may also benefit canine NHL patients. Unfortunately, variability between human and canine epitopes often limits the usefulness of such therapies in pet dogs. The Lym-1 antibody recognizes a unique epitope on HLA-DR10 that is expressed on the majority of human B-cell malignancies. The Lym-1 antibody has now been observed to bind to dog lymphocytes and B-cell NHL. Sequence comparisons and computer modeling of a human and three canine DRB1 proteins identified several orthologs of human HLA-DR10 expressed by dog lymphocytes. Immuno-staining confirmed the presence of proteins containing the Lym-1 epitope on dog lymphocytes and B-cell NHL. In addition, a selective high affinity ligand (SHAL) SH-7139 designed to bind within the Lym-1 epitope of HLA-DR10 was also observed to bind to canine B-cell NHL tissue. This SHAL, which is selectively cytotoxic to cells expressing HLA-DR10 and has been shown to cure mice bearing human B-cell lymphoma xenografts, may prove useful in treating B-cell malignancies in pet dogs.

  3. In Vitro and In Vivo Evaluation of a 18F-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as a PET Ligand for GRPR-Targeted Tumor Imaging

    PubMed Central

    Velikyan, Irina; Lindeberg, Gunnar; Sörensen, Jens; Larhed, Mats; Antoni, Gunnar; Sandström, Mattias; Tolmachev, Vladimir; Orlova, Anna

    2013-01-01

    Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological

  4. In vitro and in vivo evaluation of a (18)F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging.

    PubMed

    Varasteh, Zohreh; Aberg, Ola; Velikyan, Irina; Lindeberg, Gunnar; Sörensen, Jens; Larhed, Mats; Antoni, Gunnar; Sandström, Mattias; Tolmachev, Vladimir; Orlova, Anna

    2013-01-01

    Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with (68)Ga and (111)In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a (18)F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with (18)F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [(nat)F]AlF-NOTA-P2-RM26 was compared to that of the (nat)Ga-loaded peptide using (125)I-Tyr(4)-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with (18)F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [(nat)F]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [(18)F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p

  5. Specific recognition of supercoiled plasmid DNA by affinity chromatography using the intercalator DAPP as ligand.

    PubMed

    Caramelo-Nunes, C; Almeida, P; Marcos, J C; Tomaz, C T

    2013-06-01

    Small molecules that bind DNA with high specificity present a promising opportunity for application as chromatographic ligands for plasmid DNA (pDNA) purification. This research used the intercalator 3,8-diamino-6-phenylphenanthridine (DAPP) as an immobilized ligand for the specific separation of supercoiled (sc) pDNA by affinity chromatography. The results showed that the protonated DAPP-Sepharose support has a great affinity for sc pDNA isoform, separating it from the less active open circular and linear isoforms. All pDNA isoforms were retained in the column using 10mM acetate buffer pH 5. Selective elution of oc and linear isoforms was achieved with 0.22M of sodium chloride in the same buffer. Finally, increasing the concentration to 0.55M led to the elution of the sc isoform. The binding of pDNA to DAPP-Sepharose varies in function of pH, and the stability of the protonated DAPP-DNA complex decreases with increasing salt concentration. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to α4β2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands.

    PubMed

    Zhang, Han-Kun; Eaton, J Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P

    2012-09-27

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies.

  7. Insights into the Structural Determinants Required for High Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors; An Integrated Approach to Behaviorally Active Nicotinic Ligands

    PubMed Central

    Zhang, Han-Kun; Eaton, J. Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B.; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J.; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P.

    2012-01-01

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a co-crystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing, selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine our previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. In order to validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogs of compound 5. The most promising compound 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral endpoints in the rodent studies. PMID:22928944

  8. Steroidal Bivalent Ligands for the Estrogen Receptor: Design, Synthesis, Characterization and Binding Affinities

    PubMed Central

    LaFrate, Andrew L.; Carlson, Kathryn E.; Katzenellenbogen, John A.

    2011-01-01

    Steroidal bivalent ligands for the estrogen receptor (ER) were designed using crystal structures of ERα dimers as a template. The syntheses of several 17α-ethynylestradiol-based bivalent ligands with varying linker compositions and lengths are described. The binding affinities of these bivalent ligands for ERα and ERβ were determined. In the two series of bivalent ligands that we synthesized, there is a clear correlation between linker length and binding affinity, both of which reach a maximum at the same tether length. Further studies are underway to explore aspects of bivalent ligand and control compound binding to the ERs and their effects on ER dimer formation; these results will be reported in a subsequent publication. PMID:19394231

  9. New strategy for the design of ligands for the purification of pharmaceutical proteins by affinity chromatography.

    PubMed

    Sproule, K; Morrill, P; Pearson, J C; Burton, S J; Hejnaes, K R; Valore, H; Ludvigsen, S; Lowe, C R

    2000-03-31

    A new approach for the identification of ligands for the purification of pharmaceutical proteins by affinity chromatography is described. The technique involves four steps. Selection of an appropriate site on the target protein, design of a complementary ligand compatible with the three-dimensional structure of the site, construction of a limited solid-phase combinatorial library of near-neighbour ligands and solution synthesis of the hit ligand, immobilisation, optimisation and application of the adsorbent for the purification of the target protein. This strategy is exemplified by the purification of a recombinant human insulin precursor (MI3) from a crude fermentation broth of Saccharomyces cerevisiae.

  10. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.

    PubMed

    Wang, Changhao; Nguyen, Peter H; Pham, Kevin; Huynh, Danielle; Le, Thanh-Binh Nancy; Wang, Hongli; Ren, Pengyu; Luo, Ray

    2016-10-15

    Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods have become widely adopted in estimating protein-ligand binding affinities due to their efficiency and high correlation with experiment. Here different computational alternatives were investigated to assess their impact to the agreement of MMPBSA calculations with experiment. Seven receptor families with both high-quality crystal structures and binding affinities were selected. First the performance of nonpolar solvation models was studied and it was found that the modern approach that separately models hydrophobic and dispersion interactions dramatically reduces RMSD's of computed relative binding affinities. The numerical setup of the Poisson-Boltzmann methods was analyzed next. The data shows that the impact of grid spacing to the quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Å is already small enough to be negligible. The impact of different atomic radius sets and different molecular surface definitions was further analyzed and weak influences were found on the agreement with experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric constant generally improves the overall agreement with experiment, especially for highly charged binding pockets. The data also showed that the converged simulations caused slight reduction in the agreement with experiment. Finally the direction of estimating absolute binding free energies was briefly explored. Upon correction of the binding-induced rearrangement free energy and the binding entropy lost, the errors in absolute binding affinities were also reduced dramatically when the modern nonpolar solvent model was used, although further developments were apparently necessary to further improve the MMPBSA methods. © 2016 Wiley Periodicals, Inc.

  11. New polymer-supported ion-complexing agents: design, preparation and metal ion affinities of immobilized ligands.

    PubMed

    Alexandratos, Spiro D

    2007-01-31

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion.

  12. Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity.

    PubMed

    Weinert, Emily E; Phillips-Piro, Christine M; Marletta, Michael A

    2013-10-01

    The role of π-stacking in controlling redox and ligand binding properties of porphyrins has been of interest for many years. The recent discovery of H-NOX domains has provided a model system to investigate the role of porphyrin π-stacking within a heme protein scaffold. Removal of a phenylalanine-porphyrin π-stack dramatically increased O2, NO, and CO affinities and caused changes in redox potential (~40mV) without any structural changes. These results suggest that small changes in redox potential affect ligand affinity and that π-stacking may provide a novel route to engineer heme protein properties for new functions.

  13. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    PubMed

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  14. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    PubMed

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  15. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    SciTech Connect

    Tiberi, M.; Magnan, J. )

    1990-05-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).

  16. A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins.

    PubMed

    Chen, Chen; El Khoury, Graziella; Zhang, Peiqing; Rudd, Pauline M; Lowe, Christopher R

    2016-04-29

    One challenge facing the production of glycoprotein therapeutics is the lack of stable and selective affinity ligands for their enrichment. Synthetic affinity ligands based on the solid phase multi-component Ugi reaction represent a desirable option, particularly those incorporating benzoboroxole and its derivatives, which have been shown to enrich glycoproteins under physiological conditions. Thus, an Ugi ligand, A21C11I8, comprising 5-amino-2-hydroxymethylphenylboronic acid was synthesised on aldehyde-functionalised Sepharose™. Immobilised A21C11I8 displayed affinity for the glycosylated protein, glucose oxidase (GOx), which bound primarily through its glycan moiety. The ligand had a preference for sugar alcohols and the furanose form of the monosaccharides tested. Compared with immobilised 3-aminophenylboronic acid and Concanavalin A, the Ugi ligand was able to purify GOx from spiked Escherichia coli supernatants with retention of its maximum enzymatic activity and protein recovery. Glycan profiles of human immunoglobulin G tested on A21C11I8 columns suggested that the adsorbent possesses the potential to resolve sialylated and neutral glycoforms. The benzoboroxole-functionalised Ugi ligand may find application in selective glycoform separation.

  17. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  18. Affinity ligand selection from a library of small molecules: assay development, screening, and application.

    PubMed

    Saraswat, Lakshmi D; Zhang, Huiyun; Hardy, Larry W; Jones, Simon S; Bhikhabhai, Rama; Brink, Charlotte; Bergenstråhle, Annika; Haglund, Rolf; Gallion, Steven L

    2005-01-01

    A facile and cost-effective process for screening synthetic libraries for an affinity ligand is described. A high throughput 96-well plate filtration method was designed to screen both discrete compounds and mixtures of compounds attached to a solid support. Human serum albumin (HSA) was used as a target protein to demonstrate the proof of concept. Detection and quantitation by fluorescence was accomplished with the use of fluorescamine to conjugate the protein in the filtrate. It is found that mixtures demonstrating low average binding reflect an overall lower hit rate of the components, whereas deconvolution of mixtures with high protein binding consistently provides a high hit rate. This differs from many of the previous experiences screening solid-phase mixtures in which high false positive rates are noted to occur. A total of 100K compounds were tested: 25K as discrete samples and 75K as mixtures. An overall hit rate of 8% was observed. Secondary screening of compounds measured specificity, recovery, and dynamic binding capacity. The effectiveness of the method is illustrated using an affinity column made with a representative lead compound. A similar purity was achieved in a single-step purification of HSA from serum as compared to that obtained by two steps of ion-exchange chromatography. The process for primary screening of a large number of compounds is simple, inexpensive, and applicable to any soluble target protein of known or unknown function from crude mixtures and may have additional utility as a generic chemical affinity tool for the functional characterization of novel proteins emerging from proteomics work.

  19. Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for κ, μ, and δ opioid receptors.

    PubMed

    Zhang, Bin; Zhang, Tangzhi; Sromek, Anna W; Scrimale, Thomas; Bidlack, Jean M; Neumeyer, John L

    2011-05-01

    A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.

  20. Mapping Protein–Protein Interactions of the Resistance-Related Bacterial Zeta Toxin–Epsilon Antitoxin Complex (ε2ζ2) with High Affinity Peptide Ligands Using Fluorescence Polarization

    PubMed Central

    Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg

    2016-01-01

    Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α helices of Zeta forming the protein–protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay. PMID:27438853

  1. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction

    PubMed Central

    2013-01-01

    Background Models that are capable of reliably predicting binding affinities for protein-ligand complexes play an important role the field of structure-guided drug design. Methods Here, we begin by applying the computational geometry technique of Delaunay tessellation to each set of atomic coordinates for over 1400 diverse macromolecular structures, for the purpose of deriving a four-body statistical potential that serves as a topological scoring function. Next, we identify a second, independent set of three hundred protein-ligand complexes, having both high-resolution structures and known dissociation constants. Two-thirds of these complexes are randomly selected to train a predictive model of binding affinity as follows: two tessellations are generated in each case, one for the entire complex and another strictly for the isolated protein without its bound ligand, and a topological score is computed for each tessellation with the four-body potential. Predicted protein-ligand binding affinity is then based on an empirically derived linear function of the difference between both topological scores, one that appropriately scales the value of this difference. Results A comparison between experimental and calculated binding affinity values over the two hundred complexes reveals a Pearson's correlation coefficient of r = 0.79 with a standard error of SE = 1.98 kcal/mol. To validate the method, we similarly generated two tessellations for each of the remaining protein-ligand complexes, computed their topological scores and the difference between the two scores for each complex, and applied the previously derived linear transformation of this topological score difference to predict binding affinities. For these one hundred complexes, we again observe a correlation of r = 0.79 (SE = 1.93 kcal/mol) between known and calculated binding affinities. Applying our model to an independent test set of high-resolution structures for three hundred diverse enzyme-inhibitor complexes

  2. Rapid Buffer and Ligand Screening for Affinity Chromatography by Multiplexed Surface Plasmon Resonance Imaging.

    PubMed

    Geuijen, Karin P M; van Wijk-Basten, Daniëlle E J W; Egging, David F; Schasfoort, Richard B M; Eppink, Michel H

    2017-09-01

    Protein purifications are often based on the principle of affinity chromatography, where the protein of interest selectively binds to an immobilized ligand. The development of affinity purification requires selecting proper wash and elution conditions. In recent years, miniaturization of the purification process is applied to speed up the development (e.g., microtiterplates, robocolumns). The application of surface plasmon resonance imaging (SPRi) as a tool to simultaneously screen many buffer conditions for wash and elution steps in an affinity-based purification process is studied. Additionally, the protein A ligand stability after exposure to harsh cleaning conditions often limits the reuse of resins and is determined at lab scale. The SPRi technology to screen ligand life-time with respect to alkali stability is used. It is also demonstrated that SPRi can successfully be applied in screening experiments for process developments in a miniaturized approach. The amount of resin, protein and buffer in these studies is reduced 30-300-fold compared to 1 mL column scale, and approximately 10-1000-fold compared to filter plate experiments. The overall development time can be decreased from several months towards days. The multiplexed SPRi can be applied in screening affinity chromatography conditions in early stage development for ligand development and recombinant protein production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  4. [Preparation of affinity sorbents with immobilized synthetic ligands for therapeutic apheresis].

    PubMed

    Levashov, P A; Afanas'eva, O I; Dmitrieva, O A; Klesareva, E V; Adamova, I Iu; Afanas'eva, M I; Bespalova, Zh D; Sidorova, M V; Pokrovskiĭ, S N

    2010-01-01

    Preparation and stability of a few examples of medical sorbents are described. A simple and practical technique has been developed for sorbent preparation with the low weight synthetic ligands such as amino acids, peptides or oligosaccharides. This approach to sorbent preparation enables the development of the new affine columns generation for medicine and biotechnology to be carried out with ease.

  5. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands.

    PubMed

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  6. Distinct impacts of substrate elasticity and ligand affinity on traction force evolution.

    PubMed

    Müller, Christina; Pompe, Tilo

    2016-01-07

    Cell adhesion is regulated by the mechanical characteristics of the cell environment. The influences of different parameters of the adhesive substrates are convoluted in the cell response leading to questions on the underlying mechanisms, like biochemical signaling on the level of adhesion molecules, or viscoelastic properties of substrates and cell. By a time-resolved analysis of traction force generation during early cell adhesion, we wanted to elucidate the contributions of substrate mechanics to the adhesion process, in particular the impact of substrate elasticity and the molecular friction of adhesion ligands on the substrate surface. Both parameters were independently adjusted by (i) an elastic polyacrylamide hydrogel of variable crosslinking degree and (ii) a thin polymer coating of the hydrogel surface controlling the affinity (and the correlated substrate-ligand friction) of the adhesion ligand fibronectin. Our analysis showed two sequential regimes of considerable force generation, whose occurrence was found to be independent of substrate properties. The first regime is characterized by spreading of the cell and a succeeding force increase. After spreading cells enter the second regime with saturated forces. Substrate elasticity and viscosity, namely hydrogel elasticity and ligand affinity, were both found to affect the kinetics and absolute levels of traction force quantities. A faster increase and a higher saturation level of traction forces were observed for a higher substrate stiffness and a higher ligand affinity. The results complement recent modeling approaches on the evolution of forces in cell spreading and contribute to a better understanding of the dynamics of cell adhesion on viscoelastic substrates.

  7. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    PubMed

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  8. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

    PubMed Central

    Ballester, Pedro J.; Mitchell, John B.O.

    2012-01-01

    Motivation Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of Molecular Docking, which is in turn an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterise the complex, which also include parameters fitted to experimental or simulation data, and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. Results We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score’s performance was shown to improve dramatically with training set size and hence the future availability of more high quality structural and interaction data is expected to lead to improved versions of RF-Score. PMID:20236947

  9. Determination of interdependent ligand effects on human red cell oxygen affinity.

    PubMed

    Zijlstra, W G; Oeseburg, B; Kwant, G; Zwart, A

    1982-06-01

    Human whole blood oxygen affinity was determined as P50, i.e. PO2 for oxygen saturation (SO2) = 0.5, in a new system which allows the measurement of SO2, PO2 and pH continuously and independently, with control of PCO2 and temperature. The influence of pH on P50 expressed as the H+ factor (delta log P50/delta pH)PCO2 was measured under conditions of varying PCO2, temperature and concentration of 2,3-diphosphoglycerate (2,3-DPG), resulting in a set of data expressing second-order inter-ligand interactions. The H+ factor appeared to be only slightly dependent on PCO2. Similarly, the CO2 factor (delta log P50/delta log PCO2)pH shows only a minor dependence on pH. The H+ factor in linearly related to the temperature: at 17 degrees C and 42 degrees C the H+ factor is about -0.53 and -0.36, respectively. Likewise, the temperature factor (delta log P50/delta T)PCO2,pH is linearly related to pH. A pilot study on the effect of varying intra-erythrocytic 2,3-DPG concentrations on the oxygen affinity showed that a very low 2,3-DPH/Hb4 ratio apparently does not influence the H+ factor. A high ratio, however, seems to lower the H+ factor considerably.

  10. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR

  11. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  12. Optimizing electrostatic affinity in ligand-receptor binding: Theory, computation, and ligand properties

    NASA Astrophysics Data System (ADS)

    Kangas, Erik; Tidor, Bruce

    1998-11-01

    The design of a tight-binding molecular ligand involves a tradeoff between an unfavorable electrostatic desolvation penalty incurred when the ligand binds a receptor in aqueous solution and the generally favorable intermolecular interactions made in the bound state. Using continuum electrostatic models we have developed a theoretical framework for analyzing this problem and have shown that the ligand-charge distribution can be optimized to produce the most favorable balance of these opposing free energy contributions [L.-P. Lee and B. Tidor, J. Chem. Phys. 106, 8681 (1997)]. Herein the theoretical framework is extended and calculations are performed for a wide range of model receptors. We examine methods for computing optimal ligands (including cases where there is conformational change) and the resulting properties of optimized ligands. In particular, indicators are developed to aid in the determination of the deficiencies in a specific ligand or basis. A connection is established between the optimization problem here and a generalized image problem, from which an inverse-image basis set can be defined; this basis is shown to perform very well in optimization calculations. Furthermore, the optimized ligands are shown to have favorable electrostatic binding free energies (in contrast to many natural ligands), there is a strong correlation between the receptor desolvation penalty and the optimized binding free energy for fixed geometry, and the ligand and receptor cannot generally be mutually optimal. Additionally, we introduce the display of complementary desolvation and interaction potentials and the deviation of their relationship from ideal as a useful tool for judging effective complementarity. Scripts for computing and displaying these potentials with GRASP are available at http://mit.edu/tidor.

  13. A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures.

    PubMed

    Annis, D Allen; Nazef, Naim; Chuang, Cheng-Chi; Scott, Margaret Porter; Nash, Huw M

    2004-12-01

    To realize the full potential of combinatorial chemistry-based drug discovery, generic and efficient tools must be developed that apply the strengths of diversity-oriented chemical synthesis to the identification and optimization of lead compounds for disease-associated protein targets. We report an affinity selection-mass spectrometry (AS-MS) method for protein-ligand affinity ranking and the classification of ligands by binding site. The method incorporates the following steps: (1) an affinity selection stage, where protein-binding compounds are selected from pools of ligands in the presence of varying concentrations of a competitor ligand, (2) a first chromatography stage to separate unbound ligands from protein-ligand complexes, and (3) a second chromatography stage to dissociate the ligands from the complexes for identification and quantification by MS. The ability of the competitor ligand to displace a target-bound library member, as measured by MS, reveals the binding site classification and affinity ranking of the mixture components. The technique requires no radiolabel incorporation or direct biochemical assay, no modification or immobilization of the compounds or target protein, and all reaction components, including any buffers or cofactors required for protein stability, are free in solution. We demonstrate the method for several compounds of wide structural variety against representatives of the most important protein classes in contemporary drug discovery, including novel ATP-competitive and allosteric inhibitors of the Akt-1 (PKB) and Zap-70 kinases, and previously undisclosed antagonists of the M(2) muscarinic acetylcholine receptor, a G-protein coupled receptor (GPCR). The theoretical basis of the technique is analyzed mathematically, allowing quantitative estimation of binding affinities and, in the case of allosteric interaction, absolute determination of binding cooperativity. The method is readily applicable to high-throughput screening hit

  14. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation

    PubMed Central

    Goenka, Radhika; Matthews, Andrew H.; Zhang, Bochao; O’Neill, Patrick J.; Scholz, Jean L.; Migone, Thi-Sau; Leonard, Warren J.; Stohl, William; Hershberg, Uri

    2014-01-01

    We have assessed the role of B lymphocyte stimulator (BLyS) and its receptors in the germinal center (GC) reaction and affinity maturation. Despite ample BLyS retention on B cells in follicular (FO) regions, the GC microenvironment lacks substantial BLyS. This reflects IL-21–mediated down-regulation of the BLyS receptor TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) on GC B cells, thus limiting their capacity for BLyS binding and retention. Within the GC, FO helper T cells (TFH cells) provide a local source of BLyS. Whereas T cell–derived BLyS is dispensable for normal GC cellularity and somatic hypermutation, it is required for the efficient selection of high affinity GC B cell clones. These findings suggest that during affinity maturation, high affinity clones rely on TFH-derived BLyS for their persistence. PMID:24367004

  15. Graphlet signature-based scoring method to estimate protein-ligand binding affinity.

    PubMed

    Singh, Omkar; Sawariya, Kunal; Aparoy, Polamarasetty

    2014-12-01

    Over the years, various computational methodologies have been developed to understand and quantify receptor-ligand interactions. Protein-ligand interactions can also be explained in the form of a network and its properties. The ligand binding at the protein-active site is stabilized by formation of new interactions like hydrogen bond, hydrophobic and ionic. These non-covalent interactions when considered as links cause non-isomorphic sub-graphs in the residue interaction network. This study aims to investigate the relationship between these induced sub-graphs and ligand activity. Graphlet signature-based analysis of networks has been applied in various biological problems; the focus of this work is to analyse protein-ligand interactions in terms of neighbourhood connectivity and to develop a method in which the information from residue interaction networks, i.e. graphlet signatures, can be applied to quantify ligand affinity. A scoring method was developed, which depicts the variability in signatures adopted by different amino acids during inhibitor binding, and was termed as GSUS (graphlet signature uniqueness score). The score is specific for every individual inhibitor. Two well-known drug targets, COX-2 and CA-II and their inhibitors, were considered to assess the method. Residue interaction networks of COX-2 and CA-II with their respective inhibitors were used. Only hydrogen bond network was considered to calculate GSUS and quantify protein-ligand interaction in terms of graphlet signatures. The correlation of the GSUS with pIC50 was consistent in both proteins and better in comparison to the Autodock results. The GSUS scoring method was better in activity prediction of molecules with similar structure and diverse activity and vice versa. This study can be a major platform in developing approaches that can be used alone or together with existing methods to predict ligand affinity from protein-ligand complexes.

  16. Graphlet signature-based scoring method to estimate protein–ligand binding affinity

    PubMed Central

    Singh, Omkar; Sawariya, Kunal; Aparoy, Polamarasetty

    2014-01-01

    Over the years, various computational methodologies have been developed to understand and quantify receptor–ligand interactions. Protein–ligand interactions can also be explained in the form of a network and its properties. The ligand binding at the protein-active site is stabilized by formation of new interactions like hydrogen bond, hydrophobic and ionic. These non-covalent interactions when considered as links cause non-isomorphic sub-graphs in the residue interaction network. This study aims to investigate the relationship between these induced sub-graphs and ligand activity. Graphlet signature-based analysis of networks has been applied in various biological problems; the focus of this work is to analyse protein–ligand interactions in terms of neighbourhood connectivity and to develop a method in which the information from residue interaction networks, i.e. graphlet signatures, can be applied to quantify ligand affinity. A scoring method was developed, which depicts the variability in signatures adopted by different amino acids during inhibitor binding, and was termed as GSUS (graphlet signature uniqueness score). The score is specific for every individual inhibitor. Two well-known drug targets, COX-2 and CA-II and their inhibitors, were considered to assess the method. Residue interaction networks of COX-2 and CA-II with their respective inhibitors were used. Only hydrogen bond network was considered to calculate GSUS and quantify protein–ligand interaction in terms of graphlet signatures. The correlation of the GSUS with pIC50 was consistent in both proteins and better in comparison to the Autodock results. The GSUS scoring method was better in activity prediction of molecules with similar structure and diverse activity and vice versa. This study can be a major platform in developing approaches that can be used alone or together with existing methods to predict ligand affinity from protein–ligand complexes. PMID:26064572

  17. Prediction of ligand binding affinity using a multiple-conformations-multiple-protonation scheme: application to estrogen receptor α.

