Science.gov

Sample records for high al stress

  1. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  2. Subcritical crack growth of Ti-6Al-4V at room temperature under high stress-ratio loading

    SciTech Connect

    Thomas, J.P.

    1998-11-13

    Ti-6Al-4V is a two phase {alpha}-{beta} titanium alloy commonly used for turbine fan and compressor components. The crack growth behavior of Ti-6Al-4V and the role played by various material, mechanical, and environmental factors has been thoroughly investigated. This alloy is also susceptible to crack growth under sustained loading in air (SLC), and both hydrogen assisted cracking and low temperature creep mechanisms have been used to explain this susceptibility. Very little information is available on high R-ratio fatigue crack growth of Ti-6Al-4V and the role played by SLC on the fatigue process. In order to gain better understanding of the cracking behavior of this alloy under ripple loading conditions, room temperature, high stress-ratio (R {ge} 0.9) fatigue and SLC experiments have been conducted on a Ti-6Al-4V plate forging material in the duplex-annealed (DA) condition. The results of this investigation,namely, fatigue crack growth rates (CGR) as a function of stress intensity; SLC data; and scanning electron microscopy of the fatigue and SLC fracture surfaces are reported below.

  3. Threading dislocation movement in AlGaN/GaN-on-Si high electron mobility transistors under high temperature reverse bias stressing

    NASA Astrophysics Data System (ADS)

    Sasangka, W. A.; Syaranamual, G. J.; Made, R. I.; Thompson, C. V.; Gan, C. L.

    2016-09-01

    Dislocations are known to be associated with both physical and electrical degradation mechanisms of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs). We have observed threading dislocation movement toward the gate-edges in AlGaN/GaN-on-Si HEMT under high reverse bias stressing. Stressed devices have higher threading dislocation densities (i.e. ˜5 × 109/cm2) at the gate-edges, as compared to unstressed devices (i.e. ˜2.5 × 109/cm2). Dislocation movement correlates well with high tensile stress (˜1.6 GPa) at the gate-edges, as seen from inverse piezoelectric calculations and x-ray synchrotron diffraction residual stress measurements. Based on Peierls stress calculation, we believe that threading dislocations move via glide in < 11 2 ¯ 0 > / { 1 1 ¯ 00 } and < 11 2 ¯ 0 > / { 1 1 ¯ 01 } slip systems. This result illustrates the importance of threading dislocation mobility in controlling the reliability of AlGaN/GaN-on-Si HEMTs.

  4. Protective effects of andrographolide derivative AL-1 on high glucose-induced oxidative stress in RIN-m cells.

    PubMed

    Yan, Hui; Li, Yongmei; Yang, Yali; Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Yu, Pei; Wang, Yuqiang; Xu, Lipeng

    2016-01-01

    AL-1 is a novel andrographolide derivative synthesized by conjugating andrographolide and alpha lipoic acid. AL-1 has been found to increase insulin secretion, decrease blood glucose level and protect β-cell mass and function in alloxan-induced diabetic mouse model. However, the protective mechanism of AL-1 on high glucose-induced pancreatic β-cell injury is still not clear. In the present study, we found that AL-1 reduced reactive oxygen species (ROS) and nitric oxide (NO) generation induced by high glucose in RIN-m cells, and which elevated the activities of superoxide dismutase (SOD) and catalase (CAT). In addition, AL-1 increased the expression of NF-E2-related factor 2 (Nrf2), thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO- 1) proteins in RIN-m cells. These results suggest that AL-1 prevented RIN-m cells from high glucose-induced oxidative damage via upregulation of Nrf2 signaling pathway.

  5. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  6. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    SciTech Connect

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-04-13

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.

  7. Elasto-Plastic-Creep Constitutive Equation of an Al-Si-Cu High-Pressure Die Casting Alloy for Thermal Stress Analysis

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2016-11-01

    Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.

  8. Elasto-Plastic-Creep Constitutive Equation of an Al-Si-Cu High-Pressure Die Casting Alloy for Thermal Stress Analysis

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2016-08-01

    Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.

  9. Impact of Gate and Passivation Structures on Current Collapse of AlGaN/GaN High-Electron-Mobility Transistors under Off-State-Bias Stress

    NASA Astrophysics Data System (ADS)

    Tajima, Masafumi; Hashizume, Tamotsu

    2011-06-01

    Using a dual-gate structure, we have investigated the impact of gate-stress position on the current collapse behavior of AlGaN/GaN high-electron-mobility transistors (HEMTs) without surface passivation. When the gate-bias stress under the off state was applied to the additional gate between the main gate and the drain electrode, we observed a marked increase in on-resistance (RON). On the other hand, the off-state stress on the main gate itself caused a decrease in drain saturation current as well as an increase in RON. The calculation of electric field at the AlGaN surface showed that the field peaks existed at the gate edges on both the drain and source sides, probably causing electron charging at the AlGaN surface near both gate-edge areas. These results indicated that the off-state gate stress induces “virtual gates” in the gate edges expanding in both the drain and source directions. The impacts of device structures on the current collapse have been characterized, using Schottky-gate HEMTs with and without surface passivation and metal-oxide-semiconductor (MOS) gate HEMTs. The surface passivation and MOS-gate structure was effective in mitigating current collapse, which was explained in terms of surface state density, electric field strength, and gate leakage current.

  10. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology

    SciTech Connect

    Cheng, Jianpeng; Yang, Xuelin Sang, Ling; Guo, Lei; Hu, Anqi; Xu, Fujun; Tang, Ning; Wang, Xinqiang; Shen, Bo

    2015-04-06

    A large lattice-mismatch induced stress control technology with a low Al content AlGaN layer has been used to grow high quality GaN layers on 4-in. Si substrates. The use of this technology allows for high mobility AlGaN/GaN heterostructures with electron mobility of 2040 cm{sup 2}/(V·s) at sheet charge density of 8.4 × 10{sup 12 }cm{sup −2}. Strain relaxation and dislocation evolution mechanisms have been investigated. It is demonstrated that the large lattice mismatch between the low Al content AlGaN layer and AlN buffer layer could effectively promote the edge dislocation inclination with relatively large bend angles and therefore significantly reduce the dislocation density in the GaN epilayer. Our results show a great potential for fabrication of low-cost and high performance GaN-on-Si power devices.

  11. Impacts of SiN passivation on the degradation modes of AlGaN/GaN high electron mobility transistors under reverse-bias stress

    SciTech Connect

    Chen, Wei-Wei; Ma, Xiao-Hua E-mail: yhao@xidian.edu.cn; Hou, Bin; Zhu, Jie-Jie; Chen, Yong-He; Zheng, Xue-Feng; Zhang, Jin-Cheng; Hao, Yue E-mail: yhao@xidian.edu.cn

    2014-10-27

    Impacts of SiN passivation on the degradation modes of AlGaN/GaN high electron mobility transistors are investigated. The gate leakage current decreases significantly upon removing the SiN layer and no clear critical voltage for the sudden degradation of the gate leakage current can be observed in the reverse-bias step-stress experiments. Gate-lag measurements reveal the decrease of the fast-state surface traps and the increase of slow-state traps after the passivation layer removal. It is postulated that consistent surface charging relieves the electric field peak on the gate edge, thus the inverse piezoelectric effect is shielded.

  12. Effect of OFF-state stress induced electric field on trapping in AlGaN/GaN high electron mobility transistors on Si (111)

    SciTech Connect

    Anand, M. J. E-mail: eging@ntu.edu.sg; Ng, G. I. E-mail: eging@ntu.edu.sg; Syamal, B.; Zhou, X.; Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Vicknesh, S.; Foo, S. C.

    2015-02-23

    The influence of electric field (EF) on the dynamic ON-resistance (dyn-R{sub DS[ON]}) and threshold-voltage shift (ΔV{sub th}) of AlGaN/GaN high electron mobility transistors on Si has been investigated using pulsed current-voltage (I{sub DS}-V{sub DS}) and drain current (I{sub D}) transients. Different EF was realized with devices of different gate-drain spacing (L{sub gd}) under the same OFF-state stress. Under high-EF (L{sub gd} = 2 μm), the devices exhibited higher dyn-R{sub DS[ON]} degradation but a small ΔV{sub th} (∼120 mV). However, at low-EF (L{sub gd} = 5 μm), smaller dyn-R{sub DS[ON]} degradation but a larger ΔV{sub th} (∼380 mV) was observed. Our analysis shows that under OFF-state stress, the gate electrons are injected and trapped in the AlGaN barrier by tunnelling-assisted Poole-Frenkel conduction mechanism. Under high-EF, trapping spreads towards the gate-drain access region of the AlGaN barrier causing dyn-R{sub DS[ON]} degradation, whereas under low-EF, trapping is mostly confined under the gate causing ΔV{sub th}. A trap with activation energy 0.33 eV was identified in the AlGaN barrier by I{sub D}-transient measurements. The influence of EF on trapping was also verified by Silvaco TCAD simulations.

  13. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    SciTech Connect

    Sun, Huarui Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  14. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    NASA Astrophysics Data System (ADS)

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang; Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei

    2015-09-01

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  15. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    SciTech Connect

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  16. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting

  17. Tensile and Microindentation Stress-Strain Curves of Al-6061

    DOE Data Explorer

    Weaver, Jordan S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); Khosravani, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Castillo, Andrew [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidind, Surya R [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-13

    Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.

  18. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    SciTech Connect

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  19. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  20. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  1. Effect of stress on the Al composition evolution in AlGaN grown using metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-05-01

    Two series of AlGaN samples with different stresses were designed to investigate the effect of stress on the Al composition. X-ray diffraction reciprocal space mapping (XRD RSM) demonstrated that the AlGaN epilayers with different stresses have large Al composition differences despite the same growth conditions. The largest Al composition difference reached up to 21.3%, which was also confirmed using secondary ion mass spectroscopy (SIMS). This result is attributed to a large stress discrepancy in the AlGaN epilayers. Finally, the dependences of the solid-phase Al composition on the gas-phase Al composition under different stresses were systematically analyzed.

  2. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  3. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  4. Stress Development and Relaxation in Al2O3 during Early StageOxidation of beta-NiAl

    SciTech Connect

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2005-04-20

    Using a glancing synchrotron X-ray beam (Advanced Photon Source, Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from thermally grown oxides on NiAl samples were recorded during oxidation at 1000 or 1100 C in air. The diffraction patterns were analyzed to determine strain and phase changes in the oxide scale as it developed and evolved. Strain was obtained from measurements of the elliptical distortion of the Debye-Scherrer rings, where data from several rings of a single phase were used. Results were obtained from {alpha}-Al{sub 2}O{sub 3} as well as from the transition alumina, in this case {theta}-Al{sub 2}O{sub 3}, which formed during the early stage. Compressive stress was found in the first-formed transition alumina, but the initial stress in {alpha}-Al{sub 2}O{sub 3} was tensile, with a magnitude high enough to cause Al{sub 2}O{sub 3} fracture. New {alpha}-Al{sub 2}O{sub 3} patches nucleated at the scale/alloy interface and spread laterally and upward. This transformation not only puts the alpha alumina in tension, but can also cause the transition alumina to be in tension. After a complete {alpha}-Al{sub 2}O{sub 3} layer formed at the interface, the strain level in {alpha}-Al{sub 2}O{sub 3} became compressive, reaching a steady state level around -75 MPa at 1100 C. To study a specimen's response to stress perturbation, samples with different thickness, after several hours of oxidation at 1100 C, were quickly cooled to 950 C to impose a compressive thermal stress in the scale. The rate of stress relaxation was the same for 1 and 3.5 mm thick samples, having a strain rate of {approx} 1 x 10{sup -8}/s. This behavior indicates that oxide creep is the major stress relaxation mechanism.

  5. Electron velocity of 6 × 10{sup 7 }cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors

    SciTech Connect

    Arulkumaran, S. Manoj Kumar, C. M.; Ranjan, K.; Teo, K. L.; Ng, G. I.; Shoron, O. F.; Rajan, S.; Bin Dolmanan, S.; Tripathy, S.

    2015-02-02

    A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In{sub 0.17}Al{sub 0.83}N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (W{sub eff}) exhibited a very high I{sub Dmax} of 3940 mA/mm and a highest g{sub m} of 1417 mS/mm. This dramatic increase of I{sub D} and g{sub m} in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (v{sub e}) of 6.0 × 10{sup 7 }cm/s, which is ∼1.89× higher than that of the conventional In{sub 0.17}Al{sub 0.83}N/GaN HEMT (3.17 × 10{sup 7 }cm/s). The v{sub e} in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high v{sub e} at 300 K in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the v{sub e} = 6 × 10{sup 7 }cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.

  6. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  7. Sleep in High Stress Occupations

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin

    2014-01-01

    High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.

  8. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  9. Commentary: Beyond Stressful Life Events and Depression?--Reflections on Bogdan et al. (2014)

    ERIC Educational Resources Information Center

    Belsky, Jay

    2014-01-01

    In light of continuing disagreement, even at the meta-analytic level, as to whether the gene- × -environment (G×E) interaction involving 5-HTTLPR and stressful life events (SLEs) predicts depression, Bogdan and associates (this issue, Bogdan et al., 2014) sought to extend research on what has become a highly controversial general (GxE) and…

  10. RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules

    PubMed Central

    Li, Yang; Collins, Mahlon; Geiser, Rachel; Bakkar, Nadine; Riascos, David; Bowser, Robert

    2015-01-01

    The aggregation of RNA-binding proteins is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBM45 is an RNA-binding protein that forms cytoplasmic inclusions in neurons and glia in ALS and FTLD. To explore the role of RBM45 in ALS and FTLD, we examined the contribution of the protein’s domains to its function, subcellular localization, and interaction with itself and ALS-linked proteins. We find that RBM45 forms homo-oligomers and physically associates with the ALS-linked proteins TDP-43 and FUS in the nucleus. Nuclear localization of RBM45 is mediated by a bipartite nuclear-localization sequence (NLS) located at the C-terminus. RBM45 mutants that lack a functional NLS accumulate in the cytoplasm and form TDP-43 positive stress granules. Moreover, we identify a novel structural element, termed the homo-oligomer assembly (HOA) domain, that is highly conserved across species and promote homo-oligomerization of RBM45. RBM45 mutants that fail to form homo-oligomers exhibit significantly reduced association with ALS-linked proteins and inclusion into stress granules. These results show that RMB45 may function as a homo-oligomer and that its oligomerization contributes to ALS/FTLD RNA-binding protein aggregation. PMID:26391765

  11. Grain Flow at High Stresses

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  12. Thermal Stability of Residual Stresses in Ti-6Al-4V components

    NASA Astrophysics Data System (ADS)

    Stanojevic, A.; Angerer, P.; Oberwinkler, B.

    2016-03-01

    The need for light weight design while maintaining a high safety is essential for many components, especially in the aircraft industry. Therefore, it's important to consider every aspect to reduce weight, improve fatigue life and maintain safety of crucial components. Residual stresses are a major factor which can positively influence components and fulfil all three requirements. However, due to the inconstancy of the behaviour of residual stresses during the life time of a component, residual stresses are often neglected. If the behaviour of residual stresses could be described reliably over the entire life time of a component, residual stresses could be taken into account and components could be optimized even further. Mechanical and thermal loads are the main reason for relaxation of residual stresses. This work covers the thermal stability of residual stresses in Ti-6Al-4V components. Therefore, exposure tests at raised temperatures were performed on specimens with different surface conditions. Residual stresses were measured by x-ray diffraction before and after testing. Creep tests were also carried out to describe the creep behaviour and thereby the ability for residual stress relaxation. A correlation between the creep rate and amount of relaxed stress was found. The creep behaviour of the material was described by using a combination of the Norton Power law and the Arrhenius equation. The Zener-Wert-Avrami model was used to describe the residual stress relaxation. With these models a satisfying correlation between measured and calculated data was found. Hence, the relaxation of residual stresses due to thermal load was described reliably.

  13. Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al-AlN-TiN Multilayers

    PubMed Central

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; Liu, Xiang-Yang; Misra, Amit

    2015-01-01

    AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN. PMID:26681109

  14. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; Liu, Xiang -Yang; Misra, Amit

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  15. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of

  16. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  17. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    NASA Astrophysics Data System (ADS)

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-03-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm‑2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.

  18. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    PubMed Central

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm−2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality. PMID:26960730

  19. STRESS ANNEALING INDUCED DIFFUSE SCATTERING FROM Ni3(Al,Si) PRECIPITATES

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Karapetrova, Evgenia; Zschack, P.

    2012-01-01

    Diffuse scattering caused by L12 type Ni3 (Al,Si) precipitates after stress annealing of Ni-Al-Si alloys is studied. Experimental reciprocal space maps are compared to the theoretical ones. Oscillations of diffuse scattering due to Ni3 (Al,Sc) precipitates are observed. Peculiarities of diffuse scattering in asymptotic region as compared to Huang scattering region are discussed. Coupling between the stress annealing direction and the precipitate shape is demonstrated.

  20. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS.

    PubMed

    Emde, Anna; Eitan, Chen; Liou, Lee-Loung; Libby, Ryan T; Rivkin, Natali; Magen, Iddo; Reichenstein, Irit; Oppenheim, Hagar; Eilam, Raya; Silvestroni, Aurelio; Alajajian, Betty; Ben-Dov, Iddo Z; Aebischer, Julianne; Savidor, Alon; Levin, Yishai; Sons, Robert; Hammond, Scott M; Ravits, John M; Möller, Thomas; Hornstein, Eran

    2015-11-01

    Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.

  1. Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress.

    PubMed

    Yang, Jian Li; Zheng, Shao Jian; He, Yun Feng; Matsumoto, Hideaki

    2005-04-01

    Spinach is a vegetable with a high oxalate concentration in its tissues. Oxalate efflux from spinach (Spinacia oleracea L. cv. Quanneng) roots was rapidly stimulated (within 30 min) by aluminium (Al) treatment. The efflux was constant within 6 h, but increased with increasing Al concentration. The efflux was confined to the root tip (0-5 mm), which showed a 5-fold greater efflux than the root zone distal to the tip (5-10 mm). Oxalate efflux could not be triggered by treatment with the trivalent cation lanthanum or by phosphorus deficiency, indicating that the efflux was specific to the Al treatment. All this evidence suggested that spinach possesses Al-resistance mechanisms. However, spinach was found to be as sensitive to Al toxicity as the Al-sensitive wheat line ES8, which had no Al-dependent organic acids efflux. The Al accumulated in the apical 5 mm of the roots of spinach which was also similar to that in the Al-sensitive wheat after 24 h treatment with 50 microM AlCl(3), indicating a non-exclusion mechanism. In addition, root elongation in spinach was significantly inhibited at pH 4.5, compared with that at pH 6.5. Based on this evidence, it is concluded that the sensitivity to acid stress in spinach could mask the potential role for oxalate to protect the plant roots from Al toxicity.

  2. Stress corrosion cracking of Ti-8Al-1 Mo-1V in molten salts

    NASA Technical Reports Server (NTRS)

    Smyrl, W. H.; Blackburn, M. J.

    1975-01-01

    The stress corrosion cracking (SCC) behavior of Ti-8Al-1 Mo-1V has been studied in several molten salt environments. Extensive data are reported for the alloy in highly pure LiCl-KCl. The influence of the metallurgical heat treatment and texture, and the mechanical microstructure show similarities with aqueous solutions at lower temperature. The fracture path and cracking modes are also similar to that found in other environments. The influence of H2O and H(-) in molten LiCl-KCl lead to the conclusion that hydrogen does not play a major role in crack extension in this environment.

  3. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  4. Utilizing various test methods to study the stress corrosion behavior of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    Recently, much attention has been given to aluminum-lithium alloys because of rather substantial specific-strength and specific-stiffness advantages offered over commercial 2000and 7000-series aluminum alloys. An obstacle to Al-Li alloy development has been inherent limited ductility. In order to obtain a more refined microstructure, powder metallurgy (P/M) has been employed in alloy development programs. As stress corrosion (SC) of high-strength aluminum alloys has been a major problem in the aircraft industry, the possibility of an employment of Al-Li alloys has been considered, taking into account a use of Al-Li-Cu alloys. Attention is given to a research program concerned with the evaluation of the relative SC resistance of two P/M processed Al-Li-Cu alloys. The behavior of the alloys, with and without an addition of magnesium, was studied with the aid of three test methods. The susceptibility to SC was found to depend on the microstructure of the alloys.

  5. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  6. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    SciTech Connect

    Flötotto, D. Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  7. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  8. High electron mobility AlGaN/AlN/GaN HEMT structure with a nano-scale AlN interlayer

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chun; Chen, Wen-Ray; Hsu, Yu-Ting; Lin, Jia-Ching; Chang, Kuo-Jen; Lin, Wen-Jen

    2012-10-01

    Epitaxies of AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with different thickness of nano-scale AlN interlayers have been realized by metalorganic chemical vapor deposition (MOCVD) technology. After epitaxy, high resolution X-ray diffraction (HRXRD), temperature-dependent Hall Effect and atomic force microscopy (AFM) measurements were used to characterize the properties of these samples. First, it was found that the Al composition of AlGaN layer increases from 21.6 to 34.2% with increasing the thickness of AlN interlayer from 0 to 5 nm under the same AlGaN growth conditions. This result may due to the influences of compressive stress and Al incorporation induced by the AlN interlayer. Then, we also found that the room-temperature (RT) electron mobility stays higher than 1500 cm2/Vs in the samples within AlN interlayer thickness range of 1.5 nm, on the other hand, the low-temperature (80K) electron mobility drops dramatically from 8180 to 5720 cm2/Vs in the samples with AlN interlayer thickness increasing from 1 to 1.5 nm. Furthermore, it was found that the two-dimensional electron gas (2DEG) density increases from 1.15×1013 to 1.58×1013 cm-2 beyond the AlN interlayer thickness of 1 nm. It was also found that the temperature independent 2DEG densities are observed in the samples with AlN interlayer thickness of 0.5 and 1 nm. The degenerated characteristics of the samples with AlN thickness thicker than 1.5 nm show the degraded crystalline quality which matched the observation of surface defects and small cracks formations from their AFM images. Finally, the 2DEG mobilities of the proposed structures can be achieved as high as 1705 and 8180 cm2/Vs at RT and 80K, respectively.

  9. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.

  10. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A

    2004-09-20

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement.

  11. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation

    NASA Astrophysics Data System (ADS)

    Xin, Tan; Yuanjie, Lü; Guodong, Gu; Li, Wang; Shaobo, Dun; Xubo, Song; Hongyu, Guo; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2015-07-01

    AlGaN/GaN high electron-mobility transistors (HEMTs) with 5 nm AlN passivation by plasma enhanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD AlN passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of AlN increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the AlN/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD AlN passivation can improve the high temperature operation of the AlGaN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 60890192).

  12. The Influence of Al-Anon on Stress of Wives of Alcoholics.

    ERIC Educational Resources Information Center

    McGregor, Phyllis W.

    This study assessed Alcoholics Anonymous (Al-Anon) participation as a factor in stress of wives of alcoholics. Additional data focused on attitude and behavior variables. Two groups of 20 subjects each were enlisted from Al-Anon, personal contacts, treatment centers, and referrals in three urban areas in the southeastern United States. Group A…

  13. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  14. Compensation effect of bacterium containing biofertilizer on the growth of Cucumis sativus L. under Al-stress conditions.

    PubMed

    Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia

    2013-03-01

    Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without

  15. Compensation effect of bacterium containing biofertilizer on the growth of Cucumis sativus L. under Al-stress conditions.

    PubMed

    Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia

    2013-03-01

    Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without

  16. InAlN/AlN/GaN heterostructures for high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Usov, S. O.; Sakharov, A. V.; Tsatsulnikov, A. F.; Lundin, V. W.; Zavarin, E. E.; Nikolaev, A. E.; Yagovkina, M. A.; Zemlyakov, V. E.; Egorkin, V. I.; Ustinov, V. M.

    2016-08-01

    The results of development of InAlN/AlN/GaN heterostructures, grown on sapphire substrates by metal-organic chemical vapour deposition, and high electron mobility transistors (HEMTs) based on them are presented. The dependencies of the InAlN/AlN/GaN heterostructure properties on epitaxial growth conditions were investigated. The optimal indium content and InAlN barrier layer thicknesses of the heterostructures for HEMT s were determined. The possibility to improve the characteristics of HEMTs by in-situ passivation by Si3N4 thin protective layer deposited in the same epitaxial process was demonstrated. The InAlN/AlN/GaN heterostructure grown on sapphire substrate with diameter of 100 mm were obtained with sufficiently uniform distribution of sheet resistance. The HEMTs with saturation current of 1600 mA/mm and transconductance of 230 mS/mm are demonstrated.

  17. Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis.

    PubMed

    Alcântara, Berenice K de; Pizzaia, Daniel; Piotto, Fernando A; Borgo, Lucélia; Brondani, Gilvano E; Azevedo, Ricardo A

    2015-01-01

    Lipid peroxidation and root elongation of Eucalyptus grandis × Eucalyptus camaldulensis were studied under stress conditions in response to aluminum (Al), a metal known to limit agricultural productivity in acidic soils primarily due to reduced root elongation. In Brazil, the Grancam 1277 hybrid (E. grandis × E. camaldulensis) has been planted in the "Cerrado", a region of the country with a wide occurrence of acidic soils. The present study demonstrated that the hybrid exhibited root growth reduction and increased levels of lipid peroxidation after 24h of treatment with 100 µM of Al, which was followed by a reduction in lipid peroxidation levels and the recovery of root elongation after 48 h of Al exposure, suggesting a rapid response to the early stressful conditions induced by Al. The understanding of the temporal dynamics of Al tolerance may be useful for selecting more tolerant genotypes and for identifying genes of interest for applications in bioengineering. PMID:26062119

  18. Modelling Of Residual Stresses Induced By High Speed Milling Process

    SciTech Connect

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-04

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  19. Modelling Of Residual Stresses Induced By High Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  20. Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Lu, Liang-Xing; Jiang, Jian-Tang; Zhen, Liang

    2015-12-01

    In this study, residual stresses after different quenching and aging processes of Al-Cu forged blocks were investigated by numerical simulation method and experimental measurements. An iterative zone-based heat transfer calculation was coupled with the hyperbolic sine-type constitutive model to simulate the residual stress during quenching process. The simulation results were compared with experiment data using both x-ray diffraction and crack compliance methods. The simulation results were in good agreement with the experimental measurements with around 9-13% deviation at the largest. Residual stress reduction can be achieved by decreasing the cooling rate during quenching. Quenching in water with different temperatures of 60, 80, and 100 °C resulted in the maximum compressive residual stress reduction of approximately 28.2, 75.7, and 88.9%, respectively, in Al-Cu alloy samples. When quenched in 10, 20, and 30% PAG solution, the reduction of maximum compressive residual stress in Al-Cu alloy samples was approximately 35.1, 47.8, and 53.2%, respectively. In addition, in order to study the amount of residual stress relief after aging treatments, aging treatments at 140 and 170 °C for different times were also studied. Aging treatment used to obtain the peak-aged (T6) and overaged (T7) condition produces only about 22.5 to 34.7% reduction in residual stresses.

  1. Dislocation Core Structure and Peierls Stress of B2-Based AlSc in {110} Plane

    NASA Astrophysics Data System (ADS)

    Li, S. R.; Wu, X. Z.; Zhang, T.; Tian, Y. X.; Yan, Z. X.; Zhu, H. Z.

    2016-10-01

    The core structure and Peierls stress of <100>, <110>, and <111> dislocations in {110} plane of B2-based AlSc (B2-AlSc) have been investigated using improved dislocation equations combined with the generalized stacking fault (GSF) energy. The truncated approximation method is utilized to construct the dissociated and undissociated dislocations in AlSc, then the effects of dislocation angles on the elastic strain energy and misfit energy are presented. Specifically, with increasing dislocation angle, the misfit energy, elastic strain energy, and total energy, and their corresponding stresses, decrease on the <100>{110} and <110>{110} slip systems. However, for <111>{110} dislocation, all energies and corresponding stresses exhibit the relationship 0° > 54.7° > 35.3° > 90°. The misfit energy is always smaller than the elastic strain energy, even by one or two orders of magnitude, and their phases are always opposite.

  2. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  3. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  4. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  5. Functional stress modification after high condylectomy surgery.

    PubMed

    Alexandridis, C; Caputo, A A; Eliades, G C

    1991-07-01

    Surgical removal of the head of the condyles inevitably leads to radical redistribution of loads applied to the mandible. The nature of this redistribution can have important implications on the surgical approach and subsequent reconstructive procedures. The purpose of this investigation was to visualize photoelastically the functionally delivered stresses after high condylectomy surgery. Three identical models of a dentate human mandible were constructed from a photoelastic material. One mandible simulated a unilateral and the other simulated a bilateral high condylectomy. The third mandible had both condyles intact and served as basis for comparisons. Silicone implants were placed on the sectioned condylar heads. The condyles, with the silicone implants, were fitted into simulated fossae and the mandibles were loaded unilaterally and bilaterally. The resulting stresses were observed and photographed in the field of a circular polariscope. Substantial differences in load-generated stresses were observed as a result of both unilateral and bilateral condylectomies, compared to the normal case. The most severe stress conditions occurred with the unilateral condylectomy, where stresses associated with torsion were most evident. PMID:1890533

  6. Raman characterization and stress analysis of AlN grown on SiC by sublimation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Liu, B.; Edgar, J. H.; Rajasingam, S.; Kuball, M.

    2002-11-01

    The stress distribution in bulk AlN crystals seeded on 6H-SiC was theoretically modeled and also determined experimentally from Raman peak positions. The full width at half maximum of the AlN Raman peaks showed the crystal quality improved as its thickness increased. The theoretical frequency shifts of the E1 (transverse optical) mode calculated from model-predicted stress were in good agreement with experimental values taken along the edges of crystal samples. The stress was linearly distributed along the depth of the samples, and changed from compressive at the growing surface to tensile at the interface between AlN and SiC for thickness range of several hundred micrometers. Large tensile stresses, up to 0.6 GPa, were detected in the AlN at the interface. The effects of growth temperature and sample thickness were investigated. It is predicted that the AlN on 6H-SiC must be at least 2 mm thick to prevent it from cracking while cooling down the sample from a growth temperature of 2000 degC.

  7. [Exudation and accumulation of citric acid in common bean in response to Al toxicity stress].

    PubMed

    Shen, Hong; Yan, Xiaolong; Zheng, Shaoling; Wang, Xiurong

    2002-03-01

    Significant differences in the exudation and accumulation of citric acid in common bean genotypes were observed in response to Al toxicity stress by hydroponic cultural experiments. Secreted citric acid increased with increasing external concentrations of Al3+ which ranged from 0 to 50 mumol.L-1, while ranged from 50 to 80 mumol.L-1, secreted citric acid decreased with increasing external concentrations of Al3+. Among different genotypic common beans, citric acid secreted in G19842 was the largest, while Al uptake per unit dry weight in G19842 was the least. No difference in the accumulation of citric acid in leaves was found among different genotypic common beans, while the size of the content of citric acid in roots was G19842 > AFR > ZPV > G5273. The amount of citric acid exuded was smaller induced by phosphorus deficiency than that induced by Al toxicity stress. Exposure to 50 mumol.L-1 LaCl3 could not induce the exudation of citric acid, and it implied that the exudation and accumulation of citric acid in common bean was an important physiological response of resistance to Al toxicity stress.

  8. ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): study methodology, recruitment, and baseline demographic and disease characteristics.

    PubMed

    Mitsumoto, Hiroshi; Factor-Litvak, Pam; Andrews, Howard; Goetz, Raymond R; Andrews, Leslie; Rabkin, Judith G; McElhiney, Martin; Nieves, Jeri; Santella, Regina M; Murphy, Jennifer; Hupf, Jonathan; Singleton, Jess; Merle, David; Kilty, Mary; Heitzman, Daragh; Bedlack, Richard S; Miller, Robert G; Katz, Jonathan S; Forshew, Dallas; Barohn, Richard J; Sorenson, Eric J; Oskarsson, Bjorn; Fernandes Filho, J Americo M; Kasarskis, Edward J; Lomen-Hoerth, Catherine; Mozaffar, Tahseen; Rollins, Yvonne D; Nations, Sharon P; Swenson, Andrea J; Shefner, Jeremy M; Andrews, Jinsy A; Koczon-Jaremko, Boguslawa A

    2014-06-01

    Abstract In a multicenter study of newly diagnosed ALS patients without a reported family history of ALS, we are prospectively investigating whether markers of oxidative stress (OS) are associated with disease progression. Methods utilize an extensive structured telephone interview ascertaining environmental, lifestyle, dietary and psychological risk factors associated with OS. Detailed assessments were performed at baseline and at 3-6 month intervals during the ensuing 30 months. Our biorepository includes DNA, plasma, urine, and skin. Three hundred and fifty-five patients were recruited. Subjects were enrolled over a 36-month period at 16 sites. To meet the target number of subjects, the recruitment period was prolonged and additional sites were included. Results showed that demographic and disease characteristics were similar between 477 eligible/non-enrolled and enrolled patients, the only difference being type of health insurance among enrolled patients. Sites were divided into three groups by the number of enrolled subjects. Comparing these three groups, the Columbia site had fewer 'definite ALS' diagnoses. This is the first prospective, interdisciplinary, in-depth, multicenter epidemiological investigation of OS related to ALS progression and has been accomplished by an aggressive recruitment process. The baseline demographic and disease features of the study sample are now fully characterized.

  9. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations

    NASA Astrophysics Data System (ADS)

    Dai, F. Z.; Lu, J. Z.; Zhang, Y. K.; Wen, D. P.; Ren, X. D.; Zhou, J. Z.

    2014-10-01

    Laser shock processing (LSP) is a unique surface treatment technique. It induces high-depth compressive residual stresses for improved fatigue or stress corrosion cracking resistance. FEM simulation is an effective method to predict material behavior by LSP. A 2D quarter-infinite model was used to simulate the material behaviors of commercially pure Al by LSP. Different peak pressure with different laser spot diameter was applied to surface of pure Al. Each simulation included two steps: (i) explicit dynamics analysis for the analysis of the LSP; (ii) static equilibrium analysis for springback deformation analysis. The following conclusions could be made: (1) Plastically affected depth increased with the increase of laser spot diameter. There was an ultimate value about plastically affected depth when the laser spot diameter increased to some value, and the ultimate value was consistent with Ballard' model. When the laser spot diameter was small, there still existed tensile residual stresses on the surface layer of material although the peak pressure was below 2.5 HEL. When the diameter laser spot diameter was big enough, the tensile residual stresses on the surface layer of material were converted into compressive residual stresses although the peak pressure was higher than 2.5 HEL.

  10. Structure and residual stress in γ-LiAlO 2 layer fabricated by vapor transport equilibration on (0 0 0 1) sapphire

    NASA Astrophysics Data System (ADS)

    Li, Shuzhi; Yang, Weiqiao; Wang, Yinzhen; Liu, Junfang; Zhou, Shengming; Xu, Jun; Han, Ping; zhang, Rong

    2005-08-01

    γ-LiAlO 2 layers with a highly preferred (1 0 0) orientation were prepared by vapor transport equilibration (VTE) technique on (0 0 0 1) sapphire substrate. Microstructure of the γ-LiAlO 2 layers was studied by XRD and SEM. In the temperature range from 750 to 1100 °C, the residual stress in the γ-LiAlO 2 layers varied from tensile to compressive with the increase of VTE temperature, and the critical point of the change between tensile and compressive stress is around 975 °C.

  11. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    NASA Astrophysics Data System (ADS)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  12. Stress effects in twisted highly birefringent fibers

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  13. ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): The study methodology, recruitment, and baseline demographic and disease characteristics

    PubMed Central

    Mitsumoto, Hiroshi; Factor-Litvak, Pam; Andrews, Howard; Goetz, Raymond R.; Andrews, Leslie; Rabkin, Judith G.; McElhiney, Martin; Nieves, Jeri; Santella, Regina M.; Murphy, Jennifer; Hupf, Jonathan; Singleton, Jess; Merle, David; Kilty, Mary; Heitzman, Daragh; Bedlack, Richard S.; Miller, Robert G; Katz, Jonathan S.; Forshew, Dallas; Barohn, Richard J.; Sorenson, Eric J.; Oskarsson, Bjorn; Filho, J Americo M. Fernandes; Kasarskis, Edward J.; Lomen-Hoerth, Catherine; Mozaffar, Tahseen; Rollins, Yvonne D.; Nations, Sharon P.; Swenson, Andrea J.; Shefner, Jeremy M.; Andrews, Jinsy A.; Koczon-Jaremko, Boguslawa A.

    2015-01-01

    Objective In a multicenter study of newly diagnosed ALS patients without a reported family history of ALS, we are prospectively investigating whether markers of oxidative stress (OS) are associated with disease progression. Methods An extensive structured telephone interview ascertained environmental, lifestyle, dietary and psychological risk factors associated with OS. Detailed assessments were performed at baseline and at 3 to 6 month intervals during the ensuing 30 months. Our biorepository includes DNA, plasma, urine, and skin. Results 355 patients were recruited. Subjects were enrolled over a 36 month-period at 16 sites. To meet the target number of subjects, the recruitment period was prolonged and additional sites were included. Demographic and disease characteristics were similar between 477 eligible/non-enrolled and enrolled patients, with the only difference being type of health insurance among enrolled patients. Sites were divided into 3 groups by the number of enrolled subjects. Comparing these 3 groups, the Columbia site had fewer “definite ALS” diagnoses. Conclusion This is the first prospective, interdisciplinary, in-depth, multicenter epidemiological investigation of OS related to ALS progression and was accomplished by an aggressive recruitment process. The baseline demographic and disease features of the study sample are now fully characterized. PMID:24564738

  14. High temperature oxidation of beta-NiAl

    NASA Technical Reports Server (NTRS)

    Koychak, J. K.; Mitchell, T. E.; Smialek, J. L.

    1985-01-01

    The oxidation of single crystal beta-NiAl has been studied primarily using electron microscopy. Oriented metastable Al2O3 phases form during transient oxidation at 800 C. Specific orientation relationships exist on all metal orientations studied and are a result of the small mismatch along aligned close-packed directions in the cation sublattices of the metal and oxide. Transformation of the metastable Al2O3 phases at 1100 C results in an oxide morphology described as the 'lacey' structure of alpha-Al2O3 scales. This structure results from impingement of oriented patches of alpha-Al2O3 as the transformation initiates and moves radially parallel to the surface. Scale growth occurs by diffusion along high angle grain boundaries. A drastic reduction in oxidation rate accompanies the change in oxide morphology.

  15. Characteristics of MCrAlY coatings sprayed by high velocity oxygen-fuel spraying system

    SciTech Connect

    Itoh, Y.; Saitoh, M.; Tamura, M.

    2000-01-01

    High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coating can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles.

  16. Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes.

    PubMed

    Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio; Gratão, Priscila Lupino; Borgo, Lucélia; Azevedo, Ricardo Antunes

    2015-03-01

    Tropical and subtropical soils are usually acidic and have high concentrations of aluminum (Al). Aluminum toxicity in plants is caused by the high affinity of the Al cation for cell walls, membranes, and metabolites. In this study, the response of the antioxidant-enzymatic system to Al was examined in two tomato genotypes: Solanum lycopersicum var. esculentum (Calabash Rouge) and Solanum lycopersicum var. cerasiforme (CNPH 0082) grown in tropical soils with varying levels of Al. Plant growth; activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase (GR) enzymes; stress-indicating compounds (malondialdehyde (MDA) and hydrogen peroxide); and morphology (root length and surface area) were analyzed. Increased levels of Al in soils were correlated with reduced shoot and root biomass and with reduced root length and surface area. Calabash Rouge exhibited low Al concentrations and increased growth in soils with the highest levels of Al. Plants grown in soils with high availability of Al exhibited higher levels of stress indicators (MDA and hydrogen peroxide) and higher enzyme activity (CAT, APX, GPOX, and GR). Calabash Rouge absorbed less Al from soils than CNPH 0082, which suggests that the genotype may possess mechanisms for Al tolerance.

  17. Time-dependent stress concentration and microcrack nucleation in TiAl

    SciTech Connect

    Yoo, M.H.

    1995-07-01

    Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoretical concepts presented in this paper.

  18. Highly strained AlAs-type interfaces in InAs/AlSb heterostructures

    NASA Astrophysics Data System (ADS)

    Vallet, M.; Claveau, Y.; Warot-Fonrose, B.; Gatel, C.; Nicolai, J.; Combe, N.; Magen, C.; Teissier, R.; Baranov, A. N.; Ponchet, A.

    2016-05-01

    Spontaneously formed Al-As type interfaces of the InAs/AlSb system grown by molecular beam epitaxy for quantum cascade lasers were investigated by atomic resolution scanning transmission electron microscopy. Experimental strain profiles were compared to those coming from a model structure. High negative out-of-plane strains with the same order of magnitude as perfect Al-As interfaces were observed. The effects of the geometrical phase analysis used for strain determination were evidenced and discussed in the case of abrupt and huge variations of both atomic composition and bond length as observed in these interfaces. Intensity profiles performed on the same images confirmed that changes of chemical composition are the source of high strain fields at interfaces. The results show that spontaneously assembled interfaces are not perfect but extend over 2 or 3 monolayers.

  19. The rate dependence of the saturation flow stress of Cu and 1100 Al

    SciTech Connect

    Preston, D.L.; Tonks, D.L.; Wallace, D.C.

    1991-01-01

    The strain-rate dependence of the saturation flow stress of OFHC Cu and 1100 Al from 10{sup {minus}3}s{sup {minus}1} to nearly to 10{sup 12}s{sup {minus}1} is examined. The flow stress above 10{sup 9}s{sup {minus}1} is estimated using Wallace's theory of overdriven shocks in metals. A transition to the power-law behavior {Psi} {approximately} {tau}{sub s}{sup 5} occurs at a strain rate of order 10{sup 5}s{sup {minus}1}. 10 refs., 2 figs.

  20. High-performance Ni3Al synthesized from composite powders

    NASA Astrophysics Data System (ADS)

    Chiou, Wen-Chih; Hu, Chen-Ti

    1994-05-01

    Specimens of Ni3Al + B of high density (>99.3 Pct RD) and relatively large dimension have been synthesized from composite powders through processes of replacing plating and electroless Ni-B plating on Al powder, sintering, and thermal-mechanical treatment. The uniformly coated Ni layer over fine Al or Ni core particles constituting these coating/core composite powders has advantages such as better resistance to oxidation relative to pure Al powder, a greater green density as a compacted powder than prealloyed powder, the possibility of atomically added B to the material by careful choice of a suitable plating solution, and avoidance of the expensive powder metallurgy (PM) equipment such as a hot isostatic press (HIP), hot press (HP), etc. The final Ni3Al + B product is made from Ni-B-Al and Ni-B-Ni mixed composite powders by means of traditional PM processes such as compacting, sintering, rolling, and annealing, and therefore, the dimensions of the product are not constrained by the capacity of an HIP or HP. The properties of Ni3Al composite powder metallurgy (CPM) specimens tested at room temperature have been obtained, and comparison with previous reports is conducted. A tensile elongation of about 16 Pct at room temperature was attained.

  1. Ni-Al2O3 and Ni-Al composite high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Sorrell, Melford; Kelly, Kevin W.; Ma, Evan

    1998-09-01

    High-aspect-ratio microstructures (HARMs) have a variety of potential applications in heat transfer, fluid mechanics, catalysts and other microelectromechanical systems (MEMS). The aim of this work is to demonstrate the feasibility to fabricate high performance particulate metal-matrix composite and intermetallic micromechanical structures using the LIGA process. Well-defined functionally graded Ni-Al2O3 and Ni-Al high-aspect-ratio microposts were electroformed into lithographically patterned PMMA holes from a nickel sulfamate bath containing submicron alumina and a diluted Watts bath containing microsized aluminum particles, respectively. SEM image analysis showed that the volume fraction of the alumina reached up to around 30% in the Ni-Al2O3 deposit. The Vickers microhardness of these composites is in the range of 418 through 545, which is higher than those of nickel microstructures from a similar particle-free bath and other Ni-based electrodeposits. In the work on Ni-Al electroplating, a newly developed diluted Watts bath was used to codeposit micron-sized aluminum particles. The intermetallic compound Ni3Al was formed by the reaction of nickel matrices and aluminum particles through subsequent annealing at 630 degrees Celsius. WDS and XRD analyses confirmed that the annealed coating is a two-phase (Ni-Ni3Al) composite. The maximum aluminum volume fraction reached 19% at a cathode current density of 12 mA cm-2, and the Vickers microhardness of the as-deposited coatings is in the range 392 - 515 depending on the amount of aluminum incorporated.

  2. Effect of creep stress on microstructure of a Ni-Cr-W-Al-Ti superalloy

    SciTech Connect

    Doh, J.M.; Yoo, K.K.; Choi, J.; Hur, S.K.; Baik, H.K.

    1996-02-15

    Creep stress changes the morphology and distribution of the precipitates in the precipitation-hardened alloys. It leads to the formation of precipitate free zones (PFZs) near the grain boundaries. From the microstructural observation of the creep tested specimens of a Ni-Cr-W-Al-Ti superalloy, the relation between PFZs and the amount of plastic deformation in the creep-ruptured specimen is established and the validity of the existing model is discussed based upon the experimental results.

  3. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system

    PubMed Central

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-01-01

    Two AlGaN samples with different strain were designed to investigate mechanism of stress-driven composition evolution. It is discovered that AlGaN grown on AlN or (AlN/GaN superlattices (SLs))/GaN both consist of two distinct regions with different compositions: transition region and uniform region, which is attributed to the compositional pulling effect. The formation of the transition region is due to the partial stress release caused by the generation of misfit dislocations near the hetero-interface. And the Al composition in the uniform region depends on the magnitude of residual strain. The difference in relaxation degree is 80.5% for the AlGaN epilayers grown on different underlayers, leading to a large Al composition difference of 22%. The evolutionary process of Al composition along [0001] direction was investigated in detail. PMID:27112969

  4. Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray

    NASA Astrophysics Data System (ADS)

    Rech, Silvano; Trentin, Andrea; Vezzù, Simone; Legoux, Jean-Gabriel; Irissou, Eric; Guagliano, Mario

    2011-01-01

    In this work, the influence of the substrate temperature on the deposition efficiency, on the coating properties and residual stress was investigated. Pure Al coatings were deposited on Al 6061 alloy substrates using a CGT Kinetics 3000 cold spray system. The substrate temperature was in a range between 20 (room temperature) and 375 °C and was kept nearly constant during a given deposition while all the other deposition parameters were unchanged. The deposited coatings were quenched in water (within 1 min from the deposition) and then characterized. The residual stress was determined by Almen gage method, Modified Layer Removal Method, and XRD in order to identify both the mean coating stress and the stress profile through the coating thickness from the surface to the coating-substrate interface. The residual stress results obtained by these three methods were compared and discussed. The coating morphology and porosity were investigated using optical and scanning electron microscopy.

  5. Cr-Al Diffusion in Chromite Spinel at High Pressure

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Yasuda, A.; Ozawa, K.

    2005-12-01

    Compositional zoning in chromite spinel gives us important information to constrain thermal and deformation history of ultramafic-mafic rocks. For the quantitative estimation, diffusivity of elements in spinel is a critical parameter. Although the Mg-Fe2+ interdiffusion coefficient in MgAl2O4 spinel has experimentally studied by Freer & O'Reilly (1980) and Liemann & Ganguly (2002), Cr-Al interdiffusion coefficient has not been determined yet. In this study, we have experimentally determined Cr-Al interdiffusion coefficient in chromite spinel at temperatures ranging 1400-1700 °C and pressures ranging 3-7 GPa, by using diffusion couple of natural single crystals of spinel and chromite. Experiments were carried out with a multi-anvil type (MA-8 type) high-pressure apparatus at the Earthquake Research Institute, University of Tokyo. After experiments, the samples were cut perpendicular to the contact plane and analyzed with EPMA and EBSD. The elemental mapping showed that Cr, Al, Fe3+, Fe2+, and Mg diffused perpendicular to the contact plane. The Cr-Al diffusion profiles are complementary with each other and asymmetric with steeper profile in the spinel side suggesting a compositional dependence of Cr-Al diffusion in spinel. The Cr-Al interdiffusion coefficient was estimated by the Boltzmann-Matano method. The coefficient decreases with Cr# (=Cr/(Cr+Al)) of spinel, which varies more than one order of magnitude as the Cr# changes from 0.1 to 0.85 at 3 GPa and 1600 °C. It is concluded that the self-diffusion coefficient of Al is more than one order of magnitude larger than that of Cr. The Cr-Al interdiffusion coefficient is expressed by D=D0exp(-Q/RT), where D0=2.8×10-2 m2/s and Q=498 kJ/mol at Cr#=0.2. This relation is applicable up to Cr#=0.5. Extrapolation of the self-diffusion coefficient of Cr to the lower temperature shows that Cr is the slowest diffusion species in chromite spinel including oxygen. This extremely slow Cr self-diffusion is consistent with the Cr-Al

  6. Energetic-particle synthesis of high-strength Al(O) alloys

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Barbour, J.C.; Myers, S.M.; Dugger, M.T.

    1995-09-28

    High-strength Al(O) alloys, initially discovered by ion implantation, have now been produced with electron-cyclotron resonance plasma deposition and pulsed-laser deposition. The mechanical properties of these deposited alloy layers were examined with nanoindentation, and finite element modeling of the indented layer on Si substrates was used to determine yield stresses for the alloys of {approximately} 1--5 GPa. The key to these high strengths is the high density of nanometer-size {gamma}-Al{sub 2}O{sub 3} precipitates formed when high concentrations (5--30 at.%) of oxygen are introduced into aluminum as individual atoms or molecules. The strongest alloys have precipitates as small as 1 nm, implying that such small precipitates block dislocation motion. Based upon previous studies with oxygen-implanted aluminum, improved tribological properties are expected for layers made by the two new deposition methods.

  7. Stress-Induced Twinning and Phase Transformations during the Compression of a Ti-10V-3Fe-3Al Alloy

    NASA Astrophysics Data System (ADS)

    Ahmed, Mansur; Gazder, Azdiar A.; Saleh, Ahmed A.; Wexler, David; Pereloma, Elena V.

    2016-07-01

    A metastable β Ti-10V-3Al-3Fe (wt pct) alloy containing different α phase fractions after thermo-mechanical processing was compressed to 0.4 strain. Detailed microstructure evaluation was carried out using high-resolution scanning transmission electron microscopy and electron back-scattering diffraction. Stress-induced β → α'' and β → ω transformation products together with {332}<113>β and {112}<111>β twinning systems were simultaneously detected. The effects of β phase stability and strain rate on the preferential activation of these reactions were analyzed. With an increase in β phase stability, stress-induced phase transformations were restricted and {112}<111>β twinning was dominant. Alternatively, less stable β conditions or higher strain rates resulted in the dominance of the {332}<113>β twinning system and formation of secondary α'' martensite.

  8. Dynamic high-pressure properties of AlN ceramic as determined by flyer plate impact

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Brar, N. S.; Bless, S. J.

    1991-07-01

    The dynamic properties of hot-pressed aluminum nitride ceramics were determined in a series of plate impact experiments using longitudinal and transverse in-material manganin gauges. The Hugoniot curve for hot pressed specimens was determined in the range of 0-190 kbar with a value of 94±2 kbar for the Hugoniot elastic limit (HEL). Using both gauge orientations, the stress deviator in the specimens was determined as the difference between longitudinal and transverse stresses. It was found that the stress deviator remains relatively constant above the HEL, and is about 10% higher than the value at the HEL point. The inferred Hugoniot converges to the extrapolation of the hydrostat. Since the convergence is not due to loss of strength, it may be due to a phase change in the AlN from low-pressure (wurtzite) structure to high-pressure (rocksalt) structure.

  9. τ-MnAl with high coercivity and saturation magnetization

    SciTech Connect

    Wei, J. Z.; Song, Z. G.; Yang, Y. B.; Liu, S. Q.; Du, H. L.; Han, J. Z.; Zhou, D.; Wang, C. S.; Yang, Y. C.; Franz, A.; Többens, D.; Yang, J. B.

    2014-12-15

    In this paper, high purity τ-Mn{sub 54}Al{sub 46} and Mn{sub 54−x}Al{sub 46}C{sub x}alloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD), powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm{sup -1}, coercivity of 0.5 T, and a maximum energy product of (BH){sub max} = 24.7 kJm{sup -3} were achieved for the pure Mn{sub 54}Al{sub 46} powders without carbon doping. The carbon substituted Mn{sub 54−x}Al{sub 46}C{sub x}, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μ{sub B} which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μ{sub B} at a volume expansion rate of ΔV/V ≈ 20%.