    PubMed

    Mizutani, Miho Y; Takamatsu, Yoshihiro; Ichinose, Tazuko; Itai, Akiko

    2012-01-01

    A fast method that can predict the binding affinities of chemicals to a target protein with a high degree of accuracy will be very useful in drug design and regulatory science. We have been developing a scoring function for affinity prediction, which can be applied to extensive protein systems, and also trying to generate a prediction scheme that specializes in each target protein, with as high a predictive power as possible. In this study, we have constructed a prediction scheme with target-specific scores for estimating ligand-binding affinities to human estrogen receptor α (ERα), considering the major conformational change between agonist- and antagonist-bound forms and the change in protonation states of histidine at the ligand-binding site. The generated scheme calibrated with fewer training compounds (23 for the agonist-bound form, 17 for the antagonist-bound form) demonstrated good predictive power (a predictive r(2) of 0.83 for 154 validation compounds); this was also true for compounds with frameworks that were quite different from those of the training compounds. Our prediction scheme will be useful in drug development targeting ERα and in primary screening of endocrine disruptors, and provides a successful method of affinity prediction considering the major conformational changes in a protein.

  18. A Genome-Inspired DNA Ligand for Affinity Capture of Insulin and Insulin-like Growth Factor-2

    PubMed Central

    Xiao, Junfeng; Carter, Jennifer A.; Frederick, Kimberley A.; McGown, Linda B.

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene contains tandem repeats of similar G-rich sequences, some of which form intramolecular G-quadruplex structures in vitro. Previous work showed affinity binding of insulin to an intramolecular G-quadruplex formed by ILPR variant a. Here we report on interactions of insulin and the highly homologous insulin-like growth factor 2 (IGF-2) with ILPR variants a, h and i. Circular dichroism indicated intramolecular G-quadruplex formation for variants a and h. Affinity MALDI mass spectrometry and surface plasmon resonance were used to compare protein capture and binding strengths. Insulin and IGF-2 exhibited high binding affinity for variants a and h but not i, indicating the involvement of intramolecular G-quadruplexes. Interaction between insulin and variant a was unique in the appearance of two binding interactions with KD~10−13 M and KD~10−7 M, which was not observed for insulin with variant h (KD~10−8 M) or IGF-2 with either variant (KD’s~10−9 D M). The results provide a basis for design of DNA binding ligands for insulin and IGF-2 and support a new approach to discovery of DNA affinity binding ligands based on genome-inspired sequences rather than the traditional combinatorial selection route to aptamer discovery. PMID:19391177

  19. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 7. Synthesis and Pharmacological Evaluation of 4-Quinolone-3-carboxamides and 4-Hydroxy-2-quinolone-3-carboxamides as High Affinity Cannabinoid Receptor 2 (CB2R) Ligands with Improved Aqueous Solubility.

    PubMed

    Mugnaini, Claudia; Brizzi, Antonella; Ligresti, Alessia; Allarà, Marco; Lamponi, Stefania; Vacondio, Federica; Silva, Claudia; Mor, Marco; Di Marzo, Vincenzo; Corelli, Federico

    2016-02-11

    4-Quinolone-3-carboxamide derivatives have long been recognized as potent and selective cannabinoid type-2 receptor (CB2R) ligands. With the aim to improve their physicochemical properties, basically aqueous solubility, two different approaches were followed, entailing the substitution of the alkyl chain with a basic replacement or scaffold modification to 4-hydroxy-2-quinolone structure. According to the first approach, compound 6d was obtained, showing slightly reduced receptor affinity (K(i) = 60 nM) compared to the lead compound 4 (0.8 nM) but greatly enhanced solubility (400-3400 times depending on the pH of the medium). On the other hand, shifting from 4-quinolone to 4-hydroxy-2-quinolone structure enabled the discovery of a novel class of CB2R ligands, such as 7b and 7c, characterized by K(i) < 1 nM and selectivity index [SI = K(i)(CB1R)/K(i)(CB2R)] > 1300. At pH 7.4, compound 7c resulted by 100-fold more soluble than 4.

  20. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2013-11-19

    The human cannabinoid receptor, CB1, a G protein-coupled receptor (GPCR), contains a relatively long (∼110 a.a.) amino terminus, whose function is still not defined. Here we explore a potential role for the CB1 N-terminus in modulating ligand binding to the receptor. Although most of the CB1 N-terminus is not necessary for ligand binding, previous studies have found that mutations introduced into its conserved membrane proximal region (MPR) do impair the receptors ability to bind ligand. Moreover, within the highly conserved MPR (∼ residues 90-110) lie two cysteine residues that are invariant in all CB1 receptors. We find these two cysteines (C98 and C107) form a disulfide in heterologously expressed human CB1, and this C98-C107 disulfide is much more accessible to reducing agents than the previously known disulfide in extracellular loop 2 (EL2). Interestingly, the presence of the C98-C107 disulfide modulates ligand binding to the receptor in a way that can be quantitatively analyzed by an allosteric model. The C98-C107 disulfide also alters the effects of allosteric ligands for CB1, Org 27569 and PSNCBAM-1. Together, these results provide new insights into how the N-terminal MPR and EL2 act together to influence the high-affinity orthosteric ligand binding site in CB1 and suggest that the CB1 N-terminal MPR may be an area through which allosteric modulators can act.

  1. G-quadruplex on oligo affinity support (G4-OAS): an easy affinity chromatography-based assay for the screening of G-quadruplex ligands.

    PubMed

    Musumeci, Domenica; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Giancola, Concetta; Montesarchio, Daniela; Pagano, Bruno

    2014-05-06

    A simple, cheap, and highly reproducible affinity chromatography-based method has been developed for the screening of G-quadruplex binders. The tested compounds were flowed through a polystyrene resin functionalized with an oligonucleotide able to form, in proper conditions, a G-quadruplex structure. Upon cation-induced control of the folding/unfolding processes of the immobilized G-quadruplex-forming sequence, small molecules specifically interacting with the oligonucleotide structure were first captured and then released depending on the used working solution. This protocol, first optimized for different kinds of known G-quadruplex ligands and then applied to a set of putative ligands, has allowed one to fully reuse the same functionalized resin batch, recycled for several tens of experiments without loss in efficiency and reproducibility.

  2. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.

    PubMed

    Li, Shuyan; Xi, Lili; Wang, Chengqi; Li, Jiazhong; Lei, Beilei; Liu, Huanxiang; Yao, Xiaojun

    2009-04-30

    In this study, a novel method was developed to predict the binding affinity of protein-ligand based on a comprehensive set of structurally diverse protein-ligand complexes (PLCs). The 1300 PLCs with binding affinity (493 complexes with K(d) and 807 complexes with K(i)) from the refined dataset of PDBbind Database (release 2007) were studied in the predictive model development. In this method, each complex was described using calculated descriptors from three blocks: protein sequence, ligand structure, and binding pocket. Thereafter, the PLCs data were rationally split into representative training and test sets by full consideration of the validation of the models. The molecular descriptors relevant to the binding affinity were selected using the ReliefF method combined with least squares support vector machines (LS-SVMs) modeling method based on the training data set. Two final optimized LS-SVMs models were developed using the selected descriptors to predict the binding affinities of K(d) and K(i). The correlation coefficients (R) of training set and test set for K(d) model were 0.890 and 0.833. The corresponding correlation coefficients for the K(i) model were 0.922 and 0.742, respectively. The prediction method proposed in this work can give better generalization ability than other recently published methods and can be used as an alternative fast filter in the virtual screening of large chemical database. (c) 2008 Wiley Periodicals, Inc.

  3. Affinity Modulation of Small-Molecule Ligands by Borrowing Endogenous Protein Surfaces

    NASA Astrophysics Data System (ADS)

    Briesewitz, Roger; Ray, Gregory T.; Wandless, Thomas J.; Crabtree, Gerald R.

    1999-03-01

    A general strategy is described for improving the binding properties of small-molecule ligands to protein targets. A bifunctional molecule is created by chemically linking a ligand of interest to another small molecule that binds tightly to a second protein. When the ligand of interest is presented to the target protein by the second protein, additional protein-protein interactions outside of the ligand-binding sites serve either to increase or decrease the affinity of the binding event. We have applied this approach to an intractable target, the SH2 domain, and demonstrate a 3-fold enhancement over the natural peptide. This approach provides a way to modulate the potency and specificity of biologically active compounds.

  4. An agent based model of integrin clustering: Exploring the role of ligand clustering, integrin homo-oligomerization, integrin-ligand affinity, membrane crowdedness and ligand mobility

    NASA Astrophysics Data System (ADS)

    Jamali, Yousef; Jamali, Tahereh; Mofrad, Mohammad R. K.

    2013-07-01

    Integrins are cell-surface protein heterodimers that coordinate cellular responses to mechanochemical cues from the extracellular matrix (ECM) and stimulate the assembly of small adhesion complexes, which are the initial sites of cell-ECM adhesion. Clustering of integrins is known to mediate signaling through a variety of signal transduction pathways. Yet, the molecular mechanisms of integrin clustering are poorly understood. In this paper, we develop computational models, using agent based modeling (ABM) techniques, to explore two key underlying mechanisms of integrin clustering, namely ligand organization and integrin homo-oligomerization. Our models help to shed light on the potential roles ligand clustering and integrin homo-oligomerization may play in controlling integrin clustering. A potential mechanism for the clustering of integrin is discussed and the effects of other parameters such as integrin-ligand affinity, membrane crowdedness and ligand mobility on integrin clustering are examined.

  5. Thiophene bioisosteres of spirocyclic σ receptor ligands: relationships between substitution pattern and σ receptor affinity.

    PubMed

    Oberdorf, Christoph; Schepmann, Dirk; Vela, Jose Miguel; Buschmann, Helmut; Holenz, Jörg; Wünsch, Bernhard

    2012-06-14

    On the basis of the 6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] framework, a series of more than 30 σ ligands with versatile substituents in 1-, 2'-, and 6'-position has been synthesized and pharmacologically evaluated in order to find novel structure-affinity relationships. It was found that a cyclohexylmethyl residue at the piperidine N-atom instead of a benzyl moiety led to increased σ(2) affinity and therefore to decreased σ(1)/σ(2) selectivity. Small substituents (e.g., OH, OCH(3), CN, CH(2)OH) in 6'-position adjacent to the O-atom were well tolerated by the σ(1) receptor. Removal of the substituent in 6'-position resulted in very potent but unselective σ ligands (13). A broad range of substituents with various lipophilic and H-bond forming properties was introduced in 2'-position adjacent to the S-atom without loss of σ(1) affinity. However, very polar and basic substituents in both 2'- and 6'-position decreased the σ(1) affinity considerably. It is postulated that the electron density of the thiophene moiety has a big impact on the σ(1) affinity.

  6. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  7. Bovine lactoferrin purification from whey using Yellow HE-4R as the chromatographic affinity ligand.

    PubMed

    Baieli, María Fernanda; Urtasun, Nicolás; Miranda, María Victoria; Cascone, Osvaldo; Wolman, Federico Javier

    2014-03-01

    The worldwide production of whey increases by around 186 million tons each year and it is generally considered as a waste, even when several whey proteins have important economic relevance. For its valorization, inexpensive ligands and integrated chromatography methods need to be developed for specific and low-cost protein purification. Here, we describe a novel affinity process with the dye Yellow HE-4R immobilized on Sepharose for bovine lactoferrin purification. This approach based on a low-cost ligand showed an efficient performance for the recovery and purification of bovine lactoferrin directly from whey, with a yield of 71% and a purification factor of 61.

  8. Univalent and bivalent ligands of butorphan: characteristics of the linking chain determine the affinity and potency of such opioid ligands.

    PubMed

    Decker, Michael; Fulton, Brian S; Zhang, Bin; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2009-12-10

    Bivalent morphinan compounds containing ester linkers were synthesized and their binding affinities at the mu, delta, and kappa opioid receptors determined. Addition of methyl groups adjacent to the hydrolytically labile ester linkage increased stability while only partially affecting binding affinity. The resulting bivalent ligands with optimized spacer length and structure show potent binding profiles with the most potent compound (4b), having K(i) values of 0.47 nM for both the mu and kappa opioid receptors, and 4a, having K(i) values of 0.95 and 0.62 nM for the mu and kappa receptors, respectively. Both 4a and 4b were partial agonists at the kappa and micro receptors in the [(35)S]GTPgammaS binding assay.

  9. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  10. Affinity purification of immunoglobulins from chicken egg yolk using a new synthetic ligand.

    PubMed

    Verdoliva, A; Basile, G; Fassina, G

    2000-12-01

    Due to the peculiar composition of the egg yolk and the lack of specific affinity ligands, Y immunoglobulins are normally purified using complex and time consuming procedures involving a combination of precipitation and chromatographic steps first to extract and capture and then to polish IgY. In this study, we have examined the applicability for IgY affinity purification of TG19318, a synthetic ligand for immunoglobulin, obtained from the screening of combinatorial libraries, and already characterized for its capability to purify immunoglobulins of class G, M, E and A. Soluble proteins were separated from the lipidic fraction of egg yolk by the water dilution method and loaded on to TG19318 affinity columns prepared by immobilizing the ligand on the commercially available support Emphaze. In a single chromatographic step TG19318 affinity columns led to an efficient capture of IgY directly from crude samples, and with a purity degree higher than 90%, as determined by densitometric scanning of SDS-PAGE analysis of bound fractions, and with full recovery of antibody activity, as determined by ELISA assay. Higher recovery and purity of IgY was obtained by using loading buffers at pH close to 6.5. Column capacity, determined by applying 4x excess IgY to 1 ml bed volume column, and eluting the retained immunoglobulins, was close to 65 mg of IgY per ml of resin. Chemical and chromatographic stability of TG19318/Emphaze was tested before and after various treatments. The derivatized matrix was found to be very stable, in terms of ligand leakage and maintenance of IgY binding capacity, under conditions of normal column usage, cleaning and storage.

  11. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.

    PubMed

    Erdas, Ozlem; Andac, Cenk A; Gurkan-Alp, A Selen; Alpaslan, Ferda Nur; Buyukbingol, Erdem

    2015-01-01

    The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein-ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3-ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC(50)) of the CASP3 inhibitors.

  12. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies.

    PubMed

    Batalha, Iris L; Hussain, Abid; Roque, A C A

    2010-01-01

    A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1 microm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non-functionalized MNP_GA bound 28 mg IgG/g, two times less than bare MNP (60 mg IgG/g). MNP_GA modified with ligand 22/8 bound 133 mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Q(máx) of 344 mg IgG/g support and K(a) of 1.5 x 10(5) M. The studies on different elution conditions indicated that although the 0.05 M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05 M glycine-NaOH (pH 11) buffer.

  13. A comparison of myocardial beta-adrenoreceptor density and ligand binding affinity among selected teleost fishes.

    PubMed

    Olsson, H I; Yee, N; Shiels, H A; Brauner, C; Farrell, A P

    2000-11-01

    This study quantified the cell surface beta-adrenoreceptor density and ligand binding affinity in the ventricular tissue of seven teleost species; skipjack tuna (Katsowonus pelamis), yellowfin tuna (Thunnus albacares), Pacific mackerel (Scomber japonicus), mahimahi (dolphin fish; Coryphaena hippurus), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus mykiss) and an Antarctic nototheniid (Trematomus bernacchii). Beta-Adrenoreceptor density varied by almost fourfold among these species, being highest for the athletic fish: sockeye salmon among the salmonids and skipjack tuna among the scombrids. Beta-Adrenoreceptor density was lowest for the Antarctic icefish. Beta-Adrenoreceptor binding affinity varied by almost threefold. We conclude that there is a significant species-specific variability in myocardial beta-adrenoreceptor density and binding affinity and these interspecific differences cannot be attributed to temperature even though intraspecifically cold temperature can stimulate an increase in myocardial beta-adrenoreceptor density. Instead, we suggest that interspecifically myocardial beta-adrenoreceptor density is highest in fish that inhabit tropical water.

  14. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer.

    PubMed

    Bernard Da Costa, Jason; Dieckmann, Thorsten

    2011-07-01

    The binding of small molecule targets by RNA aptamers provides an excellent model to study the versatility of RNA function. The malachite green aptamer binds and recognizes its ligand via stacking and electrostatic interactions. The binding of the aptamer to its original selection target and three related molecules was determined by isothermal titration calorimetry, equilibrium dialysis, and fluorescence titration. The results reveal that the entropy of complex formation plays a large role in determining binding affinity and ligand specificity. These data combined with previous structural studies show that metal ions are required to stabilize the complexes with non-native ligands whereas the complex with the original selection target is stable at low salt and in the absence of divalent metal ions.

  15. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption

    NASA Astrophysics Data System (ADS)

    Ma, Zhiya; Guan, Yueping; Liu, Huizhou

    2006-06-01

    Superparamagnetic silica-coated magnetite (Fe 3O 4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe 2+ and Fe 3+ in an ammonia solution. Then silica was coated on the Fe 3O 4 nanoparticles using a sol-gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu 2+, the magnetic silica nanoparticles with immobilized Cu 2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.

  16. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier.

  17. Cell fractionation with affinity ligands conjugated to agarose-polyacrolein microsphere beads.

    PubMed

    Margel, S; Ofarim, M; Eshhar, Z

    1983-07-01

    A new effective insoluble support useful for cell fractionation based on agarose-polyacrolein microsphere beads (APAMB) of diameters 150--250 micrometers has been developed. The synthesized polyacrolein (PA) microspheres, of average diameter 0.2 micrometer, are provided with reactive aldehyde groups through which various ligands containing primary amino groups are bound covalently in a single step at physiological pH. Antibodies coupled to the microspheres are very effective for labelling of cell surface receptors on human red blood cells and mouse lymphoid cells. APAMB were obtained by encapsulating the PA microspheres with agarose. Antibodies and lectins bound to the APAMB serve to construct affinity columns for the separation of red blood cells and murine lymphocyte subpopulations. Anti-human red blood cell antibodies coupled to anti-immunoglobulin APAMB are effective in separating human from turkey red blood cells, whereas either anti-Thy 1.2 anti-immunoglobulin antibodies or soybean agglutinin coupled to APAMB have proved useful for the separation of T and B cells from heterogeneous population of spleen cells. The separation procedure is simple, rapid and effective. The viability of the fractionated cells is unaffected by the procedure and the recovery of the cells is high: between 80% and 100%.

  18. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    PubMed Central

    Alexandratos, Spiro D.; Zhu, Xiaoping

    2017-01-01

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greater than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm−1 while the monoethyl ester resins have the band shifted to 1230 cm−1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm−1. The monoprotic pentaerythritol has the highest metal ion affinities of the polymers studied. PMID:28820489

  19. Synthesis and opioid receptor binding affinities of 2-substituted and 3-aminomorphinans: ligands for mu, kappa, and delta opioid receptors.

    PubMed

    Decker, Michael; Si, Yu-Gui; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2010-01-14

    The phenolic group of the potent mu and kappa opioid morphinan agonist/antagonists cyclorphan and butorphan was replaced by phenylamino and benzylamino groups including compounds with para-substituents in the benzene ring. These compounds are highly potent mu and kappa ligands, e.g., p-methoxyphenylaminocyclorphan showing a K(i) of 0.026 nM at the mu receptor and a K(i) of 0.03 nM at the kappa receptor. Phenyl carbamates and phenylureas were synthesized and investigated. Selective o-formylation of butorphan and levorphanol was achieved. This reaction opened the way to a large set of 2-substituted 3-hydroxymorphinans, including 2-hydroxymethyl-, 2-aminomethyl-, and N-substituted 2-aminomethyl-3-hydroxymorphinans. Bivalent ligands bridged in the 2-position were also synthesized and connected with secondary and tertiary aminomethyl groups, amide bonds, and hydroxymethylene groups, respectively. Although most of the 2-substituted morphinans showed considerably lower affinities compared to their parent compounds, the bivalent ligand approach led to significantly higher affinities compared to the univalent 2-substituted morphinans.

  20. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  1. Binding site on human immunoglobulin G for the affinity ligand HWRGWV

    PubMed Central

    Yang, Haiou; Gurgel, Patrick V.; Williams, D. Keith; Bobay, Benjamin G.; Cavanagh, John; Muddiman, David C.; Carbonell, Ruben G.

    2014-01-01

    Affinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383–Asn389 (SNGQPEN) located in the CH3 domain. Subsequent modeling has suggested a possible three-dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG. PMID:20049844

  2. Path integral method for predicting relative binding affinities of protein-ligand complexes

    PubMed Central

    Mulakala, Chandrika; Kaznessis, Yiannis N.

    2009-01-01

    We present a novel approach for computing biomolecular interaction binding affinities based on a simple path integral solution of the Fokker-Planck equation. Computing the free energy of protein-ligand interactions can expedite structure-based drug design. Traditionally, the problem is seen through the lens of statistical thermodynamics. The computations can become, however, prohibitively long for the change in the free energy upon binding to be determined accurately. In this work we present a different approach based on a stochastic kinetic formalism. Inspired by Feynman's path integral formulation, we extend the theory to classical interacting systems. The ligand is modeled as a Brownian particle subjected to the effective non-bonding interaction potential of the receptor. This allows the calculation of the relative binding affinities of interacting biomolecules in water to be computed as a function of the ligand's diffusivity and the curvature of the potential surface in the vicinity of the binding minimum. The calculation is thus exceedingly rapid. In test cases, the correlation coefficient between actual and computed free energies is >0.93 for accurate data-sets. PMID:19275144

  3. Affinity-based methodologies and ligands for antibody purification: advances and perspectives.

    PubMed

    Roque, Ana C A; Silva, Cláudia S O; Taipa, M Angela

    2007-08-10

    Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.

  4. Structure-based discovery of a new affinity ligand to pancreatic alpha-amylase.

    PubMed

    Westerfors, Maria; Tedebark, Ulf; Andersson, Hans O; Ohrman, Sara; Choudhury, Devapriya; Ersoy, Oguz; Shinohara, Yasuro; Axén, Andreas; Carredano, Enrique; Baumann, Herbert

    2003-01-01

    A ligand useful for affinity capture of porcine pancreatic alpha-amylase was found by virtual screening of the commercially available compound data base MDL Available Chemicals Directory. Hits from the virtual screening were investigated for binding by nuclear magnetic resonance (NMR) and surface plasmon resonance. Selected compounds were tested for inhibition of the enzyme using a NMR-based assay. One of the binders found was covalently coupled to a chromatographic resin and a column, packed with this resin, could retain alpha-amylase, which subsequently was eluted by introduction of the known inhibitor acarbose to the elution buffer. Copyright 2003 John Wiley & Sons, Ltd.

  5. The identification of affinity peptide ligands specific to the variable region of human antibodies.

    PubMed

    Akiyama, Yasuto; Miyata, Haruo; Komiyama, Masaru; Nogami, Masahiro; Ozawa, Kazumichi; Oshita, Chie; Kume, Akiko; Ashizawa, Tadashi; Sakura, Naoki; Mochizuki, Tohru; Yamaguchi, Ken

    2014-01-01

    Of all potential biological therapeutics, monoclonal antibody (mAb)-based therapies are becoming the dominant focus of clinical research. In particular, smaller recombinant antibody fragments such as single-chain variable fragments (scFv) have become the subject of intense focus. However, an efficient affinity ligand for antibody fragment purification has not been developed. In the present study, we designed a consensus sequence for the human antibody heavy or light chain-variable regions (Fv) based on the antibody sequences available in the ImMunoGeneTics information system (IMGT), and synthesized these consensus sequences as template Fv antibodies. We then screened peptide ligands that specifically bind to the repertoire-derived human Fv consensus antibody using a 12-mer-peptide library expressed-phage display method. Subsequently, 1 peptide for the VH template and 8 peptides for the VK template were selected as the candidate ligands after 4 rounds of panning the phage display. Using peptide-bead-based immunoprecipitation, the code-4 and code-13 peptides showed recovery rates of the VH and VK templates that were 20-30% and 40-50%, respectively. Both peptides exhibited better recovery rates for trastuzumab scFv (approximately 40%). If it were possible to identify the best combination of VH and VK-binding peptides among the ligand peptides suitable for the human mAb Fv sequence, the result could be a promising purification tool that might greatly improve the cost efficiencies of the purification process.