  10. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    PubMed

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  11. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4–1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  12. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  13. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad

    PubMed Central

    Kaus, Anjoscha; Sareen, Dhruv

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS. PMID:26635528

  14. Oxide growth stress measurements and relaxation mechanisms for alumina scales grown on FeCrAlY: Oxide growth stress measurements and relaxation mechanisms

    SciTech Connect

    Tortorelli, P. F.; Specht, E. D.; More, K. L.; Hou, P. Y.

    2012-08-08

    Early-stage tensile stress evolution in α-Al2O3 scales during oxidation of FeCrAlY at 1000, 1050, 1100, and 1200 °C was monitored in situ by use of synchrotron radiation. Tensile stress development as a function of oxidation temperature indicated a dynamic interplay between stress generation and relaxation. An analysis of the time dependence of the data indicated that the observed relaxation of the initial tensile stress in the oxide scales at 1100 and 1200°C is dominated by creep in the α-Al2O3. A thin layer of a (Fe,Cr,Al) oxide was observed at the oxide-gas interface, consistent with a mechanism whereby the conversion of (Fe,Cr,Al)2O3 to α-Al2O3 produces an initial tensile stress in the alumina scale.

  15. Spallation in Ti-6Al-4V: Stress Measurements and Recovery

    SciTech Connect

    Tyler, C.; Bourne, N. K.; Millett, J. C. F.

    2006-07-28

    Previous work by a number of authors has shown that the spall strength of the engineering alloy, Ti 6Al - 4V increases markedly with pulse duration. In this paper, we have reproduced those results in a low oxygen variant of the alloy, over a range of impact stresses. The microstructure consisted of a mixture of primary {alpha} grains in a matrix of transformed {beta}. Samples have also been shock loaded and recovered under conditions of one-dimensional strain, to compliment the results of the stress gauge experiments. In all the recovered samples, complete spallation occurred, but examination of damage at secondary sites showed that this occurred via nucleation and growth of pores. Ductile failure appears to be a mixture of void formation and coalescence within primary {alpha} grains and along primary {alpha} / transformed {beta} boundaries.

  16. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  17. Ab initio local energy and local stress: application to tilt and twist grain boundaries in Cu and Al.

    PubMed

    Wang, Hao; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori

    2013-07-31

    The energy-density and stress-density schemes (Shiihara et al 2010 Phys. Rev. B 81 075441) within the projector augmented wave (PAW) method based on the generalized gradient approximation (GGA) have been applied to tilt and twist grain boundaries (GBs) and single vacancies in Cu and Al. Local energy and local stress at GBs and defects are obtained by integrating the energy and stress densities in each local region by the Bader integration using a recent algorithm (Yu et al 2011 J. Chem. Phys. 134 064111) as well as by the layer-by-layer integration so as to settle the gauge-dependent problem in the kinetic terms. Results are compared with those by the fuzzy-Voronoi integration and by the embedded atom method (EAM). The features of local energy and local stress at GBs and vacancies depend on the bonding nature of each material. Valence electrons in Al mainly located in the interatomic regions show remarkable response to structural disorder as significant valence charge redistribution or bond reconstruction, often leading to long-range variations of charges, energies and stresses, quite differently from d electrons in Cu mainly located near nuclei. All these features can be well represented by our local energy and local stress. The EAM potential for Al does not reproduce correct local energy or local stress, while the EAM potential for Cu provides satisfactory results.

  18. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  19. Hydrogen induced surface cracking in an 8090 Al-Li alloy during high cycle fatigue

    SciTech Connect

    Laffin, C.; Raghunath, C.R.; Lopez, H.F. . Materials Dept.)

    1993-10-01

    In recent years, there has been an increasing interest in understanding the effects of aggressive or moist environments on the properties of Al-Li alloys. However, most of the existing work has been focused on their stress corrosion cracking resistance. Consequently, only a few reports are available on the environmental fatigue strength of these alloys. Upon exposure to aggressive environments, the fatigue crack propagation resistance can be detrimentally affected. R. Piascik and R. Gangloff found enhanced cyclic crack growth rates in an Al-Li-Cu alloy when a critical water vapor pressure was exceeded. Thermodynamically, at atmospheric pressures, strong interactions between hydrogen and lithium are expected to give rise to stable lithium hydrides. Evidence for the development of hydride phases in Al-Li alloys exposed to hydrogen environments has been reported by various workers. Thus, it is likely that HE via hydride formation can be the relevant mechanisms in Al-Li alloys that have been in contact with hydrogen. Since lithium hydrides are stable up to temperatures of 773 K, previous hydrogen exposure can lead to an irreversible mode of embrittlement. Thus, it was the objective of the present work to investigate the effects of hydrogen during aging on the ensuing high cycle fatigue (HCF) performance of an 8090 Al-Li alloy.

  20. Coping with the Stress of High Stakes Testing

    ERIC Educational Resources Information Center

    Kruger, Louis J.; Wandle, Caroline; Struzziero, Joan

    2007-01-01

    High stakes testing puts considerable pressure on schools, teachers, and students to achieve at high levels. Therefore, how schools and individuals cope with this major source of stress may have important implications for the success of high stakes testing. This article reviews relevant theory and research on stress as they relate to public…

  1. Stress controlled pulsed direct current co-sputtered Al1-xScxN as piezoelectric phase for micromechanical sensor applications

    NASA Astrophysics Data System (ADS)

    Fichtner, Simon; Reimer, Tim; Chemnitz, Steffen; Lofink, Fabian; Wagner, Bernhard

    2015-11-01

    Scandium alloyed aluminum nitride (Al1-xScxN) thin films were fabricated by reactive pulsed direct current co-sputtering of separate scandium and aluminum targets with x ≤ 0.37. A significant improvement of the clamped transversal piezoelectric response to strain e31,f from -1.28 C/m2 to -3.01 C/m2 was recorded, while dielectric constant and loss angle remain low. Further, the built-in stress level of Al1-xScxN was found to be tuneable by varying pressure, Ar/N2 ratio, and Sc content. The thus resulting enhancement of the expectable signal to noise ratio by a factor of 2.1 and the ability to control built-in stress make the integration of Al1-xScxN as the piezoelectric phase of micro-electro-mechanical system sensor applications highly attractive.

  2. Nanotopography and Surface Stress Analysis of Ti6Al4V Bioimplant: An Alternative Design for Stability

    NASA Astrophysics Data System (ADS)

    Patel, Sweetu; Solitro, Giovanni Francesco; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T.; Amirouche, Farid; Shokuhfar, Tolou

    2015-11-01

    The mechanical stability of biomedical Ti6Al4V rods with vertically aligned nanotubes structure formed on their surface has yet to be fully tested during insertion into the bone. The surface of rods impacted during insertion into a bone makes shear contact with bone, generating an interfacial stress. This stress plays an important role in osseointegration and may contribute to loosening between the bone and the implant during surgery. In the current study, the mechanical stability of various Ti6Al4V surfaces, including machined (M), rough (R), machined-anodized (MA), and rough-anodized (RA) surfaces, were tested and fully analyzed during insertion and pullout test into a simulant bone with densities 15 and 20 pounds per cubic foot (pcf). Our initial results from the field emission scanning electron microscopy images taken before and after insertion reveal that titania nanotubes remained stable and maintained their structural integrity during the insertion and pullout Instron test. Furthermore, from the interfacial stress calculation during the insertion, it was observed that compared with nonanodized rods, a higher force was required to insert the anodized rods. The interfacial stress generated during the insertion of anodized rods was 1.03 ± 0.11 MPa for MA and 1.10 ± 0.36 MPa for RA, which is significantly higher ( p < 0.05) than nonanodized rods with 0.36 ± 0.07 MPa for M and 0.36 ± 0.08 MPa for R in simulant bone with density of 15 pcf. Similar behavior was also observed in 20 pcf simulant bone. Energy dissipated during anodized rod insertion (i.e., MA = 1.3 ± 0.04 Nm and RA = 1.23 ± 0.24 Nm) was not significantly different than nonanodized rod insertion (i.e., M = 0.9 ± 0.05 Nm and R = 1.04 ± 0.04 Nm) into 15 pcf simulant bone. The high stress during insertion of anodized rods suggests that the nanotubes on the surface can cause gripping and high friction on the radial side, resisting the counter motion of the bone. The latter may play a beneficial

  3. Degradation mechanism of enhancement-mode AlGaN/GaN HEMTs using fluorine ion implantation under the on-state gate overdrive stress

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Wei; Zheng, Xue-Feng; Fan, Shuang; Wang, Chong; Du, Ming; Zhang, Kai; Chen, Wei-Wei; Cao, Yan-Rong; Mao, Wei; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-01-01

    The degradation mechanism of enhancement-mode AlGaN/GaN high electron mobility transistors (HEMTs) fabricated by fluorine plasma ion implantation technology is one major concern of HEMT’s reliability. It is observed that the threshold voltage shows a significant negative shift during the typical long-term on-state gate overdrive stress. The degradation does not originate from the presence of as-grown traps in the AlGaN barrier layer or the generated traps during fluorine ion implantation process. By comparing the relationships between the shift of threshold voltage and the cumulative injected electrons under different stress conditions, a good agreement is observed. It provides direct experimental evidence to support the impact ionization physical model, in which the degradation of E-mode HEMTs under gate overdrive stress can be explained by the ionization of fluorine ions in the AlGaN barrier layer by electrons injected from 2DEG channel. Furthermore, our results show that there are few new traps generated in the AlGaN barrier layer during the gate overdrive stress, and the ionized fluorine ions cannot recapture the electrons. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Techology on Reliability Physics and Application Technology of Electronic Component Laboratory (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.

  4. Experimental Study of the Impact Damage on AN Al2O3-COATED Glass Under Stress

    NASA Astrophysics Data System (ADS)

    Suh, Chang-Min; Kim, Sung-Ho; Suh, Duck-Young

    The impact damage of an Al2O3-coated soda-lime glass under tensile and compressive stress conditions was investigated by an impact test using a steel ball (2mm dia.). The size of the glass specimens was 40×40×5(mm). In order to change the porosity percent of each specimen, the target distance was set at 120mm and 70mm. Also, the effect of the thickness of the coating layer was shown by two amounts (100 μm and 50 μm). The velocity of the steel balls was set between 30 and 60m/s. After the impact test, the crack patterns and lengths were measured using a stereo-microscope. The tensile and compressive specimens were prepared by inflation and deflation of air pressure within a pressure vessel. It was confirmed that the crack length of the glass under tensile stress was longer than that of glass under compressive stress. Also, the optimum conditions were a target distance of 70mm and 100 μm of a coating thickness, thus resulting in a minimization of porosity percent and area.

  5. Ultrafast bulk diffusion of AlHx in high-entropy dehydrogenation intermediates of NaAlH4 [Highly mobile AlHx species and the dehydogenation kinetics of NaAlH4

    DOE PAGES

    Zhang, Feng; Wood, Brandon C.; Wang, Yan; Wang, Cai -Zhuang; Ho, Kai -Ming; Chou, Mei -Yin

    2014-07-21

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediatemore » transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Lastly, our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.« less

  6. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  7. TEM and HRTEM study of influence of thermal cycles with stress on dynamic recrystallization in Ti46Al8Nb1B during creep.

    PubMed

    Xu, Ningan; Jiang, Hui; Wu, Xingfang

    2008-12-01

    Short-term tension creep and thermal cycles under compressive stress were performed on Ti46Al8Nb1B in order to explore the dynamic recrystallization (DRX) grains formed during the creep and the impact of thermal cycles under stress to the DRX. After 1600 times' thermal cycles from 300 degrees C to 800 degrees C under 300 MPa compressive stress, high density of ledges and thick ledges are found in the interfaces. Two kinds of moiré fringes, instead of 9R structure, can be found in the thick ledges. Ti46Al8Nb1B sample and another sample which was treated by thermal cycles with stress were crept under 300 MPa compressive stress at 800 degrees C. DRX grains are found in the interfaces in those samples. Those grains, formed at the ledges, have an orientation relationship of [101](gamma)//[011](gammaR), (1 1 1)(gamma)//(1 11 )(gammaR) with the matrix of gamma phases. Thermal cycles with stress could lead to more DRX grains during creep. PMID:18635364

  8. High pressure sintering behavior and mechanical properties of cBN-Ti3Al and cBN-Ti3Al-Al composite materials

    NASA Astrophysics Data System (ADS)

    Li, Yu; Kou, Zili; Wang, Haikuo; Wang, Kaixue; Tang, Hongchang; Wang, Yanfei; Liu, Shenzhuo; Ren, Xiangting; Meng, Chuanming; Wang, Zhigang

    2012-12-01

    The sintering behavior and mechanical properties of cubic boron nitride (cBN) composites, using the mixture of cBN-Ti3Al and cBN-Ti3Al-Al as the starting material respectively, were investigated under high pressure and high temperature (HPHT) conditions. The results show that the samples of cBN-Ti3Al-Al sintering system have more homogeneous microstructures. Young's modulus, shear modulus, and bulk modulus of samples measured by ultrasonic measurements can reach to 782±3 GPa, 344±1 GPa, and 348±2 GPa, respectively. The hardness increases remarkably with the sintering temperature rising, and reaches to the highest value of 35.04±0.51 GPa. For the cBN-Ti3Al sintering system, the X-ray diffraction patterns of composites reveal that the chemical reactions between cBN and Ti3Al occurred at 5.0 GPa and 1300°C. The reaction mechanisms of both cBN-Ti3Al and cBN-Ti3Al-Al sintering systems are discussed in this paper.

  9. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    PubMed Central

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  10. Ultrafast Bulk Diffusion of AlHxin High-Entropy Dehydrogenation Intermediates of NaAlH4

    SciTech Connect

    Zhang, Feng; Wood, Brandon C; Wang, Yan; Wang, Cai-Zhuang; Ho, Kai-Ming; Chou, Mei-Yin

    2014-08-14

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediate transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.

  11. Functions of FUS/TLS From DNA Repair to Stress Response: Implications for ALS

    PubMed Central

    Sama, Reddy Ranjith Kumar; Ward, Catherine L.

    2014-01-01

    Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional DNA-/RNA-binding protein that is involved in a variety of cellular functions including transcription, protein translation, RNA splicing, and transport. FUS was initially identified as a fusion oncoprotein, and thus, the early literature focused on the role of FUS in cancer. With the recent discoveries revealing the role of FUS in neurodegenerative diseases, namely amyotrophic lateral sclerosis and frontotemporal lobar degeneration, there has been a renewed interest in elucidating the normal functions of FUS. It is not clear which, if any, endogenous functions of FUS are involved in disease pathogenesis. Here, we review what is currently known regarding the normal functions of FUS with an emphasis on DNA damage repair, RNA processing, and cellular stress response. Further, we discuss how ALS-causing mutations can potentially alter the role of FUS in these pathways, thereby contributing to disease pathogenesis. PMID:25289647

  12. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  13. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew

    PubMed Central

    Fang, Hui; Sun, Yun-Jun; Lv, Yan-Hong; Ni, Rong-Jun; Shu, Yu-Mian; Feng, Xiu-Yu; Wang, Yu; Shan, Qing-Hong; Zu, Ya-Nan; Zhou, Jiang-Ning

    2016-01-01

    Stress is increasingly present in everyday life in our fast-paced society and involved in the pathogenesis of many psychiatric diseases. Corticotrophin-releasing-hormone (CRH) plays a pivotal role in regulating the stress responses. The tree shrews are highly vulnerable to stress which makes them the promising animal models for studying stress responses. However, the mechanisms underlying their high stress-susceptibility remained unknown. Here we confirmed that cortisol was the dominate corticosteroid in tree shrew and was significantly increased after acute stress. Our study showed that the function of tree shrew CRH - hypothalamic-pituitary-adrenal (HPA) axis was nearly identical to human that contributed little to their hyper-responsiveness to stress. Using CRH transcriptional regulation analysis we discovered a peculiar active glucocorticoid receptor response element (aGRE) site within the tree shrew CRH promoter, which continued to recruit co-activators including SRC-1 (steroid receptor co-activator-1) to promote CRH transcription under basal or forskolin/dexamethasone treatment conditions. Basal CRH mRNA increased when the aGRE was knocked into the CRH promoter in human HeLa cells using CAS9/CRISPR. The aGRE functioned critically to form the “Stress promoter” that contributed to the higher CRH expression and susceptibility to stress. These findings implicated novel molecular bases of the stress-related diseases in specific populations. PMID:27125313

  14. The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods

    NASA Technical Reports Server (NTRS)

    Rizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1982-01-01

    Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested.

  15. Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6

    NASA Astrophysics Data System (ADS)

    Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.

    2016-02-01

    The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.

  16. Through-thickness determination of phase composition and residual stresses in thermall barrier coatings using high- energy x-rays.

    SciTech Connect

    Weyant, , C. M.; Almer, J. D.; Faber, K. T.; Stony Brook Univ.

    2009-01-01

    High-energy X-rays were used to determine the local phase composition and residual stresses through the thickness of as-sprayed and heat-treated plasma-sprayed thermal barrier coatings consisting of a NiCoCrAlY bond coat and an yttria-stabilized zirconia (YSZ) topcoat produced with through-thickness segmentation cracks. The as-sprayed residual stresses reflected the combined influence of quenching stresses from the plasma spray process, thermal expansion mismatch between the topcoat, bond coat and substrate, and stress relief from the segmentation cracks. Heat treatments led to the formation of a thermally grown oxide (TGO) which was in compression in the plane, as well as relief of quenching stresses and development of a stress gradient in the YSZ topcoat. The high-energy X-ray technique used in this study revealed the effects that TGO and segmentation cracks have on the in-plane stress state of the entire coating.

  17. Effects of Cd and Al stress on secondary metabolites, antioxidant and antibacterial activity of Hypoxis hemerocallidea Fisch. & C.A. Mey.

    PubMed

    Okem, Ambrose; Stirk, Wendy A; Street, Renée A; Southway, Colin; Finnie, Jeffrey F; Van Staden, Johannes

    2015-12-01

    This study investigated the effects of cadmium (Cd) and aluminium (Al) on the accumulation of phenolics, flavonoids and the bioactive compound hypoxoside in Hypoxis hemerocallidea. In addition, antioxidant scavenging and antibacterial activity were assessed to evaluate if Cd and Al stress affect the accumulation of bioactive compounds in H. hemerocallidea. In vitro grown plantlets of H. hemerocallidea were acclimatized for seven months in a greenhouse. Thereafter plants were exposed to various concentrations of Cd and Al both singularly and in combination in the form of Cd(NO3)2 (2, 5, 10 mg Cd/L); Al3(NO3)3 (500, 1000, 1500 mg Al/L) and combinations of Cd and Al (Cd 2:Al 500, Cd 5:Al 1000 and Cd 10:Al 1500 mg/L) for a further six weeks. The highest amounts of Cd and Al translocated to the shoot were 34 and 1608 mg/L respectively. Phytochemical screening showed significantly high amounts of total phenolics and flavonoids at the moderate Cd treatment (5 mg/L) compared to the controls. Exposure to Cd and Al significantly decreased the accumulation of hypoxoside. There was a significant increase in diphenylpicrylhydrazyl (DPPH) antioxidant scavenging activity in most of the metal-treated plants compared to the positive control ascorbic acid. Extracts from Cd 2 mg/L treatment exhibited moderate antibacterial activity against Staphylococcus aureus compared to the control. The results of the present study revealed that cultivating H. hemerocallidea on metal contaminated soils affects the accumulation of the bioactive compound, hypoxoside.

  18. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

    NASA Astrophysics Data System (ADS)

    Baragetti, Sergio; Villa, Francesco

    2015-05-01

    Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors' research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens ( K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

  19. An AlN/Al0.85Ga0.15N high electron mobility transistor

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert J.

    2016-07-22

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion, the room temperature voltage-dependent 3-terminalmore » off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  20. An AlN/Al0.85Ga0.15N high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert J.

    2016-07-01

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

  1. L. V. Al'tshuler, and High Energy Density Research

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Krikorian, Nerses H.; Keeler, R. Norris

    2012-03-01

    Knowledge of high energy densities critical to cosmology and astrophysics was achieved and exchanged among a very few scientists at a time when science was even more constrained by political considerations that it is today. Resources for the early studies necessarily involved atomic weaponry. A history of L. V. Al'tshuler and some others in his science is given in cosmological context. In the beginning of cosmology and the Universe, negative Fortov-Planck1 pressures c7h-1G-2 of 4.6 10115 Pa are overcome by inertial-vortex anti-gravity (dark energy) pressures to achieve a turbulent big bang and the first turbulent combustion with power 1066 watts at the Kolmogorov-Planck scale 10-35 meters. The big bang event ceased when negative- pressure gluon-viscous-forces extracted 10100 kg of mass-energy from the vacuum to produce the observed fossil vorticity turbulence Universe and its inflation with power 10145 watts.

  2. High sea-floor stress induced by extreme hurricane waves

    NASA Astrophysics Data System (ADS)

    Wijesekera, Hemantha W.; Wang, David W.; Teague, William J.; Jarosz, Ewa

    2010-06-01

    Strong surface waves and currents generated by major hurricanes can produce extreme forces at the seabed that scour the seafloor and cause massive underwater mudslides. Our understanding of these forces is poor due to lack of concurrent measurements of waves and currents under these storms. Using unique observations collected during the passage of a category-4 hurricane, Ivan, bottom stress due to currents and waves over the outer continental shelf in the Gulf of Mexico was examined. During the passage of Ivan, the bottom stress was highly correlated with the wind with a maximum of about 40% of the wind stress. The bottom stress was dominated by the wave-induced stresses, and exceeded critical levels at depths as large as 90 m. Surprisingly, the bottom damaging stress persisted after the passage of Ivan for about a week, and was modulated by near-inertial waves.

  3. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  4. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-07-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WN x Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  5. Lateral gradients of phases, residual stress and hardness in a laser heated Ti0.52Al0.48N coating on hard metal

    PubMed Central

    Bartosik, M.; Daniel, R.; Zhang, Z.; Deluca, M.; Ecker, W.; Stefenelli, M.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J.

    2012-01-01

    The influence of a local thermal treatment on the properties of Ti–Al–N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC–Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti–Al–N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about − 200 to 500 MPa down to a depth of 6 μm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC–Co substrate was performed in the range of 25–1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure–property relationships in complex materials. PMID:23471140

  6. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  7. Characterization of AlInN/GaN structures on AlN templates for high-performance ultraviolet photodiodes

    NASA Astrophysics Data System (ADS)

    Sakai, Yusuke; Khai, Pum Chian; Ichikawa, Junki; Egawa, Takashi; Jimbo, Takashi

    2011-02-01

    The authors characterize AlInN/GaN structures on AlN templates for high-performance ultraviolet photodiodes. AlInN/GaN structures were grown with various growth parameters by metal organic chemical vapor deposition. In the case of nearly lattice-matched to GaN underlying layers, AlInN/GaN structures are found to have smooth interface. AlInN layers grown at the low pressure are confirmed to have high crystal quality from x-ray diffraction measurements and good surface morphology from atomic force microscope images. The noble AlInN-based photodiodes were fabricated. Their performances show the leakage current of 48 nA at a reverse voltage of 5 V and the cutoff wavelength around 260 nm. A cutoff-wavelength responsivity of 21.84 mA/W is obtained, corresponding to quantum efficiency of 10.6%. It may be possible to realize high-performance ultraviolet photodiodes by further optimizing AlInN/GaN structures.

  8. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  9. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhou, J. Z.; Huang, S.; Zuo, L. D.; Meng, X. K.; Sheng, J.; Tian, Q.; Han, Y. H.; Zhu, W. L.

    2014-01-01

    The effects of laser peening (LP) with different laser peening coverage rates on residual stresses and fatigue crack growth (FCG) properties of Ti-6Al-4V titanium alloy were investigated. Residual stresses after LP and micro-structure with different fatigue striation patterns on fracture cross-sections were analyzed. Compressive residual stresses and dense dislocation arrangements can be obtained in the superficial layer after LP. The influence of compressive residual stresses induced under different LP coverage rates on FCG properties was revealed. LP coverage rate had an apparent influence on FCG properties as confirmed by the fatigue striation spacing on fracture cross-sections. Moreover, FCG rate decreased with the increase of compressive residual stresses perpendicular to the crack growth direction, which indicated that LP had an obvious inhibitory effects on FCG.

  10. The Effect of Laves Phase (Fe,Al)2Zr on the High-Temperature Strength of Carbon-Alloyed Fe3Al Aluminide

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Vodičková, Věra; Král, Robert; Švec, Martin

    2016-03-01

    The effects of carbon on the phase structure and on the yield stress σ 0.2 in the temperature range from 873 K to 1073 K (600 °C to 800 °C) of the Fe3Al type aluminides alloyed by Zr are analyzed. Four alloys with Zr and C in ranging from 1.0 to 5.0 at. pct of additives were used. The appearing of either Laves phase (Fe,Al)2Zr and/or carbides depend on the difference in concentrations, c Zr - c C. This parameter ( c Zr - c C) has been selected instead of the concentration ratio c Zr/ c C used in previous works since it exhibits a significantly better correlation with the Laves phase concentration which influences the high-temperature yield stress, σ 0.2, of the tested alloys. The presence of Laves phase or eutectic (matrix—Laves phase), respectively, enhances the value of the yield stress σ 0.2. The amount of Laves phase is decreased by the presence of C due to the affinity of carbon to Zr.

  11. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS?

    PubMed Central

    Aulas, Anaïs; Vande Velde, Christine

    2015-01-01

    Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress exposure. Since their discovery in 1999, over 120 proteins have been described to be localized to these structures (in 154 publications). Most of these components are RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs have been linked to several pathologies including inflammatory diseases, cancer, viral infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no known etiology and exposure to external stress is frequently proposed as a contributor to either disease initiation or the rate of disease progression. Of note, both ALS and FTD are characterized by pathological inclusions, where some well-known SG markers localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43 and FUS serve as an interface between genetic susceptibility and environmental stress exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in SG dynamics and how disease-linked mutations affect this process. PMID:26557057

  12. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors.

    PubMed

    Li, Yat; Xiang, Jie; Qian, Fang; Gradecak, Silvija; Wu, Yue; Yan, Hao; Blom, Douglas A; Lieber, Charles M

    2006-07-01

    We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.

  13. Cryogenic Treatment of Al-Li Alloys for Improved Weldability, Repairability, and Reduction of Residual Stresses

    NASA Technical Reports Server (NTRS)

    Malone, Tina W.; Graham, Benny F.; Gentz, Steven J. (Technical Monitor)

    2001-01-01

    Service performance has shown that cryogenic treatment of some metals provides improved strength, fatigue life, and wear resistance to the processed material. Effects such as these were initially discovered by NASA engineers while evaluating spacecraft that had returned from the cold vacuum of space. Factors such as high cost, poor repairability, and poor machinability are currently prohibitive for wide range use of some aerospace aluminum alloys. Application of a cryogenic treatment process to these alloys is expected provide improvements in weldability and weld properties coupled with a reduction in repairs resulting in a significant reduction in the cost to manufacture and life cycle cost of aerospace hardware. The primary purpose of this effort was to evaluate the effects of deep cryogenic treatment of some aluminum alloy plate products, welds, and weld repairs, and optimize a process for the treatment of these materials. The optimized process is being evaluated for improvements in properties of plate and welds, improvements in weldability and repairability of treated materials, and as an alternative technique for the reduction of residual stresses in repaired welds. This paper will present the results of testing and evaluation conducted in this effort. These results will include assessments of changes in strength, toughness, stress corrosion susceptability, weldability, repairability, and reduction in residual stresses of repaired welds.

  14. High-pressure and high-temperature stability field of hydrous phase delta-AlOOH

    NASA Astrophysics Data System (ADS)

    Sano, A.; Ohtani, E.; Kondo, T.; Hirao, N.; Sone, T.; Kikegawa, T.; Sata, N.; Ohishi, Y.

    2005-12-01

    Stability field of hydrous phases is a key for understanding water concentration in the earth's mantle. δ-AlOOH is a high-pressure polymorph of diaspore (α-AlOOH) and boehmite (γ-AlOOH). The space group of this phase is Pnn2 and it is similar to CaCl2-type SiO2 which is a high-pressure polymorph of stishovite; edge-sharing Al-O octahedra make single-chain along c-axis. Although it has a large stability field in pressure range from 18 GPa to 32 GPa and temperature of up to 1473 K, the high-pressure stability limits has not yet clarified. In this study, we investigated the stability field of δ-AlOOH up to 130 GPa. The high-pressure experiments were performed using a laser-heated diamond-anvil cell. Starting material was gibbsite (Al(OH)3) powder mixed with platinum black as a laser absorber. The sample was sandwiched by pure gibbsite layers and loaded into a rhenium gasket. Pressures were measured with ruby-fluorescence technique before and after heating. The sample was heated from both sides by a Nd:YAG laser operated in multimode. After experiment, stable phase in each condition was determined using the X-ray diffraction and Raman spectroscopy method. We also conducted in-situ X-ray diffraction experiments under high-pressure and temperature conditions together with the X-ray diffraction of the recovered samples both at BL10XU in SPring-8 and BL-13A in Photon Factory. In these runs, pressures were also calculated using the equation of state of platinum. The experimental conditions were in the pressures between 50-130 GPa and temperatures to 1800 K. X-ray analysis shows the sample recovered from the pressure and temperature range from 40 GPa and 1577 K to 130 GPa and 1800 K consists of δ-AlOOH. In the in-situ experiments, crystallization of δ-AlOOH was observed at 65 GPa and 1300 K and it was stable up to 1700 K. δ-AlOOH is stable in the large pressure range with a dehydration temperature around 1800K. It can be a water reservoir in subducting slabs in the

  15. Analysis of current instabilities of thin AlN/GaN/AlN double heterostructure high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Zervos, Ch; Adikimenakis, A.; Bairamis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    The current instabilities of high electron mobility transistors (HEMTs), based on thin double AlN/GaN/AlN heterostructures (˜0.5 μm total thickness), directly grown on sapphire substrates, have been analyzed and compared for different AlN top barrier thicknesses. The structures were capped by 1 nm GaN and non-passivated 1 μm gate-length devices were processed. Pulsed I-V measurements resulted in a maximum cold pulsed saturation current of 1.4 A mm-1 at a gate-source voltage of +3 V for 3.7 nm AlN thickness. The measured gate and drain lag for 500 ns pulse-width varied between 6%-12% and 10%-18%, respectively. Furthermore, a small increase in the threshold voltage was observed for all the devices, possibly due to the trapping of electrons under the gate contact. The off-state breakdown voltage of V br = 70 V, for gate-drain spacing of 2 μm, was approximately double the value measured for a single AlN/GaN HEMT structure grown on a thick GaN buffer layer. The results suggest that the double AlN/GaN/AlN heterostructures may offer intrinsic advantages for the breakdown and current stability characteristics of high current HEMTs.

  16. The temperature and strain rate dependence of the flow stress of single crystal NiAl deformed along <110>

    SciTech Connect

    Maloy, S.A.; Gray, G.T. III

    1995-12-31

    Single crystal NiAl and Ni-49.75Al-0.25Fe have been deformed along <110> at temperatures of 77, 298 and 773K and strain rates of 0.001/s, and 2000/s. The flow stress of <110> NiAl is rate and temperature sensitive. The 0.25 at.% Fe addition resulted in a small increase in flow stress at strain rates of 0.001 and 0.1/s at 298 and 77K. A significant decrease in the work hardening rate is observed after deformation at 77K and a strain rate of 2000/s. Coarse [110] slip traces are observed after deformation at a strain rate of 2000/s at 77K, while no slip traces were observed after deformation under all other conditions. TEM observations reveal distinct [110] slip bands after deformation at 77K and a strain rate of 2000/s.

  17. An investigation of the effects of stress ratio on the micromechanisms of long and short fatigue crack growth in Ti-6Al-4V

    SciTech Connect

    Sinha, V.; Mercer, C.; Soboyejo, W.O.

    1999-07-01

    This paper presents the results of a recent study of the effects of positive stress ratios on the propagation of long and short fatigue cracks in mill annealed Ti-6Al-4V. Differences between the long fatigue crack growth rates at positive stress ratios (R = K{sub min}/K{sub max} = 0.02--0.8) are attributed largely to the effects of crack closure. Microstructurally short fatigue cracks are shown to grow at stress intensity factor ranges below the long crack fatigue threshold. Anomalously high fatigue crack growth rates and crack retardation are also shown to occur in the short crack regime until the short crack data merge with the long crack growth rate data in the Paris regime. Differences between the long and the short crack behavior are associated with differences in fatigue crack growth mechanisms.

  18. Flow Stress-Strain Rate Behavior of Ti-3Al-2.5V Alloy at Low Temperatures in the Superplastic Range

    NASA Astrophysics Data System (ADS)

    Salam, A.

    2012-02-01

    Flow stress-strain rate behavior of Ti-3Al-2.5V, an α + β titanium alloy was studied at 750 and 800 °C by using the method of crosshead speed cycling. The alloy was found to exhibit superplasticity at these temperatures on the basis of complete flow stress, strain rate and strain rate sensitivity data. Strain-induced softening was observed in the alloy to a small extent at 750 °C and was thought to be related to the grain refinement occurring in both α- and β-phases during the initial stages of deformation. However, at 800 °C the effect was seen only under increasing strain-rate conditions. Flow stress versus strain rate curves generally exhibited only region II which corresponded to low- and intermediate-strain rates and region III corresponding to high-strain rates.

  19. High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Huang, Chun-Ying; Lin, Tai-Yuan; Cheng, Li-Lien; Liu, Ching-Yun; Wang, Mei-Tan; Hwang, Jung-Min

    2014-01-01

    In this paper, we numerically study an enhancement of breakdown voltage in AlGaN/GaN high-electron-mobility transistors (HEMTs) by using the AlGaN/GaN/AlGaN quantum-well (QW) electron-blocking layer (EBL) structure. This concept is based on the superior confinement of two-dimensional electron gases (2-DEGs) provided by the QW EBL, resulting in a significant improvement of breakdown voltage and a remarkable suppression of spilling electrons. The electron mobility of 2-DEG is hence enhanced as well. The dependence of thickness and composition of QW EBL on the device breakdown is also evaluated and discussed.

  20. High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers

    PubMed Central

    2014-01-01

    In this paper, we numerically study an enhancement of breakdown voltage in AlGaN/GaN high-electron-mobility transistors (HEMTs) by using the AlGaN/GaN/AlGaN quantum-well (QW) electron-blocking layer (EBL) structure. This concept is based on the superior confinement of two-dimensional electron gases (2-DEGs) provided by the QW EBL, resulting in a significant improvement of breakdown voltage and a remarkable suppression of spilling electrons. The electron mobility of 2-DEG is hence enhanced as well. The dependence of thickness and composition of QW EBL on the device breakdown is also evaluated and discussed. PMID:25206318

  1. Stress Concentration and Fracture at Inter-variant Boundaries in an Al-Li Alloy

    NASA Technical Reports Server (NTRS)

    Crooks, Roy; Tayon, Wes; Domack, Marcia; Wagner, John; Beaudoin, Armand

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. Studies of secondary, delamination cracks in alloy 2090, L-T fracture toughness samples showed grain boundary failure between variants of the brass texture component. Although the adjacent texture variants, designated B(sub s1) and B(sub s2), behave similarly during rolling, their plastic responses to mechanical tests can be quite different. EBSD data from through-thickness scans were used to generate Taylor factor maps. When a combined boundary normal and shear tensor was used in the calculation, the delaminating grains showed the greatest Taylor Factor differences of any grain pairs. Kernel Average Misorientation (KAM) maps also showed damage accumulation on one side of the interface. Both of these are consistent with poor slip accommodation from a crystallographically softer grain to a harder one. Transmission electron microscopy was used to confirm the EBSD observations and to show the role of slip bands in the development of large, interfacial stress concentrations. A viewgraph presentation accompanies the provided abstract.

  2. Characterization of Detergent-Insoluble Proteins in ALS Indicates a Causal Link between Nitrative Stress and Aggregation in Pathogenesis

    PubMed Central

    Basso, Manuela; Samengo, Giuseppina; Nardo, Giovanni; Massignan, Tania; D'Alessandro, Giuseppina; Tartari, Silvia; Cantoni, Lavinia; Marino, Marianna; Cheroni, Cristina; De Biasi, Silvia; Giordana, Maria Teresa; Strong, Michael J.; Estevez, Alvaro G.; Salmona, Mario; Bendotti, Caterina; Bonetto, Valentina

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease, and protein aggregation has been proposed as a possible pathogenetic mechanism. However, the aggregate protein constituents are poorly characterized so knowledge on the role of aggregation in pathogenesis is limited. Methodology/Principal Findings We carried out a proteomic analysis of the protein composition of the insoluble fraction, as a model of protein aggregates, from familial ALS (fALS) mouse model at different disease stages. We identified several proteins enriched in the detergent-insoluble fraction already at a preclinical stage, including intermediate filaments, chaperones and mitochondrial proteins. Aconitase, HSC70 and cyclophilin A were also significantly enriched in the insoluble fraction of spinal cords of ALS patients. Moreover, we found that the majority of proteins in mice and HSP90 in patients were tyrosine-nitrated. We therefore investigated the role of nitrative stress in aggregate formation in fALS-like murine motor neuron-neuroblastoma (NSC-34) cell lines. By inhibiting nitric oxide synthesis the amount of insoluble proteins, particularly aconitase, HSC70, cyclophilin A and SOD1 can be substantially reduced. Conclusion/Significance Analysis of the insoluble fractions from cellular/mouse models and human tissues revealed novel aggregation-prone proteins and suggests that nitrative stress contribute to protein aggregate formation in ALS. PMID:19956584

  3. Temperature dependency and reliability of through substrate via InAlN/GaN high electron mobility transistors as determined using low frequency noise measurement

    NASA Astrophysics Data System (ADS)

    Chiu, Hsien-Chin; Peng, Li-Yi; Wang, Hou-Yu; Wang, Hsiang-Chun; Kao, Hsuan-Ling; Chien, Feng-Tso; Lin, Jia-Ching; Chang, Kuo-Jen; Cheng, Yi-Cheng

    2016-05-01

    The reliability of a InAlN/GaN/Si high electron mobility transistor device was studied using low frequency noise measurements under various stress conditions. By applying the through substrate via (TSV) technology beneath the active region of the device, buffer/transition layer trapping caused by the GaN/Si lattice mismatch was suppressed. In addition, a backside SiO2/Al heat sink material improved thermal stability and eliminated the vertical leakage current of the proposed device. Applying the TSV technology improved the subthreshold swing slope from 260 to 230 mV/dec, owing to the stronger channel modulation ability and reduced leakage current of the device. The latticed-matched InAlN/GaN heterostructure had a stable performance after high current operation stress. The suppression of buffer/transition layer traps of the TSV device is a dominant factor in device reliability after long-term high-electric-field stress.

  4. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  5. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  6. AlN/single crystalline diamond piezoelectric structure as a high overtone bulk acoustic resonator

    NASA Astrophysics Data System (ADS)

    Sorokin, B. P.; Kvashnin, G. M.; Volkov, A. P.; Bormashov, V. S.; Aksenenkov, V. V.; Kuznetsov, M. S.; Gordeev, G. I.; Telichko, A. V.

    2013-03-01

    First, the Al/AlN/Al/Cr/diamond single crystal piezoelectric layered structure has been developed, and its properties have been investigated up to 8 GHz. The peculiarities associated with the influence of piezoelectric film on the Q factor of high overtones of substrate have been pointed out. High Q ˜ 104 has been found at 6-7 GHz band.

  7. High occupational stress and low career satisfaction of Korean surgeons.

    PubMed

    Kang, Sang Hee; Boo, Yoon Jung; Lee, Ji Sung; Han, Hyung Joon; Jung, Cheol Woong; Kim, Chong Suk

    2015-02-01

    Surgery is a demanding and stressful field in Korea. Occupational stress can adversely affect the quality of care, decrease job satisfaction, and potentially increase medical errors. The aim of this study was to investigate the occupational stress and career satisfaction of Korean surgeons. We have conducted an electronic survey of 621 Korean surgeons for the occupational stress. Sixty-five questions were used to assess practical and personal characteristics and occupational stress using the Korean occupational stress scale (KOSS). The mean KOSS score was 49.31, which was higher than the average of Korean occupational stress (45.86) or that of other specialized professions (46.03). Young age, female gender, long working hours, and frequent night duties were significantly related to the higher KOSS score. Having spouse, having hobby and regular exercise decreased the KOSS score. Multiple linear regression analysis showed that long working hours and regular exercise were the independent factors associated with the KOSS score. Less than 50% of surgeons answered that they would become a surgeon again. Most surgeons (82.5%) did not want to recommend their child follow their career. Korean Surgeons have high occupational stress and low level of career satisfaction.

  8. Effect of Al2O3 on the Crystallization of Mold Flux for Casting High Al Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Zhou, Kechao

    2015-06-01

    In order to lower the weight of automotive bodies for better fuel-efficiency and occupant safety, the demand for high Al-containing advanced high strength steel, such as transformation-induced plasticity and twinning-induced plasticity steel, is increasing. However, high aluminum content in steels would tend to significantly affect the properties of mold flux during the continuous casting process. In this paper, a kinetic study of the effect of Al2O3 content on the crystallization behavior of mold flux was conducted by using the single hot thermocouple technique and the Johnson-Mehl-Avrami model combined with the Arrhenius Equation. The results suggested that Al2O3 behaves as an amphoteric oxide in the crystallization process of mold flux. The precipitated phases of mold flux change from cuspidine (Ca4Si2O7F2) into nepheline (NaAlSiO4) and CaF2, and then into gehlenite (Ca2Al2SiO7) with the increase of Al2O3 content. The kinetics study of the isothermal crystallization process indicated that the effective crystallization rate ( k) and Avrami exponent ( n) also first increased and then decreased with the increase of Al2O3 content. The values for the crystallization activation energy of mold flux with different Al2O3 contents were E R0.8A7 = 150.76 ± 17.89 kJ/mol, E R0.8A20 = 136.43 ± 6.48 kJ/mol, E R0.8A30 = 108.63 ± 12.25 kJ/mol and E R0.8A40 = 116.15 ± 8.17 kJ/mol.

  9. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  10. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    PubMed

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. PMID:26458115

  11. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    PubMed

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.

  12. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Tapajna, M.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.; Kuzmík, J.

    2015-11-01

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ˜105 s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

  13. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio.

    PubMed

    Kim, Suji; Jeon, Sang Goo; Lee, Ki Bong

    2016-03-01

    Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2.

  14. Amount of psychological stress reported by high school volleyball officials.

    PubMed

    Stewart, M J; Ellery, P J

    1996-08-01

    All volleyball officials registered with a state high school activities association in a midwestern state were surveyed at the end of the volleyball season to assess their self-reported, psychological stress. Of 470 officials contacted, 353 (75%) responded by filling out a simple 5 point rating scale. The mean rating of stress was 2.3 (SD = .6) (between "very little" and "a moderate amount") which is similar to past findings for certified, amateur baseball and softball umpires.

  15. Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    SciTech Connect

    Naresh-Kumar, G. Trager-Cowan, C.; Vilalta-Clemente, A.; Morales, M.; Ruterana, P.; Pandey, S.; Cavallini, A.; Cavalcoli, D.; Skuridina, D.; Vogt, P.; Kneissl, M.; Behmenburg, H.; Giesen, C.; Heuken, M.; Gamarra, P.; Di Forte-Poisson, M. A.; Patriarche, G.; Vickridge, I.

    2014-12-15

    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al{sub 2}O{sub 3} high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  16. Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats

    SciTech Connect

    Nordhorn, Christian; Mücke, Robert; Unocic, Kinga A.; Lance, Michael J.; Pint, Bruce A.; Vaßen, Robert

    2014-08-20

    In this paper, furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subject to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. Finally, the theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features.

  17. Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats

    DOE PAGES

    Nordhorn, Christian; Mücke, Robert; Unocic, Kinga A.; Lance, Michael J.; Pint, Bruce A.; Vaßen, Robert

    2014-08-20

    In this paper, furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subjectmore » to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. Finally, the theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features.« less

  18. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lv, Y. J.; Song, X. B.; Wang, Y. G.; Fang, Y. L.; Feng, Z. H.

    2016-08-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage ( C- V) and output current-voltage ( I- V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin ( c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  19. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  20. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices. PMID:27553382

  1. High voltage bushing having weathershed and surrounding stress relief collar

    DOEpatents

    Cookson, Alan H.

    1981-01-01

    A high voltage electric bushing comprises a hollow elongated dielectric weathershed which encloses a high voltage conductor. A collar formed of high voltage dielectric material is positioned over the weathershed and is bonded thereto by an interface material which precludes moisture-like contaminants from entering between the bonded portions. The collar is substantially thicker than the adjacent weathershed which it surrounds, providing relief of the electric stresses which would otherwise appear on the outer surface of the weathershed. The collar may include a conductive ring or capacitive foil to further relieve electric stresses experienced by the bushing.

  2. Uncertainties in obtaining high reliability from stress-strength models

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Matthews, William T.; Vangel, Mark G.

    1992-01-01

    There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

  3. Internal Stress Plasticity-Creep due to Dynamic Hydrogen Gradients in Ti-6Al-4V

    SciTech Connect

    Schuh, C; Dunand, D C

    2001-09-10

    Internal-stress plasticity is a Newtonian creep mechanism which operates at low applied stress levels, when there is a concurrent internal stress. Common sources of internal stress are thermal-expansion or phase-transformation mismatch; in this work we explore the possibility of chemically-induced internal stresses. We report tensile creep experiments on the BCC {beta}-phase of Ti-6A1-4V, in which dynamic gradients of hydrogen concentration were introduced through cycling of the test atmosphere (between Ar/H{sub 2} mixture and pure Ar) under low applied stresses. Under these conditions, we observe Newtonian deformation at rates much higher than for constant-composition conditions, as expected for internal stress plasticity. Also, we present an analytical model which considers chemical, elastic, and creep strains during chemical cycling under stress, and find good agreement with the experimental results.

  4. Computer simulation of stress-oriented nucleation and growth of {theta}{prime} precipitates in Al-Cu alloys

    SciTech Connect

    Li, D.Y.; Chen, L.Q.

    1998-05-01

    Many structural transformations result in several orientation variants whose volume fractions and distributions can be controlled by applied stresses during nucleation, growth or coarsening. Depending on the type of stress and the coupling between the applied stress and the lattice misfit strain, the precipitate variants may be aligned parallel or perpendicular to the stress axis. This paper reports their studies on the effect of applied stresses on nucleation and growth of coherent {theta}{prime} precipitates in Al-Cu alloys using computer simulations based on a diffuse-interface phase-field kinetic model. In this model, the orientational differences among precipitate variants are distinguished by non-conserved structural field variables, whereas the compositional difference between the precipitate and matrix is described by a conserved field variable. The temporal evolution of the spatially dependent field variables is determined by numerically solving the time-dependent Ginzburg-Landau (TDGL) equations for the structural variables and the Cahn-Hilliard diffusion equation for composition. Random noises were introduced in both the composition and the structural order parameter fields to simulate the nucleation of {theta}{prime} precipitates. It is demonstrated that although an applied stress affects the microstructural development of a two-phase alloy during both the nucleation and growth stages, it is most effective to apply stresses during the initial nucleation stage for producing anisotropic precipitate alignment.

  5. Wear Behavior of High Velocity Arc Spraying FeNiCrAlBRE/Ni95Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    Wear-resistant FeNiCrAlBRE/Ni95Al composite coatings were deposited on carbon steel plate by high velocity arc spraying. Adhesive strength of the composite coating was improved by spraying Ni95Al cored wires as transition layer between working coating and substrate. Scanning electron microscopy and Vickers hardness testing were used to evaluate coatings structure and mechanical properties. For quantitative investigation of porosity, a computer image analyzer was used. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that coating has relatively high average hardness about 550 HV0.1 and adhesive strength is 47 MPa. The worn surface characterized shallow grooves and few of debris on the coating manifested that the coating has better wear resistance under dry sliding conditions.

  6. Improved capacitive stress transducers for high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

    2012-06-01

    High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

  7. Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is an important limitation to food security in the tropical and subtropical regions. High Al saturation in acid soils limits root development and its ability to uptake water and nutrients. In this study, we present a genome scan for Al tolerance loci with over 50,000 GBS-based...

  8. Performance of Nb3Sn Quadrupole Under High Stress

    SciTech Connect

    Felice, H.; Bajko, M.; Bingham, B.; Bordini, B.; Bottura, L.; Caspi, S.; Rijk, G. De; Dietderich, D.; Ferracin, P.; Giloux, C.; Godeke, A.; Hafalia, R.; Milanese, A.; Rossi, L.; Sabbi, G. L.

    2010-08-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb{sub 3}Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb{sub 3}Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb{sub 3}Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.

  9. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  10. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  11. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  12. Novel high-pressure phases of AlP from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hu, Meng; Luo, Kun; Yu, Dongli; Zhao, Zhisheng; He, Julong

    2016-05-01

    By utilizing a crystal structure prediction software via particle swarm optimization, this study proposes three new high-pressure phases of aluminum phosphide (AlP) with high density and high hardness, in addition to previously proposed phases (wz-, zb-, rs-, NiAs-, β-Sn-, CsCl-, and Cmcm-AlP). These new phases are as follows: (1) an I 4 ¯ 3d symmetric structure (cI24-AlP) at 55.2 GPa, (2) an R 3 ¯ m symmetric structure (hR18-AlP) at 9.9 GPa, and (3) a C222 symmetric structure (oC12-AlP) at 20.6 GPa. Based on first-principle calculations, these phases have higher energetic advantage than CsCl- and β-Sn-AlP at ambient pressure. The independent elastic constants and phonon dispersion spectra are calculated to check the mechanical and dynamic stabilities of these phases. According to mechanical property studies, these new AlP phases have higher hardness than NiAs-AlP, and oC12-AlP has the highest hardness of 7.9 GPa. Electronic band structure calculations indicate that NiAs- and hR18-AlP have electrical conductivity. Additionally, wz-, zb-, and oC12-AlP possess semiconductive properties with indirect bandgaps, and cI24-AlP has a semiconductive property with a direct bandgap.

  13. Machine Learning for High-Throughput Stress Phenotyping in Plants.

    PubMed

    Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh Kumar; Sarkar, Soumik

    2016-02-01

    Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits.

  14. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  15. Perceived psychological stress among high school basketball officials.

    PubMed

    Stewart, Michael J; Ellery, Peter J; Ellery, Jane; Maher, Lora

    2004-10-01

    The purpose of this study was to survey certified high school basketball officials during midseason to assess whether the sources and magnitude of perceived psychological stress would be consistent with previous studies of officials in other sports. The sources and magnitude of perceived psychological stress were measured among 324 high school basketball officials (N=324; 312 men, 12 women) using a revised version of the Ontario Soccer Officials Survey. The mean age was 37.6 yr. (SD= 9.4), and the mean years of basketball refereeing experience was 11.7 yr. (SD=8.3). A random sample (N=498) of all basketball officials in a midwestern state (N=1,011) was used, and 324 of the surveys were returned (65%). The overall variance accounted for with the four factors was 84.7%. The magnitude of stress for these factors ranged from below mild to moderate.

  16. Dynamic and failure properties of high damping rubber bearing under high axial stress

    SciTech Connect

    Ishizuka, Hidetake; Murota, Nobuo; Fukumori, Takeshi

    1995-12-01

    Seismic isolation bearings have been used under axial stresses less than 100(kgf/cm{sup 2}) for many years. If higher axial loads can be applied, however, a larger period shift will be achieved and the size of the isolation devices may be reduced resulting in a cost reduction of the bearing. This paper describes experimental studies of dynamic and failure properties of high damping rubber bearings (HDR) under high axial stress of over 120(kgf/cm{sup 2}) compared with the conventional stress of 65(kgf/cm{sup 2}). The results show that HDR continues to have stable performance under high axial stress with high shear strain. It indicates that high axial stress over 100(kgf/cm{sup 2}) is within the capability of the BDR isolation bearing.

  17. Multiple stress-time profiles in a RDX/AP/Al/HTPB plastic bonded explosive

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.; Forbes, J. W.; Lemar, E. R.; Ashwell, K. D.; Baker, R. N.

    1994-07-01

    PBXN-111 samples were shocked using light-gas guns. Six experiments were instrumented with in situ manganin or ytterbium gauges. Two experiments were instrumented with a rear surface quartz gauge. A linear relationship between shock velocity and particle velocity was obtained for stresses to 42 kbar. These results are compared with those from a wedge test study. Experimental stress-time profiles suggest a low level reaction occurs behind the shock front for stresses above about 16 kbar.