  6. Low affinity glucocorticoid binding site ligands as potential anti-fibrogenics

    PubMed Central

    Marek, Carylyn J; Wallace, Karen; Durward, Elaine; Koruth, Matthew; Leel, Val; Leiper, Lucy J; Wright, Matthew C

    2009-01-01

    Background Pregnane X receptor (PXR) agonists inhibit liver fibrosis. However, the rodent PXR activator pregnenolone 16α carbonitrile (PCN) blocks, in vitro, hepatic stellate cell-to-myofibroblast trans-differentiation and proliferation in cells from mice with a disrupted PXR gene, suggesting there is an additional anti-fibrogenic drug target for PCN. The role of the low affinity glucocorticoid binding site (LAGS) – which may be identical or associated with the progesterone receptor membrane component 1 (PGRMC1) – in mediating this anti-fibrogenic effect has been examined, since binding of dexamethasone to the LAGS in liver microsomal membranes has previously been shown to be inhibited by PCN. Results Quiescent rat and human hepatic stellate cells (HSC) were isolated from livers and cultured to generate liver myofibroblasts. HSC and myofibroblasts expressed PGRMC1 as determined by RT-PCR and Western blotting. Quiescent rat HSC also expressed the truncated HC5 variant of rPGRMC1. Rat PGRMC1 was cloned and expression in COS-7 cells gave rise to specific binding of radiolabelled dexamethasone in cell extracts that was inhibited by PCN, suggesting that PGRMC1 may be identical to LAGS or activates LAGS binding activity. Liver microsomes were used to screen a range of structurally related compounds for their ability to inhibit radiolabelled dexamethasone binding to rat LAGS. These compounds were also screened for their ability to activate rat and human PXR and to inhibit rat HSC-to-myofibroblast trans-differentiation/proliferation. A compound (4 androstene-3-one 17β-carboxylic acid methyl ester) was identified which bound rat LAGS with high affinity and inhibited both rat and human HSC trans-differentiation/proliferation to fibrogenic myofibroblasts without showing evidence of rat or human PXR agonism. However, despite potent anti-fibrogenic effects in vitro, this compound did not modulate liver fibrosis severity in a rat model of liver fibrosis

  7. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    PubMed Central

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  8. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities

    NASA Astrophysics Data System (ADS)

    Yao, Yuyu; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)- d-GlcNAc, a single chain variable fragment and α- d-Gal-(1→2)-[α- d-Abe-(1→3)]-α- d-Man-OCH3, cholera toxin B subunit homopentamer with β- d-Gal-(1→3)-β- d-GalNAc-(1→4)[α- d-Neu5Ac-(2→3)]-β- d-Gal-(1→4)-β- d-Glc, and a fragment of galectin 3 and α- l-Fuc-(1→2)-β- d-Gal-(1→3)-β- d-GlcNAc-(1→3)-β- d-Gal-(1→4)-β- d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  9. HIGH AFFINITY, DSRNA BINDING BY DISCONNECTED INTERACTING PROTEIN 1†

    PubMed Central

    Catanese, Daniel J.; Matthews, Kathleen S.

    2010-01-01

    Disconnected Interacting Protein 1 (DIP1) appears from sequence analysis and preliminary binding studies to be a member of the dsRNA-binding protein family. Of interest, DIP1 was shown previously to interact with and influence multiple proteins involved in transcription regulation in Drosophila melanogaster. We show here that the longest isoform of this protein, DIP1-c, exhibits a 500-fold preference for dsRNA over dsDNA of similar nucleotide sequence. Further, DIP1-c demonstrated very high affinity for a subset of dsRNA ligands, with binding in the picomolar range for VA1 RNA and miR-iab-4 precursor stem-loop, a potential physiological RNA target involved in regulating expression of its protein partner, Ultrabithorax. PMID:20643095

  10. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation.

    PubMed

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5' and 3' ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  11. Towards full Quantum-Mechanics-based Protein-Ligand Binding Affinities.

    PubMed

    Ehrlich, Stephan; Göller, Andreas H; Grimme, Stefan

    2017-04-19

    Computational methods play a key role in modern drug design in the pharmaceutical industry but are mostly based on force fields, which are limited in accuracy when describing non-classical binding effects, proton transfer, or metal coordination. Here, we propose a general fully quantum mechanical (QM) scheme for the computation of protein-ligand affinities. It works on a single protein cutout (of about 1000 atoms) and evaluates all contributions (interaction energy, solvation, thermostatistical) to absolute binding free energy on the highest feasible QM level. The methodology is tested on two different protein targets: activated serine protease factor X (FXa) and tyrosine-protein kinase 2 (TYK2). We demonstrate that the geometry of the model systems can be efficiently energy-minimized by using general purpose graphics processing units, resulting in structures that are close to the co-crystallized protein-ligand structures. Our best calculations at a hybrid DFT level (PBEh-3c composite method) for the FXa ligand set result in an overall mean absolute deviation as low as 2.1 kcal mol(-1) . Though very encouraging, an analysis of outliers indicates that the structure optimization level, conformational sampling, and solvation treatment require further improvement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation

    NASA Astrophysics Data System (ADS)

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M.; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5‧ and 3‧ ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  13. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation.

    PubMed Central

    Piper, J W; Swerlick, R A; Zhu, C

    1998-01-01

    Analyses of receptor-ligand interactions are important to the understanding of cellular adhesion. Traditional methods of measuring the three-dimensional (3D) dissociation constant (Kd) require at least one of the molecular species in solution and hence cannot be directly applied to the case of cell adhesion. We describe a novel method of measuring 2D binding characteristics of receptors and ligands that are attached to surfaces and whose bonds are subjected to forces. The method utilizes a common centrifugation assay to quantify adhesion. A model for the experiment has been formulated, solved exactly, and tested carefully. The model is stochastically based and couples the bond force to the binding affinity. The method was applied to examine tumor cell adherence to recombinant E-selectin. Satisfactory agreement was found between predictions and data. The estimated zero-force 2D Kd for E-selectin/carbohydrate ligand binding was approximately 5 x 10(3) microm(-2), and the bond interaction range was subangstrom. Our results also suggest that the number of bonds mediating adhesion was small (<5). PMID:9449350

  14. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  15. High-affinity neuropeptide Y receptor antagonists.

    PubMed

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J; Spaltenstein, A

    1995-09-26

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats.

  16. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  17. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  18. Modification of the binding site(s) of lectins by an affinity column carrying an activated galactose-terminated ligand.

    PubMed

    Moroney, S E; D'Alarcao, L J; Goldmacher, V S; Lambert, J M; Blättler, W A

    1987-12-15

    An affinity column approach is described, aimed at the modification of the galactose binding site(s) of ricin in an effort to block the binding of ricin to cells. The affinity column was prepared by linking N-(2'-mercaptoethyl)lactamine to pyridyldithio-activated polyacrylamide heads. The linker between the ligand and the solid support thus contained a disulfide bond and an unmodified terminal galactose moiety. The amino group of the ligand was allowed to react with the bifunctional cross-linking reagent 2,4-dichloro-6-methoxytriazine. The lectin was then allowed to bind to the galactose functions on the activated column at pH 7.0, prior to raising the pH to 8.6 to initiate the cross-linking reaction between the ligand and the lectin. Lectin that was not covalently linked to the functionalized galactose residues on the column was eluted with galactose or lactose. Finally, the covalent ligand-lectin complexes were released from the solid support by reducing the disulfide bond between the ligand and the support. The affinity column was used in this way to modify the galactose binding site(s) of ricin. Upon release from the affinity column, blocked ricin was purified from unmodified ricin by affinity chromatography on columns of immobilized asialofetuin (a ligand to which ricin binds very tightly). The sulfhydryl group formed by cleavage of the ligand-ricin complex from the column was labeled with [3H]-N-ethylmaleimide to provide evidence that one blocking ligand was linked per ricin molecule. The blocked ricin and a conjugate of the blocked ricin with the monoclonal antibody J5 were toxic for cultures of Namalwa cells in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  20. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  1. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    PubMed

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  2. The Development of Quantitative Structure-Binding Affinity Relationship (QSBR) Models Based on Novel Geometrical Chemical Descriptors of the Protein-Ligand Interfaces

    PubMed Central

    Zhang, Shuxing; Golbraikh, Alexander; Tropsha, Alexander

    2009-01-01

    Novel geometrical chemical descriptors have been derived based on the computational geometry of protein-ligand interfaces and Pauling atomic electronegativities (EN). Delaunay tessellation has been applied to a diverse set of 517 X-ray characterized protein-ligand complexes yielding a unique collection of interfacial nearest neighbor atomic quadruplets for each complex. Each quadruplet composition was characterized by a single descriptor calculated as the sum of the EN values for the four participating atom types. We termed these simple descriptors generated from atomic EN values and derived with the Delaunay Tessellation the ENTess descriptors and used them in the variable selection k-Nearest Neighbor quantitative structure-binding affinity relationship (QSBR) studies of 264 diverse protein-ligand complexes with known binding constants. 24 complexes with chemically dissimilar ligands were set aside as an independent validation set, and the remaining dataset of 240 complexes was divided into multiple training and test sets. The best models were characterized by the leave-one-out cross-validated correlation coefficient q2 as high as 0.66 for the training set and the correlation coefficient R2 as high as 0.83 for the test set. High predictive power of these models was confirmed independently by applying them to the validation set of 24 complexes yielding R2 as high as 0.85. We conclude that QSBR models built with the ENTess descriptors can be instrumental for predicting the binding affinity of receptor-ligand complexes. PMID:16640331

  3. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model

    PubMed Central

    2011-01-01

    Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to

  4. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  5. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-07-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  6. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions

    NASA Astrophysics Data System (ADS)

    Gathiaka, Symon; Liu, Shuai; Chiu, Michael; Yang, Huanwang; Stuckey, Jeanne A.; Kang, You Na; Delproposto, Jim; Kubish, Ginger; Dunbar, James B.; Carlson, Heather A.; Burley, Stephen K.; Walters, W. Patrick; Amaro, Rommie E.; Feher, Victoria A.; Gilson, Michael K.

    2016-09-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.

  7. Ligand-Protein Affinity Studies Using Long-Lived States of Fluorine-19 Nuclei.

    PubMed

    Buratto, Roberto; Mammoli, Daniele; Canet, Estel; Bodenhausen, Geoffrey

    2016-03-10

    The lifetimes TLLS of long-lived states or TLLC of long-lived coherences can be used for the accurate determination of dissociation constants of weak protein-ligand complexes. The remarkable contrast between signals derived from LLS or LLC in free and bound ligands can be exploited to search for weak binders with large dissociation constants KD > 1 mM that are important for fragment-based drug discovery but may escape detection by other screening techniques. Alternatively, the high sensitivity of the proposed method can be exploited to work with large ligand-to-protein ratios, with an evident advantage of reduced consumption of precious proteins. The detection of (19)F-(19)F long-lived states in suitably designed fluorinated spy molecules allows one to perform competition binding experiments with high sensitivity while avoiding signal overlap that tends to hamper the interpretation of proton spectra of mixtures.

  8. Negative pseudo-affinity chromatography for plasmid DNA purification using berenil as ligand.

    PubMed

    Caramelo-Nunes, C; Gabriel, M F; Almeida, P; Marcos, J C; Tomaz, C T

    2014-01-01

    The present study, reports the utilization of berenil as ligand in a negative pseudo-affinity chromatographic step to purify the plasmid pVAX1-LacZ from Escherichia coli clarified lysates. The chromatographic support was prepared by coupling berenil to epoxy-activated Sepharose and was qualitatively and quantitatively characterized using scanning electron microscopy, Fourier transformed infrared spectroscopy and elemental analysis. The clarified lysate was loaded onto the berenil-Sepharose support with 0.55M of ammonium sulphate in the eluent, achieving the immediate elution of plasmid DNA. The impurities tightly bound to the support, were eluted after decreasing the salt concentration to 0M. The overall process enabled the recovery of 87% of loaded plasmid DNA with a HPLC purity of ≫99% and according to FDA specifications. This method represents an alternative approach to the previous utilization of the same chromatographic pseudo-affinity support in a positive mode. It uses lower amounts of salt and one-step chromatographic procedure, resulting in smaller operating time and costs and representing an alternate procedure for plasmid DNA purification. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins

    PubMed Central

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia

    2017-01-01

    Abstract Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs—consisting of 2–3 tandem double-stranded RNA binding motifs (dsrms)—arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1–β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. PMID:28333205

  10. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.

    PubMed

    Teigen, Knut; McKinney, Jeffrey Alan; Haavik, Jan; Martínez, Aurora

    2007-01-01

    Hydroxylation of the aromatic amino acids phenylalanine, tyrosine and tryptophan is carried out by a family of non-heme iron and tetrahydrobiopterin (BH4) dependent enzymes, i.e. the aromatic amino acid hydroxylases (AAHs). The reactions catalyzed by these enzymes are important for biomedicine and their mutant forms in humans are associated with phenylketonuria (phenylalanine hydroxylase), Parkinson's disease and DOPA-responsive dystonia (tyrosine hydroxylase), and possibly neuropsychiatric and gastrointestinal disorders (tryptophan hydroxylase 1 and 2). We attempt to rationalize current knowledge about substrate and inhibitor specificity based on the three-dimensional structures of the enzymes and their complexes with substrates, cofactors and inhibitors. In addition, further insights on the selectivity and affinity determinants for ligand binding in the AAHs were obtained from molecular interaction field (MIF) analysis. We applied this computational structural approach to a rational analysis of structural differences at the active sites of the enzymes, a strategy that can help in the design of novel selective ligands for each AAH.

  11. Affinity of An(VI) for N4-Tetradentate Donor Ligands: Complexation of the Actinyl(VI) Ions with N4-Tetradentate Ligands

    SciTech Connect

    Ogden, Mark; Sinkov, Sergey I.; Lumetta, Gregg J.; Nash, Kenneth L.

    2012-05-01

    In this report the affinity of four N4-tetradentate ligands that incorporate the 2- methylpyridyl functionality with hexavalent actinides (AnO2+2 ) has been investigated in methanol solution. The ligands studied include N,N*-bis(2-methylpyridyl)diaminoethane (BPMDAE), N,N-bis(2-methylpyridyl)-1,3-diaminopropane (BPMDAP), N,N*-bis(2-pyridylmethyl) piperazine (BPMPIP), and trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC). Conditional stability constants describing the strength of the interaction were determined by UV-visible spectrophotometry. The log10K101 values for both U(VI) and Pu(VI) are comparable and show the same trend of stability with ligand structure. Dinuclear complexes are also indicated as being important. The log10K201 values for Pu(VI) complexation with the N4-ligands are identical for the four ligands (within experimental error), indicating that the structure of the ligand backbone has little effect on the stability of the (PuO2)2L2+ complex. The exception to this trend is the behavior of N,N*- bis(2-pyridylmethyl)piperazine (BPMPIP) with Pu(VI). This ligand displays a tendency to reduce Pu(VI) within the experimental time frame of 45 minutes. BPMPIP is the only ligand tested that contains tertiary amines in the ligand backbone. The decomposition of BPMPIP by Pu(VI) suggests a susceptibility of tertiary amines to oxidative degradation.

  12. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  13. A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity

    PubMed Central

    Hayik, Seth A.; Dunbrack, Roland; Merz, Kenneth M.

    2010-01-01

    Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R2 of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R2 of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R2 of 0.57, when using the rotatable bond entropy estimate. PMID:21221417

  14. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions

    PubMed Central

    2014-01-01

    Background In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions. Results Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods. The frequency of amino acid residue substitutions was statistically analyzed using the sequences isolated from a histidine-scanning library screening. The positions where the frequency of occurrence of a histidine residue was more than 70% were thought to be effective histidine-mutation sites. Consequently, we identified PAB variants with a D36H mutation whose binding of IgG was highly sensitive to pH change. Conclusion The affinity column elution chromatograms demonstrated that antibodies could be eluted at a higher pH (∆pH**≧2.0) than ever reported (∆pH = 1.4) when the Staphylococcal protein A variants developed in this study were used as affinity ligands. The interactions between Staphylococcal protein A and IgG-Fab were shown to be important for the behavior of IgG bound on a SpA affinity column, and alterations in the affinity of the ligands for IgG-Fab clearly affected the conditions for eluting the bound IgG. Thus, a histidine-scanning library combined with a structure-based design was shown to be effective in engineering novel pH-sensitive proteins. PMID:25057290

  15. MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein–ligand fragment interaction, pathways and SNPs

    PubMed Central

    Tanramluk, Duangrudee; Narupiyakul, Lalita; Akavipat, Ruj; Gong, Sungsam; Charoensawan, Varodom

    2016-01-01

    Protein–ligand interaction analysis is an important step of drug design and protein engineering in order to predict the binding affinity and selectivity between ligands to the target proteins. To date, there are more than 100 000 structures available in the Protein Data Bank (PDB), of which ∼30% are protein–ligand (MW below 1000 Da) complexes. We have developed the integrative web server MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) with the aim of providing a user-friendly web interface to assist structural study and design of protein–ligand interactions. In brief, the server allows the users to input the chemical fragments and present all the unique molecular interactions to the target proteins with available three-dimensional structures in the PDB. The users can also link the ligands of interest to assess possible off-target proteins, human variants and pathway information using our all-in-one integrated tools. Taken together, we envisage that the server will facilitate and improve the study of protein–ligand interactions by allowing observation and comparison of ligand interactions with multiple proteins at the same time. (http://manoraa.org). PMID:27131358

  16. Highly efficient and low-cost purification of lysozyme: a novel tris(hydroxymethyl)aminomethane immobilized affinity column.

    PubMed

    Quan, Li; Cao, Qing; Li, Zhiyu; Li, Na; Li, Kean; Liu, Feng

    2009-03-01

    A highly efficient and low-cost affinity chromatography strategy for lysozyme (LZM) purification is reported. Using tris(hydroxymethyl)aminomethane (Tris) as ligand and macroporous silica spheres as matrix, a novel affinity column was prepared. The high specificity, stability and repeatability of this Tris immobilized affinity column were proved by LZM separations from protein mixture solutions for 20 circles and 6 months test. LZM purified from chicken egg white on the Tris affinity column had even higher purity than the commercial standard and well-maintained activity of 8287 U/mg (activity of commercial LZM was 8171 U/mg). The efficient affinity process avoiding expensive or fragile ligand would bring advantages to the routine production of LZM from chicken egg white.

  17. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding

    NASA Astrophysics Data System (ADS)

    Huang, Renjie; Bonnichon, Arnaud; Claridge, Timothy D. W.; Leung, Ivanhoe K. H.

    2017-03-01

    WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup.

  18. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding

    PubMed Central

    Huang, Renjie; Bonnichon, Arnaud; Claridge, Timothy D. W.; Leung, Ivanhoe K. H.

    2017-01-01

    WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup. PMID:28256624

  19. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml(-1) and 0.48mgml(-1) for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10(6)M(-1) affinity constants and Qmax values of 19.11±2.60ugg(-1) and 79.39ugg(-1) for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents.

  20. Effect of buffer, electric field, and separation time on detection of aptamer-ligand complexes for affinity probe capillary electrophoresis.

    PubMed

    Buchanan, Danielle D; Jameson, Emily E; Perlette, Jon; Malik, Abdul; Kennedy, Robert T

    2003-05-01

    The separation and detection of complexes of aptamers and protein targets by capillary electrophoresis (CE) with laser-induced fluorescence was examined. Aptamer-thrombin and aptamer-immunoglobulin E (IgE) were used as model systems. Phosphate, 3-(N-morpholino)propanesulfonic acid with phosphate, and tris(hydroxyamino)methane-glycine-potassium (TGK) buffer at pH 8.4 were tested as electrophoresis media. Buffer had a large effect with TGK providing the most stable complexes for both protein-aptamer complexes. Conditions that suppressed electroosmotic flow, such as addition of hydroxypropylmethylcellulose to the media or modification of the capillary inner wall with polyacrylamide, were found to prevent detection of complexes. The effect of separation time and electric field were evaluated by monitoring complexes with electric field varied from 150-2850 V/cm and effective column lengths of 3.5 and 7.0 cm. As expected, shorter times on the column greatly increased peak heights for the complexes due to a combination of less dilution by diffusion and less dissociation on the column. High fields were found to have a detrimental effect on detection of complexes. It is concluded that the best conditions for detection of noncovalent complexes involve use of the minimal column length and electric field necessary to achieve separation. The results will be of interest in developing affinity probe CE assays wherein aptamers are used as affinity ligands.

  1. Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and Phenol Red on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1983-01-01

    Binding of L-tryptophan, diazepam, salicylate and Phenol Red to defatted human serum albumin was studied by ultrafiltration at pH 7.0. All ligands bind to one high-affinity binding site with association constants of the order of 10(4)-10(5)M-1. The number of secondary binding sites was found to vary from zero to five, with association constants about 10(3)M-1. Competitive binding studies with different pairs of the ligands were performed. Binding of both ligands was determined simultaneously. L-Tryptophan and diazepam were found to compete for a common high-affinity binding site on albumin. The following combinations of ligands do not bind competitively to albumin: L-tryptophan-Phenol Red, L-tryptophan-salicylate and Phenol Red-salicylate. On the other hand, high-affinity bindings of the three ligands do not take place independently but in such a way that binding of one of the ligands results in a decrease in binding of the other ligands. The decreases in binding are reciprocal and can be accounted for by introducing a coupling constant. The magnitude of the constant is dependent on the ligands being bound. In the present study, the mutual decrease in binding was more pronounced with L-tryptophan-salicylate and Phenol Red-salicylate than with L-tryptophan-Phenol Red. PMID:6847607

  2. Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands.

    PubMed

    Kazlauskas, Arunas; Schmotz, Constanze; Kesti, Tapio; Hepojoki, Jussi; Kleino, Iivari; Kaneko, Tomonori; Li, Shawn S C; Saksela, Kalle

    2016-10-01

    The Src Homology-3 (SH3) domains are ubiquitous protein modules that mediate important intracellular protein interactions via binding to short proline-rich consensus motifs in their target proteins. The affinity and specificity of such core SH3 - ligand contacts are typically modest, but additional binding interfaces can give rise to stronger and more specific SH3-mediated interactions. To understand how commonly such robust SH3 interactions occur in the human protein interactome, and to identify these in an unbiased manner we have expressed 324 predicted human SH3 ligands as full-length proteins in mammalian cells, and screened for their preferred SH3 partners using a phage display-based approach. This discovery platform contains an essentially complete repertoire of the ∼300 human SH3 domains, and involves an inherent binding threshold that ensures selective identification of only SH3 interactions with relatively high affinity. Such strong and selective SH3 partners could be identified for only 19 of these 324 predicted ligand proteins, suggesting that the majority of human SH3 interactions are relatively weak, and thereby have capacity for only modest inherent selectivity. The panel of exceptionally robust SH3 interactions identified here provides a rich source of leads and hypotheses for further studies. However, a truly comprehensive characterization of the human SH3 interactome will require novel high-throughput methods based on function instead of absolute binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The Influence of the Linker Geometry in Bis(3-hydroxy-N-methyl-pyridin-2-one) Ligands on Solution-Phase Uranyl Affinity

    SciTech Connect

    Szigethy, Geza; Raymond, Kenneth

    2010-08-12

    Seven water-soluble, tetradentate bis(3-hydroxy-N-methyl-pyridin-2-one) (bis-Me-3,2-HOPO) ligands were synthesized that vary only in linker geometry and rigidity. Solution phase thermodynamic measurements were conducted between pH 1.6 and pH 9.0 to determine the effects of these variations on proton and uranyl cation affinity. Proton affinity decreases by introduction of the solubilizing triethylene glycol group as compared to un-substituted reference ligands. Uranyl affinity was found to follow no discernable trends with incremental geometric modification. The butyl-linked 4Li-Me-3,2-HOPO ligand exhibited the highest uranyl affinity, consistent with prior in vivo decorporation results. Of the rigidly-linked ligands, the o-phenylene linker imparted the best uranyl affinity to the bis-Me-3,2-HOPO ligand platform.

  4. Affinity chromatography of porcine pepsin A using quinolin-8-ol as ligand.

    PubMed

    Novotná, Lenka; Hrubý, Martin; Benes, Milan J; Kucerová, Zdenka

    2005-08-19

    Stationary phase containing quinolin-8-ol immobilized on macroporous methacrylate support for the affinity chromatography of porcine pepsin A is described. Optimized chromatographic conditions for separation of porcine pepsin A on this stationary phase were found investigating the influence of pH, concentration, ionic strength and chemical composition of the used mobile phases. The stationary phase shows a good reproducibility of chromatographic analyses (relative standard deviation, +/-2%), a high recovery (ca. 93%) and a satisfactory capacity (13 mg pepsin A/1 mL stationary phase) for porcine pepsin A. The obtained findings confirm the applicability of affinity chromatography on the stationary phase with immobilized quinolin-8-ol to the isolation and determination of porcine pepsin A.

  5. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding

    PubMed Central

    Feder, John N.; Penny, David M.; Irrinki, Alivelu; Lee, Vince K.; Lebrón, José A.; Watson, Nicole; Tsuchihashi, Zenta; Sigal, Elliott; Bjorkman, Pamela J.; Schatzman, Randall C.