  18. Microstructure and residual stress in γ-LiAlO 2 layer fabricated by vapor transport equilibration on (1 1 2¯ 0) sapphire

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhen; Yang, Weiqiao; Li, Shuzhi; Peng, Guangliang; Liu, Shiliang; Zou, Jun; Zhou, Shengming; Xu, Jun; zhang, Rong

    2004-09-01

    γ-LiAlO2 layers have been fabricated by vapor transport equilibration (VTE) technique on (1 1 2bar 0) sapphire substrate. Microstructure of γ-LiAlO2 layers is characterized by X-ray diffraction as functions of VTE treatment temperature and sapphire surface roughness, it has been found that the LiAlO2 layers show a (2 0 0) preferred orientation. The effects of the VTE treatment temperature and sapphire surface roughness on the residual stress have been studied. The results show that residual stress in γ-LiAlO2 layers varies from tension to compression with increasing VTE treatment temperature , but the thermal stress is compressive; the values of residual stress in γ-LiAlO2 layers increase with the sapphire surface roughness.

  19. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress.

    PubMed

    Zhang, Yong-Jie; Jansen-West, Karen; Xu, Ya-Fei; Gendron, Tania F; Bieniek, Kevin F; Lin, Wen-Lang; Sasaguri, Hiroki; Caulfield, Thomas; Hubbard, Jaime; Daughrity, Lillian; Chew, Jeannie; Belzil, Veronique V; Prudencio, Mercedes; Stankowski, Jeannette N; Castanedes-Casey, Monica; Whitelaw, Ena; Ash, Peter E A; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard

    2014-10-01

    The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.

  20. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress.

    PubMed

    Zhang, Yong-Jie; Jansen-West, Karen; Xu, Ya-Fei; Gendron, Tania F; Bieniek, Kevin F; Lin, Wen-Lang; Sasaguri, Hiroki; Caulfield, Thomas; Hubbard, Jaime; Daughrity, Lillian; Chew, Jeannie; Belzil, Veronique V; Prudencio, Mercedes; Stankowski, Jeannette N; Castanedes-Casey, Monica; Whitelaw, Ena; Ash, Peter E A; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard

    2014-10-01

    The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases. PMID:25173361

  1. Stress controlled pulsed direct current co-sputtered Al{sub 1−x}Sc{sub x}N as piezoelectric phase for micromechanical sensor applications

    SciTech Connect

    Fichtner, Simon; Reimer, Tim; Chemnitz, Steffen; Wagner, Bernhard; Lofink, Fabian

    2015-11-01

    Scandium alloyed aluminum nitride (Al{sub 1−x}Sc{sub x}N) thin films were fabricated by reactive pulsed direct current co-sputtering of separate scandium and aluminum targets with x ≤ 0.37. A significant improvement of the clamped transversal piezoelectric response to strain e{sub 31,f} from −1.28 C/m{sup 2} to −3.01 C/m{sup 2} was recorded, while dielectric constant and loss angle remain low. Further, the built-in stress level of Al{sub 1−x}Sc{sub x}N was found to be tuneable by varying pressure, Ar/N{sub 2} ratio, and Sc content. The thus resulting enhancement of the expectable signal to noise ratio by a factor of 2.1 and the ability to control built-in stress make the integration of Al{sub 1−x}Sc{sub x}N as the piezoelectric phase of micro-electro-mechanical system sensor applications highly attractive.

  2. Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress.

    PubMed

    Martins, Neusa; Osório, Maria Leonor; Gonçalves, Sandra; Osório, Júlio; Romano, Anabela

    2013-06-01

    We evaluated the impact of low pH and aluminum (Al) on the leaves and roots of Plantago almogravensis Franco and Plantago algarbiensis Samp., focusing on energy partitioning in photosystem II, H₂O₂ levels, lipid peroxidation, electrolyte leakage (EL), protein oxidation, total soluble protein content and antioxidant enzyme activities. In both species, Al triggered more changes in oxidative metabolism than low pH alone, particularly in the roots. We found that Al increased the levels of H₂O₂ in P. algarbiensis roots, but reduced the levels of H₂O₂ in P. almogravensis leaves and roots. Neither low pH nor Al affected the spatial heterogeneity of chlorophyll fluorescence, the maximum photochemical efficiency of PSII (Fv/Fm), the actual quantum efficiency of PSII (ϕPSII) or the quantum yields of regulated (ϕNPQ) and nonregulated (ϕNO) energy dissipation, and there was no significant change in total soluble protein content and EL. In P. algarbiensis, Al increased the carbonyl content and the activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, and also CAT, ascorbate peroxidase and guaiacol peroxidase activities in the leaves. In P. almogravensis, Al reduced the level of malondialdehyde in the roots as well as SOD activity in the leaves and roots. We found that P. almogravensis plantlets could manage the oxidative stress caused by low pH and Al, whereas the P. algarbiensis antioxidant system was unable to suppress Al toxicity completely, leading to the accumulation of H₂O₂ and consequential protein oxidation in the roots. PMID:23563731

  3. Freestanding Highly Crystalline Single Crystal AlN Substrates Grown by a Novel Closed Sublimation Method

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masayasu; Murata, Kazuki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi; Azuma, Masanobu

    2011-04-01

    We fabricated thick freestanding AlN films by a novel close-spaced sublimation method. The spacing between a sintered AlN polycrystal and a SiC substrate is 1 mm. A Ta ring was used to control the spacing between the AlN polycrystal and the SiC substrate. In addition, a special AlN adhesive was also used to fill in the gap between the AlN polycrystal, the Ta ring, and the SiC substrate. By a combination of these techniques, an AlN growth rate as high as 600 µm/h was achieved. A freestanding AlN layer was obtained by the sublimation of the SiC substrate during the AlN growth.

  4. The response of high and low polyamine-producing cell lines to aluminum and calcium stress.

    PubMed

    Mohapatra, Sridev; Cherry, Smita; Minocha, Rakesh; Majumdar, Rajtilak; Thangavel, Palaniswamy; Long, Stephanie; Minocha, Subhash C

    2010-07-01

    The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra x maximowiczii), one with constitutively high Put (resulting from transgenic expression of a mouse ornithine decarboxylase--called HP cells) and the other with low Put (control cells), we investigated the effects of reduced Ca (0.2-0.8 mM vs. 4 mM) and treatment with 0.1 mM Al on several biochemical parameters of cells. We found that in the presence of reduced Ca concentration, the HP cells were at a disadvantage as compared to control cells in that they showed greater reduction in mitochondrial activity and a reduction in the yield of cell mass. Upon addition of Al to the medium, the HP cells, however, showed a reversal of low-Ca effects. We conclude that due to increased ROS production in the HP cells, their tolerance to low Ca is compromised. Contrary to the expectation of deleterious effects, the HP cells showed an apparent advantage in the presence of Al in the medium, which could have come from reduced uptake of Al, enhanced extrusion of Al following its accumulation, and perhaps a reduction in Put catabolism as a result of a reduction in its biosynthesis.

  5. TIO2 Based Electrorheological Fluid with High Yield Stress

    NASA Astrophysics Data System (ADS)

    Shen, Rong; Wang, Xuezhao; Wen, Weijia; Lu, Kunquan

    We have fabricated several TiO2 based ER fluids with doping and without designed doping, which exhibit the high yield stress up to more than 100kPa. The titanium oxide nanoparticles were synthesized by using wet chemical method. The ER effect of those materials is dominated by the special additives, such as amide or its ramification, as well as the remained molecules or ions in the sample preparation. It is found that the yield stress is also strongly dependent on the viscosity of the oil. The prepared ER fluids possess other attractive characters, for instance the current density is low and against sedimentation.

  6. ZERODUR glass ceramics: design of structures with high mechanical stresses

    NASA Astrophysics Data System (ADS)

    Nattermann, Kurt; Hartmann, Peter; Kling, Guenther; Gath, Peter; Lucarelli, Stefano; Messerschmidt, Boris

    2008-07-01

    Designing highly mechanically loaded structures made of the zero expansion glass ceramic material ZERODUR® means to analyze the stress for the whole loaded surface, considering changes of the stress state occurring over the total lifetime. Strength data are obtained from specimens with small size and relatively short loading duration, making them not directly applicable to the much larger areas that occur in practical cases. This publication gives guidelines for calculating a fracture probability for mirrors and structures on the basis of existing strength data.

  7. Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage

    SciTech Connect

    Bajaj, Sanyam Hung, Ting-Hsiang; Akyol, Fatih; Nath, Digbijoy; Rajan, Siddharth

    2014-12-29

    We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the same operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.

  8. Post drain-stress behavior of AlGaN/GaN-on-Si MIS-HEMTs

    NASA Astrophysics Data System (ADS)

    Jauss, Simon A.; Kilian, Stefan; Schwaiger, Stephan; Noll, Stefan; Daves, Walter; Ambacher, Oliver

    2016-11-01

    In this paper we investigate the drain stress behavior and charge trapping phenomena of GaN-based high electron mobility transistors (HEMTs). We fabricated GaN-on-Si MIS-HEMTs with different dielectric stacks in the gate and gate-drain access region and performed interface characterization and stress measurements for slow traps analysis. 2-dimensional TCAD simulations were used to compare the electrical field distributions of the devices in OFF-state stress condition. Our results show a high dependency of the on-resistance increase on interfaces in the gate-drain access region. The dielectric interfaces near the channel play a significant role for long term high voltage stress and regeneration of the device.

  9. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  10. Resilience in highly stressed urban children: concepts and findings.

    PubMed Central

    Cowen, E. L.; Wyman, P. A.; Work, W. C.

    1996-01-01

    The Rochester Child Resilience Project is a coordinated set of studies of the correlates and antecedents of outcomes relating to resilience among profoundly stressed urban children. The studies have been conducted over the course of the past decade. Based on child test data, parent, teacher, and self ratings of child adjustment, and in-depth individual interviews with parents and children, a cohesive picture has developed of child and family milieu variables that consistently differentiate children with resilient versus stress-affected outcomes within this highly stressed sample. Resilient children are characterized by an easy temperament and higher IQ; sound parent/child relationships; a parent's sense of efficacy; the parent's own wellness, especially mental health; and the child's perceived competence, realistic control, empathy, and social problem-solving. PMID:8982521

  11. Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice

    NASA Astrophysics Data System (ADS)

    Lin, Po-Jung; Huang, Shih-Yung; Wang, Wei-Kai; Chen, Che-Lin; Chung, Bu-Chin; Wuu, Dong-Sing

    2016-01-01

    For growing a thicker GaN epilayer on a Si substrate, generally, a larger wafer bowing with tensile stress caused by the mismatch of thermal expansion coefficients between GaN and Si easily generates a cracked surface during cool down. In this work, wafer bowing was investigated to control stress by changing the thickness of a GaN layer from 18.6 to 27.8 nm in a 80-paired AlN/GaN strained layer superlattice (SLS) grown on a 150-mm Si (111) substrate. The results indicated that wafer bowing was inversely proportional to the total thickness of epilayer and the thickness of the GaN layer in the AlN/GaN SLS, since higher compressive stress caused by a thicker GaN layer during SLS growth could compensate for the tensile stress generated during cool down. After returning to room temperature, the stress of the AlN/GaN SLS was still compressive and strained in the a-axis. This is due to an unintended AlGaN grading layer was formed in the AlN/GaN SLS. This AlGaN layer reduced the lattice mismatch between AlN and GaN and efficiently accumulated stress without causing relaxation.

  12. Chronic mild stress facilitates melanoma tumor growth in mouse lines selected for high and low stress-induced analgesia.

    PubMed

    Ragan, Agnieszka R; Lesniak, Anna; Bochynska-Czyz, Marta; Kosson, Anna; Szymanska, Hanna; Pysniak, Kazimiera; Gajewska, Marta; Lipkowski, Andrzej W; Sacharczuk, Mariusz

    2013-09-01

    Both chronic stress conditions and hyperergic reaction to environmental stress are known to enhance cancer susceptibility. We described two mouse lines that displayed high (HA) and low (LA) swim stress-induced analgesia (SSIA) to investigate the relationship between inherited differences in sensitivity to stress and proneness to an increased growth rate of subcutaneously inoculated melanoma. These lines display several genetic and physiological differences, among which distinct sensitivity to mutagens and susceptibility to cancer are especially noticeable. High analgesic mice display high proneness both to stress and a rapid local spread of B16F0 melanoma. However, stress-resistant LA mice do not develop melanoma tumors after inoculation, or if so, tumors regress spontaneously. We found that the chronic mild stress (CMS) procedure leads to enhanced interlinear differences in melanoma susceptibility. Tumors developed faster in stress conditions in both lines. However, LA mice still displayed a tendency for spontaneous regression, and 50% of LA mice did not develop a tumor, even under stressed conditions. Moreover, we showed that chronic stress, but not tumor progression, induces depressive behavior, which may be an important clue in cancer therapy. Our results clearly indicate how the interaction between genetic susceptibility to stress and environmental stress determine the risk and progression of melanoma. To our knowledge, HA/LA mouse lines are the first animal models of distinct melanoma progression mediated by inherited differences in stress reactivity.

  13. Time evolution of off-state degradation of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Bajo, M. Montes E-mail: Martin.Kuball@bristol.ac.uk; Sun, H.; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk

    2014-06-02

    The evolution of AlGaN/GaN high electron mobility transistors under off-state stress conditions is studied by gate leakage current (I{sub g}) monitoring, electroluminescence (EL), and atomic force microscope (AFM) imaging at room temperature. It is found that the number of off-state failure sites as identified by EL increases over time during stress until it reaches a saturation value. I{sub g} increases accordingly during stress until this saturation number of failure sites is reached. AFM scanning of the device surface stripped of metal contacts and passivation reveals surface pits corresponding to the location of the EL spots. These pits have an elongated shape oriented towards the drain contact whose length is correlated with the distance to the adjacent pits and with the time since their appearance during the stress experiment. A model for the generation and evolution of the off-state stress-related failure sites is proposed consistent with the experimental results, bringing together surface migration of electrochemical species with trap-based leakage mechanisms and resulting in the formation of an exclusion zone around each failure site.

  14. High-quality Al{sub x}Ga{sub 1{minus}x}N using low temperature-interlayer and its application to UV detector[Ultraviolet

    SciTech Connect

    Iwaya, M.; Terao, S.; Hayashi, N.; Kashima, T.; Detchprohm, T.; Amano, H.; Akasaki, I.; Hirano, A.; Pernot, C.

    2000-07-01

    Low-temperature (LT-) AlN interlayer reduces tensile stress during growth of Al{sub x}Ga{sub 1{minus}x}N, while simultaneously acts as the dislocation filter, especially for dislocations of which Burger's vector contains [0001] components. UV photodetectors using thus-grown high quality Al{sub x}Ga{sub 1{minus}x}N layers were fabricated. The dark current below 50 fA at 10 V bias for 10 {micro}m strip allowing a photocurrent to dark current ratio greater than one even at 40 nW/cm{sup 2} have been achieved.

  15. Fatigue Life and Short Crack Behavior in Ti-6Al-4V Alloy; Interactions of Foreign Object Damage, Stress, and Temperature

    NASA Astrophysics Data System (ADS)

    Majidi, Behzad

    2008-04-01

    High-cycle fatigue (HCF) failures associated with foreign object damage (FOD) in turbine engines of military aircrafts have been of major concern for the aeronautic industry in recent years. The present work is focused on characterizing the effects of FOD on crack initiation and small crack growth of a Ti-6Al-4V alloy at ambient and also elevated temperatures. Results show that the preferred crack initiation site depends on applied stress and temperature as maximum fractions of cracks emanating from the simulated damage site, and naturally initiated cracks are observed at 25 °C under the maximum stress of 700 MPa and at 300 °C under the maximum stress of 300 MPa. The fatigue crack growth rate is influenced by increasing temperature, and the FCG rate at 300 °C is higher than that at room temperature under the same Δ K, whereas this effect for FOD-site initiated cracks is not so remarkable. This observation seems to be due to the effect of stress relaxation at 300 °C. Results also indicate that fatigue crack initiation life ( N i ) and fatigue life ( N f ) are expressed by three-parameter Weibull distribution function.

  16. Occupancy of the DX center in n-Al0.32Ga0.68As under uniaxial stress

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Chung, Ki-woong; Miller, T.; Williamson, F.; Nathan, M. I.

    1991-05-01

    We have used the deep level transient spectroscopy signal height as a function of applied stress data and the statistics of the occupancy of the DX center to obtain the stress dependence of the thermal binding energy of the neutral DX center, EDX. We find that EDX decreases with about the same rate for uniaxial stresses along <100> and <111> directions. Our results confirm that the DX center is a highly localized center as proposed by Chadi and Chang and disagree with the model assuming the DX center being an effective mass state of the doping impurity associated with the L band.

  17. Interfacial shear stress measurement using high spatial resolution multiphase PIV

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-06-01

    In multiphase flows, form drag and viscous shear stress transfer momentum between phases. For numerous environmental and man-made flows, it is of primary importance to predict this transfer at a liquid-gas interface. In its general expression, interfacial shear stress involves local velocity gradients as well as surface velocity, curvature, and surface tension gradients. It is therefore a challenging quantity to measure experimentally or compute numerically. In fact, no experimental work to date has been able to directly resolve all the terms contributing to the shear stress in the case of curved and moving surfaces. In an attempt to fully resolve the interface shear stress when surface tension gradients are negligible, high-resolution particle image velocimetry (PIV) data are acquired simultaneously on both sides of a water-air interface. The flow consists of a well-conditioned uniform and homogeneous water jet discharging in quiescent air, which exhibits two-dimensional surface waves as a result of a shear layer instability below the surface. PIV provides velocity fields in both phases, while planar laser-induced fluorescence is used to track the interface and obtain its curvature. To compute the interfacial shear stress from the data, several processing schemes are proposed and compared, using liquid and/or gas phase data. Vorticity at the surface, which relates to the shear stress through the dynamic boundary condition at the surface, is also computed and provides additional strategies for estimating the shear. The various schemes are in agreement within the experimental uncertainties, validating the methodology for experimentally resolving this demanding quantity.

  18. Extrinsic and intrinsic causes of the electrical degradation of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yulong, Fang; Shaobo, Dun; Bo, Liu; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2012-05-01

    Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed. The electric field applied was found to be the extrinsic cause for the device instability, while the traps were recognized as the main intrinsic factor. The effect of the traps on the device degradation was identified by recovery experiments and pulsed I-V measurements. The total degradation of the devices consists of two parts: recoverable degradation and unrecoverable degradation. The electric field induced traps combined with the inherent ones in the device bulk are mainly responsible for the recoverable degradation.

  19. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    SciTech Connect

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densities are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.

  20. Comparison Between Nb3Al and Nb3Sn Strands and Cables for High Field Accelerator Magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Barzi, E.; Chlachidze, G.; Rusy, A.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Velev, V.; Wake, M.; Zlobin, A.V.; /Fermilab

    2010-01-01

    The Nb{sub 3}Al small racetrack magnet, SR07, has been successfully built and tested to its short sample limit beyond 10 Tesla without any training. Thus the practical application of Nb{sub 3}Al strands for high field accelerator magnets is established. The characteristics of the representative F4 strand and cable, are compared with the typical Nb{sub 3}Sn strand and cable. It is represented by the OST high current RRP Nb{sub 3}Sn strand with 108/127 configuration. The effects of Rutherford cabling to both type strands are explained and the inherent problem of the Nb{sub 3}Sn strand is discussed. Also the test results of two representative small racetrack magnets are compared from the stand point of Ic values, and training. The maximum current density of the Nb{sub 3}Al strands is still smaller than that of the Nb{sub 3}Sn strands, but if we take into account of the stress-strain characteristics, Nb{sub 3}Al strands become somewhat favorable in some applications.

  1. Finite element stress analysis of polymers at high strains

    NASA Technical Reports Server (NTRS)

    Durand, M.; Jankovich, E.

    1973-01-01

    A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.

  2. Effect of internal stress on the electro-optical behaviour of Al-doped ZnO transparent conductive thin films

    NASA Astrophysics Data System (ADS)

    Proost, J.; Henry, F.; Tuyaerts, R.; Michotte, S.

    2016-08-01

    In this work, we will report on scientific efforts aimed at unraveling the quantitative effect of elastic strain on the electro-optical behaviour of Al-doped zinc oxide (AZO). AZO thin films have been deposited by reactive magnetron sputtering to thicknesses from 300 to 500 nm, both on extra-clear glass substrates as well as on oxidised Si wafers. This resulted in both cases in polycrystalline, strongly textured (002) films. During deposition, the internal stress evolution in the growing film was monitored in-situ using high resolution curvature measurements. The resulting growth-induced elastic strain, which was found to depend heavily on the oxygen partial pressure, could further be modulated by appropriately choosing the deposition temperature. The latter also induces an additional extrinsic thermal stress component, whose sign depends on the substrate used. As such, a wide range of biaxial internal stresses could be achieved, from -600 MPa in compression up to 800 MPa in tension. The resulting charge carrier mobilities, obtained independently from room temperature Hall measurements, were found to range between 5 and 25 cm2/V s. Interestingly, the maximum mobility occurred at the zero-stress condition, and together with a charge carrier concentration of about 8 × 1020 cm-3, this gave rise to a resistivity of only 300 μΩ cm. From the stress-dependent optical transmission spectra in the range of 200-1000 nm, the pressure coefficient of the optical bandgap was estimated from the corresponding Tauc plots to be 31 meV/GPa, indicating a very high strain-sensitivity as well.

  3. High temperature battery cell comprising stress free hollow fiber bundle

    SciTech Connect

    Anand, J. N.; Revak, T. T.; Rossini, F. J.

    1985-04-16

    Thermal stressing of hollow fibers constituting the electrolyte-separator in a high temperature battery cell, and of certain other elements thereof, is avoided by suspending the assembly comprising the anolyte tank, the tube-sheet, the hollow fibers and a cathodic current collector-distributor within the casing and employing a limp connection between the collector-distributor and the cathode terminal of the cell.

  4. Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-bo; Yan, Bing-hao; Zhang, Ke; Yi, Guo

    2015-07-01

    The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 Al alloy were investigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.

  5. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  6. [Physical state of adolescents with the high stress reactivity].

    PubMed

    Krivolapchuk, I A

    2012-01-01

    Research objective was studying of features of a physical state (PS) adolescents of 13-14 years with high (n = 97) and low (n = 85) level of stress reactivity. The obtained data testify that in puberty formation of mechanisms of energy supply for muscle activity at adolescents with various level of stress reactivity occurs heterochronic and nonlinearly. Thus hyperreactivity boys of 13-14 years are characterised concerning high anaerobic alactic and the low aerobic productivity of the organism raised by physiological working costs and slowed down restoration after loadings of the big and submaximum capacity. Specificity of physical readiness of hyperreactivity teenagers consists that at them the high level of development of speed and force is combined with rather low level of development of the general endurance. Intergroup distinctions concerning muscular working capacity and the impellent readiness, caused by stress reactivity, are shown at adolescents of 13-14 years at different stages of puberty (SP). Thus and hyper--and hyporeactivity boys with II and III SP, are characterised in comparison with children with IV SP higher indicators of aerobic productivity of an organism, against rather small anaerobic possibilities. Results of research give the basis to believe, that at hyporeactivity adolescents efficiency of functioning of mechanisms of antihypoxic protection is lowered. PMID:23393780

  7. Structural stability of the icosahedral AlCuFe quasicrystal under high-pressure and high-temperature

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Kyono, A.; Nakamoto, Y.; Hirao, N.

    2015-12-01

    We report high-pressure and high-temperature in-situ X-ray diffraction study of icosahedral (i)-AlCuFe quasicrystal "icosahedrite" which is the first known naturally occurring quasicrystal mineral discovered in the Khatyrka meteorite. The i-AlCuFe quasicrystal was synthesized in laboratory from a powder mixture with an atomic ratio of Al : Cu : Fe = 65 : 20 : 15. The high-temperature and high-pressure X-ray diffraction experiments were performed using the laser-heated diamond anvil cell system installed at BL10XU, SPring-8, Japan. The i-AlCuFe showed a characteristic X-ray diffraction pattern of quasicrystal. With only compression, the diffraction patterns of the i-AlCuFe were continued until 75 GPa. At a pressure of 87 GPa two small new peaks occurred and then kept up to the maximum pressure of 104 GPa in the study. The results indicate that the pressure-induced structural phase transition of the i-AlCuFe occurs above 87 GPa, and the structure of the i-AlCuFe remains unchanged at least up to 75 GPa. Under simultaneously high pressure and high temperature, on the other hand, the i-AlCuFe was readily transformed to crystalline phase. It can be characterized by an irreversible transformation process. The structure of the i-AlCuFe is therefore more affected by thermal metamorphism than by pressure metamorphism. The present high-pressure and high-temperature experiments clearly revealed the thermal and pressure stability of the i-AlCuFe quasicrystal which may help to explain the formation of the naturally occurring quasicrystal in the solar system.

  8. High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples

    DOE PAGES

    Weaver, Jordan S.; Khosravani, Ali; Castillo, Andrew; Kalidindi, Surya R.

    2016-06-14

    Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower thanmore » the value of 2.8 used commonly in literature. Furthermore, the reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.« less

  9. Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis

    SciTech Connect

    Zhu, Jie-Jie; Ma, Xiao-Hua Hou, Bin; Chen, Wei-Wei; Hao, Yue

    2014-03-15

    Trap states in Al{sub 0.55}Ga{sub 0.45}N/GaN Schottky-gate high-electron-mobility transistors (S-HEMTs) and Al{sub 2}O{sub 3}/Al{sub 0.55}Ga{sub 0.45}N/GaN metal-oxide-semiconductor HEMTs (MOS-HEMTs) were investigated with conductance method in this paper. Surface states with time constant of (0.09–0.12) μs were found in S-HEMTs, and electron tunneling rather than emission was deemed to be the dominant de-trapping mechanism due to the high electric field in high Al content barrier. The density of surface states evaluated in S-HEMTs was (1.02–4.67)×10{sup 13} eV{sup −1}·cm{sup −2}. Al{sub 2}O{sub 3} gate insulator slightly reduced the surface states, but introduced low density of new traps with time constant of (0.65–1.29) μs into MOS-HEMTs.

  10. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    DOE PAGES

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-08-08

    Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi.« less

  11. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-08-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi.

  12. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy.