    1998-01-01

    We recently reported the positional cloning of a candidate gene for hereditary hemochromatosis called HFE. The gene product, a member of the major histocompatibility complex class I-like family, was found to have a mutation, Cys-282 → Tyr (C282Y), in 85% of patient chromosomes. This mutation eliminates the ability of HFE to associate with β2-microglobulin (β2m) and prevents cell-surface expression. A second mutation that has no effect on β2m association, H63D, was found in eight out of nine patients heterozygous for the C282Y mutant. In this report, we demonstrate in cultured 293 cells overexpressing wild-type or mutant HFE proteins that both the wild-type and H63D HFE proteins form stable complexes with the transferrin receptor (TfR). The C282Y mutation nearly completely prevents the association of the mutant HFE protein with the TfR. Studies on cell-associated transferrin at 37°C suggest that the overexpressed wild-type HFE protein decreases the affinity of the TfR for transferrin. The overexpressed H63D protein does not have this effect, providing the first direct evidence for a functional consequence of the H63D mutation. Addition of soluble wild-type HFE/β2m heterodimers to cultured cells also decreased the apparent affinity of the TfR for its ligand under steady-state conditions, both in 293 cells and in HeLa cells. Furthermore, at 4°C, the added soluble complex of HFE/β2m inhibited binding of transferrin to HeLa cell TfR in a concentration-dependent manner. Scatchard plots of these data indicate that the added heterodimer substantially reduced the affinity of TfR for transferrin. These results establish a molecular link between HFE and a key protein involved in iron transport, the TfR, and raise the possibility that alterations in this regulatory mechanism may play a role in the pathogenesis of hereditary hemochromatosis. PMID:9465039

  6. Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands

    PubMed Central

    Vauquelin, Georges; Charlton, Steven J

    2013-01-01

    Bivalent ligands are increasingly important therapeutic agents. Although the naturally occurring antibodies are predominant, it is becoming more common to combine different antibody fragments or even low molecular weight compounds to generate heterobivalent ligands. Such ligands exhibit markedly increased affinity (i.e. avidity) and target residence time when both pharmacophores can bind simultaneously to their target sites. This is because binding of one pharmacophore forces the second tethered one to stay close to its corresponding site. This ‘forced proximity’ favours its binding and rebinding (once dissociated) to that site. However, rebinding will also take place when the diffusion of freshly dissociated ligands is merely slowed down. The present differential equation-based simulations explore the way both situations affect ligand binding. Both delay the attainment of binding equilibrium (resulting in steep saturation curves) and also increase the target residence time. Competitive ligands are able to interfere in a concentration-dependent manner, although much higher concentrations are required in the ‘forced proximity’ situation. Also, it is only in that situation that the ligand shows increased affinity. These simulations shed light on two practical consequences. Depending on the pharmacokinetic half-life of the bivalent ligand in the body, it may not have sufficient time to achieve equilibrium with the target. This will result in lower potency than expected, although it would have significant advantages in terms of residence time. In in vitro experiments, the manifestation of steep saturation curves and of accelerated dissociation in the presence of competitive ligands could mistakenly be interpreted as evidence for non-competitive, allosteric interactions. PMID:23330947

  7. Detection and quantification of affinity ligand leaching and specific antibody fragment concentration within chromatographic fractions using surface plasmon resonance.

    PubMed

    Thillaivinayagalingam, Pranavan; Newcombe, Anthony R; O'Donovan, Kieran; Francis, Richard; Keshavarz-Moore, Eli

    2007-12-01

    Rapid analyses of chromatographic steps within a biopharmaceutical manufacturing process are often desirable to evaluate column performance, provide mass balance data and to permit accurate calculations of yields and recoveries. Using SPR (surface plasmon resonance) biosensor (Biacore) technology, we have developed a sandwich immunoassay to quantify polyclonal anti-digoxin Fab fragments used for the production of the FDA (Food and Drug Administration)-approved biotherapeutic DigiFab. The results show that specific Fab may be quantified in all affinity process streams and accurate yield and mass balance data calculated. Control experiments using sheep Fab and Fc indicate that the assay is specific to DigiFab. The quantification of potential leached ligand within chromatographic fractions may also be technically challenging, particularly when low-molecular-mass ligands are covalently coupled with an affinity absorbent. Typical methods to assess ligand leakage such as DDMA (digoxin-dicarboxymethoxylamine; digoxin analogue) often involve the use of labelled ligands and relatively complex and labour-intensive analytical techniques. Using the same analytical methodologies, an assay to detect leached or eluted ligand off the column was developed. The results indicate minimal levels of leached ligand in all chromatographic fractions, with total levels of leached DDMA calculated to be 1.52 microg. This is less than 0.01% of the total amount of DDMA coupled with the laboratory-scale affinity column. The SPR methods described in the present study may be applicable for the rapid in-process analysis of specific polyclonal Fab fragments (within a polyclonal mixture) and to rapidly assess leakage of small molecule ligands covalently attached to chromatographic supports.

  8. Miniature protein ligands for EVH1 domains: Interplay between affinity, specificity, and cell motility⊥

    PubMed Central

    Holtzman, Jennifer H.; Woronowicz, Kamil; Golemi-Kotra, Dasantila; Schepartz, Alanna

    2008-01-01

    Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins--Mena, VASP, and Evl--are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. Our lab has previously reported a novel miniature protein, pGolemi, which binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or Evl (Evl1-115) and also causes an unusual defect in actin-driven L. monocytogenes motility. Here, we use scanning mutagenesis to examine the effects of single amino acid changes within pGolemi on EVH1 domain affinity and specificity, miniature protein secondary structure, and L. monocytogenes motility. The data suggest that pGolemi contains the expected aPP-like fold and binds Mena1-112 in a manner highly analogous to the proline-rich repeat region of L. monocytogenes ActA protein. Residues throughout pGolemi contribute to both EVH1 domain affinity and paralog specificity. Moreover, the affinities of pGolemi variants for Mena1-112 correlate with selectivity against the EVH1 domains of VASP and Evl. In L. monocytogenes motility assays, speed and speed variability correlate strongly with EVH1 paralog specificity, suggesting that the Ena/VASP paralogs do not play equivalent roles in the process of L. monocytogenes actin tail maturation. PMID:17973491

  9. Preparation of dye-ligand affinity chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their chromatographic properties.

    PubMed

    Wu, Feiyan; Zhu, Yan; Jia, Zhishen

    2006-11-17

    Monodisperse porous particles, poly(glycidylmethacrylate-co-ethylenedimethacrylate), P(GMA-EDMA) beads with diameter of 7 microm were prepared by a single-step swelling and polymerization method. The polymer particles were advantaged through immobilization of Procion Bule MX-R, which was incubated by epichlorohydrin via the epoxide groups on the particles surface. The Procion Bule MX-R-immobilized P(GMA-EDMA) beads were mechanically stable and acted as the rigid matrix for column chromatography in HPLC mode. The chromatographic properties of the dye-ligand affinity chromatographic stationary phase for biopolymers separation are discussed. This affinity column has advantages of enabling biopolymer separation, high efficiency and low backpressure. Lysozyme and BSA were fast separated within 10min using this affinity column. The column was also used for the purification of lysozyme from chicken egg white.

  10. A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins.

    PubMed

    Huang, Yongdong; Zhang, Rongyue; Li, Juan; Li, Qiang; Su, Zhiguo; Ma, Guanghui

    2014-03-01

    Novel GSH-AP (phenoxyl agarose coated gigaporous polystyrene, Agap-co-PSt) microspheres were successfully prepared by introducing GSH ligand into hydrophilic AP microspheres pre-activated with 1,4-butanediol diglycidyl ether. The gigaporous structure and chromatographic properties of GSH-AP medium were evaluated and compared with commercial GSH Sepharose FF (GSH-FF) medium. The macropores (100-500nm) of gigaporous PSt microspheres were well maintained after coating with agarose and functionalized with GSH ligand. Hydrodynamic experiments showed that GSH-AP column had less backpressure and plate height than those of GSH-FF column at high flow velocity, which was beneficial for its use in high-speed chromatography. The presence of flow-through pores in GSH-AP microspheres also accelerated the mass transfer rate of biomolecules induced by convective flow, leading to high protein resolution and high dynamic binding capacity (DBC) of glutathione S-transferase (GST) at high flow velocity. High purity of GST and GST-tagged recombinant human interleukin-1 receptor antagonist (rhIL-1RA) were obtained from crude extract with an acceptable recovery yield within 1.5min at a velocity up to 1400cm/h. GSH-AP medium is promising for high-speed affinity chromatography for the purification of GST and GST-tagged proteins.

  11. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  12. Ligand binding to a high-energy partially unfolded protein.

    PubMed

    Kasper, Joseph R; Park, Chiwook

    2015-01-01

    The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP(+) as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP(+) and found that NADP(+) binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP(+) is diminished upon partial unfolding. Based on known crystallographic structures of NADP(+) -bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine-binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP(+) . Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high-energy non-native forms.

  13. NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

    PubMed

    Cruz, Carla; Boto, Renato E F; Drzazga, Anna K; Almeida, Paulo; Queiroz, João A

    2014-04-01

    Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α-chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un-substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α-chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α-chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD-NMR technique was successfully used to screen cyanine-protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography.

  14. Rapid screening of textile dyes employed as affinity ligands to purify enzymes from yeast.

    PubMed

    Raya-Tonetti, G; Perotti, N

    1999-04-01

    A rapid method for screening potential dye ligands for use in affinity chromatography is described. Textile dyes were non-covalently coupled to a cross-linked polysaccharide Sepharose(R) matrix. Yeast alcohol dehydrogenase (ADH) was used as the model protein for evaluating the screening system. A homogenate from baker's yeast was used as the crude source of enzyme. Batchwise adsorption and elution were used to evaluate the individual dyes. The influence of pH and ionic strength in the binding and elution steps was evaluated. Batch isotherms were used to evaluate parameter characteristics. Experimental data obtained were fitted to Langmuir isotherms to determine the maximum binding capacity and the dissociation constant for each dye evaluated in this study. A dynamic binding capacity of 107.6 units of ADH/g of resin was determined for Procion Turquoise MXG dye by frontal analysis. Specific elution with NAD+ and non-specific elution with 50 mM Tris/HCl buffer, pH 8.5, were tested when Procion Turquoise MXG was used, giving purification factors of 53.5 and 4.4 respectively. This screening technique is inexpensive and can be performed in a few hours. It was possible to predict the performance of different reactive dyes in this way, and the influence of pH and salt on the binding behaviour was demonstrated.

  15. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells.

    PubMed

    Baldikova, Eva; Pospiskova, Kristyna; Ladakis, Dimitrios; Kookos, Ioannis K; Koutinas, Apostolis A; Safarikova, Mirka; Safarik, Ivo

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.

    PubMed

    Ashtawy, Hossam M; Mahapatra, Nihar R

    2015-01-01

    Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing protein-ligand complexes to predict binding affinity. We assess the scoring accuracies of two new ensemble NN SFs based on bagging (BgN-Score) and boosting (BsN-Score), as well as those of conventional SFs in the context of the 2007 PDBbind benchmark that encompasses a diverse set of high-quality protein families. We find that BgN-Score and BsN-Score have more than 25% better Pearson's correlation coefficient (0.804 and 0.816 vs. 0.644) between predicted and measured binding affinities compared to that achieved by a state-of-the-art conventional SF. In addition, these ensemble NN SFs are also at least 19% more accurate (0.804 and 0.816 vs. 0.675) than SFs based on a single neural network that has been traditionally used in drug discovery applications. We further find that ensemble models based on NNs surpass SFs based on the decision-tree ensemble technique Random Forests. Ensemble neural networks SFs, BgN-Score and BsN-Score, are the most accurate in predicting binding affinity of protein-ligand complexes among the considered SFs. Moreover, their accuracies are even higher when they are used to predict

  17. A high-throughput ligand competition binding assay for the androgen receptor and other nuclear receptors.

    PubMed

    Féau, Clémentine; Arnold, Leggy A; Kosinski, Aaron; Guy, R Kiplin

    2009-01-01

    Standardized, automated ligand-binding assays facilitate evaluation of endocrine activities of environmental chemicals and identification of antagonists of nuclear receptor ligands. Many current assays rely on fluorescently labeled ligands that are significantly different from the native ligands. The authors describe a radiolabeled ligand competition scintillation proximity assay (SPA) for the androgen receptor (AR) using Ni-coated 384-well FlashPlates and liganded AR-LBD protein. This highly reproducible, low-cost assay is well suited for automated high-throughput screening. In addition, the authors show that this assay can be adapted to measure ligand affinities for other nuclear receptors (peroxisome proliferation-activated receptor gamma, thyroid receptors alpha and beta).

  18. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    PubMed

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  19. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  20. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  1. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improved accuracy of low affinity protein-ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry.

    PubMed

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (K(D)) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of K(D) are compounded in the case of low affinity complexes. Here we present a K(D) measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (f(sat)) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the K(D) values determined by this method with in-solution K(D) literature values. The influence of the type of molecular interactions and instrumental setup on f(sat) is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  3. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs.

    PubMed

    Lipani, Luca; Odadzic, Dalibor; Weizel, Lilia; Schwed, Johannes-Stephan; Sadek, Bassem; Stark, Holger

    2014-10-30

    The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively.

  4. Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH(1)R, but low affinity to hH(4)R.

    PubMed

    Wagner, Eva; Wittmann, Hans-Joachim; Elz, Sigurd; Strasser, Andrea

    2011-11-01

    In literature, a synergism between histamine H(1) and H(4) receptor is discussed. Furthermore, it was shown, that the combined application of mepyramine, a H(1) antagonist and JNJ7777120, a H(4) receptor ligand leads to a synergistic effect in the acute murine asthma model. Thus, the aim of this study was to develop new hybrid ligands, containing one H(1) and one H(4) pharmacophor, connected by an appropriate spacer, in order to address both, H(1)R and H(4)R. Within this study, we synthesized nine hybrid compounds, which were pharmacologically characterized at hH(1)R and hH(4)R. The new compounds revealed (high) affinity to hH(1)R, but showed only low affinity to hH(4)R. Additionally, we performed molecular dynamic studies for some selected compounds at hH(1)R, in order to obtain information about the binding mode of these compounds on molecular level.

  5. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  6. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    NASA Astrophysics Data System (ADS)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  7. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands

    PubMed Central

    2012-01-01

    The 5-HT3 receptor, a pentameric ligand-gated ion channel (pLGIC), is an important therapeutic target. During a recent fragment screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine (1) was identified as a 5-HT3R hit fragment. Here we describe the synthesis and structure–activity relationships (SAR) of a series of (iso)quinoline and quinazoline compounds that were synthesized and screened for 5-HT3R affinity using a [3H]granisetron displacement assay. These studies resulted in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is in agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction using homology modeling and in silico docking approaches. PMID:23006041

  8. How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1' Pocket of Thermolysin.

    PubMed

    Krimmer, Stefan G; Cramer, Jonathan; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard

    2017-08-02

    We investigated the hydration state of the deep, well-accessible hydrophobic S1' specificity pocket of the metalloprotease thermolysin with purposefully designed ligands using high-resolution crystallography and isothermal titration calorimetry. The S1' pocket is known to recognize selectively a very stringent set of aliphatic side chains such as valine, leucine, and isoleucine of putative substrates. We engineered a weak-binding ligand covering the active site of the protease without addressing the S1' pocket, thus transforming it into an enclosed cavity. Its sustained accessibility could be proved by accommodating noble gas atoms into the pocket in the crystalline state. The topology and electron content of the enclosed pocket with a volume of 141 Å(3) were analyzed using an experimental MAD-phased electron density map that was calibrated to an absolute electron number scale, enabling access to the total electron content within the cavity. Our analysis indicates that the S1' pocket is virtually vacated, thus free of any water molecules. The thermodynamic signature of the reduction of the void within the pocket by growing aliphatic P1' substituents (H, Me, iPr, iBu) reveals a dramatic, enthalpy-dominated gain in free energy of binding resulting in a factor of 41 000 in Kd for the H-to-iBu transformation. Substituents placing polar decoy groups into the pocket to capture putatively present water molecules could not collect any evidence for a bound solvent molecule.

  9. Phenylalanine-780 near the C-terminus of the mouse glucocorticoid receptor is important for ligand binding affinity and specificity.

    PubMed

    Chen, D; Kohli, K; Zhang, S; Danielsen, M; Stallcup, M R

    1994-04-01

    Site-directed mutagenesis was employed to make two single amino acid substitutions for highly conserved amino acid residues near the C-terminus of the 783-amino acid mouse glucocorticoid receptor. Substitution of leucine for histidine-781 caused little or no change in the concentration of dexamethasone required for half-maximal activation of a chloramphenicol acetyltransferase reporter gene expressed from a mouse mammary tumor virus promoter. However, when phenylalanine-780 was changed to alanine, the half-maximal concentrations of various agonists were increased as follows, compared with the wild-type glucocorticoid receptor: triamcinolone acetonide by 7-fold, dexamethasone by 25-fold, and hydrocortisone and deoxycorticosterone by more than 150-fold. Binding of labeled steroids by the mutant receptor in vitro and in vivo was also decreased. In contrast, this mutation caused a small decrease in the concentration of RU486 required for antagonist or partial agonist activity. Thus, the phenyl group of phenylalanine-780 of the mouse glucocorticoid receptor is an important determinant of ligand binding affinity and specificity.

  10. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  11. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Yanzhi; Kuang, Qifan; Pu, Xuemei; Ji, Yue; Zhang, Zhihang; Li, Menglong

    2015-04-01

    The assessment of binding affinity between ligands and the target proteins plays an essential role in drug discovery and design process. As an alternative to widely used scoring approaches, machine learning methods have also been proposed for fast prediction of the binding affinity with promising results, but most of them were developed as all-purpose models despite of the specific functions of different protein families, since proteins from different function families always have different structures and physicochemical features. In this study, we proposed a random forest method to predict the protein-ligand binding affinity based on a comprehensive feature set covering protein sequence, binding pocket, ligand structure and intermolecular interaction. Feature processing and compression was respectively implemented for different protein family datasets, which indicates that different features contribute to different models, so individual representation for each protein family is necessary. Three family-specific models were constructed for three important protein target families of HIV-1 protease, trypsin and carbonic anhydrase respectively. As a comparison, two generic models including diverse protein families were also built. The evaluation results show that models on family-specific datasets have the superior performance to those on the generic datasets and the Pearson and Spearman correlation coefficients ( R p and Rs) on the test sets are 0.740, 0.874, 0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin and carbonic anhydrase respectively. Comparisons with the other methods further demonstrate that individual representation and model construction for each protein family is a more reasonable way in predicting the affinity of one particular protein family.

  12. Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody.

    PubMed

    Bedzyk, W D; Weidner, K M; Denzin, L K; Johnson, L S; Hardman, K D; Pantoliano, M W; Asel, E D; Voss, E W

    1990-10-25

    Single-chain antibody of the (NH2) VL-linker-VH (COOH) design, was constructed based on prototype high affinity anti-fluorescein monoclonal antibody (mAb) 4-4-20. Purified single-chain antibody (SCA) 4-4-20/212 was studied relative to Ig mAb 4-4-20 in terms of ligand binding, kinetics, idiotypy, metatypy, and stability in denaturing agents. Ligand-binding data correlated with metatypic relatedness of the liganded site. Anti-metatypic reagents reacted preferentially with the liganded conformer of the 4-4-20 antibody active site and were unreactive with free ligand and the non-liganded (idiotypic) state. All results were consistent with the conclusion that SCA 4-4-20/212, with a 14-amino acid linker folded into a native conformational state that closely simulated the prototypical mAb. Furthermore, GndHCl unfolding and refolding studies demonstrated H and L chain variable domain intrinsic stability between SCA 4-4-20/212 and a 50 kDa antigen-binding fragment were nearly identical. This suggested CH1 and CL domain interactions may be more prevalent in V region molecular dynamics than structure.

  13. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity

    PubMed Central

    Kang, Dezhi; Wang, Jiangjie; Zhang, Weiyun; Song, Yanling; Li, Xilan; Zou, Yuan; Zhu, Mingtao; Zhu, Zhi; Chen, Fuyong; Yang, Chaoyong James

    2012-01-01

    Background Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor. Methodology/Principal Findings We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment. Conclusion/Significance The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma. PMID:23056171

  14. High-affinity carbamate analogues of morphinan at opioid receptors.

    PubMed

    Peng, Xuemei; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2007-03-15

    A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.

  15. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography.

    PubMed

    Wiley, J P; Hughes, K A; Kaiser, R J; Kesicki, E A; Lund, K P; Stolowitz, M L

    2001-01-01

    Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.

  16. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  17. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration.

    PubMed

    Kiosses, W B; Shattil, S J; Pampori, N; Schwartz, M A

    2001-03-01

    Integrin alphavbeta3 has an important role in the proliferation, survival, invasion and migration of vascular endothelial cells. Like other integrins, alphavbeta3 can exist in different functional states with respect to ligand binding. These changes involve both affinity modulation, by which conformational changes in the integrin heterodimer govern affinity for individual extracellular matrix proteins, and avidity modulation, by which changes in lateral mobility and integrin clustering affect the binding of cells to multivalent matrices. Here we have used an engineered monoclonal antibody Fab (antigen-binding fragment) named WOW-1, which binds to activated integrins alphavbeta3 and alphavbeta5 from several species, to investigate the role of alphavbeta3 activation in endothelial cell behaviour. Because WOW-1 is monovalent, it is insensitive to changes in integrin clustering and therefore reports only changes in affinity. WOW-1 contains an RGD tract in its variable region and binds only to unoccupied, high-affinity integrins. By using WOW-1, we have identified the selective recruitment of high-affinity integrins as a mechanism by which lamellipodia promote formation of new adhesions at the leading edge in cell migration.

  18. C-X...H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity.

    PubMed

    Lu, Yunxiang; Wang, Yong; Xu, Zhijian; Yan, Xiuhua; Luo, Xiaoming; Jiang, Hualiang; Zhu, Weiliang

    2009-09-17

    The hydrogen bond acceptor capability of halogens has long been underappreciated in the field of biology. In this work, we have surveyed structures of protein complexes with halogenated ligands to characterize geometrical preferences of C-X...H contacts and contributions of such interactions to protein-ligand binding affinity. Notably, F...H interactions in biomolecules exhibit a remarkably different behavior as compared to three other kinds of X...H (X = Cl, Br, I) interactions, which has been rationalized by means of ab initio calculations using simple model systems. The C-X...H contacts in biological systems are characterized as weak hydrogen bonding interactions. Furthermore, the electrophile "head on" and nucleophile "side on" interactions of halogens have been extensively investigated through the examination of interactions in protein structures and a two-layer ONIOM-based QM/MM method. In biomolecular systems, C-X...H contacts are recognized as secondary interaction contributions to C-X...O halogen bonds that play important roles in conferring specificity and affinity for halogenated ligands. The results presented here are within the context of their potential applications in drug design, including relevance to the development of accurate force fields for halogens.

  19. High-affinity K+ uptake in pepper plants.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2005-06-01

    High-affinity K+ uptake is an essential process for plant nutrition under K+-limiting conditions. The results presented here demonstrate that pepper (Capsicum annuum) plants grown in the absence of NH4+ and starved of K+ show an NH4+-sensitive high-affinity K+ uptake that allows plant roots to deplete external K+ to values below 1 microM. When plants are grown in the presence of NH4+, high-affinity K+ uptake is not inhibited by NH4+. Although NH4+-grown plants deplete external K+ below 1 microM in the absence of NH4+, when 1 mM NH4+ is present they do not deplete external K+ below 10 microM. A K+ transporter of the HAK family, CaHAK1, is very likely mediating the NH4+-sensitive component of the high-affinity K+ uptake in pepper roots. CaHAK1 is strongly induced in the roots that show the NH4+-sensitive high-affinity K+ uptake and its induction is reduced in K+-starved plants grown in the presence of NH4+. The NH4+-insensitive K+ uptake may be mediated by an AKT1-like K+ channel.

  20. Locking the beta3 integrin I-like domain into high and low affinity conformations with disulfides.

    PubMed

    Luo, Bing-Hao; Takagi, Junichi; Springer, Timothy A

    2004-03-12

    Although integrin alpha subunit I domains exist in multiple conformations, it is controversial whether integrin beta subunit I-like domains undergo structurally analogous movements of the alpha7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the beta(3) integrin I-like domain to lock its beta6-alpha7 loop and alpha7-helix in two distinct conformations. Soluble ligand binding, ligand mimetic mAb binding and cell adhesion studies showed that disulfide-bonded receptor alpha(IIb)beta(3)(T329C/A347C) was locked in a low affinity state, and dithiothreitol treatment restored the capability of being activated to high affinity binding; by contrast, disulfide-bonded alpha(IIb)beta(3)(V332C/M335C) was locked in a high affinity state. The results suggest that activation of the beta subunit I-like domain is analogous to that of the alpha subunit I domain, i.e. that axial movement in the C-terminal direction of the alpha7-helix is linked to rearrangement of the I-like domain metal ion-dependent adhesion site into a high affinity conformation.

  1. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification.

    PubMed

    Arica, M Yakup; Yilmaz, Meltem; Yalçin, Emine; Bayramoğlu, Gülay

    2004-06-15

    Two different dye-ligands, i.e. Procion Brown MX-5BR (RB-10) and Procion Green H-4G (RG-5) were immobilised onto poly(2-hydroxyethylmethacrylate) (pHEMA) membranes. The polarities of the affinity membranes were determined by contact angle measurements. Separation and purification of lysozyme from solution and egg white were investigated. The adsorption data was analysed using two adsorption kinetic models the first order and the second order to determine the best-fit equation for the separation of lysozyme using affinity membranes. The second-order equation for the adsorption of lysozyme on the RB-10 and RG-5 immobilised membranes systems is the most appropriate equation to predict the adsorption capacity for the affinity membranes. The reversible lysozyme adsorption on the RB-10 and RG-5 did not follow the Langmuir model, but obeyed the Temkin and Freundlich isotherm model. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purities of the eluted lysozyme, as determined by HPLC, were 76 and 92% with recovery 63 and 77% for RB-10 and RG-5 membranes, respectively. For the separation and purification of lysozyme the RG-5 immobilised membrane provided the best results. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.

  2. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?

    PubMed

    Ballester, Pedro J; Schreyer, Adrian; Blundell, Tom L

    2014-03-24

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein-ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein-ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data.

  3. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction.