    PubMed

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D; Liaw, Peter K; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  13. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    PubMed Central

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  14. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Lin, Jie; Wang, Ning; Jiang, Ling-li; Liu, Zong-dai; Hu, Xiaoyan; Cheng, Kai; Yu, Hong-yu

    2016-09-01

    In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs) are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (Δ C ) with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth) instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on Δ C measurement.

  15. In situ Formed α-Al2O3 Nanocrystals Repaired the Preexisting Microcracks in Plasma-Sprayed Al2O3 Coating via Stress-Induced Phase Transformation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Feng, Jingwei; Rong, Jian; Liu, Chenguang; Tao, Shunyan; Ding, Chuanxian

    2016-02-01

    In the present study, the phase composition and generation mechanism of the nanocrystals located in the microcracks of plasma-sprayed Al2O3 coating were reevaluated. The Al2O3 coatings were investigated using transmission electron microscopy and x-ray diffraction. We supply the detailed explanations to support the new viewpoint that in situ formation of α-Al2O3 nanocrystals in the preexisting microcracks of the as-sprayed Al2O3 coating may be due to the stress-induced phase transformation. Owing to the partially coherent relationship, the phase interfaces between the α-Al2O3 nanocrystals with the preferred orientation and the γ-Al2O3 matrix may possess better bonding strength. The α-Al2O3 nanocrystals could repair the microcracks in the coating, which further strengthens grain boundaries. Grain boundary strengthening is beneficial to the coating fracture toughness enhancement.

  16. Adolescents' sleep in low-stress and high-stress (exam) times: a prospective quasi-experiment.

    PubMed

    Dewald, Julia F; Meijer, Anne Marie; Oort, Frans J; Kerkhof, Gerard A; Bögels, Susan M

    2014-01-01

    This prospective quasi-experiment (N = 175; mean age = 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week), and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over three consecutive weeks using actigraphy. Adolescents' sleep was more fragmented during the high-stress time than during the low-stress time, meaning that individuals slept more restless during stressful times. However, sleep efficiency, total sleep time, and sleep onset latency remained stable throughout the three consecutive weeks. High chronic sleep reduction was related to later bedtimes, later sleep start times, later sleep end times, later getting up times, and more time spent in bed. Furthermore, low chronic sleep reduction and high baseline stress levels were related to more fragmented sleep during stressful times. This study shows that stressful times can have negative effects on adolescents' sleep fragmentation, especially for adolescents with low chronic sleep reduction or high baseline stress levels.

  17. Stress, coping, and work engagement within the -specific job context: comment on Kaiseler, et Al. (2014).

    PubMed

    Gracia, Esther

    2015-04-01

    This work discusses the use of tools that make use of context information. Comments are based on a previous study that looked into the relationship between stressors, coping, and work engagement (Kaiseler, Queirós, Passos & Sousa, 2014). A set of propositions are provided for research that will allow the design of contextualized stress interventions in specific job settings.

  18. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Bhamji, I.; Withers, P. J.; Wolfe, D. E.; Motta, A. T.; Preuss, M.

    2015-11-01

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr-Nb-Sn-Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  19. Electron drift velocity in lattice-matched AlInN/AlN/GaN channel at high electric fields

    NASA Astrophysics Data System (ADS)

    Ardaravičius, L.; Ramonas, M.; Liberis, J.; Kiprijanovič, O.; Matulionis, A.; Xie, J.; Wu, M.; Leach, J. H.; Morkoç, H.

    2009-10-01

    Hot-electron transport was probed by nanosecond-pulsed measurements for a nominally undoped two-dimensional channel confined in a nearly lattice-matched Al0.82In0.18N/AlN/GaN structure at room temperature. The electric field was applied parallel to the interface, the pulsed technique enabled minimization of Joule heating. No current saturation was reached at fields up to 180 kV/cm. The effect of the channel length on the current is considered. The electron drift velocity is deduced under the assumption of uniform electric field and field-independent electron density. The highest estimated drift velocity reaches ˜3.2×107 cm/s when the AlN spacer thickness is 1 nm. At high fields, a weak (if any) dependence of the drift velocity on the spacer thickness is found in the range from 1 to 2 nm. The measured drift velocity is low for heterostructures with thinner spacers (0.3 nm).

  20. High stress actuation by dielectric elastomer with oil capsules

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Though capable of generating a large strain, dielectric elastomer actuators (DEAs) generate only a moderate actuation stress not more than 200kPa, which seriously limits its use as artificial muscles for robotic arm. Enhancement of dielectric strength (greater than 500MV/m) by dielectric oil immersion could possibly enable it a larger force generation. Previously, the immersion was done in an oil bath, which limits portability together with DEAs. In this study, we developed portable capsules to enclose oil over the DEA substrate (VHB 4905). The capsules is made of a thinner soft acrylic membrane and they seals dielectric liquid oil (Dow Corning Fluid 200 50cSt). The DEA substrate is a graphiteclad VHB membrane, which is pre-stretched with pure-shear boundary condition for axial actuation. When activated under isotonic condition, the oil-capsule DEA can sustain a very high dielectric field up to 903 MV/m and does not fail; whereas, the dry DEA breaks down at a lower electric field at 570 MV/m. Furthermore, the oil-capsule DEA can produces higher isometric stress change up to 1.05MPa, which is 70% more than the maximum produced by the dry DEA. This study confirmed that oil capping helps DEA achieve very high dielectric strength and generate more stress change for work.

  1. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  2. The association of very high hair manganese accumulation and high oxidative stress in Mongolian people.

    PubMed

    Komatsu, Fumio; Kagawa, Yasuo; Ishiguro, Kiyomi; Kawabata, Terue; Purvee, Baatar; Otgon, Jugder; Chimedregzen, Ulziiburen

    2009-03-01

    Oxidative stress induces several diseases and early aging. Previously, we reported that Mongolians are exposed in high oxidative stress, which may cause their early aging. In this study, to know the reason of high oxidative stress, we measured hair metals. This investigation was performed in Murun city, in the northern area of this country, and 469 healthy subjects, ranging from 10 to 82 years of age, were randomly enrolled. Oxidative stress was evaluated by the levels of serum reactive oxygen metabolites (ROM), malondialdehyde-modified low-density lipoprotein (MDA-LDL) and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). Antioxidant capacity (AOC) was estimated by the levels of biological antioxidant potential (BAP) and superoxide dismutase (SOD) activity. Scalp hair metals were measured using an inductively coupled plasma mass spectrometry method. Murun subjects showed high ROM levels of 394+/-75 Carr U (n=342), compared with Japanese healthy subjects (n=356, 326+/-51 Carr U, p<0.001). MDA-LDL and 8-OHdG levels also showed high levels. While, BAP levels of Murun subjects were 2263+/-203 micromol/L (n=210), Japanese subjects (n=356, 2087+/-215 micromol/L, p<0.001). SOD activities were also high, suggesting that the high oxidative may accelerate the state of AOC. Murun subjects demonstrated high accumulation of several metals in the hairs. In particular, Mn accumulation exhibited from 2 fold to 40 fold increases of Japanese standard. These findings are indicative that the high Mn accumulation may contribute to the high oxidative stress. The mechanism of its high accumulation was not explained by food materials or drinking water. We should further investigate another influence such as sandy wind. In order to suppress the high oxidative stress, elimination of the high Mn accumulation should be urgently studied. PMID:20021397

  3. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  4. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons.

    PubMed

    Lenzi, Jessica; De Santis, Riccardo; de Turris, Valeria; Morlando, Mariangela; Laneve, Pietro; Calvo, Andrea; Caliendo, Virginia; Chiò, Adriano; Rosa, Alessandro; Bozzoni, Irene

    2015-07-01

    Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUS(R514S) and FUS(R521C) patient fibroblasts, whereas in the case of the severe FUS(P525L) mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis.

  5. Stresses evolution at high temperature (200°C) on the interface of thin films in magnetic components

    NASA Astrophysics Data System (ADS)

    Doumit, Nicole; Danoumbé, Bonaventure; Capraro, Stéphane; Chatelon, Jean-Pierre; Nader, Chadi; Habchi, Roland; Piot, Alain; Rousseau, Jean-Jacques

    2014-07-01

    In the field of electronics, the increase of operating temperatures is a major industrial and scientific challenge because it allows reducing mass and volume of components especially in the aeronautic domain. So minimizing our components reduce masses and the use of cooling systems. For that, the behaviours and interface stresses of our components (in particular magnetic inductors and transformers) that are constituted of one magnetic layer (YIG) or an alumina substrate (Al2O3) representing the substrate and a thin copper film are studied at high temperature (200°C). COMSOL Multiphysics is used to simulate our work and to validate our measurements results. In this paper, we will present stresses results according to the geometrical copper parameters necessary for the component fabrication. Results show that stresses increase with temperature and copper's thickness while remaining always lower than 200MPa which is the rupture stress value.

  6. Comparative study on the charge-trapping properties of TaAlO and ZrAlO high-k composites with designed band alignment

    SciTech Connect

    Lu, W.; Wei, C. Y.; Jiang, K.; Liu, J. Q.; Lu, J. X.; Han, P.; Li, A. D.; Xia, Y. D.; Xu, B.; Yin, J. Liu, Z. G.

    2015-08-15

    The charge-trapping memory (CTM) structures Pt/Al{sub 2}O{sub 3}/TaAlO/Al{sub 2}O{sub 3}/p-Si and Pt/Al{sub 2}O{sub 3}/ZrAlO/Al{sub 2}O{sub 3}/p-Si were fabricated by using rf-sputtering and atomic layer deposition techniques, in which the potentials at the bottom of the conduction band (PBCB) of high-k composites TaAlO and ZrAlO were specially designed. With a lower PBCB difference between TaAlO and p-Si than that between ZrAlO and p-Si, TaAlO CTM device shows a better charge-trapping performance. A density of trapped charges 2.88 × 10{sup 13}/cm{sup 2} at an applied voltage of ±7 V was obtained for TaAlO CTM device, and it could keep about 60% of initially trapped charges after 10 years. It was suggested that the PBCB difference between high-k composite and p-Si dominates their charge-trapping behaviors.

  7. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  8. High-Mobility Group Box 1, Oxidative Stress, and Disease

    PubMed Central

    Kang, Rui; Zeh, Herbert J.

    2011-01-01

    Abstract Oxidative stress and associated reactive oxygen species can modify lipids, proteins, carbohydrates, and nucleic acids, and induce the mitochondrial permeability transition, providing a signal leading to the induction of autophagy, apoptosis, and necrosis. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and downstream apoptosis or survival. Accumulation of HMGB1 at sites of oxidative DNA damage can lead to repair of the DNA. As a redox-sensitive protein, HMGB1 contains three cysteines (Cys23, 45, and 106). In the setting of oxidative stress, it can form a Cys23-Cys45 disulfide bond; a role for oxidative homo- or heterodimerization through the Cys106 has been suggested for some of its biologic activities. HMGB1 causes activation of nicotinamide adenine dinucleotide phosphate oxidase and increased reactive oxygen species production in neutrophils. Reduced and oxidized HMGB1 have different roles in extracellular signaling and regulation of immune responses, mediated by signaling through the receptor for advanced glycation end products and/or Toll-like receptors. Antioxidants such as ethyl pyruvate, quercetin, green tea, N-acetylcysteine, and curcumin are protective in the setting of experimental infection/sepsis and injury including ischemia-reperfusion, partly through attenuating HMGB1 release and systemic accumulation. Antioxid. Redox Signal. 14, 1315–1335. PMID:20969478

  9. Invasive Knotweeds are Highly Tolerant to Salt Stress

    NASA Astrophysics Data System (ADS)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  10. Dependence of ohmic contact properties on AlGaN layer thickness for AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Takei, Yusuke; Tsutsui, Kazuo; Saito, Wataru; Kakushima, Kuniyuki; Wakabayashi, Hitoshi; Iwai, Hiroshi

    2016-04-01

    The dependence of ohmic contact resistance on the AlGaN layer thickness was evaluated for AlGaN/GaN high-electron-mobility transistor (HEMT) structures. Mo/Al/Ti contacts were formed on AlGaN layers with various thicknesses. The observed resistance characteristics are discussed on the basis of a model in which the overall contact resistance is composed of a series of three resistance components. Different dependences on the AlGaN layer thickness was observed after annealing at low temperatures (800-850 °C) and at high temperatures (900-950 °C). It was determined that lowering the resistance at the metal/AlGaN interface and that of the AlGaN layer is important for obtaining low-resistance ohmic contacts.

  11. Improved n-channel Ge gate stack performance using HfAlO high-k dielectric for various Al concentrations

    NASA Astrophysics Data System (ADS)

    Kothari, Shraddha; Joishi, Chandan; Ghosh, Sayantan; Biswas, Dipankar; Vaidya, Dhirendra; Ganguly, Swaroop; Lodha, Saurabh

    2016-07-01

    We demonstrate improved Ge n-channel gate stack performance versus HfO2 using HfAlO high-k dielectric for a wide (1.5–33%) range of Al% and post-high-k-deposition annealing (PDA) at 400 °C. Addition of Al to HfO2 is shown to mitigate degradation of the GeO2/Ge interface during PDA. HfAlO stacks with an equivalent oxide thickness (EOT) of 8 nm and large Al% exhibit improved transistor mobility (1.8 times higher) and midgap D it (2 times lower), whereas thin (1.9 nm) EOT HfAlO stacks show reduced gate leakage J g (by 10 times) and D it (by 1.5 times) and 1.6 times higher mobility for Al% as low as 1.5% at matched EOT.

  12. High-performance AlGaInP light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Maranowski, Steven A.; Camras, Michael D.; Chen, Changhua; Cook, Lou W.; Craford, M. G.; DeFevere, Dennis C.; Fletcher, Robert M.; Hofler, Gloria E.; Kish, Frederick A.; Kuo, Chihping; Moll, A. J.; Osentowski, Tim; Park, K. G.; Peanasky, Michael J.; Rudaz, S. L.; Steigerwald, Dan A.; Steranka, Frank M.; Stockman, Steve A.; Tan, I. H.; Tarn, J.; Yu, Jingxi; Ludowise, Mike J.; Robbins, Virginia M.

    1997-04-01

    A new class of LEDs based on the AlGaInP material system first became commercially available in the early 1990's. These devices benefit from a direct bandgap from the red to the yellow-green portion of the spectrum. The high efficiencies possible in AlGaInP across this spectrum have enabled new applications for LEDs including automotive lighting, outdoor variable message signs, outdoor large screen video displays, and traffic signal lights. A review of high-brightness AlGaInP LED technology will be presented.

  13. Effect of high hip center on stress for dysplastic hip.

    PubMed

    Nie, Yong; Pei, Fuxing; Li, Zongming

    2014-07-01

    High hip center reconstruction has been advocated in treating deficient acetabulum. However, there is no consensus on the clinical outcome of this technique. In addition, it remains unclear to what extend this technique restores the normal hip biomechanics. The goal of this study was to investigate stress above the acetabular dome in response to a range of high hip center positioning for Crowe type I and II hip dysplasia. This study consisted of 2 main parts, radiologic and biomechanical. Pelvic radiographs of 18 patients were studied to determine the amount of displacement of the hip center in the superior direction compared with the normal side. Second, qualitative and quantitative changes in stress on cortical and trabecular bone in the region of the acetabular dome as a result of superior displacement of the hip center were analyzed with subject-specific finite element models. The results showed that the range of the hip center position in the superior direction for Crowe type I and II hip dysplasia was 0 to 15 mm above the contralateral femoral head center. When superior displacement of the hip center exceeded 5 mm above the anatomic hip center, cortical bone mass on the 2 thickest cross-sections above the acetabular dome decreased quickly and the stress value on posterolateral cortical bone was obviously lower than the normal level. This study showed that to restore the normal load above the acetabular dome, there is a limit of 5 mm above the anatomic hip center for high hip center acetabular reconstruction for Crowe type I and II hip dysplasia. PMID:24992059

  14. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  15. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-10-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  16. Effects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors.

    PubMed

    Shu, Lin; Peng, Bin; Cui, Yilin; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF) of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K²) of the SAW devices increases with increasing AlN film thickness. The K² of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K² of the SAW devices. PMID:27608027

  17. Effects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors

    PubMed Central

    Shu, Lin; Peng, Bin; Cui, Yilin; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF) of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K2) of the SAW devices increases with increasing AlN film thickness. The K2 of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K2 of the SAW devices. PMID:27608027

  18. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  19. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    SciTech Connect

    Castillo, D. A.,; Younker, L.W.

    1997-01-30

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  20. High pressure phase transformations in α-AlPO4: an x-ray diffraction investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Surinder M.; Garg, Nandini; Sikka, S. K.

    2000-07-01

    We have re-investigated the high pressure behaviour of berlinite AlPO4 (α-AlPO4) with x-ray diffraction using a powerful synchrotron x-ray source SPring-8. Our results show that it transforms to a crystalline phase beyond ~13 GPa. Our data seem to be consistent with a CrVO4 type of structure in the Cmcm space group, similar to the high pressure phase observed in some isostructural phosphate compounds. The persistence of the diffraction pattern up to 40 GPa establishes that the previously accepted amorphization of AlPO4 around 12-18 GPa is incorrect. Experimental results suggest that the so-called memory glass effect observed earlier may in fact be the reversibility of the α-phase←⇔crystalline phase transformation. Comparisons of our experimental and theoretical results raise serious doubts about the theoretical understanding of the high pressure behaviour of α-AlPO4.

  1. High-pressure x-ray-diffraction study of α-AlPO4

    NASA Astrophysics Data System (ADS)

    Sharma, Surinder M.; Garg, Nandini; Sikka, S. K.

    2000-10-01

    Our high-pressure x-ray diffraction experiments on berlinite AlPO4 (α-AlPO4) show that it transforms to a crystalline Cmcm phase beyond 13 GPa. The persistence of diffraction pattern up to 40 GPa does not confirm the previous conclusions of high-pressure amorphization of AlPO4 around 12-18 GPa. Our experimental results, in agreement with earlier Raman scattering results, suggest that the so called memory glass effect observed earlier may in fact be due to the reversibility of α-phase<==>Cmcm phase transformation. These new experimental observations raise serious doubts about the theoretical understanding of the high-pressure behavior of α-AlPO4.

  2. InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy

    SciTech Connect

    Smith, M. D.; Parbrook, P. J.; O'Mahony, D.; Conroy, M.; Schmidt, M.

    2015-09-14

    This paper correlates the micro-structural and electrical characteristics associated with annealing of metallic multi-layers typically used in the formation of Ohmic contacts to InAlN high electron mobility transistors. The multi-layers comprised Ti/Al/Ni/Au and were annealed via rapid thermal processing at temperatures up to 925 °C with electrical current-voltage analysis establishing the onset of Ohmic (linear IV) behaviour at 750–800 °C. In-situ temperature dependent transmission electron microscopy established that metallic diffusion and inter-mixing were initiated near a temperature of 500 °C. Around 800 °C, inter-diffusion of the metal and semiconductor (nitride) was observed, correlating with the onset of Ohmic electrical behaviour. The sheet resistance associated with the InAlN/AlN/GaN interface is highly sensitive to the anneal temperature, with the range depending on the Ti layer thickness. The relationship between contact resistivity and measurement temperature follow that predicted by thermionic field emission for contacts annealed below 850 °C, but deviated above this due to excessive metal-semiconductor inter-diffusion.

  3. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  4. Experimental study on a Nb3Al insert coil under high magnetic field

    NASA Astrophysics Data System (ADS)

    Zhu, Guang; Dai, Yinming; Cheng, Junsheng; Chang, Kun; Liu, Jianhua; Wang, Qiuliang; Pan, Xifeng; Li, Chao

    2016-06-01

    Nb3Al is one of the most promising superconductors to replace Nb3Sn in large scale, high field superconducting magnet. Since the complicated conductor manufacturing process, long and stable Nb3Al conductor is difficult to acquire in a commercial scale. Based on a 70 m length of Nb-Al precursor conductor, we designed and fabricated a Nb3Al coil. The coil winding, low temperature diffusion heat treatment and epoxy impregnation are described in detail. The finished Nb3Al coil is tested as an insert in a background magnet. The test is performed at the background field from 7 T to 15 T. The test results are analyzed and presented in this paper.

  5. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  6. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  7. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    PubMed

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters. PMID:26746430

  8. High lung volume increases stress failure in pulmonary capillaries

    NASA Technical Reports Server (NTRS)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  9. Characterization of interface states in Al{sub 2}O{sub 3}/AlGaN/GaN structures for improved performance of high-electron-mobility transistors

    SciTech Connect

    Hori, Y.; Yatabe, Z.; Hashizume, T.

    2013-12-28

    We have investigated the relationship between improved electrical properties of Al{sub 2}O{sub 3}/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) and electronic state densities at the Al{sub 2}O{sub 3}/AlGaN interface evaluated from the same structures as the MOS-HEMTs. To evaluate Al{sub 2}O{sub 3}/AlGaN interface state densities of the MOS-HEMTs, two types of capacitance-voltage (C-V) measurement techniques were employed: the photo-assisted C-V measurement for the near-midgap states and the frequency dependent C-V characteristics for the states near the conduction-band edge. To reduce the interface states, an N{sub 2}O-radical treatment was applied to the AlGaN surface just prior to the deposition of the Al{sub 2}O{sub 3} insulator. As compared to the sample without the treatment, the N{sub 2}O-radical treated Al{sub 2}O{sub 3}/AlGaN/GaN structure showed smaller frequency dispersion of the C-V curves in the positive gate bias range. The state densities at the Al{sub 2}O{sub 3}/AlGaN interface were estimated to be 1 × 10{sup 12} cm{sup −2} eV{sup −1} or less around the midgap and 8 × 10{sup 12} cm{sup −2} eV{sup −1} near the conduction-band edge. In addition, we observed higher maximum drain current at the positive gate bias and suppressed threshold voltage instability under the negative gate bias stress even at 150 °C. Results presented in this paper indicated that the N{sub 2}O-radical treatment is effective both in reducing the interface states and improving the electrical properties of the Al{sub 2}O{sub 3}/AlGaN/GaN MOS-HEMTs.

  10. Defining Structure and Stress in Deep, High Temperature Geothermal Wells

    NASA Astrophysics Data System (ADS)

    Lawrence, M. J.; McNamara, D. D.; Massiot, C.; Bignall, G.

    2010-12-01

    Extreme T-P (temperature - pressure) environments associated with deep geothermal drilling in the Taupo Volcanic Zone (TVZ), New Zealand have limited the use of conventional geophysical borehole logging tools, and interpretation of fracture character and controls on permeability in the geothermal systems. Development of AFIT logging tools with high temperature capabilities has enabled detailed determination of structure (fractures and faults) and variations in the in-situ stress orientations in hot (up to 300 °C) and deep (to 3 km TVD) TVZ geothermal wells, as presented here. Recent surveys at Wairakei, Kawerau, Rotokawa and Ngatamariki have provided detailed information of fracture controlled permeability in these fields, and positively impacted production and injection well drilling strategies. Current application of high temperature tools by geothermal developers is a precursor to the detailed structural investigation that will be undertaken for a proposed deeper (to 5 km depth) science-exploration well, planned to be drilled in the TVZ in 2013-14.

  11. Characterization of Al2O3 in High-Strength Mo Alloy Sheets by High-Resolution Transmission Electron Microscopy.

    PubMed

    Zhou, Yucheng; Gao, Yimin; Wei, Shizhong; Hu, Yajie

    2016-02-01

    A novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43-85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\\left[ {2\\bar{2}1} \\right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed. PMID:26914997

  12. High-pressure polymorphism as a step towards high density structures of LiAlH{sub 4}

    SciTech Connect

    Huang, Xiaoli; Duan, Defang; Li, Xin; Li, Fangfei; Huang, Yanping; Wu, Gang; Liu, Yunxian; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2015-07-27

    Two high density structures β- and γ-LiAlH{sub 4} are detected in LiAlH{sub 4}, a promising hydrogen storage compound, upon compression in diamond anvil cells, investigated with synchrotron X-ray diffraction and first-principle calculations. The joint of the experimental and theoretical results has confirmed the sequence of the pressure-induced structural phase transitions from α-LiAlH{sub 4} (space group P2{sub 1}/c) to β-LiAlH{sub 4} (P2{sub 1}/c-6C symmetry), and then to γ-LiAlH{sub 4} (space group Pnc2), which are not reported in previous literatures. At the α to β transition point for LiAlH{sub 4}, the estimated difference in cell volume is about 20%, while the transformation from β to γ phase is with a volume drop smaller than 1%. The α to β phase transition is accompanied by the local structure change from a AlH{sub 4} tetrahedron into a AlH{sub 6} octahedron, which contributes to a large volume collapse.

  13. Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Brodie, Miles; Lingley, Zachary; Foran, Brendan; Moss, Steven C.

    2015-03-01

    Laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model. Since state-of-the-art laser diodes typically require a long period of latency before they degrade, significant amount of stress is applied to the lasers to generate failures in relatively short test durations. A drawback of this approach is the lack of mean-time-to-failure data under intermediate and low stress conditions, leading to uncertainty in model parameters (especially optical power and current exponent) and potential overestimation of lifetimes at usage conditions. This approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. The lack of such a model is also a concern for space applications where complete understanding of degradation mechanisms is necessary. Our present study addresses the aforementioned issues by performing long-term lifetests under low stress conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed low-stress lifetests on both MBE- and MOCVD-grown broad-area InGaAs- AlGaAs strained QW lasers under ACC (automatic current control) mode to study low-stress degradation mechanisms. Our lifetests have accumulated over 36,000 test hours and FMA is performed on failures using our angle polishing technique followed by EL. This technique allows us to identify failure types by observing dark line defects through a window introduced in backside metal contacts. We also investigated degradation mechanisms in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various FMA techniques. Since it is a challenge to control defect densities during the growth of laser structures, we chose to

  14. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

    NASA Astrophysics Data System (ADS)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart

    2012-09-01

    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  15. Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Chen, Zhaolong; Zhao, Yun; Wei, Tongbo; Chen, Xiang; Zhang, Yun; Yuan, Guodong; Li, Jinmin

    2016-08-01

    High-quality AlN films were directly grown on graphene/sapphire substrates by metalorganic chemical vapor deposition (MOCVD). The graphene layers were directly grown on sapphire by atmospheric-pressure chemical vapor deposition (APCVD), a low-cost catalyst-free method. We analyzed the influence of the graphene layer on the nucleation of AlN at the initial stage of growth and found that sparse AlN grains on graphene grew and formed a continuous film via lateral coalescence. Graphene-assisted AlN films are smooth and continuous, and the full width at half maximum (FWHM) values for (0002) and (10\\bar{1}2) reflections are 360 and 622.2 arcsec, which are lower than that of the film directly grown on sapphire. The high-resolution TEM images near the AlN/sapphire interface for graphene-assisted AlN films clearly show the presence of graphene, which kept its original morphology after the 1200 °C growth of AlN.

  16. A Study of Relaxation Techniques and Coping Skills with Moderately to Highly Stressed Middle and High School Students.

    ERIC Educational Resources Information Center

    Credit, Alison; Garcia, Mary

    This report describes a program for heightening awareness of stress and reducing stress levels while improving learning. The targeted population comprised seventh and ninth grade students in middle schools and high schools located in affluent suburban communities of a large Midwest city. The problem of moderate to high levels of stress was…

  17. Virtual melting as a new mechanism of stress relaxation under high strain rate loading.

    PubMed

    Levitas, Valery I; Ravelo, Ramon

    2012-08-14

    Generation and motion of dislocations and twinning are the main mechanisms of plastic deformation. A new mechanism of plastic deformation and stress relaxation at high strain rates (10(9)-10(12) s(-1)) is proposed, under which virtual melting occurs at temperatures much below the melting temperature. Virtual melting is predicted using a developed, advanced thermodynamic approach and confirmed by large-scale molecular dynamics simulations of shockwave propagation and quasi-isentropic compression in both single and defective crystals. The work and energy of nonhydrostatic stresses at the shock front drastically increase the driving force for melting from the uniaxially compressed solid state, reducing the melting temperature by 80% or 4,000 K. After melting, the relaxation of nonhydrostatic stresses leads to an undercooled and unstable liquid, which recrystallizes in picosecond time scales to a hydrostatically loaded crystal. Characteristic parameters for virtual melting are determined from molecular dynamics simulations of Cu shocked/compressed along the 〈110〉 and 〈111〉 directions and Al shocked/compressed along the 〈110〉 direction.

  18. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    SciTech Connect

    Brazzini, Tommaso Sun, Huarui; Uren, Michael J.; Kuball, Martin; Casbon, Michael A.; Lees, Jonathan; Tasker, Paul J.; Jung, Helmut; Blanck, Hervé

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line. However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.

  19. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  20. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1993-01-01

    Diffusion-bonded NiAl-Al2O3 and Ni3Al-Al2O3 couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al2O3 was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni3Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle-matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N(+)-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  1. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  2. High-Temperature Electromechanical Characterization of AlN Single Crystals.

    PubMed

    Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning

    2015-10-01

    Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications. PMID:26759848

  3. High-efficiency of AlInGaN/Al(In)GaN-delta AlGaN quantum wells for deep-ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Saidi, Hosni; Ridene, Said

    2016-10-01

    Band structure and optical gain properties of AlInGaN/AlInGaN-delta-AlGaN quantum wells for deep-ultraviolet light emitting and lasers diodes with wavelength λ ∼229 nm and TE-polarized optical gain peak intensity ∼1.7 times larger than the conventional AlInN-delta-GaN was proposed and investigated in this work. The active region is made up of 20 Å staggered Al0.89In0.03Ga0.08N/Al0.8In 0.01Ga0.19N layers with a 3 Å Al0.46Ga0.54N delta layer. The use of the quaternary AlInGaN well layer permits the independent control of the band gap and the lattice parameter, so that the internal electric field induced by polarizations can be reduced and interband transition energy increases. Therefore, we can predict that the optical performance of the AlInGaN-delta-AlGaN is more convenient for an emission in the deep-ultraviolet than that of the conventional AlInN-delta-GaN-based quantum wells.

  4. First-principles prediction of a high-pressure hydrous phase of AlOOH

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Jun; Tsuchiya, Taku

    2011-02-01

    We have predicted a high-pressure hydrous phase of AlOOH stabilizing at ˜170 GPa by first-principles density-functional calculations. The structure predicted has a cubic pyrite-type AlO2 framework with interstitial H atoms forming symmetric hydrogen bonds, whose symmetry is assigned to the space group Pa3¯ (No. 205). The predicted δ-AlOOH to the pyrite-type phase sequence is analogous to a recent theoretical and experimental discovery of high-pressure phase evolution in InOOH and invokes the high-pressure phase relationship in SiO2, but the transition pressure is much greater in AlOOH than in InOOH. Relative enthalpies also indicate that the dissociation of this phase into a CaIrO3-type phase of Al2O3 plus ice X finally occurs at a further pressure of 300 GPa. The present results suggest that AlOOH has an unexpectedly wide stability range in pressure compared to common hydrous materials.

  5. Microstructure Characterization and Stress Corrosion Evaluation of Autogenous and Hybrid Friction Stir Welded Al-Cu-Li 2195 Alloy

    NASA Technical Reports Server (NTRS)

    Li, Zhixian; Arbegast, William J.; Meletis, Efstathios I.

    1997-01-01

    Friction stir welding process is being evaluated for application on the Al-Cu-Li 2195 Super-Light Weight External Tank of the Space Transportation System. In the present investigation Al-Cu-Li 2195 plates were joined by autogenous friction stir welding (FSW) and hybrid FSW (friction stir welding over existing variable polarity plasma arc weld). Optical microscopy and transmission electron microscopy (TEM) were utilized to characterize microstructures of the weldments processed by both welding methods. TEM observations of autogenous FSW coupons in the center section of the dynamically-recrystallized zone showed an equiaxed recrystallized microstructure with an average grain size of approx. 3.8 microns. No T(sub 1), precipitates were present in the above-mentioned zone. Instead, T(sub B) and alpha precipitates were found in this zone with a lower population. Alternate immersion, anodic polarization, constant load, and slow strain tests were carried out to evaluate the general corrosion and stress-corrosion properties of autogenous and hybrid FSW prepared coupons. The experimental results will be discussed.

  6. Strain rate sensitivity of the flow stress in a Ti-Al alloy: Analysis of the anomalous strengthening effect

    SciTech Connect

    Morris, M.A.; Lipe, T. . Inst. of Structural Metallurgy)

    1994-09-15

    An analysis has been made of the mechanisms controlling the strain rate dependence of the flow stress as a function of temperature in a Ti-Al alloy, based on the dislocation configurations observed together with the activation volumes measured at each temperature. At low temperatures (20--200 C), the low values of activation volume measured and their independence on strain have confirmed that a Peierls lattice friction mechanism controls the mobility of screw segments of either ordinary or superdislocations. At the higher temperatures (500--700 C) a climbing process of ordinary 1/2<110> dislocation segments with variable length is responsible for the slightly strain dependent activation volumes measured. The strongly strain dependent activation volumes obtained between 400--450 C has confirmed that the mechanism responsible for the anomalous peak in flow stress is produced by a jog dragging process as an increased density of jogs is created with increasing temperature, due to the increasing number of forest cutting events between ordinary 1/2<110> dislocations.

  7. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  8. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    PubMed

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  9. Stress-corrosion crack-growth study of titanium alloy Ti-6Al-4V exposed to freon PCA and nitrogen tetroxide MON-1

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1983-01-01

    An experimental fracture mechanics program was performed to determine the stress corrosion crack growth sensitivity of the propellant tank material, titanium alloy Ti-6Al-4V, for aerospace satellite applications involving long term exposure to Freon PCA and nitrogen tetroxide MON-1. Sustained load tests were made at a 49 C (120 F) constant temperature using thin gauge tensile test specimens containing semielliptical surface flaws. Test specimen types included parent metal, center of weld, and weld heat affected zone. It was concluded that Ti-6Al-4V alloy is not adversely affected in a stress environment when exposed to Freon PCA for 1000 hours followed by exposure to nitrogen tetroxide MON-1 for 2000 hours at stress levels up to 80% of the experimental critical plane strain stress intensity factor.

  10. Assessment of microalloying effects on the high temperature fatigue behavior of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.; Rao, K. B. S.

    1995-01-01

    Binary NiAl suffers from a lack of strength and poor creep properties at and above 1000 K. Poor creep resistance in turn affects low cycle fatigue (LCF) lives at low strain ranges due to the additional interactions of creep damage. One approach for improving these properties involved microalloying with either Zr or N. As an integral part of a much larger alloying program the low cycle fatigue behavior of Zr and N doped nickel aluminides produced by extrusion of prealloyed powders has been investigated. Strain controlled LCF tests were performed in air at 1000 K. The influence of these microalloying additions on the fatigue life and cyclic stress response of polycrystalline NiAl are discussed.

  11. Stress Management Model for the Elementary/Middle/High School.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    The Matthews Stress Management formula is a stress management model for use in schools. This effective, practical, and inexpensive model entails the awareness of the physiology of stress, perception of tangible bases of motivation for children, appropriate and simplified techniques, applicability to other areas, and full recognition of the…

  12. Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Rout, Prasanta Kumar; Ghosh, M. M.; Ghosh, K. S.

    2015-07-01

    7xxx series Al-Zn-Mg-(Cu) alloys have higher strength in their peak-aged (T6) states compared with other age-hardenable aluminum alloys; however, the maximum strength peak-aged state is more susceptible to stress corrosion cracking (SCC) which leads to catastrophic failure. The over-aged (T7) temper with 10-15% lower strength has higher resistance to SCC requiring oversized structural aerospace component applications. The medium-strength AA7017 Al-Zn-Mg weldable alloy without Cu is also prone to SCC under certain environmental conditions. In the present investigation, the SCC behaviors of an AA7017 Al-Zn-Mg alloys of different tempers have been assessed. Specific aging schedules have been adapted to an AA7017 alloy to produce various tempers, e.g., under-, peak-(T6), over-(T7), and highly over-aged tempers. Artificial aging behavior of the AA7017 alloy has been characterized by hardness, electrical conductivity measurements, x-ray diffraction, differential scanning calorimetry, and electrochemical studies. Slow strain rate test technique was used to assess the SCC behaviors of the AA7017 alloys of under-, T6, T7, and highly over-aged tempers in 3.5 wt.% NaCl solution at free corrosion potential (FCP) and at applied anodic potential, as well. Results revealed that the AA7017 alloy tempers are not susceptible to SCC in 3.5 wt.% NaCl solution at FCP, but severely damaging to SCC at applied anodic potentials. Microstructural features, showing a non-recrystallized grain structure and the presence of discrete, widely spaced, not-interconnected η precipitates at the grain boundaries, are the contributive factors by virtue of which the alloy tempers at FCP did not exhibit SCC. However, the applied anodic potential resulted in rapid metal dissolution from the grain boundary region and led to SCC. The local anodic dissolution (LAD) is believed to be the associated SCC mechanism.

  13. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  14. Band gap bowing parameter in pseudomorphic Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structures

    SciTech Connect

    Goyal, Anshu; Kapoor, Ashok K.; Raman, R.; Dalal, Sandeep; Mohan, Premila; Muralidharan, R.

    2015-06-14

    A method for evaluation of aluminium composition in pseudomorphic Al{sub x}Ga{sub 1−x}N layer from the measured photoluminescence (PL) peak energy is presented here. The layers were grown by metalorganic chemical vapor deposition and characterized by high resolution X-ray diffraction (HRXRD), PL, cathodoluminescence, and atomic force microscopy. We estimated the value of biaxial stress in pseudomorphic Al{sub x}Ga{sub 1−x}N layers grown on sapphire and silicon carbide substrates using HRXRD scans. The effect of biaxial stress on the room temperature band edge luminescence in pseudomorphic Al{sub x}Ga{sub 1−x}N/GaN layers for various aluminium compositions in the range of 0.2 < x < 0.3 was determined. The value of pressure coefficient of band gap was also estimated. The stress corrected bowing parameter in Al{sub x}Ga{sub 1−x}N was determined as 0.50 ± 0.06 eV. Our values match well with the theoretically obtained value of bowing parameter from the density functional theory.

  15. The Voices of High School Counselors: Lived Experience of Job Stress

    ERIC Educational Resources Information Center

    Falls, Leigh; Nichter, Mary

    2007-01-01

    There is a paucity of literature addressing high school counselors' experiences of job stress. Our qualitative phenomenological study adds to the professions' knowledge of job stress as experienced by counselors in large suburban high schools. Our study illustrates the job stress phenomenon in the counselors' own voices, identifies situations…

  16. High-current AlInN/GaN field effect transistors

    NASA Astrophysics Data System (ADS)

    Dadgar, A.; Neuburger, M.; Schulze, F.; Bläsing, J.; Krtschil, A.; Daumiller, I.; Kunze, M.; Günther, K.-M.; Witte, H.; Diez, A.; Kohn, E.; Krost, A.

    2005-04-01

    We present a study on AlInN/GaN field effect transistors (FETs) grown by metalorganic chemical vapor phase epitaxy. AlInN can be grown lattice-matched to GaN with an In concentration of 18%. In this study samples with In concentrations ranging from 9.5 to 24%, covering a range from tensely to compressively strained AlInN layers, were grown on GaN layers on Si(111). From Hall effect and capacitance-voltage measurements we find high sheet carrier densities for most of the samples indicating a high electron density at the AlInN/GaN heterointerface. This is also reflected in the behavior of processed FETs. Nearly lattice-matched structures show sheet carrier densities of 3.2 × 1013 cm-2 and mobilities up to 406 cm2/Vs. Such Al0.84In0.16N FETs have maximum DC currents of 1.33 A/mm for devices with 1 µm gate length and 100 µm gate width and an output power of 2.5 W/mm at 2 GHz. The best devices with In concentrations of 19% show maximum output powers of 4.1 W/mm at 2 GHz. In contrast to that a compressively strained AlInN layer with an In concentration of 24% leads to a decreased polarization charge at the heterointerface and a low DC current of 70 mA/mm.

  17. Laser remelting of Ti6AL4V using high power diode laser

    NASA Astrophysics Data System (ADS)

    Amaya-Vázquez, M. R.; Sánchez-Amaya, J. M.; Boukha, Z.; El Amrani, K.; Botana, F. J.

    2012-04-01

    Titanium alloys present excellent mechanical and corrosion properties, being widely employed in different industries such as medical, aerospace, automotive, petrochemical, nuclear and power generation, etc. Ti6Al4V is the α-β alloy most employed in industry. The modification of its properties can be achieved with convectional heat treatments and/or with laser processing. Laser remelting (LR) is a technology applied to Ti6Al4V by other authors with excimer and Nd-Yag laser with pure argon shielding gas to prevent risk of oxidation. In the present contribution, laser remelting has been applied for the first time to Ti6Al4V with a high power diode laser (with pure argon as shielding gas). Results showed that remelted samples (with medium energy densities) have higher microhardness and better corrosion resistance than Ti6Al4V base metal.

  18. Trap states in AlGaN channel high-electron-mobility transistors

    SciTech Connect

    Zhao, ShengLei; Zhang, Kai; Ha, Wei; Chen, YongHe; Zhang, Peng; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2013-11-18

    Frequency dependent capacitance and conductance measurements were performed to analyze the trap states in the AlGaN channel high-electron-mobility transistors (HEMTs). The trap state density in the AlGaN channel HEMTs decreases from 1.26 × 10{sup 13} cm{sup −2}eV{sup −1} at the energy of 0.33 eV to 4.35 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.40 eV. Compared with GaN channel HEMTs, the trap states in the AlGaN channel HEMTs have deeper energy levels. The trap with deeper energy levels in the AlGaN channel HEMTs is another reason for the reduction of the reverse gate leakage current besides the higher Schottky barrier height.

  19. Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Tomabechi, Shuichi; Nakamura, Norikazu; Watanabe, Keiji

    2016-05-01

    We demonstrate the advantages of an AlGaN spacer layer in an InAlN high-electron-mobility transistor (HEMT). We investigated the effects of the growth parameters of the spacer layer on electron mobility in InAlN HEMTs grown by metalorganic vapor phase epitaxy, focusing on the surface roughness of the spacer layer and sharpness of the interface with the GaN channel layer. The electron mobility degraded, as evidenced by the formation of a graded AlGaN layer at the top of the GaN channel layer and the surface roughness of the AlN spacer layer. We believe that the short migration length of aluminum atoms is responsible for the observed degradation. An AlGaN spacer layer was employed to suppress the formation of the graded AlGaN layer and improve surface morphology. A high electron mobility of 1550 cm2 V-1 s-1 and a low sheet resistance of 211 Ω/sq were achieved for an InAlN HEMT with an AlGaN spacer layer.

  20. Cognitive appraisals in high- and low-stress mothers of adolescents with autism.

    PubMed

    Fong, P L

    1991-06-01

    The present study examined cognitive appraisals in 8 high-stress and 8 low-stress mothers of autistic adolescents. Subjects' cognitive appraisals, based on videotaped scenes of autistic adolescents engaged in everyday activities, were assessed. High-stress mothers reported more threatening appraisals than did low-stress mothers; low-stress mothers were more likely to reappraise threatening perceptions in benign terms. Furthermore, high-stress mothers reported greater negative emotional reactions to the scenes. Trends toward fewer resources and higher levels of maladaptive behaviors in the autistic adolescents of high-stress mothers were noted. The implications of these findings on stress in the day-to-day lives of mothers with autistic adolescents are discussed.

  1. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.

    PubMed

    Dymek, S; Wróbel, M; Witczak, Z; Blicharski, M

    2010-03-01

    An alloy with a chemical composition of Ti-45Al-5V (at.%) was synthesized by mechanical alloying in a Szegvari-type attritor from elemental powders of high purity. Before compaction, the powders were characterized by X-ray diffraction and scanning as well as transmission electron microscopy. The compaction of powders was carried out by hot isostatic pressing and hot isostatic extrusion. The resulting material was subjected to microstructural and mechanical characterization. The microstructure investigated by transmission and scanning electron microscopy supplemented by X-ray diffraction revealed that the bulk material was composed of a mixture of TiAl- and Ti(3)Al-based phases, however, the typical lamellar microstructure for such alloys was not observed. The materials exhibited exceptionally high yield strength together with satisfactory ductility and fracture toughness. The high strength was unequivocally due to grain refinement and the presence of oxide dispersoid. PMID:20500422

  2. Structural analysis of highly porous γ-Al{sub 2}O{sub 3}

    SciTech Connect

    Samain, Louise; Jaworski, Aleksander; Edén, Mattias; Ladd, Danielle M.; Seo, Dong-Kyun; Javier Garcia-Garcia, F.; Häussermann, Ulrich

    2014-09-15

    Two highly porous γ-aluminas, a commercial catalyst obtained from the calcination of boehmite and a highly mesoporous product obtained from amorphous aluminum (oxy)hydroxide via a sol–gel-based process were investigated by {sup 27}Al nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), and atomic pair distribution function (PDF) analysis of synchrotron powder diffraction data. NMR data showed for both materials a distribution of tetrahedrally and octahedrally coordinated Al at a 0.30:0.70 ratio, which is typical for γ-aluminas. TEM studies revealed that rod-shaped particles with about 5 nm in thickness are the building blocks of the porous structure in both materials. These particles often extend to a length of 50 nm in the commercial catalyst and are considerably shorter in the sol–gel-based material, which has a higher surface area. Refinement of PDFs revealed the presence of a ∼1 nm scale local structure and the validity of a tetragonal average structure for both materials. This tetragonal average structure contains a substantial fraction of non-spinel octahedral Al atoms. It is argued that the presence of local structure is a general feature of γ-alumina, independent of precursor and synthesis conditions. The concentration of “non-spinel” Al atoms seems to correlate with surface properties, and increases with increasing pore size/surface area. This should have implications to the catalytic properties of porous γ-alumina. - Graphical abstract: Boehmite-derived and sol–gel synthesized porous γ-Al{sub 2}O{sub 3} possess identical structural properties, featuring a nm scale local structure and a tetragonal average structure. - Highlights: • Porous γ-Al{sub 2}O{sub 3} generally possesses a nm-scale local structure. • The tetragonal average structure contains a substantial fraction of “non-spinel” Al atoms. • The concentration of “non-spinel” Al atoms correlates with surface properties.

  3. Electrical and structural degradation of GaN high electron mobility transistors under high-power and high-temperature Direct Current stress

    SciTech Connect

    Wu, Y. Alamo, J. A. del; Chen, C.-Y.

    2015-01-14

    We have stressed AlGaN/GaN HEMTs (High Electron Mobility Transistors) under high-power and high-temperature DC conditions that resulted in various levels of device degradation. Following electrical stress, we conducted a well-established three-step wet etching process to remove passivation, gate and ohmic contacts so that the device surface can be examined by SEM and AFM. We have found prominent pits and trenches that have formed under the gate edge on the drain side of the device. The width and depth of the pits under the gate edge correlate with the degree of drain current degradation. In addition, we also found visible erosion under the full extent of the gate. The depth of the eroded region averaged along the gate width under the gate correlated with channel resistance degradation. Both electrical and structural analysis results indicate that device degradation under high-power DC conditions is of a similar nature as in better understood high-voltage OFF-state conditions. The recognition of a unified degradation mechanism provides impetus to the development of a degradation model with lifetime predictive capabilities for a broad range of operating conditions spanning from OFF-state to ON-state.

  4. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    SciTech Connect

    Ťapajna, M. Kuzmík, J.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.

    2015-11-09

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼10{sup 5 }s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

  5. Unraveling the Origin of Structural Disorder in High Temperature Transition Al2O3: Structure of θ-Al2O3

    SciTech Connect

    Kovarik, Libor; Bowden, Mark E.; Shi, Dachuan; Washton, Nancy M.; Anderson, Amity; Hu, Jian Z.; Lee, Jaekyoung; Szanyi, Janos; Kwak, Ja Hun; Peden, Charles HF

    2015-09-22

    The crystallography of transition Al2O3 has been extensively studied in the past due to the advantageous properties of the oxide in catalytic and a range of other technological applications. However, existing crystallographic models are insufficient to describe the structure of many important Al2O3 polymorphs due to their highly disordered nature. In this work, we investigate structure and disorder in high-temperature treated transition Al2O3, and provide a structural description for θ-Al2O3 by using a suite of complementary imaging, spectroscopy and quantum calculation techniques. Contrary to current understanding, our high-resolution imaging shows that θ-Al2O3 is a disordered composite phase of at least two different end members. By correlating imaging and spectroscopy results with DFT calculations, we propose a model that describes θ-Al2O3 as a disordered intergrowth of two crystallographic variants at the unit cell level. One variant is based on β-Ga2O3, and the other on a monoclinic phase that is closely-related to δ-Al2O3. The overall findings and interpretations afford new insight into the origin of poor crystallinity in transition Al2O3, and also provide new perspectives on structural complexity that can emerge from intergrowth of closely related structural polymorphs.

  6. Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides.

    PubMed

    Chen, Chunping; Wangriya, Aunchana; Buffet, Jean-Charles; O'Hare, Dermot

    2015-10-01

    We report the synthesis of tuneable ultra high specific surface area Aqueous Miscible Organic solvent-Layered Double Hydroxides (AMO-LDHs). We have investigated the effects of different solvent dispersion volumes, dispersion times and the number of re-dispersion cycles specific surface area of AMO-LDHs. In particular, the effects of acetone dispersion on two different morphology AMO-LDHs (Mg3Al-CO3 AMO-LDH flowers and Mg3Al-CO3 AMO-LDH plates) was investigated. It was found that the amount of acetone used in the dispersion step process can significantly affect the specific surface area of Mg3Al-CO3 AMO-LDH flowers while the dispersion time in acetone is critical factor to obtain high specific surface area Mg3Al-CO3 AMO-LDH plates. Optimisation of the acetone washing steps enables Mg3Al-CO3 AMO-LDH to have high specific surface area up to 365 m(2) g(-1) for LDH flowers and 263 m(2) g(-1) for LDH plates. In addition, spray drying was found to be an effective and practical drying method to increase the specific surface area by a factor of 1.75. Our findings now form the basis of an effective general strategy to obtain ultrahigh specific surface area LDHs.

  7. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  8. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  9. Influence of high-temperature processing on the surface properties of bulk AlN substrates

    NASA Astrophysics Data System (ADS)

    Tojo, Shunsuke; Yamamoto, Reo; Tanaka, Ryohei; Thieu, Quang Tu; Togashi, Rie; Nagashima, Toru; Kinoshita, Toru; Dalmau, Rafael; Schlesser, Raoul; Murakami, Hisashi; Collazo, Ramón; Koukitu, Akinori; Monemar, Bo; Sitar, Zlatko; Kumagai, Yoshinao

    2016-07-01

    Deep-level luminescence at 3.3 eV related to the presence of Al vacancies (VAl) was observed in room temperature photoluminescence (RT-PL) spectra of homoepitaxial AlN layers grown at 1450 °C by hydride vapor-phase epitaxy (HVPE) and cooled to RT in a mixture of H2 and N2 with added NH3. However, this luminescence disappeared after removing the near surface layer of AlN by polishing. In addition, the deep-level luminescence was not observed when the post-growth cooling of AlN was conducted without NH3. Secondary ion mass spectrometry (SIMS) studies revealed that although the point defect density of the interior of the AlN layers remained low, the near surface layer cooled in the presence of NH3 was contaminated by Si impurities due to both suppression of the surface decomposition by the added NH3 and volatilization of Si by decomposition of the quartz reactor walls at high temperatures. The deep-level luminescence reappeared after the polished AlN wafers were heated in presence of NH3 at temperatures above 1400 °C. The surface contamination by Si is thought to generate VAl near the surface by lowering their formation energy due to the Fermi level effect, resulting in deep-level luminescence at 3.3 eV caused by the shallow donor (Si) to VAl transition.

  10. Static and kinetic friction of granite at high normal stress

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  11. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect

    Kalay, Yunus Eren

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  12. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    SciTech Connect

    Chang, Yu-Chi; Wang, Yeong-Her

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect of Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.

  13. -Based Mold Flux Used for High Al-TRIP Steel Casting

    NASA Astrophysics Data System (ADS)

    Zhao, Huan; Wang, Wanlin; Zhou, Lejun; Lu, Boxun; Kang, Youn-Bae

    2014-08-01

    An investigation was carried out to study the effect of MnO on crystallization, melting, and heat transfer of lime-alumina-based mold flux used for high Al-TRIP steel casting, through applying the infrared emitter technique (IET) and the double hot thermocouple technique (DHTT). The results of IET tests showed that MnO could improve the general heat transfer rate through promoting the melting and inhibiting the crystallization of mold flux; meanwhile the radiative heat flux was being attenuated. DHTT experiments indicated that the crystallization fraction, melting temperature of mold flux decreased with the addition of MnO. The results of this study can further elucidate the properties of the CaO-Al2O3 slag system and reinforce the basis for the application of lime-alumina system mold fluxes for casting high Al steels.