    PubMed

    Dubey, Ashok K; Baker, Carol S; Romeo, Tony; Babitzke, Paul

    2005-10-01

    The global Csr regulatory system controls bacterial gene expression post-transcriptionally. CsrA of Escherichia coli is an RNA binding protein that plays a central role in repressing several stationary phase processes and activating certain exponential phase functions. CsrA regulates translation initiation of several genes by binding to the mRNA leaders and blocking ribosome binding. CsrB and CsrC are noncoding regulatory RNAs that are capable of sequestering CsrA and antagonizing its activity. Each of the known target transcripts contains multiple CsrA binding sites, although considerable sequence variation exists among these RNA targets, with GGA being the most highly conserved element. High-affinity RNA ligands containing single CsrA binding sites were identified from a combinatorial library using systematic evolution of ligands by exponential enrichment (SELEX). The SELEX-derived consensus was determined as RUACARGGAUGU, with the ACA and GGA motifs being 100% conserved and the GU sequence being present in all but one ligand. The majority (51/55) of the RNAs contained GGA in the loop of a hairpin within the most stable predicted structure, an arrangement similar to several natural CsrA binding sites. Strikingly, the identity of several nucleotides that were predicted to form base pairs in each stem were 100% conserved, suggesting that primary sequence information was embedded within the base-paired region. The affinity of CsrA for several selected ligands was measured using quantitative gel mobility shift assays. A mutational analysis of one selected ligand confirmed that the conserved ACA, GGA, and GU residues were critical for CsrA binding and that RNA secondary structure participates in CsrA-RNA recognition.

  4. Preparative separation of di- and trisulfonated components of Quinoline Yellow using affinity-ligand pH-zone-refining counter-current chromatography

    PubMed Central

    Weisz, Adrian; Mazzola, Eugene P.; Ito, Yoichiro

    2009-01-01

    Four positionally isomeric 2-(2-quinolinyl)-1H-indene-1,3(2H)-dionedisulfonic acids (SA) and one triSA, components of the color additive Quinoline Yellow (QY, Color Index No. 47005), were isolated from the dye mixture by affinity-ligand pH-zone-refining counter-current chromatography (CCC) through complementary use of ion-exchange and ion-pair reagents as the ligand. The added ligands facilitated the partitioning of the very polar polysulfonated components into the organic stationary phase of the two-phase solvent systems that consisted of isoamyl alcohol-methyl tert.-butyl ether-acetonitrile-water (3:5:1:7), (3:4:1:7) or (3:1:1:5). Thus, separation of a 5 g portion of QY using sulfuric acid as the retainer and dodecylamine as the ligand (an ion-exchange reagent, 20% in the stationary phase), resulted in 1.21 g of 6′,5-diSA and 1.69 g of 6′,8′,5-triSA, both of over 99% purity. A minor component, 8′,4-diSA, not previously reported was also obtained (4.8 mg of over 94% purity) through a similar separation of a different batch of QY using hydrochloric acid as the retainer and 10% dodecylamine as the ligand in the stationary phase. Two components that co-eluted (0.55 g) in the 5 g separation were separated when trifluoroacetic acid was used as the retainer and tetrabutylammonium hydroxide (an ion-pair reagent) as the ligand. The separation resulted in 20.7 mg of 6′,4-diSA, not previously reported, and 111.8 mg of 8′,5-diSA, both of over 98% purity. The isolated compounds were characterized by high-resolution mass spectrometry and proton nuclear magnetic resonance with correlated spectroscopy assignments. PMID:19281993

  5. Preparative separation of di- and trisulfonated components of Quinoline Yellow using affinity-ligand pH-zone-refining counter-current chromatography.

    PubMed

    Weisz, Adrian; Mazzola, Eugene P; Ito, Yoichiro

    2009-05-08

    Four positionally isomeric 2-(2-quinolinyl)-1H-indene-1,3(2H)-dionedisulfonic acids (SA) and one triSA, components of the color additive Quinoline Yellow (QY, Color Index No. 47005), were isolated from the dye mixture by affinity-ligand pH-zone-refining counter-current chromatography (CCC) through complementary use of ion-exchange and ion-pair reagents as the ligand. The added ligands facilitated the partitioning of the very polar polysulfonated components into the organic stationary phase of the two-phase solvent systems that consisted of isoamyl alcohol-methyl tert-butyl ether-acetonitrile-water (3:5:1:7), (3:4:1:7) or (3:1:1:5). Thus, separation of a 5-g portion of QY using sulfuric acid as the retainer and dodecylamine as the ligand (an ion-exchange reagent, 20% in the stationary phase), resulted in 1.21g of 6',5-diSA and 1.69g of 6',8',5-triSA, both of over 99% purity. A minor component, 8',4-diSA, not previously reported was also obtained (4.8mg of over 94% purity) through a similar separation of a different batch of QY using hydrochloric acid as the retainer and 10% dodecylamine as the ligand in the stationary phase. Two components that co-eluted (0.55g) in the 5g separation were separated when trifluoroacetic acid was used as the retainer and tetrabutylammonium hydroxide (an ion-pair reagent) as the ligand. The separation resulted in 20.7mg of 6',4-diSA, not previously reported, and 111.8mg of 8',5-diSA, both of over 98% purity. The isolated compounds were characterized by high-resolution mass spectrometry and proton nuclear magnetic resonance with correlated spectroscopy assignments.

  6. Combinatorial de novo design and application of a biomimetic affinity ligand for the purification of human anti-HIV mAb 4E10 from transgenic tobacco.

    PubMed

    Platis, Dimitris; Maltezos, Anastasios; Ma, Julian K-C; Labrou, Nikolaos E

    2009-01-01

    Monoclonal anti-HIV antibody 4E10 (mAb 4E10) is one of the most broadly neutralizing antibodies against HIV, directed against a specific epitope on envelope protein gp41. In the present study, a combinatorial de novo design approach was used for the development of a biomimetic ligand for the affinity purification of mAb 4E10 from tobacco transgenic extract in a single chromatographic step. The biomimetic ligand (4E10lig) was based on a L-Phe/beta-Ala bi-substituted 1,3,5-triazine (Trz) scaffold (beta-Ala-Trz-L-Phe, 4E10lig) which potentially mimics the more pronounced electrostatic and hydrophobic interactions of mAb 4E10-binding sequence determined by screening of a random peptide library. This library was comprised of Escherichia coli cells harboring a plasmid (pFlitrx) engineered to express a fusion protein containing random dodecapeptides that were inserted into the active loop of thioredoxin, which itself was inserted into the dispensable region of the flagellin gene. Adsorption equilibrium studies with this biomimetic ligand and mAb 4E10 determined a dissociation constant (K(D)) of 0.41 +/- 0.05 microM. Molecular modeling studies of the biomimetic ligand revealed that it can potentially occupy the same binding site as the natural binding core peptide epitope. The biomimetic affinity adsorbent was exploited in the development of a facile mAb 4E10 purification protocol, affording mAb 4E10 of high purity (approximately 95%) with good overall yield (60-80%). Analysis of the antibody preparation by SDS-PAGE, enzyme-linked immunosorbent assays (ELISA), and western blot showed that the mAb 4E10 was fully active and free of degraded variants, polyphenols, and alkaloids.

  7. Increasing the molecular contacts between maurotoxin and Kv1.2 channel augments ligand affinity.

    PubMed

    M'Barek, Sarrah; Chagot, Benjamin; Andreotti, Nicolas; Visan, Violeta; Mansuelle, Pascal; Grissmer, Stephan; Marrakchi, Mohamed; El Ayeb, Mohamed; Sampieri, François; Darbon, Hervé; Fajloun, Ziad; De Waard, Michel; Sabatier, Jean-Marc

    2005-08-15

    Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity.

  8. Evolved Streptavidin Mutants Reveal Key Role of Loop Residue in High-affinity Binding

    SciTech Connect

    M Magalhaes; C Melo Czekster; R Guan; V Malashkevich; S Almo; M Levy

    2011-12-31

    We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a {approx}10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.

  9. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition.

    PubMed

    Dullweber, F; Stubbs, M T; Musil, D; Stürzebecher, J; Klebe, G

    2001-10-26

    The binding of a series of low molecular weight ligands towards trypsin and thrombin has been studied by isothermal titration calorimetry and protein crystallography. In a series of congeneric ligands, surprising changes of protonation states occur and are overlaid on the binding process. They result from induced pK(a) shifts depending on the local environment experienced by the ligand and protein functional groups in the complex (induced dielectric fit). They involve additional heat effects that must be corrected before any conclusion on the binding enthalpy (DeltaH) and entropy (DeltaS) can be drawn. After correction, trends in both contributions can be interpreted in structural terms with respect to the hydrogen bond inventory or residual ligand motions. For all inhibitors studied, a strong negative heat capacity change (DeltaC(p)) is detected, thus binding becomes more exothermic and entropically less favourable with increasing temperature. Due to a mutual compensation, Gibbs free energy remains virtually unchanged. The strong negative DeltaC(p) value cannot solely be explained by the removal of hydrophobic surface portions of the protein or ligand from water exposure. Additional contributions must be considered, presumably arising from modulations of the local water structure, changes in vibrational modes or other ordering parameters. For thrombin, smaller negative DeltaC(p) values are observed for ligand binding in the presence of sodium ions compared to the other alkali ions, probably due to stabilising effects on the protein or changes in the bound water structure. Copyright 2001 Academic Press.

  10. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    SciTech Connect

    Dunn, S.M.J.; Bladen, C. )

    1991-06-11

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-({sup 3}H)PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-({sup 3}H)PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 {mu}M for the agonist ({plus minus})-Bay K8644 and for the antagonists nifedipine, ({plus minus})-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since ({minus})-PN200-110 (1-200 {mu}M) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTP{gamma}S) and guanosine 5'-O-(2-thiodiphosphate) (GDP{beta}S) on binding parameters. GTP{gamma}S did increase the ability of ({plus minus})-({sup 3}H)PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites.

  11. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  12. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Charge density influences C1 domain ligand affinity and membrane interactions

    PubMed Central

    Lewin, Nancy E.; Kedei, Noemi; Hill, Colin S.; Selezneva, Julia S.; Valle, Christopher J.; Woo, Wonhee; Gorshkova, Inna; Blumberg, Peter M.

    2014-01-01

    The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analog the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between ligand, the C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site per se to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we show that increasing charge along the rim of the binding cleft of the protein kinase C δ C1b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands, and thus contributes an element to the structure activity relations for C1 domain ligands. Co-expressing pairs of C1 containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain. PMID:24777910

  14. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    SciTech Connect

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing; daCosta, Corrie J. B.; Chen, Lin

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr184 depends on local residues, we generated mutations in an α7/5HT3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr184 and local residues contributes to high-affinity subtype-selective α-btx binding.

  15. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    PubMed Central

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing; daCOSTA, Corrie J. B.; Chen, Lin

    2014-01-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr184 depends on local residues, we generated mutations in an α7/5HT3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr184 and local residues contributes to high-affinity subtype-selective α-btx binding. PMID:23802200

  16. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    SciTech Connect

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  17. Low and high affinity receptors mediate cellular uptake of heparanase

    PubMed Central

    Ben-Zaken, Olga; Shafat, Itay; Gingis-Velitski, Svetlana; Bangio, Haim; Kelson, Idil Kasuto; Alergand, Tal; Amor, Yehudit; Maya, Ruth Ben-Yakar; Vlodavsky, Israel; Ilan, Neta

    2008-01-01

    Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteome™ GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors cooperate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated. PMID:17981072

  18. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures.

    PubMed Central

    Keeton, T P; Bulla, L A

    1997-01-01

    The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule. PMID:9292994

  19. Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches

    DTIC Science & Technology

    2006-02-01

    solvent method (35) using an explicit solvent layer width of 10 Å. The hybrid solvent model (35) involves encapsulating a biological solute by a layer of...Gilson. 2004. Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87:3035–3049. 42. Janezic, D

  20. Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches

    DTIC Science & Technology

    2006-02-01

    an explicit solvent layer width of 10 Å. The hybrid solvent model (35) involves encapsulating a biological solute by a layer of water molecules...of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87:3035–3049. 42. Janezic, D., R. M. Venable, and

  1. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications.

  2. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  4. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    SciTech Connect

    Krizsan, D. ); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. ); Hosztafi, S. )

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  5. Affinity labelling and identification of the high-affinity choline carrier from synaptic membranes of Torpedo electromotor nerve terminals with [3H]choline mustard.

    PubMed

    Rylett, R J

    1988-12-01

    The physiological mechanisms regulating activity of the sodium-dependent, high-affinity choline transporter and the molecular events in the translocation process remain unclear; the protein has not been purified or characterized biochemically. In the present study, [3H]choline mustard aziridinium ion [( 3H]ChM Az), a nitrogen mustard analogue of choline, bound irreversibly to presynaptic plasma membranes from Torpedo electric organ in a hemicholinium-sensitive, and sodium-, time-, and temperature-dependent manner. Specific binding of this ligand was greatest when it was incubated with membranes in the presence of sodium at 30 degrees C. Separation of the 3H-labelled membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the radiolabel was associated with a polypeptide of apparent molecular mass of approximately 42,000 daltons; labelling of this species was abolished in membranes incubated with ligand in the presence of HC-3. Two other 3H-labelled polypeptides were detected, with apparent molecular masses of approximately 58,000 and 90,000 daltons; radiolabelling of the former was also HC-3 sensitive. [3H]ChM Az may be a useful affinity ligand in the purification of the choline carrier from cholinergic neurons.

  6. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).

    PubMed

    Lindblom, Peter R; Wu, Guosheng; Liu, Zhijie; Jim, Kam-Chuen; Baldwin, John J; Gregg, Richard E; Claremon, David A; Singh, Suresh B

    2014-09-01

    Contour(®) is a computational structure-based drug design technology that grows drug-like molecules by assembling context sensitive fragments in well-defined binding pockets. The grown molecules are scored by a novel empirical scoring function developed using high-resolution crystal structures of diverse classes of protein-ligand complexes and associated experimental binding affinities. An atomic model bearing features of the valence bond and VSEPR theories embodying their molecular electronic environment has been developed for non-covalent intermolecular interactions. On the basis of atomic hybridization and polarization states, each atom is modeled by features representing electron lone pairs, p-orbitals, and polar and non-polar hydrogens. A simple formal charge model was used to differentiate between polar and non-polar atoms. The interaction energy and the desolvation contribution of the protein-ligand association energy is computed as a linear sum of pair-wise interactions and desolvation terms. The pair-wise interaction energy captures short-range positive electrostatic interactions via hydrogen bonds, electrostatic repulsion of like charges, and non-bond contacts. The desolvation energy is estimated by calculating the energy required to desolvate interaction surfaces of the protein and the ligand in the complex. The scoring function predicts binding energies of a diverse set of protein-ligand complexes used for training with a correlation coefficient of 0.61. It also performs equally well in predicting association energies of a diverse validation set of protein-ligand complexes with a correlation coefficient of 0.57, which is equivalent to or better than 12 other scoring functions tested against this set including X-Score, GOLD, and DrugScore. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dissecting the Binding Mode of Low Affinity Phage Display Peptide Ligands to Protein Targets by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry

    PubMed Central

    2015-01-01

    Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide–protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets. The HDX-MS workflow was optimized to accurately detect low-affinity peptide–protein interactions by use of ion mobility, electron transfer dissociation, nonbinding control peptides, and statistical analysis of replicate data. We show that HDX-MS can identify regions in the two epigenetic regulator proteins KDM4C and KDM1A that are perturbed through weak interactions with PD-identified peptides. Two peptides cause reduced HDX on opposite sides of the active site of KDM4C, indicating distinct binding modes. In contrast, the perturbation site of another PD-selected peptide inhibiting the function of KDM1A maps to a GST-tag. Our results demonstrate that HDX-MS can validate and map weak peptide–protein interactions and pave the way for understanding and optimizing the binding of peptide scaffolds identified through PD and similar ligand discovery approaches. PMID:25325890

  8. 1,3-dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure-affinity and structure-selectivity relationships.

    PubMed

    Fernández, Franco; Caamaño, Olga; Isabel Nieto, M; López, Carmen; García-Mera, Xerardo; Stefanachi, Angela; Nicolotti, Orazio; Isabel Loza, M; Brea, Jose; Esteve, Cristina; Segarra, Victor; Vidal, Bernat; Carotti, Angelo

    2009-05-15

    A number of 1,3-dialkyl-9-deazaxanthines (9-dAXs), bearing a variety of N-substituted benzyloxycarbonylamino substituents at position 8, were prepared and evaluated for their binding affinity to the recombinant human adenosine receptors (hARs), chiefly to the hA(2B) and hA(2A) AR subtypes. Several ligands endowed with excellent binding affinity to the hA(2B) receptors, but low selectivity versus hA(2A) and hA(1) were identified. Among these, 1,3-dimethyl-N-3'-thienyl carbamate 15 resulted as the most potent ligand at hA(2B) (K(i)=0.8 nM), with a low selectivity versus hA(2A) (hA(2A)/hA(2B)=12.6) and hA(1) (hA(1)/hA(2B)=12.5) and a higher selectivity versus hA(3) (hA(3)/hA(2B)=454). When tested in functional assays in vitro, compound 15 exhibited high antagonist activities and efficacies versus both the A(2A) and A(2B) receptor subtypes, with pA(2) values close to the corresponding pK(i)s. A comparative analysis of structure-affinity and structure-selectivity relationships of the similar analogues 8-N-substituted benzyloxycarbonylamino- and 8-N-substituted phenoxyacetamido-9-dAXs suggested that their binding modes at the hA(2B) and hA(2A) ARs may strongly differ. Computational studies help to clarify this striking difference arising from a simple, albeit crucial, structural change, from CH(2)OCON to OCH(2)CON, in the para-position of the 8-phenyl ring.

  9. Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.

    PubMed

    Kulharia, Mahesh; Goody, Roger S; Jackson, Richard M

    2008-10-01

    The development and validation of a new knowledge based scoring function (SIScoreJE) to predict binding energy between proteins and ligands is presented. SIScoreJE efficiently predicts the binding energy between a small molecule and its protein receptor. Protein-ligand atomic contact information was derived from a Non-Redundant Data set (NRD) of over 3000 X-ray crystal structures of protein-ligand complexes. This information was classified for individual "atom contact pairs" (ACP) which is used to calculate the atomic contact preferences. In addition to the two schemes generated in this study we have assessed a number of other common atom-type classification schemes. The preferences were calculated using an information theoretic relationship of joint entropy. Among 18 different atom-type classification schemes "ScoreJE Atom Type set2" (SATs2) was found to be the most suitable for our approach. To test the sensitivity of the method to the inclusion of solvent, Single-body Solvation Potentials (SSP) were also derived from the atomic contacts between the protein atom types and water molecules modeled using AQUARIUS2. Validation was carried out using an evaluation data set of 100 protein-ligand complexes with known binding energies to test the ability of the scoring functions to reproduce known binding affinities. In summary, it was found that a combined SSP/ScoreJE (SIScoreJE) performed significantly better than ScoreJE alone, and SIScoreJE and ScoreJE performed better than GOLD::GoldScore, GOLD::ChemScore, and XScore.

  10. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics.

    PubMed

    van Bergenhenegouwen, Jeroen; Kraneveld, Aletta D; Rutten, Lieke; Garssen, Johan; Vos, Arjan P; Hartog, Anita

    2016-10-28

    The small intestine is a specialized compartment were close interactions take place between host, microbes, food antigens and dietary fatty acids. Dietary fats get absorbed by epithelial cells and processed into a range of lipoprotein particles after which they are basolaterally secreted and collected in the lymphatics. In contrast to the colon, the small intestine is covered only by a thin mucus coat that allows for intimate interactions between host-cells and microbes. Lipoproteins have long been recognized as protective factors in infectious diseases via the neutralization of bacterial toxins like lipopolysaccharides. Much less attention has been given to the potential role of lipoproteins as factors contributing to the maintenance of small intestinal immune homeostasis via modulating bacteria-induced immune responses. Lipoproteins VLDL, LDL and HDL were found to neutralize TLR responses towards specific TLR-ligands or a selection of gram-negative and gram-positive bacteria. Attenuation of TLR2 activity was acute and only slightly improved by longer pre-incubation times of ligands and lipoproteins with no differences between bacterial-lipopeptides or bacteria. In contrast, attenuation of TLR4 responses was only observed after extensive preincubation of lipoproteins and LPS. Preincubation of bacteria and lipoproteins led only to a modest attenuation of TLR4 activity. Moreover, compared to TLR2, TLR4 activity could only be attenuated by lipoproteins over a small ligand dose range. These results demonstrate the ability of lipoproteins VLDL, LDL and HDL to inhibit TLR responses towards bacterial-ligands and bacteria. Presence of lipoproteins was found to modulate the MAMP-induced cytokine release by primary human monocytes measured as changes in the release of IL-6, TNFα, GM-CSF and IFNγ. Using TLR2 and TLR4-reporter cells, lipoproteins were found to inhibit TLR responses with differences in affinity and kinetics. These data establish a role for lipoproteins as

  11. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  12. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity.

    PubMed Central

    Pullinger, C R; Hennessy, L K; Chatterton, J E; Liu, W; Love, J A; Mendel, C M; Frost, P H; Malloy, M J; Schumaker, V N; Kane, J P

    1995-01-01

    Detection of new ligand-defective mutations of apolipoprotein B (apoB) will enable identification of sequences involved in binding to the LDL receptor. Genomic DNA from patients attending a lipid clinic was screened by single-strand conformation polymorphism analysis for novel mutations in the putative LDL receptor-binding domain of apoB-100. A 46-yr-old woman of Celtic and Native American ancestry with primary hypercholesterolemia (total cholesterol [TC] 343 mg/dl; LDL cholesterol [LDL-C] 241 mg/dl) and pronounced peripheral vascular disease was found to be heterozygous for a novel Arg3531-->Cys mutation, caused by a C-->T transition at nucleotide 10800. One unrelated 59-yr-old man of Italian ancestry was found with the same mutation after screening 1,560 individuals. He had coronary heart disease, a TC of 310 mg/dl, and an LDL-C of 212 mg/dl. A total of eight individuals were found with the defect in the families of the two patients. They had an age- and sex-adjusted TC of 240 +/- 14 mg/dl and LDL-C of 169 +/- 10 mg/dl. This compares with eight unaffected family members with age- and sex-adjusted TC of 185 +/- 12 mg/dl and LDL-C of 124 +/- 12 mg/dl. In a dual-label fibroblast binding assay, LDL from the eight subjects with the mutation had an affinity for the LDL receptor that was 63% that of control LDL. LDL from eight unaffected family members had an affinity of 91%. By way of comparison, LDL from six patients heterozygous for the Arg3500-->Gln mutation had an affinity of 36%. The percentage mass ratio of the defective Cys3531 LDL to normal LDL was 59:41, as determined using the mAb MB19 and dynamic laser light scattering. Thus, the defective LDL had accumulated in the plasma of these patients. Using this mass ratio, it was calculated that the defective Cys3531 LDL particles bound with 27% of normal affinity. Deduced haplotypes using 10 apoB gene markers showed the Arg3531-->Cys alleles to be different in the two kindreds and indicates that the mutations arose

  13. Structural origins of high-affinity biotin binding to streptavidin.

    PubMed

    Weber, P C; Ohlendorf, D H; Wendoloski, J J; Salemme, F R

    1989-01-06

    The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.

  14. Correlations and multi-affinity in high frequency financial datasets

    NASA Astrophysics Data System (ADS)

    Baviera, Roberto; Pasquini, Michele; Serva, Maurizio; Vergni, Davide; Vulpiani, Angelo

    2001-11-01

    In this paper we perform a quantitative check of long term correlations and multi-affinity in Deutsche Mark/US Dollar exchange rates using high frequency data. We show that the use of business time, i.e., the ranking of the quotes in the sequences, eliminates most of the seasonality in financial-time series, allowing a precise estimation of some return anomalies.

  15. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein from Salmonella typhimurium.

    PubMed

    Pulido, Nancy O; Silva, Daniel-Adriano; Tellez, Luis A; Pérez-Hernández, Gerardo; García-Hernández, Enrique; Sosa-Peinado, Alejandro; Fernández-Velasco, D Alejandro

    2015-02-01

    The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high-affinity binding of ligands to proteins is still limited; such is the case for l-lysine-l-arginine-l-ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l-arginine, l-lysine, and l-ornithine with nanomolar affinity and to l-histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l-histidine and l-arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~-300 cal mol(-1)  K(-1) , most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000-fold higher affinity of LAOBP for l-arginine as compared with l-histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy-driven micromolar affinity toward l-arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization.

  16. High-throughput fragment screening by affinity LC-MS.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in <4 h (corresponding to >3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  17. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    PubMed

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  18. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores.

    PubMed Central

    Ebisawa, T; Karne, S; Lerner, M R; Reppert, S M

    1994-01-01

    Using an expression cloning strategy, a high-affinity melatonin receptor cDNA has been isolated from Xenopus laevis dermal melanophores. Transient expression of the cDNA in COS-7 cells resulted in high-affinity 2-[125I]-iodomelatonin binding (Kd = 6.3 +/- 0.3 x 10(-11) M). In addition, six ligands exhibited a rank order of inhibition of specific 2-[125I]iodomelatonin binding that was identical to that reported for endogenous high-affinity receptors. Functional studies of CHO cells stably expressing the receptor cDNA showed that melatonin acting through the cloned receptor inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner. Northern blot analysis showed that melatonin receptor transcripts are moderately expressed in Xenopus dermal melanophores. The cDNA encodes a protein of 420 amino acids, which contains seven hydrophobic segments. Structural analysis revealed that the receptor protein is a newly discovered member of the guanine nucleotide binding protein-coupled receptor family. Images PMID:7517042

  19. Changes in benzodiazepine receptor ligand affinity in the presence of 4,5,6,7-tetrahydroisoxazolo-(5,4-c-)-pyridin-3-ol (THIP)

    SciTech Connect

    Zharkovskii, A.M.; Shavrin, A.S.; Zharkovskaya, T.A.

    1987-07-01

    The authors give data showing that benzodiazepine (BD) receptor ligands change their affinity in the presence of THIP, and that the shift of affinity induced by THIP can be used to predict the activity of these substances in vitro. Rats were used in the experiments and aliquots of the homogenate were incubated with /sup 3/H-flunitrazepam (/sup 3/H-FNZ). THIP inhibited binding of /sup 3/H-FNZ with intact membranes in proportion to its concentration. The inhibitory concentrations and inhibition constants of BD receptor ligands in the absence and presence of THIP are shown.

  20. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O2 affinity changes were investigated via (1)H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O2 to the α subunits is forbidden in the mutant Hbs, the O2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O2 affinity. It was found in this study that the quaternary structure of α(Fe(3+))β(Fe(2+)-CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α1-β2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  1. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    SciTech Connect

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  2. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  3. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  4. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-12-29

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  5. The AVR4 elicitor protein of Cladosporium fulvum binds to fungal components with high affinity.

    PubMed

    Westerink, Nienke; Roth, Ronelle; Van den Burg, Harrold A; De Wit, Pierre J G M; Joosten, Matthieu H A J

    2002-12-01

    The interaction between tomato and the fungal pathogen Cladosporium fulvum complies with the gene-for-gene system. Strains of C. fulvum that produce race-specific elicitor AVR4 induce a hypersensitive response, leading to resistance, in tomato plants that carry the Cf-4 resistance gene. The mechanism of AVR4 perception was examined by performing binding studies with 125I-AVR4 on microsomal membranes of tomato plants. We identified an AVR4 high-affinity binding site (KD = 0.05 nM) which exhibited all the characteristics expected for ligand-receptor interactions, such as saturability, reversibility, and specificity. Surprisingly, the AVR4 high-affinity binding site appeared to originate from fungi present on infected tomato plants rather than from the tomato plants themselves. Detailed analysis showed that this fungus-derived, AVR4-specific binding site is heat- and proteinase K-resistant. Affinity crosslinking demonstrated that AVR4 specifically binds to a component of approximately 75 kDa that is of fungal origin. Our data suggest that binding of AVR4 to a fungal component or components is related to the intrinsic virulence function of AVR4 for C. fulvum.

  6. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations

    NASA Astrophysics Data System (ADS)

    Michel, Julien; Essex, Jonathan W.

    2010-08-01

    Many limitations of current computer-aided drug design arise from the difficulty of reliably predicting the binding affinity of a small molecule to a biological target. There is thus a strong interest in novel computational methodologies that claim predictions of greater accuracy than current scoring functions, and at a throughput compatible with the rapid pace of drug discovery in the pharmaceutical industry. Notably, computational methodologies firmly rooted in statistical thermodynamics have received particular attention in recent years. Yet free energy calculations can be daunting to learn for a novice user because of numerous technical issues and various approaches advocated by experts in the field. The purpose of this article is to provide an overview of the current capabilities of free energy calculations and to discuss the applicability of this technology to drug discovery.

  7. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.

    PubMed

    Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M

    2014-06-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Preparation, optimization and application of affinity absorbent with a polysaccharide YCP as the ligand.

    PubMed

    Ding, Ran; Zhou, Yan; Zhang, Xian; Zhu, Rui; Yao, Wen-Bing; Gao, Xiang-Dong

    2014-04-15

    YCP, an α-glucan from the mycelium of marine filamentous fungus Phoma herbarum YS4108, has great antitumor potential via enhancement of host immune through Toll-like receptor (TLR) 2 and TLR4 signaling. In the current study, YCP was coupled to EAH Sepharose 4B agarose beads to prepare the YCP-Sepharose affinity absorbent using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) as the activating agent. An orthogonal experiment L9 (3)(4) was applied to optimize the coupling procedure, giving the optimal parameters as follows: molar ratio of CDAP to YCP of 1:2, CDAP-activation time of 5 min, gel volume of 0.1 mL, and gel-incubation time of 72 h, respectively. Scanning electron microscopy analysis indicated successfully preparation of YCP immobilized sepharose beads, while these beads essentially maintained biological properties of free YCP since they can interact with TLR2 and TLR4 specifically at comparable level. Collectively, our findings provide an alternative approach to immobilize carbohydrate-based molecules for studying the carbohydrate-protein interaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Tyramine and tryptamine as ligands for medical and biotechnological affinity sorbents].

    PubMed

    Levashov, P A; Ovchinnikova, E D; Afanasjev, M I; Fried, D A; Azmuko, A A; Adamova, I Yu; Pokrovsky, S N

    2015-01-01

    A novel technique for preparation affinity sorbent based on tyramine and tryptamine was proposed. It was shown that tryptamine-Sepharose and tyramine-Sepharose effectively bind IgG, IgA, lipoprotein (a) (Lp(a)) and low density lipoproteins (LDL) from blood plasma. The sorption capacity is 4-9 mg of IgG, 2-4 mg IgA, 3-5:mg of Lp(a) and 5-7 mg of LDL per mL of gel. It was found that new sorbents can bind Lp(a) and IgG as themselves or in a complex of Lp(a) with IgG. The existence of this complex may indicate the presence of anti-Lp(a) autoantibodies in the blood of some patients. The advantages of new sorbents are easiness of its synthesis and stability during use and storage. In practice they can be applied for medical and biotechnological purposes where it is necessary to bind Lp(a), LDL, IgG, IgA.

  10. CSAR scoring challenge reveals the need for new concepts in estimating protein-ligand binding affinity.

    PubMed

    Novikov, Fedor N; Zeifman, Alexey A; Stroganov, Oleg V; Stroylov, Viktor S; Kulkov, Val; Chilov, Ghermes G

    2011-09-26

    The dG prediction accuracy by the Lead Finder docking software on the CSAR test set was characterized by R(2)=0.62 and rmsd=1.93 kcal/mol, and the method of preparation of the full-atom structures of the test set did not significantly affect the resulting accuracy of predictions. The primary factors determining the correlation between the predicted and experimental values were the van der Waals interactions and solvation effects. Those two factors alone accounted for R(2)=0.50. The other factors that affected the accuracy of predictions, listed in the order of decreasing importance, were the change of ligand's internal energy upon binding with protein, the electrostatic interactions, and the hydrogen bonds. It appears that those latter factors contributed to the independence of the prediction results from the method of full-atom structure preparation. Then, we turned our attention to the other factors that could potentially improve the scoring function in order to raise the accuracy of the dG prediction. It turned out that the ligand-centric factors, including Mw, cLogP, PSA, etc. or protein-centric factors, such as the functional class of protein, did not improve the prediction accuracy. Following that, we explored if the weak molecular interactions such as X-H...Ar, X-H...Hal, CO...Hal, C-H...X, stacking and π-cationic interactions (where X is N or O), that are generally of interest to the medicinal chemists despite their lack of proper molecular mechanical parametrization, could improve dG prediction. Our analysis revealed that out of these new interactions only CO...Hal is statistically significant for dG predictions using Lead FInder scoring function. Accounting for the CO...Hal interaction resulted in the reduction of the rmsd from 2.19 to 0.69 kcal/mol for the corresponding structures. The other weak interaction factors were not statistically significant and therefore irrelevant to the accuracy of dG prediction. On the basis of our findings from our

  11. Online magnetic bead based dynamic protein affinity selection coupled to LC-MS for the screening of acetylcholine binding protein ligands.

    PubMed

    Pochet, Lionel; Heus, Ferry; Jonker, Niels; Lingeman, Henk; Smit, August B; Niessen, Wilfried M A; Kool, Jeroen

    2011-06-15

    A magnetic beads based affinity-selection methodology towards the screening of acetylcholine binding protein (AChBP) binders in mixtures and pure compound libraries was developed. The methodology works as follows: after in solution incubation of His-tagged AChBP with potential ligands, and subsequent addition of cobalt (II)-coated paramagnetic beads, the formed bead-AChBP-ligand complexes are fetched out of solution by injection and trapping in LC tubing with an external adjustable magnet. Non binders are then washed to the waste followed by elution of ligands to a SPE cartridge by flushing with denaturing solution. Finally, SPE-LC-MS analysis is performed to identify the ligands. The advantage of the current methodology is the in solution incubation followed by immobilized AChBP ligand trapping and the capability of using the magnetic beads system as mobile/online transportable affinity SPE material. The system was optimized and then successfully demonstrated for the identification of AChBP ligands injected as pure compounds and for the fishing of ligands in mixtures. The results obtained with AChBP as target protein demonstrated reliable discrimination between binders with pK(i) values ranging from at least 6.26 to 8.46 and non-binders.

  12. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system.

    PubMed

    Oshima, Tatsuya; Oshima, Chinatsu; Baba, Yoshinari

    2015-05-15

    Affinity extraction based on the interaction between a target molecule and a specific affinity ligand offers a novel separation system for biomolecules in an aqueous two-phase system, however, most of affinity ligands are expensive. In the present study, metal affinity extraction of histidine (His) derivatives using a complex between Cu(II) and a commercially available chelating ligand was studied in a poly(ethylene glycol) (PEG)/Li2SO4 ATPS. Alizarin complexone (3-[N,N-bis(carboxymethyl)amino methyl]-1,2-dihydroxy anthraquinone, AC) was selected as the chelating ligand because of the good extractability of Cu(II) into the upper PEG-rich phase. On the basis of coordinate bonding with Cu(II), the extraction of His in the presence of the Cu(II)-AC complex under neutral condition was 73%, which was much higher than that under Cu(II) free condition (13%). Among a series of divalent transition metal ions (Cu(II), Ni(II), Co(II), and Zn(II)), Cu(II) was the most effective for the extraction of His. Derivatives of His were selectively extracted in the presence of many other amino acids because of the specificity of the interaction between Cu(II) and imidazole group of His. Extracted His was quantitatively stripped from the Cu(II)-AC complex using competitive complexation with agents such as iminodiacetic acid and imidazole. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  14. The High-Affinity E. Coli Methionine ABC Transporter: Structure And Allosteric Regulation

    SciTech Connect

    Kadaba, N.S.; Kaiser, J.T.; Johnson, E.; Lee, A.; Rees, D.C.

    2009-05-18

    The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.

  15. High affinity ATP/ADP analogues as new tools for studying CFTR gating

    PubMed Central

    Zhou, Zhen; Wang, Xiaohui; Li, Min; Sohma, Yoshiro; Zou, Xiaoqin; Hwang, Tzyh-Chang

    2005-01-01

    Previous studies using non-hydrolysable ATP analogues and hydrolysis-deficient cystic fibrosis transmembrane conductance regulator (CFTR) mutants have indicated that ATP hydrolysis precedes channel closing. Our recent data suggest that ATP binding is also important in modulating the closing rate. This latter hypothesis predicts that ATP analogues with higher binding affinities should stabilize the open state more than ATP. Here we explore the possibility of using N6-modified ATP/ADP analogues as high-affinity ligands for CFTR gating, since these analogues have been shown to be more potent than native ATP/ADP in other ATP-binding proteins. Among the three N6-modified ATP analogues tested, N6-(2-phenylethyl)-ATP (P-ATP) was the most potent, with a K½ of 1.6 ± 0.4 μm (>50-fold more potent than ATP). The maximal open probability (Po) in the presence of P-ATP was ∼30% higher than that of ATP, indicating that P-ATP also has a higher efficacy than ATP. Single-channel kinetic analysis showed that as [P-ATP] was increased, the opening rate increased, whereas the closing rate decreased. The fact that these two kinetic parameters have different sensitivities to changes of [P-ATP] suggests an involvement of two different ATP-binding sites, a high-affinity site modulating channel closing and a low affinity site controlling channel opening. The effect of P-ATP on the stability of open states was more evident when ATP hydrolysis was abolished, either by mutating the nucleotide-binding domain 2 (NBD2) Walker B glutamate (i.e. E1371) or by using the non-hydrolysable ATP analogue AMP-PNP. Similar strategies to develop nucleotide analogues with a modified adenine ring could be valuable for future studies of CFTR gating. PMID:16223764

  16. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors.

    PubMed

    Nezami, Azin; Freire, Ernesto

    2002-12-04

    The plasmepsins are key enzymes in the life cycle of the Plasmodium parasites responsible for malaria. Since plasmepsin inhibition leads to parasite death, these enzymes have been acknowledged to be important targets for the development of new antimalarial drugs. The development of effective plasmepsin inhibitors, however, is compounded by their genomic diversity which gives rise not to a unique target for drug development but to a family of closely related targets. Successful drugs will have to inhibit not one but several related enzymes with high affinity. Structure-based drug design against heterogeneous targets requires a departure from the classic 'lock-and-key' paradigm that leads to the development of conformationally constrained molecules aimed at a single target. Drug molecules designed along those principles are usually rigid and unable to adapt to target variations arising from naturally occurring genetic polymorphisms or drug-induced resistant mutations. Heterogeneous targets need adaptive drug molecules, characterised by the presence of flexible elements at specific locations that sustain a viable binding affinity against existing or expected polymorphisms. Adaptive ligands have characteristic thermodynamic signatures that distinguish them from their rigid counterparts. This realisation has led to the development of rigorous thermodynamic design guidelines that take advantage of correlations between the structure of lead compounds and the enthalpic and entropic components of the binding affinity. In this paper, we discuss the application of the thermodynamic approach to the development of high affinity (K(i) - pM) plasmepsin inhibitors. In particular, a family of allophenylnorstatine-based compounds is evaluated for their potential to inhibit a wide spectrum of plasmepsins.

  17. Agonist high- and low-affinity states of dopamine D₂ receptors: methods of detection and clinical implications.

    PubMed

    van Wieringen, Jan-Peter; Booij, Jan; Shalgunov, Vladimir; Elsinga, Philip; Michel, Martin C

    2013-02-01

    Dopamine D(2) receptors, similar to other G-protein-coupled receptors, exist in a high- and low-affinity state for agonists. Based upon a review of the methods for detecting D(2) receptor agonist high-affinity states, we discuss alterations of such states in animal models of disease and the implications of such alterations for their labelling with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. The classic approach of detecting agonist high-affinity states compares agonist competition for antagonist radioligands, in most cases using [(3)H]-spiperone as the radioligand; alternative approaches and radioligands have been proposed, but their claimed advantages have not been substantiated by other investigators. In view of the advantages and disadvantages of various techniques, we critically have reviewed reported findings on the detection of D(2) receptor agonist high-affinity states in a variety of animal models. These data are compared to the less numerous findings from human in vivo studies based on PET and SPECT tracers; they are interpreted in light of the finding that D(2) receptor agonist high-affinity states under control conditions may differ between rodent and human brain. The potential advantages of agonist ligands in studies of pathophysiology and as diagnostics are being discussed.

  18. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Zeynep; Koukos, Panagiotis I.; Citro, Nevia; Trellet, Mikael E.; Rodrigues, J. P. G. L. M.; Moreira, Irina S.; Roel-Touris, Jorge; Melquiond, Adrien S. J.; Geng, Cunliang; Schaarschmidt, Jörg; Xue, Li C.; Vangone, Anna; Bonvin, A. M. J. J.

    2017-08-01

    We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.

  19. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  20. Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network

    PubMed Central

    Fang, Yi; Benjamin, William; Sun, Mengtian; Ramani, Karthik

    2011-01-01

    Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries. PMID:21559288

  1. Structural requirements to obtain highly potent and selective 18 kDa Translocator Protein (TSPO) Ligands.

    PubMed

    Taliani, Sabrina; Pugliesi, Isabella; Da Settimo, Federico

    2011-01-01

    The (18 kDa) Translocator Protein (TSPO), was initially identified in 1977 as peripheral binding site for the benzodiazepine diazepam and named "Peripheral-type benzodiazepine receptor (PBR)". It is an evolutionarily well-conserved protein particularly located at the outer/inner mitochondrial membrane contact sites, in closely association with the 32 kDa voltage-dependent anion channel (VDAC) and the 30 kDa adenine nucleotide translocase (ANT), thus forming the mitochondrial permeability transition pore (MPTP). TSPO is ubiquitary expressed in peripheral tissues (steroid producing tissues, liver, heart, kidney, lung, immune system) and in lower levels in the central nervous system, where it is mainly located in glial cells, and in neurons. TSPO is involved in a variety of biological processes such as cholesterol transport, steroidogenesis, calcium homeostasis, lipid metabolism, mitochondrial oxidation, cell growth and differentiation, apoptosis induction, and regulation of immune functions. In the last decade, many studies have reported that TSPO basal expression is altered in a number of human pathologies, such as cancer and neurodegenerative disorders (Huntington's and Alzheimer's diseases), as well as in various forms of brain injury and inflammation and anxiety. Consequently, TSPO has not only been suggested as a promising drug target for a number of therapeutic applications (anticonvulsant, anxiolytic, immunomodulating, etc.), but also as valid diagnostic marker for related-disease state and progression, prompting the development of specific labelled ligands as powerful tools for imaging techniques. A number of structurally different classes of ligands have been reported, showing high affinity and selectivity towards TSPO. Indeed, most of these ligands have been designed starting from selective CBR ligands which were structurally modified in order to shift their affinity towards TSPO. Extensive structure-activity relationship studies were performed allowing to

  2. The isolation by ligand affinity chromatography of a novel form of alpha-L-fucosidase from almond.

    PubMed

    Scudder, P; Neville, D C; Butters, T D; Fleet, G W; Dwek, R A; Rademacher, T W; Jacob, G S

    1990-09-25

    An alpha-fucosidase has been extracted from almond meal and purified 163,000-fold to apparent homogeneity using a novel affinity ligand, N-(5-carboxy-1-pentyl)-1,5-dideoxy-1,5-imino-L-fucitol, coupled to Affi-Gel 102. Substrate specificity studies demonstrate that the enzyme hydrolyzes the alpha-fucosidic linkages in Gal(beta 1----3)(Fuc(alpha 1----4]GlcNAc(beta 1----3)Gal(beta 1----4)Glc and Gal(beta 1----4)(Fuc(alpha 1----3]GlcNAc(beta 1----3)Gal(beta 1----4)Glc at similar rates but is unable to hydrolyze Fuc(alpha 1----2)Gal, Fuc(alpha 1----6)GlcNAc, or the synthetic substrate, p-nitrophenyl alpha-L-fucopyranoside. Hence, the enzyme closely resembles an alpha-fucosidase I isolated previously from a commercial preparation of partially purified almond beta-glucosidase (Ogata-Arakawa, M., Muramatsu, T., and Kobata, A. (1977) Arch. Biochem. Biophys. 181, 353-358). However, native and subunit relative molecular masses of 106,000 and 54,000 respectively, different charge and hydrophobicity properties, and the absence of stimulation by NaCl clearly distinguish this enzyme, designated alpha-fucosidase III, from other almond alpha-fucosidases reported previously.

  3. Mu/sub 1/: A very high affinity subtype of enkephalin binding sites in rat brain

    SciTech Connect

    Lutz, R.A.; Cruciani, R.A.; Munson, P.J.; Rodbard, D.

    1985-06-10

    Displacement studies of (/sup 3/H)-(D-Ala/sup 2/-MePhe/sup 4/-Gly-ol/sup 5/)-enkephalin ((/sup 3/H)-DAGO) and (/sup 3/H)-(D-Ala/sup 2/-D-Leu/sup 5/)-enkephalin ((/sup 3/H)-DADL) by the corresponding unlabeled ligands show that there are at least three classes of sites which bind these enkephalin analogs with high affinity. Using computer modeling, the introduction of the third site significantly improved the goodness of fit in ten consecutive experiments. These sites appear to correspond to the ..mu.., delta, and ..mu../sub 1/ sites, with mean dissociation constants of 11, 1.3 and 0.9 nM for DADL and 2.5, 300 and 0.3 nM for DAGO, respectively. 15 reference, 3 figures, 1 table.

  4. Surface-plasmon-resonance-based biosensor with immobilized bisubstrate analog inhibitor for the determination of affinities of ATP- and protein-competitive ligands of cAMP-dependent protein kinase.

    PubMed

    Viht, Kaido; Schweinsberg, Sonja; Lust, Marje; Vaasa, Angela; Raidaru, Gerda; Lavogina, Darja; Uri, Asko; Herberg, Friedrich W

    2007-03-15

    Interactions between adenosine-oligoarginine conjugates (ARC), bisubstrate analog inhibitors of protein kinases, and catalytic subunits of cAMP-dependent protein kinase (cAPK Calpha) were characterized with surface-plasmon-resonance-based biosensors. ARC-704 bound to the immobilized kinase with subnanomolar affinity. The immobilization of ARC-704 to the chip surface via streptavidin-biotin complex yielded a high-affinity surface (K(D)=16nM). The bisubstrate character of ARC-704 was demonstrated with various ligands targeted to ATP-binding pocket (ATP and inhibitors H89 and H1152P) and protein-substrate-binding domain of Calpha (RIIalpha and GST-PKIalpha) in competition assays. The experiments performed on surfaces with different immobilization levels of ARC-704 produced similar results. The closeness of the obtained affinities of the tested compounds to the inhibitory potencies and affinities of the compounds measured with other methods demonstrates the applicability of the chip with the immobilized biligand inhibitor for the characterization of both ATP- and substrate protein-competitive ligands of basophilic protein kinases.

  5. High-affinity ammonium transporters and nitrogen sensing in mycorrhizas.

    PubMed

    Javelle, Arnaud; André, Bruno; Marini, Anne Marie; Chalot, Michel

    2003-02-01

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. This association requires a molecular dialogue between the two partners. However, the nature of the chemical signals that induce hyphal differentiation are not well characterized and the mechanisms for signal reception are still unknown. In addition to its role in ammonium scavenging, the Mep2 protein from Saccharomyces cerevisiae has been proposed to act as an ammonium sensor that is essential for pseudohyphal differentiation in response to ammonium limitation. We propose that the high-affinity ammonium transporters from mycorrhizal fungi act in a similar manner to sense the environment and induce, via as-yet-unidentified signal transduction cascades, the switch in the mode of fungal growth observed during the formation of mycorrhiza.

  6. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display.

    PubMed

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C; Van Bergen En Henegouwen, Paul M P; Fernández, Luis Ángel

    2016-10-01

    Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.

  7. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    NASA Astrophysics Data System (ADS)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  8. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display

    PubMed Central

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C.; Van Bergen en Henegouwen, Paul M.P.; Fernández, Luis Ángel

    2016-01-01

    ABSTRACT Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens. PMID:27472381

  9. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3.

    PubMed

    Nilvebrant, Johan; Astrand, Mikael; Löfblom, John; Hober, Sophia

    2013-10-01

    Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.

  10. High affinity binding site-mediated prevention of chemical absorption across the gastrointestinal tract.

    PubMed

    Rasmussen, M V; Barker, T T; Silbart, L K

    2001-12-15

    Preventing mucosal absorption of low-molecular weight compounds such as carcinogens, toxins and drugs could help prevent many diseases. To characterize the effects of dose and timing on high-affinity binding site mediated sequestration of specific chemical ligands in the gastrointestinal tract, avidin was perorally-administered to mice either prior to or mixed with 3H-biotin. Avidin enhanced fecal 3H-biotin excretion in a dose-dependent manner, consistent with the accepted mechanism of egg white-induced biotin deficiency syndrome. Avidin administration up to 4 h before 3H-biotin administration also enhanced fecal 3H-biotin excretion. Activated charcoal (AC) reduced 3H-biotin absorption when mixed with 3H-biotin before ingestion, but was ineffective when ingested prior to 3H-biotin. These studies suggest that ingestion of high-affinity protein binding sites can establish an absorptive barrier at the gastrointestinal mucosa to prevent the uptake of unwanted low molecular-weight chemicals.

  11. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with mass spectrometry detection.

    PubMed

    Temporini, C; Pochetti, G; Fracchiolla, G; Piemontese, L; Montanari, R; Moaddel, R; Laghezza, A; Altieri, F; Cervoni, L; Ubiali, D; Prada, E; Loiodice, F; Massolini, G; Calleri, E

    2013-04-05

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening toward PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of frontal affinity chromatography coupled to mass spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments toward new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Influence of the antibody purification method on immunoassay performance: hapten-antibody binding in accordance with the structure of the affinity column ligand.

    PubMed

    Choi, J; Kim, C; Choi, M J

    1999-10-01

    The effects of ligands for immunoaffinity chromatography on the immunoassay were investigated with three goat anti-methamphetamine (anti-MA) antibodies (Abs). An N-4-aminobutyl derivative of methamphetamine (4-ABMA) was conjugated with proteins and used as immunogens. All the antisera produced were purified by affinity chromatography with various ligands of 4-ABMA-proteins and of haptens as well as protein G: 4-ABMA-bovine serum albumin (4-ABMA-BSA), 4-ABMA-keyhole limpet hemocyanine (4-ABMA-KLH), 4-ABMA-ovalbumin (4-ABMA-OVA), MA, 4-ABMA, and amphetamine were used as ligands. Enzyme-linked immunosorbent assay (ELISA) was conducted to examine characteristics of the purified Abs with the 4-ABMA-OVA competitor coated. The results obtained revealed that characters of the purified Abs were closely related with chemical structures of ligands used. The Abs from the MA and the amphetamine columns showed better sensitivities than those from the others in each antiserum. Particularly, the Ab from the amphetamine column gave the best results in terms of sensitivity and specificity. The recognition or the affinity of the Ab selected was considered to be affected by the structure of the ligand concerned. These results suggest that the Ab purification method should be considered as an important parameter which has great influence on the performance of immunoassays with polyclonal Abs. Copyright 1999 Academic Press.

  13. A biomimetic Protein G affinity adsorbent: an Ugi ligand for immunoglobulins and Fab fragments based on the third IgG-binding domain of Protein G.

    PubMed

    El Khoury, Graziella; Lowe, Christopher R

    2013-04-01

    This work reports the development of a synthetic affinity adsorbent for immunoglobulins based on the Fab-binding domain of Streptococcal Protein G (SpG-domain III). The ligand (A2C7I1) was synthesized by the four-component Ugi reaction to generate a substituted peptoidal scaffold mimicking key amino acid residues of SpG. Computer-aided analysis suggests a putative binding site on the CH 1 domain of the Fab molecule. In silico studies, supported by affinity chromatography in comparison with immobilized SpG, as well as analytical characterization by liquid chromatography/electrospray ionization-mass spectrometry and (1) H nuclear magnetic resonance of the ligand synthesized in solution, indicated the authenticity and suitability of the designed ligand for the purification of immunoglobulins. The immobilized ligand displayed an apparent static binding capacity of ~17 mg IgG ml(-1) and a dissociation constant of 5.34 × 10(-5)  M. Preparative chromatography demonstrated the ability of the immobilized ligand to purify IgG and Fab fragments from crude mammalian and yeast cell cultures, under near physiological ionic strength and pH, to yield proteins of 99% and 93% purity, respectively.

  14. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  15. Experimental allergic encephalomyelitis (EAE) in mice selectively bred to produce high affinity (HA) or low affinity (LA) antibody responses.

    PubMed Central

    Devey, M E; Major, P J; Bleasdale-Barr, K M; Holland, G P; Dal Canto, M C; Paterson, P Y

    1990-01-01

    Induction of experimental allergic encephalomyelitis (EAE) in mice genetically selected to produce either high affinity (HA) or low affinity (LA) antibody responses has revealed significant differences in disease susceptibility between the two lines. HA mice were highly susceptible to EAE following subcutaneous sensitization to mouse central nervous system (CNS) tissue emulsified in Freund's complete adjuvant (FCA). Furthermore, of HA mice surviving acute EAE, up to 93% subsequently developed chronic relapsing disease (CREAE) characterized by variable demyelinating inflammatory changes within the spinal cord. In contrast, LA mice, despite having a major histocompatability complex (MHC) haplotype associated with susceptibility to EAE, were highly resistant to the disease and showed no signs of CREAE when observed for up to 100 days post-sensitization. Antibodies to myelin basic protein (MBP) were detected in both lines but rising titres of high functional affinity antibodies were only seen in HA mice. These HA and LA lines of mice provide a new approach to the study of EAE and, in particular, the role of antibody and antibody affinity in the chronic relapsing form of the disease. Images Figure 2 PMID:2335373

  16. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  17. A Cyclic Tetrapeptide ("Cyclodal") and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists.

    PubMed

    Weltrowska, Grazyna; Nguyen, Thi M-D; Chung, Nga N; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C; Ge, Yang; Laferrière, André; Coderre, Terence J; Schiller, Peter W

    2016-10-13

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2',6'-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) ("cyclodal"), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp(127) and Glu(229) receptor residues. Cyclodal showed high plasma stability and was able to cross the blood-brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity.

  18. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  19. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  20. Identification and affinity of very high affinity binding sites for the phenylalkylamine series of Ca/sup +/ channel blockers in the Drosophila nervous system

    SciTech Connect

    Pauron, D.; Qar, J.; Barhanin, J.; Fournier, D.; Cuany, A.; Pralavorio, M.; Berge, J.B.; Lazdunski, M.

    1987-10-06

    The interaction of putative Ca/sup 2 +/ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-(/sup 3/H)D888 and (+/-)-(/sup 3/H)verapamil. These ligands recognize a single class of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a K/sub d/ value as exceptional low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca/sup 2 +/ channel blockers as well as bepridil inhibited (-)-(/sup 3/H)D888 binding in a competitive way with K/sub d/ values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor was used in photoaffinity experiments. A protein of M/sub r/ 135,000 +/- 5000 was specifically labeled after ultraviolet irradiation.

  1. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  2. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    SciTech Connect

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L.

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  3. Analysis of agonism and inverse agonism in functional assays with constitutive activity: estimation of orthosteric ligand affinity constants for active and inactive receptor states.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-08-01

    We describe a modification of receptor theory for the estimation of observed affinities (K(obs)) and relative efficacies of orthosteric ligands in functional assays that exhibit constitutive activity. Our theory includes parameters for the fractions of the occupied receptor population in the active (intrinsic efficacy, ε) and inactive (ε(i)) states and analogous parameters for the fractions of the free receptor population in the active (ε(sys)) and inactive (ε(i-sys)) states. The total stimulus represents the summation of the active states of the free and occupied receptor populations. A modified operational model is developed that expresses the response as a logistic function of the total stimulus. This function includes the standard parameters related to affinity and efficacy (K(obs) and τ) as well as a parameter proportional to the activity of the free receptor complex, τ(sys). Two related parameters are proportional to the fraction of the free (τ(i-sys)) and occupied (τ(i)) receptor populations in the inactive state. We show that the estimates of the affinity constants of orthosteric ligands for the active (K(b)) and inactive (K(a)) states of the receptor are equivalent to τK(obs)/τ(sys) and τ(i)K(obs)/τ(i-sys), respectively. We verify our method with computer simulation techniques and apply it to the analysis of M(2) and M(3) muscarinic receptors. Our method is applicable in the analysis of ligand bias in drug discovery programs.

  4. New combination of pharmacophoric elements of potent σ₁ ligands: design, synthesis and σ receptor affinity of aminoethyl substituted tetrahydrobenzothiophenes.

    PubMed

    Harel, Dipak; Schepmann, Dirk; Wünsch, Bernhard

    2013-11-01

    The aminoethyl substituted tetrahydrobenzothiophenes 4 resulted from combination of the pharmacophoric elements of the potent σ₁ ligands 2 and 3. The aminoethyl substituted tetrahydrobenzothiophenes 4 were prepared in an 8-step synthesis starting with thiophene. Whereas the σ₁ affinity of the N-benzyl derivative 4a is in the medium nanomolar range (Ki = 49 nM), the analogous N-cyclohexylmethyl derivative 4d exhibits low nanomolar affinity (Ki = 5.0 nM). The reduced σ₁ affinity and σ₂/σ₁ selectivity of tetrahydrobenzothiophenes 4 compared to analogous spirocyclic piperidines 3 is attributed to the increased conformational flexibility of the aminoethyl side chain.

  5. Design, synthesis, and structure-affinity relationships of regioisomeric N-benzyl alkyl ether piperazine derivatives as sigma-1 receptor ligands.

    PubMed

    Moussa, Iman A; Banister, Samuel D; Beinat, Corinne; Giboureau, Nicolas; Reynolds, Aaron J; Kassiou, Michael

    2010-08-26

    A series of N-(benzofuran-2-ylmethyl)-N'-benzylpiperazines bearing alkyl or fluoroalkyl aryl ethers were synthesized and evaluated at various central nervous system receptors. Examination of in vitro sigma1 {[3H]+-pentazocine} and sigma2 ([3H]DTG) receptor binding profiles of piperazines 11-13 and 25-36 revealed several highly potent and sigma1 selective ligands, notably, N-(benzofuran-2-ylmethyl)-N'-(4'-methoxybenzyl)piperazine (13, Ki=2.7 nM, sigma2/sigma1=38) and N-(benzofuran-2-ylmethyl)-N'-(4'-(2''-fluoroethoxy)benzyl)piperazine (30, Ki=2.6 nM, sigma2/sigma1=187). Structural features for optimal sigma1 receptor affinity and selectivity over the sigma2 receptor were identified. On the basis of its favorable log D value, 13 was selected as a candidate for the development of a sigma1 receptor positron emission tomography radiotracer. [11C]13 showed high uptake in the brain and other sigma receptor-rich organs of a Papio hamadryas baboon. The in vivo evaluation of [11C]13 indicates that this radiotracer is a suitable candidate for imaging the sigma1 receptor in neurodegenerative processes.

  6. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2', 6'dimethyltyrosine

    NASA Astrophysics Data System (ADS)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  7. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2‧, 6‧dimethyltyrosine

    NASA Astrophysics Data System (ADS)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  8. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.

    PubMed

    Fischer, Marcus; Hopkins, Adam P; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G; Hubbard, Roderick E; Thomas, Gavin H

    2015-11-06

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  10. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    NASA Astrophysics Data System (ADS)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  11. Purification of supercoiled plasmid DNA from clarified bacterial lysate by arginine-affinity chromatography: effects of spacer arms and ligand density.

    PubMed

    Bai, Jin-Shan; Bai, Shu; Shi, Qing-Hong; Sun, Yan

    2014-06-01

    Efficient loading on a chromatographic column is the dilemma of the process development faced by engineers in plasmid DNA purification. In this research, novel arginine-affinity chromatographic beads were prepared to investigate the effect of spacer arm and ligand density to their chromatographic performance for the purification of plasmid. The result indicated that dynamic binding capacity for plasmid increased with an increasing ligand density and carbon number of spacer arm, and the highest binding capacity for plasmid of 6.32 mg/mL bead was observed in the column of arginine bead with a ligand density of 47 mmol/L and 10-atom carbon spacer. Furthermore, this arginine bead exhibited better selectivity to supercoiled (sc) plasmid. The evidence of a linear gradient elution suggested further that the binding of plasmid on arginine beads was driven by electrostatic interaction and hydrogen bonding. Hence, sc plasmid could successfully be purified from clarified lysate by two-stepwise elution of salt concentration. By the refinement of the elution scheme and loading volume of clarified lysate, the column of arginine bead with a ligand density of 47 mmol/L exhibited the highest recovery yield and a much higher productivity among arginine-affinity columns. Therefore, reshaped arginine beads provided more feasible and practical application in the preparation of sc plasmid from clarified lysate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  13. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    PubMed

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  14. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2004-10-01

    High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (Km of 6 microM K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast ( Saccharomyces cerevisiae ), CaHAK1 mediated high-affinity K+ and Rb+ uptake with Km values of 3.3 and 1.9 microM, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.

  15. Jen1p: A High Affinity Selenite Transporter in Yeast

    PubMed Central

    McDermott, Joseph R.; Rosen, Barry P.

    2010-01-01

    Selenium is a micronutrient in most eukaryotes, including humans, which is well known for having an extremely thin border between beneficial and toxic concentrations. Soluble tetravalent selenite is the predominant environmental form and also the form that is applied in the treatment of human diseases. To acquire this nutrient from low environmental concentrations as well as to avoid toxicity, a well-controlled transport system is required. Here we report that Jen1p, a proton-coupled monocarboxylate transporter in S. cerevisiae, catalyzes high-affinity uptake of selenite. Disruption of JEN1 resulted in selenite resistance, and overexpression resulted in selenite hypersensitivity. Transport assay showed that overexpression of Jen1p enables selenite accumulation in yeast compared with a JEN1 knock out strain, indicating the Jen1p transporter facilitates selenite accumulation inside cells. Selenite uptake by Jen1p had a Km of 0.91 mM, which is comparable to the Km for lactate. Jen1p transported selenite in a proton-dependent manner which resembles the transport mechanism for lactate. In addition, selenite and lactate can inhibit the transport of each other competitively. Therefore, we postulate selenite is a molecular mimic of monocarboxylates which allows selenite to be transported by Jen1p. PMID:20861301

  16. Jen1p: a high affinity selenite transporter in yeast.

    PubMed

    McDermott, Joseph R; Rosen, Barry P; Liu, Zijuan

    2010-11-15

    Selenium is a micronutrient in most eukaryotes, including humans, which is well known for having an extremely thin border between beneficial and toxic concentrations. Soluble tetravalent selenite is the predominant environmental form and also the form that is applied in the treatment of human diseases. To acquire this nutrient from low environmental concentrations as well as to avoid toxicity, a well-controlled transport system is required. Here we report that Jen1p, a proton-coupled monocarboxylate transporter in S. cerevisiae, catalyzes high-affinity uptake of selenite. Disruption of JEN1 resulted in selenite resistance, and overexpression resulted in selenite hypersensitivity. Transport assay showed that overexpression of Jen1p enables selenite accumulation in yeast compared with a JEN1 knock out strain, indicating the Jen1p transporter facilitates selenite accumulation inside cells. Selenite uptake by Jen1p had a Km of 0.91 mM, which is comparable to the Km for lactate. Jen1p transported selenite in a proton-dependent manner which resembles the transport mechanism for lactate. In addition, selenite and lactate can inhibit the transport of each other competitively. Therefore, we postulate selenite is a molecular mimic of monocarboxylates which allows selenite to be transported by Jen1p.

  17. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  18. Synthesis of tetravalent LacNAc-glycoclusters as high-affinity cross-linker against Erythrina cristagalli agglutinin.

    PubMed

    Ogata, Makoto; Chuma, Yasushi; Yasumoto, Yoshinori; Onoda, Takashi; Umemura, Myco; Usui, Taichi; Park, Enoch Y

    2016-01-01

    Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA.

  19. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?

    PubMed

    Meyer, C; Schmieding, K; Falkenstein, E; Wehling, M

    1998-04-24

    Membrane progesterone binding sites have been purified recently from pig liver. Since progesterone is considered as an endogenous sigma (sigma) receptor ligand, these sites were characterized pharmacologically by ligands selective for sigma receptor and dopamine receptor binding sites, and by other drugs from distinct pharmacological classes. Binding studies using the radioligand [3H]progesterone were done in crude membrane preparations and solubilized fractions to determine half-maximal inhibitory concentration (IC50) values, from which inhibitory constants (Ki values) were calculated. Radioligand binding was inhibited by the sigma receptor ligands haloperidol, carbetapentane citrate, 1,3-Di(2-tolyl)guanidine (DTG), R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2 aminopropane HCl (R(-)-PPAAP HCl), or sigma receptor antagonists like (+)-3-(3-hydroxyphenyl)-N-propylpiperidine HCl (R(+)-PPP HCl) and cis-9-[3-(3,5-dimethyl-1-piperazinyl)propyl]-9H-carbazole dihydrochloride (rimcazole 2HCl). The hierarchy of inhibitory action was not fully compatible with either sigma receptor class I (moderate affinity of pentazocine, diphenylhydantoin (phenytoin) insensitivity) or II sites (high affinity of carbetapentane). The data thus suggest that progesterone binding sites in porcine liver membranes are related to the sigma receptor binding site superfamily, but may represent a particular species with progesterone specificity.

  20. Structure and Dynamics of PD-L1 and an Ultra-High-Affinity PD-1 Receptor Mutant.

    PubMed

    Pascolutti, Roberta; Sun, Xianqiang; Kao, Joseph; Maute, Roy L; Ring, Aaron M; Bowman, Gregory R; Kruse, Andrew C

    2016-10-04

    The immune checkpoint receptor PD-1 and its ligand, PD-L1, have emerged as key regulators of anti-tumor immunity in humans. Recently, we reported an ultra-high-affinity PD-1 mutant, termed high-affinity consensus (HAC) PD-1, which shows superior therapeutic efficacy in mice compared with antibodies. However, the molecular details underlying the action of this agent remain incompletely understood, and a molecular view of PD-1/PD-L1 interactions in general is only beginning to emerge. Here, we report the structure of HAC PD-1 in complex with PD-L1, showing that it binds PD-L1 using a unique set of polar interactions. Biophysical studies and long-timescale molecular dynamics experiments reveal the mechanisms by which ten point mutations confer a 35,000-fold enhancement in binding affinity, and offer atomic-scale views of the role of conformational dynamics in PD-1/PD-L1 interactions. Finally, we show that the HAC PD-1 exhibits pH-dependent affinity, with pseudo-irreversible binding in a low pH setting akin to the tumor microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants.

    PubMed

    Telmer, Patrick G; Shilton, Brian H

    2003-09-05

    The affinity of maltose-binding protein (MBP) for maltose and related carbohydrates was greatly increased by removal of groups in the interface opposite the ligand binding cleft. The wild-type protein has a KD of 1200 nM for maltose; mutation of residues Met-321 and Gln-325, both to alanine, resulted in a KD for maltose of 70 nM; deletion of 4 residues, Glu-172, Asn-173, Lys-175, and Tyr-176, which are part of a poorly ordered loop, results in a KD for maltose of 110 nM. Combining the mutations yields an increased affinity for maltodextrins and a KD of 6 nM for maltotriose. Comparison of ligand binding by the mutants, using surface plasmon resonance spectroscopy, indicates that decreases in the off-rate are responsible for the increased affinity. Small-angle x-ray scattering was used to demonstrate that the mutations do not significantly affect the solution conformation of MBP in either the presence or absence of maltose. The crystal structures of selected mutants showed that the mutations do not cause significant structural changes in either the closed or open conformation of MBP. These studies show that interactions in the interface opposite the ligand binding cleft, which we term the "balancing interface," are responsible for modulating the affinity of MBP for its ligand. Our results are consistent with a model in which the ligand-bound protein alternates between the closed and open conformations, and removal of interactions in the balancing interface decreases the stability of the open conformation, without affecting the closed conformation.

  2. DNA condensation by high-affinity interaction with avidin.

    PubMed

    Morpurgo, Margherita; Radu, Aurelian; Bayer, Edward A; Wilchek, Meir

    2004-01-01

    Avidin, the basic biotin-binding glycoprotein from chicken egg white, is known to interact with DNA, whereas streptavidin, its neutral non-glycosylated bacterial analog, does not. In the present study we investigated the DNA-binding properties of avidin. Its affinity for DNA in the presence and absence of biotin was compared with that of other positively charged molecules, namely the protein lysozyme, the cationic polymers polylysine and polyarginine and an avidin derivative with higher isoelectric point (pI approximately 11) in which most of the lysine residues were converted to homoarginines. Gel-shift assays, transmission electron microscopy and dynamic light scattering experiments demonstrated an unexpectedly strong interaction between avidin and DNA. The most pronounced gel-shift retardation occurred with the avidin-biotin complex, followed by avidin alone and then guanidylated avidin. Furthermore, ultrastructural and light-scattering studies showed that avidin assembles on the DNA molecule in an organized manner. The assembly leads to the formation of nanoparticles that are about 50-100 nm in size (DNA approximately 5 kb) and have a rod-like or toroidal shape. In these particles the DNA is highly condensed and one avidin is bound to each 18 +/- 4 DNA base pairs. The complexes are very stable even at high dilution ([DNA] =10 pM) and are not disrupted in the presence of buffers or salt (up to 200 mM NaCl). The other positively charged molecules also condense DNA and form particles with a globular shape. However, in this case, these particles disassemble by dilution or in the presence of low salt concentration. The results indicate that the interaction of avidin with DNA may also occur under physiological conditions, further enhanced by the presence of biotin. This DNA-binding property of avidin may thus shed light on a potentially new physiological role for the protein in its natural environment.

  3. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    NASA Astrophysics Data System (ADS)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  4. The genetic control of antibody affinity. Evidence from breeding studies with mice selectively bred for either high or low affinity antibody production.

    PubMed Central

    Steward, M W; Reinhardt, M C; Staines, N A

    1979-01-01

    The genetic control of antibody affinity has been studied in mice selectively bred on the basis of the affinity of antibody they produce to protein antigens injected in saline. Two lines of mice have been obtained, one producing predominantly high and the other predominantly low affinity antibody. Breeding experiments have been performed with these two lines after ten generations of selection and the level and affinity of antibody to protein measured in parents, F1 hybrids and backcross offspring. The results indicate that antibody affinity is a genetically controlled parameter of the immune response and that this control is exerted independently of that controlling antibody levels. Furthermore, high and low affinity line mice have been typed for major histocompatibility complex antigens and the results show that the two lines are not significantly different. This therefore suggests that genes controlling antibody affinity are not linked to the major histocompatibility locus. PMID:500124

  5. High-affinity binding of fibronectin to cultured Kupffer cells

    SciTech Connect

    Cardarelli, P.M.; Blumenstock, F.A.; McKeown-Longo, P.J.; Saba, T.M.; Mazurkiewicz, J.E.; Dias, J.A. )

    1990-11-01

    Hepatic Kupffer cells are a major component of the reticuloendothelial or macrophage system. They were the first phagocytic cell type whose phagocytosis was shown to be influenced by plasma fibronectin, a dimeric opsonic glycoprotein. In the current study, the binding of soluble radioiodinated fibronectin purified from rat serum to isolated rat hepatic Kupffer cells was investigated using a cultured Kupffer cell monolayer technique. Binding was specific, since unlabeled purified fibronectin competed in a dose-dependent manner with the 125I-fibronectin for binding to the Kupffer cells. Addition of gelatin enhanced the binding of 125I-fibronectin to Kupffer cells. The phagocytosis of gelatinized-coated red cells by Kupffer cells was increased either by preopsonizing the target particles with purified fibronectin or by the addition of purified fibronectin to the culture medium. In contrast, exposure of the Kupffer cells to medium containing purified fibronectin followed by wash-removal of the fibronectin did not increase the uptake of gelatin-coated red blood cells, even though fibronectin was detected on the surface of the Kupffer cells by immunofluorescence. Trypsinized monolayers expressed decreased capacity to bind 125I-fibronectin as well as fibronectin-coated sheep erythrocytes. The binding of 125I-fibronectin-gelatin complexes was inhibited by excess unlabeled fibronectin. We calculated that specific high-affinity (Kd = 7.46 x 10(-9) M) binding sites for fibronectin exist on Kupffer cells. There are approximately 2,800-3,500 binding sites or putative fibronectin receptors per Kupffer cell. These sites appear to mediate the enhanced phagocytosis of gelatin-coated particles opsonized by fibronectin.

  6. Synthesis and structure-affinity relationships of new 4-(6-iodo-H-imidazo[1,2-a]pyridin-2-yl)-N-dimethylbenzeneamine derivatives as ligands for human beta-amyloid plaques.

    PubMed

    Cai, Lisheng; Cuevas, Jessica; Temme, Sebastian; Herman, Mary M; Dagostin, Claudio; Widdowson, David A; Innis, Robert B; Pike, Victor W

    2007-09-20

    A new and extensive set of 4-(6-iodo-H-imidazo[1,2-a]pyridin-2-yl)-N-dimethylbenzeneamine (IMPY) derivatives was synthesized and assayed for affinity toward human Abeta plaques. 6-Ethylthio- (12h), 6-cyano- (12e), 6-nitro- (12f), and 6-p-methoxybenzylthio- (15d) analogues were discovered to have high affinity (KI < 10 nM). However, introduction of a hydrophilic thioether group in the 6-position (15a-c, 15e-g) reduced or abolished affinity. In secondary N-methyl analogues, a bromo substituent in the adjacent ring position (14a) imparted high affinity (KI = 7.4 nM) whereas a methyl substituent did not (14c). The tolerance for nonhydrophilic thioether substituents in the 6-position opens up the possibility of developing new sensitive positron emission tomography radioligands for imaging human Abeta plaques in Alzheimer's disease, especially in view of the amenability of thioethers to be labeled with carbon-11 or fluorine-18 through S-alkylation reactions. The structure-activity relationships revealed in this study extends insight into the topography of the binding site for IMPY-like ligands in human Abeta plaques.

  7. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  8. High-affinity uptake of sup 67 Cu into a veratridine-releasable pool in brain tissue

    SciTech Connect

    Barnea, A.; Hartter, D.E.; Cho, G. )

    1989-08-01

    We have previously characterized two saturable, ligand-dependent processes for 67Cu uptake by hypothalamic slices: a high- and low-affinity process. In this study, we wished to ascertain if veratridine, a secretagogue that mimics a physiological release process, stimulates the release of newly taken up 67Cu and whether uptake of 67Cu into the releasable pool of copper is dependent on the process of 67Cu uptake. Hypothalamic or caudate slices from male rats were loaded for 30 min with 67Cu complexed to histidine (His) under conditions favoring high- or low-affinity uptake. First, we assessed the stability of the newly taken up 67Cu and found that, regardless of the mode of 67Cu entry into the tissue, greater than or equal to 85% of the 67Cu is retained in tissues incubated for 3 h in 67Cu-free buffer. Moreover, the 67Cu taken up by the high-affinity process was not displaced by 15-fold molar excess of nonradiolabeled Cu2+, histidine, albumin, or Zn2+, and only 20-30% of the 67Cu taken up by the low-affinity process was displaced by 10-fold excess Cu2+ or albumin. Next, we assessed veratridine stimulation of 67Cu release and found that 67Cu release occurred only from tissues loaded with the high- but not with the low-affinity process. This effect of veratridine was calcium dependent and was blocked by Tetrodotoxin, a specific blocker of the voltage-sensitive Na+ channel. In addition, we confirmed our earlier observation that a depolarizing concentration of K+ stimulates 67Cu release.

  9. Re-exploring the N-phenylpicolinamide derivatives to develop mGlu4 ligands with improved affinity and in vitro microsomal stability.

    PubMed

    Zhang, Zhaoda; Kil, Kun-Eek; Poutiainen, Pekka; Choi, Ji-Kyung; Kang, Hye-Jin; Huang, Xi-Ping; Roth, Bryan L; Brownell, Anna-Liisa

    2015-09-15

    In recent years, mGlu4 has received great attention and research effort because of the potential benefits of mGlu4 activation in treating numerous brain disorders, such as Parkinson's disease (PD). Many positive allosteric modulators of mGlu4 have been developed. To better understand the role of mGlu4 in healthy and disease conditions, we are interested in developing an mGlu4 selective radioligand for in vivo studies. Thus, we had synthesized and studied [(11)C]2 as a PET tracer for mGlu4, which demonstrated some promising features as a PET radioligand as well as the limitation need to be improved. In order to develop an mGlu4 ligand with enhanced affinity and improved metabolic stability, we have modified, synthesized and evaluated a series of new N-phenylpicolinamide derivatives. The SAR study has discovered a number of compounds with low nM affinity to mGlu4. The dideuteriumfluoromethoxy modified compound 24 is identified as a very promising mGlu4 ligand, which has demonstrated enhanced affinity, improved in vitro microsomal stability, good selectivity and good permeability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Variation in One Residue Associated with the Metal Ion-Dependent Adhesion Site Regulates αIIbβ3 Integrin Ligand Binding Affinity

    PubMed Central

    Wu, Xue; Xiu, Zhilong; Li, Guohui; Luo, Bing-Hao

    2013-01-01

    The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion. PMID:24116162

  11. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    PubMed

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  13. Analysis of RNA folding and ligand binding by conventional and high-throughput calorimetry.

    PubMed

    Sokoloski, Joshua E; Bevilacqua, Philip C

    2012-01-01

    Noncoding RNAs serve myriad functions in the cell, but their biophysical properties are not well understood. Calorimetry offers direct and label-free means for characterizing the ligand-binding and thermostability properties of these RNA. We apply two main types of calorimetry--isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)--to the characterization of these functional RNA molecules. ITC can describe ligand binding in terms of stoichiometry, affinity, and heat (enthalpy), while DSC can provide RNA stability in terms of heat capacity, melting temperature, and folding enthalpy. Here, we offer detailed experimental protocols for studying such RNA systems with commercially available conventional and high-throughput ITC and DSC instruments.

  14. 2E8 Binds to the High Affinity I-domain in a Metal Ion-dependent Manner

    PubMed Central

    Carreño, Roberto; Brown, Wells S.; Li, Dan; Hernandez, Jessica A.; Wang, Yang; Kim, Tae Kon; Craft, John W.; Komanduri, Krishna V.; Radvanyi, Laszlo G.; Hwu, Patrick; Molldrem, Jeffrey J.; Legge, Glen B.; McIntyre, Bradley W.; Ma, Qing

    2010-01-01

    The activation of leukocyte function-associated antigen-1 (LFA-1) plays a critical role in regulating immune responses. The metal ion-dependent adhesion site on the I-domain of LFA-1 αL subunit is the key recognition site for ligand binding. Upon activation, conformation changes in the I-domain can lead LFA-1 from the low affinity state to the high affinity (HA) state. Using the purified HA I-domain locked by disulfide bonds for immunization, we developed an mAb, 2E8, that specifically binds to cells expressing the HA LFA-1. The surface plasmon resonance analysis has shown that 2E8 only binds to the HA I-domain and that the dissociation constant (KD) for HA I-domain is 197 nm. The binding of 2E8 to the HA I-domain is metal ion-dependent, and the affinity decreased as Mn2+ was replaced sequentially by Mg2+ and Ca2+. Surface plasmon resonance analysis demonstrates that 2E8 inhibits the interaction of HA I-domain and ICAM-1. Furthermore, we found that 2E8 can detect activated LFA-1 on both JY and Jurkat cells using flow cytometry and parallel plate adhesion assay. In addition, 2E8 inhibits JY cell adhesion to human umbilical vein endothelial cells and homotypic aggregation. 2E8 treatment reduces the proliferation of both human CD4+ and CD8+ T cells upon OKT3 stimulation without the impairment of their cytolytic function. Taken together, these data demonstrate that 2E8 is specific for the high affinity form of LFA-1 and that 2E8 inhibits LFA-1/ICAM-1 interactions. As a novel activation-specific monoclonal antibody, 2E8 is a potentially useful reagent for blocking high affinity LFA-1 and modulating T cell activation in research and therapeutics. PMID:20724473

  15. Describing high-dimensional dynamics with low-dimensional piecewise affine models: applications to renewable energy.

    PubMed

    Hirata, Yoshito; Aihara, Kazuyuki

    2012-06-01

    We introduce a low-dimensional description for a high-dimensional system, which is a piecewise affine model whose state space is divided by permutations. We show that the proposed model tends to predict wind speeds and photovoltaic outputs for the time scales from seconds to 100 s better than by global affine models. In addition, computations using the piecewise affine model are much faster than those of usual nonlinear models such as radial basis function models.

  16. Rational and Computational Design of Stabilized Variants of Cyanovirin-N which Retain Affinity and Specificity for Glycan Ligands

    PubMed Central

    Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.

    2011-01-01

    Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696

  17. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    PubMed

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  18. Water channel in the binding site of a high affinity anti-methotrexate antibody.

    PubMed

    Gayda, Susan; Longenecker, Kenton L; Manoj, Sharmila; Judge, Russell A; Saldana, Sylvia C; Ruan, Qiaoqiao; Swift, Kerry M; Tetin, Sergey Y

    2014-06-17

    In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.6 pM at 20 °C. As follows from the X-ray data analysis, the methotrexate-antibody complex is stabilized by an extended network of hydrogen bonds and stacking interactions. The analysis also shows structural involvement of the CDR H3 in formation of the water channel revealing another important role of this hypervariable region. This suggests a new direction in natural affinity maturation and opens a new possibility in antibody engineering. Methotrexate is a widely used therapeutic agent for many malignant diseases and inflammatory disorders. Unfortunately, it may also interfere with central aspects of metabolism and thereby cause inevitable side effects. Therefore, methotrexate therapy requires careful monitoring of drug blood levels, which is traditionally done by immunoassays. An understanding of the structure-function properties of antibodies selected for drug monitoring substantiates the performance and robustness of such tests.

  19. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  20. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  1. Viral Reverse Transcriptases Show Selective High Affinity Binding to DNA-DNA Primer-Templates that Resemble the Polypurine Tract

    PubMed Central

    Nair, Gauri R.; Dash, Chandravanu; Le Grice, Stuart F. J.; DeStefano, Jeffrey J.

    2012-01-01

    Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment)-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT) showed that primers mimicking the 3′ end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5′-AAAAGAAAAGGGGGG-3′) were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV)) and one retrotransposon (Ty3) RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3′ end (AMV PPT: 5′-AGGGAGGGGGA-3′; MuLV PPT: 5′-AGAAAAAGGGGGG-3′). In contrast, Ty3, whose PPT lacks a G tract (5′-GAGAGAGAGGAA-3′) showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs) mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3′ end of the PPT where extension can occur. PMID:22848574

  2. Biphasic competition between opiates and enkephalins: does it indicate the existence of a common high affinity (mu-1) binding site

    SciTech Connect

    Sarne, Y.; Kenner, A.

    1987-08-03

    Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existance of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with (TH)D-Ala, D-Leu enkephalin and with (TH)morphine varies with experimental conditions (storage of membranes at 4C for 72h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results cannot be explained by a common high affinity site, but rather by binding of (TH)D-Ala, D-Leu enkephalin to mu and of (TH)morphine to delta opioid receptors. 17 references, 3 figures.

  3. High Throughput Scintillation Proximity Assay for the Identification of FKBP-12 Ligands.

    PubMed

    Graziani; Aldegheri; Terstappen

    1999-01-01

    A high throughput scintillation proximity assay (SPA) was developed to identify novel ligands of FKBP-12, an immunophilin with peptidyl prolyl isomerase (rotamase) activity. Recombinant histidine-tagged FKBP-12 was expressed in Escherichia coli, purified by metal ion affinity chromatography, and immobilized to SPA beads by an antibody that recognizes the histidine tag of the recombinant protein. Using 1 nM [3H] FK506, a well-known macrolid ligand of FKBP-12, specific binding was saturable and accounted for 95% of total binding. Analysis of saturation and homologous displacement isotherms indicated the existence of a single binding site with a Kd value of 1.6 nM. The specificity of [3H] FK506 binding was demonstrated in displacement experiments and showed that rapamycin, another macrolid, was as active as FK506 (IC50 of 3.5 and 3.2 nM, respectively), whereas GPI-1046, a prototype of small molecular compounds with neurotrophic properties and affinity for FKBP-type immunophilins, was more than 1000-fold less active. The high signal-to-noise ratio of 30, together with small standard deviations, makes this novel assay well suited for automated high throughput screening.

  4. Chromatographic HPV-16 E6/E7 plasmid vaccine purification employing L-histidine and 1-benzyl-L-histidine affinity ligands.

    PubMed

    Amorim, Lúcia F A; Gaspar, Rita; Pereira, Patrícia; Černigoj, Urh; Sousa, Fani; Queiroz, João António; Sousa, Ângela

    2017-07-06

    Affinity chromatography based on amino acids as interacting ligands was already indicated as an alternative compared to ion exchange or hydrophobic interaction for plasmid DNA purification. Understanding the recognition mechanisms occurring between histidine-based ligands and nucleic acids enables more efficient purification of a DNA vaccine, as the binding and elution conditions can be adjusted in order to enhance the purification performance. Decreasing pH to slightly acidic conditions increases the positive charge of histidine ligand, what influences the type of interaction between chromatographic support and analytes. This was proven in this work, where hydrophobic effects established in the presence of ammonium sulfate were affected at pH 5.0 in comparison to pH 8.0, while electrostatic and cation-π interactions were intensified. Histidine ligand at pH 5.0 interacts with phosphate groups or aromatic rings of plasmid DNA. Due to different responses of RNA and pDNA on mobile phase changes, the elution order between RNA and pDNA was changed with mobile phase pH decrease from 8.0 to 5.0. The phenomenon was more evident with L-histidine ligand due to more hydrophilic character, leading to an improved selectivity of L-histidine-modified chromatographic monolith, allowing the product recovery with 99% of purity (RNA removal). With the 1-benzyl- L-histidine ligand, stronger and less selective interactions with the nucleic acids were observed due to the additional hydrophobicity associated with the phenyl aromatic ring. Optimization of sample displacement chromatography parameters (especially (NH4 )2 SO4 concentration) at slightly acidic pH enabled excellent isolation of pDNA, by the removal of RNA in a negative mode, with binding capacities above 1.5 mg pDNA per mL of chromatographic support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of 5-HT1A and dopamine D2 pharmacophores. X-ray structures and affinities of conformationally constrained ligands.

    PubMed

    Chidester, C G; Lin, C H; Lahti, R A; Haadsma-Svensson, S R; Smith, M W

    1993-05-14

    Conformational and molecular mechanics studies of a new series of tricyclic ligands with affinity for either the dopamine D2 receptor or the 5-HT1A receptor, or both, has enabled us to elaborate considerably on previous pharmacophore models for these receptors. The new tricyclic ligands are either angular, 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives, or linear, 2,3,3a,4,5,9a-hexahydro-1H-benz[f]indole derivatives; they have either cis or trans ring junctions, and many of the ligands are resolved. In order to have X-ray crystal coordinates for every structural type, two additional crystal structures were determined: 14a, the trans-(+-)-6-hydroxy-3-(n-propyl) angular derivative as the hydrochloride, and (+-)-1,2,2a,3,4,8b-hexahydro-8-methoxy-2-(2-propenyl)-naphth[2,1- b]azetidine hydrochloride (16d). Several recently reported imidazoquinolinones with dopaminergic and serotonergic activities were also used in developing the models as were other known ligands which are conformationally constrained. A new method for determining intrinsic activity at the D2 receptor made consistent and reliable estimates of dopamine agonist, partial agonist, and antagonist activities available. The models explain these activities in terms of the 3-dimensional structural features of the ligands and their probable orientations at the D2 receptor site. They also explain why allyl and propyl analogs of some structures have very different affinities while affinities are quite similar for allyl and propyl analogs of other structures; at both receptors a particular orientation of the amine substituent in the binding site correlates with preference for allyl over propyl derivatives. Suggestions are made for enhancing selectivity at the 5-HT1A receptor or at the dopamine D2 receptor. An angular, cis, (3aR,9bS), 2-propyl, 9-hydroxy, 3-(n-propyl) analog should be selective for the 5-HT1A receptor. A linear, trans, (3aR,9aS), 7-hydroxy, 1-(2-propenyl) analog should be selective for the

  6. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.

    PubMed

    Tang, Yat T; Marshall, Garland R

    2011-02-28

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable

  7. PHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements

    PubMed Central

    Tang, Yat T.; Marshall, Garland R.

    2011-01-01

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r2pred) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind “refined set” (n = 1612) resulted in a Pearson correlation coefficient (Rp) of 0.575 and a mean error (ME) of 1.41 pKd. Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable

  8. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  9. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  10. Deep Mutational Scans as a Guide to Engineering High Affinity T Cell Receptor Interactions with Peptide-bound Major Histocompatibility Complex.

    PubMed

    Harris, Daniel T; Wang, Ningyan; Riley, Timothy P; Anderson, Scott D; Singh, Nishant K; Procko, Erik; Baker, Brian M; Kranz, David M

    2016-11-18

    Proteins are often engineered to have higher affinity for their ligands to achieve therapeutic benefit. For example, many studies have used phage or yeast display libraries of mutants within complementarity-determining regions to affinity mature antibodies and T cell receptors (TCRs). However, these approaches do not allow rapid assessment or evolution across the entire interface. By combining directed evolution with deep sequencing, it is now possible to generate sequence fitness landscapes that survey the impact of every amino acid substitution across the entire protein-protein interface. Here we used the results of deep mutational scans of a TCR-peptide-MHC interaction to guide mutational strategies. The approach yielded stable TCRs with affinity increases of >200-fold. The substitutions with the greatest enrichments based on the deep sequencing were validated to have higher affinity and could be combined to yield additional improvements. We also conducted in silico binding analyses for every substitution to compare them with the fitness landscape. Computational modeling did not effectively predict the impacts of mutations distal to the interface and did not account for yeast display results that depended on combinations of affinity and protein stability. However, computation accurately predicted affinity changes for mutations within or near the interface, highlighting the complementary strengths of computational modeling and yeast surface display coupled with deep mutational scanning for engineering high affinity TCRs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Proteomic High Affinity Zn2+ Trafficking: Where Does Metallothionein Fit in?

    PubMed Central

    Petering, David H.; Mahim, Afsana

    2017-01-01

    The cellular constitution of Zn-proteins and Zn-dependent signaling depend on the capacity of Zn2+ to find specific binding sites in the face of a plethora of other high affinity ligands. The most prominent of these is metallothionein (MT). It serves as a storage site for Zn2+ under various conditions, and has chemical properties that support a dynamic role for MT in zinc trafficking. Consistent with these characteristics, changing the availability of zinc for cells and tissues causes rapid alteration of zinc bound to MT. Nevertheless, zinc trafficking occurs in metallothionein-null animals and cells, hypothetically making use of proteomic binding sites to mediate the intracellular movements of zinc. Like metallothionein, the proteome contains a large concentration of proteins that strongly coordinate zinc. In this environment, free Zn2+ may be of little significance. Instead, this review sets forth the basis for the hypothesis that components of the proteome and MT jointly provide the platform for zinc trafficking. PMID:28629147

  12. The Conundrum of the High-Affinity NGF Binding Site Formation Unveiled?

    PubMed Central

    Covaceuszach, Sonia; Konarev, Petr V.; Cassetta, Alberto; Paoletti, Francesca; Svergun, Dmitri I.; Lamba, Doriano; Cattaneo, Antonino

    2015-01-01

    The homodimer NGF (nerve growth factor) exerts its neuronal activity upon binding to either or both distinct transmembrane receptors TrkA and p75NTR. Functionally relevant interactions between NGF and these receptors have been proposed, on the basis of binding and signaling experiments. Namely, a ternary TrkA/NGF/p75NTR complex is assumed to be crucial for the formation of the so-called high-affinity NGF binding sites. However, the existence, on the cell surface, of direct extracellular interactions is still a matter of controversy. Here, supported by a small-angle x-ray scattering solution study of human NGF, we propose that it is the oligomerization state of the secreted NGF that may drive the formation of the ternary heterocomplex. Our data demonstrate the occurrence in solution of a concentration-dependent distribution of dimers and dimer of dimers. A head-to-head molecular assembly configuration of the NGF dimer of dimers has been validated. Overall, these findings prompted us to suggest a new, to our knowledge, model for the transient ternary heterocomplex, i.e., a TrkA/NGF/p75NTR ligand/receptors molecular assembly with a (2:4:2) stoichiometry. This model would neatly solve the problem posed by the unconventional orientation of p75NTR with respect to TrkA, as being found in the crystal structures of the TrkA/NGF and p75NTR/NGF complexes. PMID:25650935

  13. Selective Targeting of High-Affinity LFA-1 Does Not Augment Costimulation Blockade in a Nonhuman Primate Renal Transplantation Model.

    PubMed

    Samy, K P; Anderson, D J; Lo, D J; Mulvihill, M S; Song, M; Farris, A B; Parker, B S; MacDonald, A L; Lu, C; Springer, T A; Kachlany, S C; Reimann, K A; How, T; Leopardi, F V; Franke, K S; Williams, K D; Collins, B H; Kirk, A D

    2017-05-01

    Costimulation blockade (CoB) via belatacept is a lower-morbidity alternative to calcineurin inhibitor (CNI)-based immunosuppression. However, it has higher rates of early acute rejection. These early rejections are mediated in part by memory T cells, which have reduced dependence on the pathway targeted by belatacept and increased adhesion molecule expression. One such molecule is leukocyte function antigen (LFA)-1. LFA-1 exists in two forms: a commonly expressed, low-affinity form and a transient, high-affinity form, expressed only during activation. We have shown that antibodies reactive with LFA-1 regardless of its configuration are effective in eliminating memory T cells but at the cost of impaired protective immunity. Here we test two novel agents, leukotoxin A and AL-579, each of which targets the high-affinity form of LFA-1, to determine whether this more precise targeting prevents belatacept-resistant rejection. Despite evidence of ex vivo and in vivo ligand-specific activity, neither agent when combined with belatacept proved superior to belatacept monotherapy. Leukotoxin A approached a ceiling of toxicity before efficacy, while AL-579 failed to significantly alter the peripheral immune response. These data, and prior studies, suggest that LFA-1 blockade may not be a suitable adjuvant agent for CoB-resistant rejection. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    PubMed

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  15. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy.

    PubMed

    Lázár-Molnár, Eszter; Scandiuzzi, Lisa; Basu, Indranil; Quinn, Thomas; Sylvestre, Eliezer; Palmieri, Edith; Ramagopal, Udupi A; Nathenson, Stanley G; Guha, Chandan; Almo, Steven C

    2017-03-01

    Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1) exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L) was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR) assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. SODOCK: swarm optimization for highly flexible protein-ligand docking.

    PubMed

    Chen, Hung-Ming; Liu, Bo-Fu; Huang, Hui-Ling; Hwang, Shiow-Fen; Ho, Shinn-Ying

    2007-01-30

    Protein-ligand docking can be formulated as a parameter optimization problem associated with an accurate scoring function, which aims to identify the translation, orientation, and conformation of a docked ligand with the lowest energy. The parameter optimization problem for highly flexible ligands with many rotatable bonds is more difficult than that for less flexible ligands using genetic algorithm (GA)-based approaches, due to the large numbers of parameters and high correlations among these parameters. This investigation presents a novel optimization algorithm SODOCK based on particle swarm optimization (PSO) for solving flexible protein-ligand docking problems. To improve efficiency and robustness of PSO, an efficient local search strategy is incorporated into SODOCK. The implementation of SODOCK adopts the environment and energy function of AutoDock 3.05. Computer simulation results reveal that SODOCK is superior to the Lamarckian genetic algorithm (LGA) of AutoDock, in terms of convergence performance, robustness, and obtained energy, especially for highly flexible ligands. The results also reveal that PSO is more suitable than the conventional GA in dealing with flexible docking problems with high correlations among parameters. This investigation also compared SODOCK with four state-of-the-art docking methods, namely GOLD 1.2, DOCK 4.0, FlexX 1.8, and LGA of AutoDock 3.05. SODOCK obtained the smallest RMSD in 19 of 37 cases. The average 2.29 A of the 37 RMSD values of SODOCK was better than those of other docking programs, which were all above 3.0 A.

  17. A linker peptide with high affinity towards silica-containing materials.

    PubMed

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  18. Affinophoresis of pea lectin and fava bean lectin with an anionic affinophore, bearing rho-aminophenyl-alpha-D-mannoside as an affinity ligand.

    PubMed

    Shimura, K; Kasai, K

    1987-07-29

    Affinophoresis is an electrophoretic separation technique for biological polymers with the aid of an affinophore, which is a macromolecular polyelectrolyte bearing affinity ligands. The affinophore migrates rapidly in an electric field, and consequently the electrophoretic mobility of molecules having an affinity for the ligand is specifically changed. An anionic affinophore-bearing mannosyl residue was synthesized for the affinophoresis of lectins. rho-Aminophenyl-alpha-D-mannopyranoside and aminomethanesulphonic acid were coupled to about one-tenth and one-fifth, respectively, of the carboxyl groups of succinyl-poly-L-lysine with an average degree of polymerization of 120 by the use of a water-soluble carbodiimide. Extracts of seeds of pea (Pisum sativum) or fava bean (Vicia fava) were subjected to two-dimensional agarose gel electrophoresis, in which the first dimension was ordinary agarose gel electrophoresis and the second dimension was affinophoresis with the affinophore. The separated proteins were stained with Coomassie Blue R250. The lectins in both seed extracts were separated from a diagonal line formed by other proteins in the extracts. About 10 ng of the separated pea lectin was detected on a nitrocellulose blot by immunostaining with a horseradish peroxidase-conjugated second antibody.

  19. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: Implications for ligand binding

    SciTech Connect

    Mace, Peter D.; Cutfield, John F.; Cutfield, Sue M. . E-mail: sue.cutfield@otago.ac.nz

    2006-12-29

    BMPRII is a type II TGF-{beta} serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-{beta} type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-{beta} receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-{beta} receptors, may play a key role in ligand recognition.

  20. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.

  1. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    PubMed

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  2. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  3. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias.

    PubMed

    Ehlert, Frederick J; Stein, Richard S L

    We describe a method for estimating the affinities of ligands for active and inactive states of a G protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling responses of a wild type GPCR and a constitutively active mutant of it under control conditions and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is based on the assumption that the activating mutation increases receptor isomerization into the active state without affecting the affinities of ligands for receptor states. A means of confirming this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active (Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). The latter two parameters define the output response of the receptor, and hence, their ratio (Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of additional agonists can be estimated in subsequent experiments on cells expressing the wild type receptor. We validated our method through computer simulation, an analytical proof, and analysis of previously published data. Our approach provides 1) a more meaningful analysis of structure-activity relationships, 2) a means of validating in silico docking experiments on active and inactive receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.

  4. Developing High-Affinity Protein Capture Agents and Nanotechnology-Based Platforms for In Vitro Diagnostics

    NASA Astrophysics Data System (ADS)

    Rohde, Rosemary Dyane

    In this thesis, I describe projects that were aimed at improving ways to capture proteins for clinical diagnostics. Nanoelectronic sensors, such as silicon nanowires (SiNWs), can provide label-free quantitative measurements of protein biomarkers in real time. One technical challenge for SiNWs is to develop chemistry that can be applied for selectively encoding the nanowire surfaces with capture agents, thus making them sensors that have selectivity for specific proteins. Furthermore, because of the nature of how the sensor works, it is desirable to achieve this spatially selective chemical functionalization without having the silicon undergo oxidation. This method is described here and provides a general platform that can incorporate organic and biological molecules on Si (111) with minimal oxidation of the silicon surface. The development of these devices is, in part, driven by early diagnosis, treatment, monitoring, and personalized medicine---all of which are increasingly requiring quantitative, rapid, and multiparameter measurements. To begin achieving this goal, a large number of protein biomarkers need to be captured and quantitatively measured to create a diagnostic panel. One of the greatest challenges towards making protein-biomarker-based in vitro diagnostics inexpensive involves developing capture agents to detect the proteins. A major thrust of this thesis is to develop multi-valent, high-affinity and high-selectivity protein capture agents using in situ click chemistry. In situ click chemistry is a tool that utilizes the protein itself to catalyze the formation of a biligand from individual azide and alkyne ligands that are co-localized. Large one-bead one-compound (OBOC) libraries of peptides are used to form the body of these ligands, also providing high chemical diversity with minimal synthetic effort. This process can be repeated to identify a triligand, tetraligand, and so forth. Moreover, the resulting multiligand protein capture agents can be

  5. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  6. Quantifying ligand effects in high-oxidation-state metal catalysis

    NASA Astrophysics Data System (ADS)

    Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.

    2017-09-01

    Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for cat