  14. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  15. Rhombohedral AlPt films formed by self-propagating, high temperature synthesis.

    SciTech Connect

    Adams, David Price; Rodriguez, Mark Andrew; Kotula, Paul Gabriel

    2005-11-01

    High-purity AlPt thin films prepared by self-propagating, high temperature combustion synthesis show evidence for a new rhombohedral phase. Sputter deposited Al/Pt multilayers of various designs are reacted at different rates in air and in vacuum, and each form a new trigonal/hexagonal aluminide phase with unit cell parameters a = 15.571(8) {angstrom}, c = 5.304(1) {angstrom}, space group R-3 (148), and Z, the number of formula units within a unit cell, = 39. The lattice is isostructural to that of the AlPd R-3 lattice as reported by Matkovic and Schubert (Matkovic, 1977). Reacted films have a random in-plane crystallographic texture, a modest out-of-plane (001) texture, and equiaxed grains with dimensions on the order of film thickness.

  16. High Glucose-Mediated Oxidative Stress Impairs Cell Migration

    PubMed Central

    Lamers, Marcelo L.; Almeida, Maíra E. S.; Vicente-Manzanares, Miguel; Horwitz, Alan F.; Santos, Marinilce F.

    2011-01-01

    Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients. PMID:21826213

  17. Investigation of trap states in Al2O3 InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhao, Sheng-Lei; Xue, Jun-Shuai; Zhu, Jie-Jie; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-12-01

    In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT (here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/InAlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas (2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the InAlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states. Project supported by the Program for National Natural Science Foundation of China (Grant Nos. 61404100 and 61306017).

  18. High temperature oxidation and corrosion behaviour of Ni/Ni-Co-Al composite coatings

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Balaraju, J. N.; Ravisankar, B.; Anandan, C.; William Grips, V. K.

    2012-12-01

    In the present study, Ni/Ni-Co-Al composite coatings were developed by a potentially simple, scalable, non-vacuum technique namely electrodeposition. These coatings were characterized for their microhardness, oxidation and hot corrosion behaviour. An increase in Co content in the matrix from 8 wt% to 70 wt% led to an increase in the Al particle incorporation from 12 wt% to 21 wt%. A change in the surface morphology of the coatings with variation in Co content was seen. The oxidation behaviour of the coatings was studied at temperatures in the range of 400 °C to 1000 °C. The influence of vacuum treatment on the high temperature behaviour of the coatings was also investigated. The intermetallic aluminide phase formation was observed in the temperature range of 600-800 °C and a homogenized structure was seen at 1000 °C. The oxidation rate in terms of weight gain was marginally lower for vacuum pretreated Nisbnd Al coating annealed at 1000 °C. A significant increase in the oxidation rate was exhibited by Ni-70Co-Al coating beyond 800 °C showing its poor oxidation behaviour. The characterization studies revealed the formation of stable alumina in the case of Nisbnd Al while, metastable alumina was observed in Ni-Co-Al coatings. The hot corrosion studies showed that Co rich Ni-Co-Al exhibited better resistance compared to Ni rich coatings. An optimum cobalt content of 30 wt% was desirable for high temperature oxidation and corrosion resistance.

  19. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  20. Fabrication of Highly-Oleophobic and Superhydrophobic Surfaces on Microtextured al Substrates

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Zhou, Jigen; Zheng, Dongmei; Wan, Yong; Li, Zhiwen

    2011-06-01

    Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120°, even with nitromethane (surface tension γ1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3° (152.7° for diethylene glycol, γ1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6° even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90°. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.

  1. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1984-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exits over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at % ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with prealloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  2. 76 FR 24541 - HighMark Capital Management, Inc., et al.,

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION HighMark Capital Management, Inc., et al., Notice of Application April 26, 2011. AGENCY: Securities and Exchange Commission (``Commission''). ACTION: Notice of application for an order...

  3. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  4. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  5. Effects of Low-Oxygen-Content Metalorganic Precursors on AlInAs and High Electron Mobility Transistor Structures with the Thick AlInAs Buffer Layer

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsuyoshi; Tokudome, Kohichi; Miyamoto, Yasuyuki

    2003-08-01

    We investigated the effects of low-oxygen-content metalorganic precursors on oxygen impurities and Hall mobility. The oxygen concentration in the AlInAs layer was less than 2× 1017 cm-3 under all growth conditions. We confirmed the high mobility of the AlInAs/InP high electron mobility transistors (HEMT) structure with the AlInAs buffer layer (5,500 cm2/V\\cdots at 300 K, and 110,000 cm2/V\\cdots at 77 K). For the AlInAs/GaInAs HEMT structure with the same buffer layer, we obtained the high mobility (12,000 cm2/V\\cdots at 300 K, and 92,000 cm2/V\\cdots at 77 K).

  6. High electron mobility in nearly lattice-matched AlInN /AlN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Xie, Jinqiao; Ni, Xianfeng; Wu, Mo; Leach, Jacob H.; Özgür, Ümit; Morkoç, Hadis

    2007-09-01

    High electron mobility was achieved in Al1-xInxN/AlN/GaN (x=0.20-0.12) heterostructure field effect transistors (HFETs) grown by metal-organic chemical vapor deposition. Reduction of In composition from 20% to 12% increased the room temperature equivalent two-dimensional-electron-gas density from 0.90×1013to1.64×1013cm-2 with corresponding electron mobilities of 1600 and 1410cm2/Vs, respectively. The 10K mobility reached 17600cm2/Vs for the nearly lattice-matched Al0.82In0.18N/AlN/GaN heterostructure with a sheet carrier density of 9.6×1012cm-2. For comparison, the AlInN /GaN heterostructure without the AlN spacer exhibited a high sheet carrier density (2.42×1013cm-2) with low mobility (120cm2/Vs) at room temperature. The high mobility in our samples is in part attributed to ˜1nm AlN spacer which significantly reduces the alloy scattering as well as provides a smooth interface. The HFETs having gate dimensions of 1.5×40μm2 and a 5μm source-drain separation exhibited a maximum transconductance of ˜200mS/mm with good pinch-off characteristics and over 10GHz current gain cutoff frequency.

  7. Evaluation of Perfluoropolyether Lubricant Lifetime in the High Stress and High Stress-Cycle Regime for Mars Applications

    NASA Technical Reports Server (NTRS)

    Herman, Jason; Davis, Kiel

    2008-01-01

    The successful operation of long-life, highly loaded mechanisms used for planetary exploration or autonomous structures assembly will depend upon the ability to effectively lubricate rolling-element bearings. As new tools are developed (i.e., drill, abraders, robotic manipulators, etc.) that interact with their environment in a more direct manner, lubricants will be pushed past the bounds that current scientific literature has published. This paper details results from bearing lubrication lifetime testing performed in support of Honeybee Robotics development of the Mars Science Laboratory (MSL) Surface Removal Tool (SRT). This testing was done due to the lack of available data in research literature that is applicable to the lubrication regime the SRT bearings are being designed for. Based on the test results, the chosen bearing arrangement can be used for the SRT Grind Shaft bearings with the use of a Braycote Micronic 601EF grease-plate with a 10 vol% grease slurry fill (50/50 wt% Braycote Micronic 601EF and Brayco 815Z). This arrangement showed no signs of detrimental degradation over the course of the 3x life test. The purely grease-plated bearing ran at a consistently higher torque and showed signs of failure beginning at approximately 2.2 x 10(exp 7) revs (approximately 6.3 x 10(exp 7) stress-cycles) with a torque over-limit failure at approximately 4.5 x 10(exp 7) revs (approximately 1.3 x 10(exp 8) stress-cycles). Barring cold-start torque margin limitations, it is recommended that any long-life bearing application include some vol% grease-pack in addition to a standard grease-plate to reduce parasitic torque and increase bearing life. While these results are specific to a particular environment and loading condition, they demonstrate the extended capabilities of a commonly used flight lubricant outside of the range that is published in current research literature.

  8. Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Wang, Linzhi; Tan, Sheng

    2016-07-01

    Selective laser melting (SLM)-fabricated AlSi10Mg parts were heat-treated under vacuum to eliminate the residual stress. Microstructure evolutions and tensile properties of the SLM-fabricated parts before and after vacuum annealing treatment were studied. The results show that the crystalline structure of SLM-fabricated AlSi10Mg part was not modified after the vacuum annealing treatment. Additionally, the grain refinement had occurred after the vacuum annealing treatment. Moreover, with increasing of the vacuum annealing time, the second phase increased and transformed to spheroidization and coarsening. The SLM-produced parts after vacuum annealing at 300∘C for 2 h had the maximum ultimate tensile strength (UTS), yield strength (YS) and elongation, while the elastic modulus decreased significantly. In addition, the tensile residual stress was found in the as-fabricated AlSi10Mg samples by the microindentation method.

  9. Control of stress and threading dislocation density in the thick GaN/AlN buffer layers grown on Si (111) substrates by low- temperature MBE

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Nechaev, D.; Kuznetsova, N.; Ratnikov, V.; Rouvimov, S.; Jmerik, V.; Ivanov, S.

    2016-08-01

    We report on successful growth by plasma-assisted molecular beam epitaxy on a Si(111) substrate crack-free GaN/AlN buffer layers with a thickness more than 1 μm. The layers fabricated at relatively low growth temperature of 780°C have at room temperature the residual compressive stress of -97 MPa. Intrinsic stress evolution during the GaN growth was monitored in situ with a multi-beam optical system. Strong dependence of a stress relaxation ratio in the growing layer vs growth temperature was observed. The best-quality crack-free layers with TDs density of ∼⃒109 cm-2 and roughly zero bowing were obtained in the sample with sharp 2D-GaN/2D-AlN interface.

  10. Cavity Optomechanics with High-Stress Silicon Nitride Films

    NASA Astrophysics Data System (ADS)

    Wilson, Dalziel Joseph

    There has been a barrage of interest in recent years to marry the fields of nanomechanics and quantum optics. Mechanical systems provide sensitive and scalable architectures for sensing applications ranging from atomic force microscopy to gravity wave interferometry. Optical resonators driven by low noise lasers provide a quiet and well-understood means to read-out and manipulate mechanical motion, by way of the radiation pressure force. Taken to an extreme, a device consisting of a high-Q nanomechanical oscillator coupled to a high-finesse optical cavity may enable ground-state preparation of the mechanical element, thus paving the way for a new class of quantum technology based on chip-scale phononic devices coupled to optical photons. By way of mutual coupling to the optical field, this architecture may enable coupling of single phonons to real or artificial atoms, an enticing prospect because of the vast "quantum optics toolbox" already developed for cavity quantum electrodynamics. The first step towards these goals --- ground-state cooling of the mechanical element in a "cavity optomechanical" system --- has very recently been realized in a cryogenic setup. The work presented in this thesis describes an effort to extend this capability to a room temperature apparatus, so that the usual panoply of table-top optical/atomic physics tools can be brought to bear. This requires a mechanical oscillator with exceptionally low dissipation, as well as careful attention to extraneous sources of noise in both the optical and mechanical componentry. Our particular system is based on a high- Q, high-stress silicon nitride membrane coupled to a high-finesse Fabry-Perot cavity. The purpose of this thesis is to record in detail the procedure for characterizing/modeling the physical properties of the membrane resonator, the optical cavity, and their mutual interaction, as well as extraneous sources of noise related to multimode thermal motion of the oscillator, thermal motion

  11. High-Stakes Testing and Its Relationship to Stress Levels of Coastal Secondary Teachers

    ERIC Educational Resources Information Center

    McDaniel, Sheneatha Lashelle Alexander

    2012-01-01

    The purpose of this research was to examine the relationship between high-stakes tests and stress with secondary teachers. Furthermore, this study investigated whether veteran teachers experience more stress than novice teachers and whether or not self-efficacy, gender, accountability status, and years of experience influence teacher stress as it…

  12. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  13. First results from the high-brightness x-ray spectroscopy beamline at ALS

    SciTech Connect

    Perera, R.C.C.; Ng, W.; Jones, G.

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  14. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  15. Solid state amorphization in the Al-Fe binary system during high energy milling

    SciTech Connect

    Urban, P. Montes, J. M.; Cintas, J.

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{sub 2}.

  16. Process for preparing high-transition-temperature superconductors in the Nb-Al-Ge system

    DOEpatents

    Giorgi, A.L.; Szklarz, E.G.

    1973-01-30

    The patent describes a process for preparing superconducting materials in the Nb-Al-Ge system having transition temperatures in excess of 19K. The process comprises premixing powdered constituents, pressing them into a plug, heating the plug to 1,450-1,800C for 30 minutes to an hour under vacuum or an inert atmosphere, and annealing at moderate temperatures for reasonably long times (approximately 50 hours). High transition-temperature superconductors, including those in the Nb3(Al,Ge) system, prepared in accordance with this process exhibit little degradation in the superconducting transition temperature on being ground to -200 mesh powder. (GRA)

  17. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature

    SciTech Connect

    Glaab, Johannes Ploch, Christian; Kelz, Rico; Stölmacker, Christoph; Lapeyrade, Mickael; Ploch, Neysha Lobo; Rass, Jens; Kolbe, Tim; Einfeldt, Sven; Weyers, Markus; Mehnke, Frank; Kuhn, Christian; Wernicke, Tim; Kneissl, Michael

    2015-09-07

    The degradation of the electrical and optical properties of (InAlGa)N-based multiple quantum well light emitting diodes (LEDs) emitting near 308 nm under different stress conditions has been studied. LEDs with different emission areas were operated at room temperature and at constant current densities of 75 A/cm{sup 2}, 150 A/cm{sup 2}, and 225 A/cm{sup 2}. In addition, the heat sink temperature was varied between 15 °C and 80 °C. Two main modes for the reduction of the optical power were found, which dominate at different times of operation: (1) Within the first 100 h, a fast drop of the optical power is observed scaling exponentially with the temperature and having an activation energy of about 0.13 eV. The drop in optical power is accompanied by changes of the current-voltage (I-V) characteristic. (2) For operation times beyond 100 h, the optical power decreases slowly which can be reasonably described by a square root time dependence. Here, the degradation rate depends on the current density, rather than the current. Again, the rate of optical power reduction of the second mode depends exponentially on the temperature with an activation energy of about 0.21 eV. The drop in the optical power is accompanied by an increased reverse-bias leakage current.

  18. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Fontserè, A.; Pérez-Tomás, A.; Placidi, M.; Llobet, J.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J. C.; Jennings, M. R.; Gammon, P. M.; Fisher, C. A.; Iglesias, V.; Porti, M.; Bayerl, A.; Lanza, M.; Nafría, M.

    2012-10-01

    AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50 nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.

  19. RuAl thin films on high-temperature piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Seifert, M.; Menzel, S. B.; Rane, G. K.; Hoffmann, M.; Gemming, T.

    2015-08-01

    The phase formation, structural and electrical properties of thin Ru-Al alloy films prepared on LGS (La3Ga5SiO14) and CTGS (Ca3TaGa3Si2O14) as well as on Si/SiO2(reference) substrates are analyzed for samples prepared at room temperature and after annealing for 10 h in high vacuum at 600 °C and 800 °C. The physical characterization reveals a strong dependence of the film quality on the chosen substrate. While the RuAl phase is clearly formed on the Si/SiO2 reference substrate, the phase is not stable on LGS and only weakly formed on CTGS due to a substrate decomposition effect and related Ga and O diffusion into the RuAl film.

  20. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors.

    PubMed

    Fontserè, A; Pérez-Tomás, A; Placidi, M; Llobet, J; Baron, N; Chenot, S; Cordier, Y; Moreno, J C; Jennings, M R; Gammon, P M; Fisher, C A; Iglesias, V; Porti, M; Bayerl, A; Lanza, M; Nafría, M

    2012-10-01

    AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50 nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.

  1. Prostate specific antigen detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Lele, T. P.; Tseng, Y.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-09-01

    Antibody-functionalized Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect prostate specific antigen (PSA). The PSA antibody was anchored to the gate area through the formation of carboxylate succinimdyl ester bonds with immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target PSA in a buffer at clinical concentrations was added to the antibody-immobilized surface. The authors could detect a wide range of concentrations from 10pg/mlto1μg/ml. The lowest detectable concentration was two orders of magnitude lower than the cutoff value of PSA measurements for clinical detection of prostate cancer. These results clearly demonstrate the promise of portable electronic biological sensors based on AlGaN /GaN HEMTs for PSA screening.

  2. High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures

    NASA Astrophysics Data System (ADS)

    Kakanakova-Georgieva, A.; Nilsson, D.; Janzén, E.

    2012-01-01

    We report on a growth of AlN at reduced temperatures of 1100 °C and 1200 °C in a horizontal-tube hot-wall metalorganic chemical vapor deposition reactor configured for operation at temperatures of up to 1500-1600 °C and using a joint delivery of precursors. We present a simple route—as viewed in the context of the elaborate multilayer growth approaches with pulsed ammonia supply—for the AlN growth process on SiC substrates at the reduced temperature of 1200 °C. The established growth conditions in conjunction with the particular in-situ intervening SiC substrate treatment are considered pertinent to the accomplishment of crystalline, relatively thin, ˜700 nm, single AlN layers of high-quality. The feedback is obtained from surface morphology, cathodoluminescence and secondary ion mass spectrometry characterization.

  3. Raman, photoluminescence and absorption studies on high quality AlN single crystals

    NASA Astrophysics Data System (ADS)

    Senawiratne, J.; Strassburg, M.; Dietz, N.; Haboeck, U.; Hoffmann, A.; Noveski, V.; Dalmau, R.; Schlesser, R.; Sitar, Z.

    2005-05-01

    High quality AlN single crystals grown by physical vapour transport and by sublimation of AlN powder were investigated by Raman, photoluminescence (PL) and absorption spectroscopy. Absorption edges of the AlN single crystals varying from 4.1 eV to 5.9 eV as determined by transmission measurements. Near band edge absorption, PL and glow discharge mass spectroscopy identified impurities such as oxygen, silicon, carbon, and boron that contribute to the absorption and emission bands below the bandgap. The absorption coefficients were derived from UV (6 eV) to FIR (60 meV) spectral range. The exact crystal orientation of the samples, and their low carrier density were confirmed by Raman spectroscopy.

  4. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    SciTech Connect

    Ji Hongjun; Li Mingyu Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-10-15

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au{sub 8}Al{sub 3} formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration.

  5. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  6. Mechanical Properties and High Temperature Oxidation Behavior of Ti-Al Coating Reinforced by Nitrides on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Dai, Jingjie; Yu, Huijun; Zhu, Jiyun; Weng, Fei; Chen, Chuanzhong

    2016-05-01

    Ti-Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti-6Al-4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800∘C for 1000h in static air was 5.16×10-3mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti-6Al-4V titanium alloy significantly.

  7. A high-temperature neutron diffraction study of Nb2AlC and TiNbAlC

    DOE PAGES

    Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; An, Ke; Barsoum, Michel W.; Caspi, El'ad N.

    2014-12-16

    In this paper, we report on the crystal structures of Nb2AlC and TiNbAlC actual composition (Ti0.45,Nb0.55)2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb2AlC sample in the a and c directions are, respectively, 7.9(5)x10-6 K-1 and 7.7(5)x10-6 K-1 on one neutron diffractometer and 7.3(3)x10-6 K-1 and 7.0(2)x10-6 K-1 on a second diffractometer. The respective values for the (Ti0.45,Nb0.55)2AlC composition - only tested on one diffractometer - are 8.5(3)x10-6 K-1 and 7.5(5)x10-6 K-1. These values are relatively low compared to other MAX phases. Like othermore » MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less

  8. Chronic Psychological Stress Enhances Nociceptive Processing in the Urinary Bladder in High-Anxiety Rats

    PubMed Central

    Robbins, M.T.; DeBerry, J.; Ness, T.J.

    2007-01-01

    This study sought to determine whether acute and/or chronic psychological stress produce changes in urinary bladder nociception. Female Sprague-Dawley (SD; low/moderate anxiety) or Wistar-Kyoto (WK; high-anxiety) rats were exposed to either an acute (1 day) or a chronic (10 days) water avoidance stress paradigm or a sham stress paradigm. Paw withdrawal thresholds to mechanical and thermal stimuli and fecal pellet output, were quantified at baseline and after the final stress or sham stress exposure. Rats were then sedated, and visceromotor responses (VMRs) to urinary bladder distension (UBD) were recorded. While acute stress exposure did not significantly alter bladder nociceptive responses in either strain of rats, WK rats exposed to a chronic stress paradigm exhibited enhanced responses to UBD. These high-anxiety rats also exhibited somatic analgesia following acute, but not chronic, stress. Furthermore, WK rats had greater fecal pellet output than SD rats when stressed. Significant stress-induced changes in nociceptive responses to mechanical stimuli were observed in SD rats. That chronic psychological stress significantly enhanced bladder nociceptive responses only in high-anxiety rats provides further support for a critical role of genetics, stress and anxiety as exacerbating factors in painful urogenital disorders such as interstitial cystitis (IC). PMID:17521683

  9. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  10. High-precision mass measurements of 25Al and 30P at JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Canete, L.; Kankainen, A.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Koponen, J.; Moore, I. D.; Reinikainen, J.; Rinta-Antila, S.

    2016-05-01

    The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( Δ = -8915.962(63) keV) and 30P ( Δ = -20200.854(64) keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but ≈ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al ( p, γ)26Si and 30P( p, γ)31S . In this work, Q_{(p,γ)} = 5513.99(13) keV and Q_{(p,γ)} = 6130.64(24) keV were obtained for 25Al and 30P , respectively. The effect of the more precise values on the resonant proton-capture rates has been studied. In addition to nuclear astrophysics, the measured QEC value of 25Al , 4276.805(45) keV, is relevant for studies of T = 1/2 mirror beta decays which have a potential to be used to test the Conserved Vector Current hypothesis.

  11. A Highly Sensitive ESIPT-Based Ratiometric Fluorescence Sensor for Selective Detection of Al(3.).

    PubMed

    Sinha, Sanghamitra; Chowdhury, Bijit; Ghosh, Pradyut

    2016-09-19

    An excited-state intramolecular proton transfer (ESIPT)-based highly sensitive ratiometric fluorescence sensor, 1H was developed for selective detection of aluminum (Al(3+)) in acetonitrile as well as in 90% aqueous system. Single-crystal X-ray diffraction analysis reveals almost planar and conjugated structure of 1H. Photophysical properties of the sensor as well as its selectivity toward Al(3+) are explored using UV-visible, steady-state, and time-resolved fluorescence spectroscopic studies. The bright cyan (λem = 445 nm) fluorescence of 1H in acetonitrile turns into deep blue (λem = 412 nm) with ∼2.3-fold enhancement in emission intensity, in the presence of parts per billion level Al(3+) (detection limit = 0.5 nM). Interestingly, the probe 1H exhibits increased selectivity toward Al(3+) in H2O/acetonitrile (9:1 v/v) solvent system with a change in fluorescence color from pale green to deep blue associated with ca. sixfold enhancement in emission intensity. Density functional theoretical (DFT) calculations provide the ground- and excited-state energy optimized structures and properties of the proposed aluminum complex [Al(1) (OH)]2(2+), which is in harmony with the solution-state experimental findings and also supports the occurrence of ESIPT process in 1H. The ESIPT mechanism was also ascertained by comparing the basic photophysical properties of 1H with a similar O-methylated analogue, 1'Me. PMID:27571218

  12. Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community.

    PubMed

    Martins, Mónica; Taborda, Rita; Silva, Gonçalo; Assunção, Ana; Matos, António Pedro; Costa, Maria Clara

    2012-09-01

    A highly Al-resistant dissimilatory sulphate-reducing bacteria community was isolated from sludge of the wetland of Urgeiriça mine (community W). This community showed excellent sulphate removal at the presence of Al³⁺. After 27 days of incubation, 73, 86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. Moreover, Al³⁺ was simultaneously removed: 55, 85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. The dissociation of aluminium-lactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.

  13. High Purity Germanium Detectors and Angular Distribution of 2Al(p,g)28Si

    NASA Astrophysics Data System (ADS)

    Wilson, Andre

    2014-09-01

    The purpose of this research was to study high purity germanium detector systems, and to calculate and compare absorption ratios of 27Al(p,g)28Si. Work with the germanium detector online array for gamma ray spectroscopy in nuclear astrophysics in the Nuclear Science Laboratory at the University of Notre Dame, also known as Georgina, including energy calibrations and work with software and hardware logic, provided the necessary background and experience with high purity germanium detectors and angular distribution of gamma rays. The knowledge taken from work with the Georgina detectors was then applied to the analysis of 27Al(p,g)28Si. Previous experimental data of 27Al(p,g)28Si was analyzed using the Ep = 1778.9 keV resonance. The data used was taken from a 2010 experiment completed in the Nuclear Science Laboratory at the University of Notre Dame using the 4MV KN particle accelerator. A 1977 paper by A. Anttila and J. Keinonen with analysis of the same reaction using the Ep = 992 keV resonance was used for the energy calibration and gamma energies. Peak fitting and background reduction of the spectra were completed using analysis software, jtek. Angular distribution ratios from a 56Co source were used for the normalization of the 27Al data. Angular dependent absorption factors were used to analyze the angular distribution of γ-rays from the 27Al beam target. With these absorption factors, relative gamma intensity measurements of 27Al(p,g)28Si were calculated.

  14. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  15. Faceted growth of primary Al{sub 2}Cu crystals during directional solidification in high magnetic field

    SciTech Connect

    Li, Chuanjun; Ren, Zhongming; Shen, Yu; Wang, Qiuliang; Dai, Yinming; Wang, Hui

    2013-10-21

    The high magnetic field is widely used to modify the crystal morphology. In this work, the effect of the magnetic field on growing behavior of faceted crystals in the Al-40 wt. %Cu alloy was investigated using directional solidification technique. It was found that the faceted growth of primary Al{sub 2}Cu phase was degraded and the primary spacing was reduced upon applying the magnetic field. Additionally, the length of the mushy zone first decreased and then increased with increase of the magnetic field intensity. The quantitative analysis reveals that the shear stress induced by the fluid motion is insufficient to break the atom bonds at the solid-liquid interface. However, both of the thermoelectric magnetic convection (TEMC) and the thermoelectric magnetic force (TEMF) cause dendrites to fracture and reduce the primary spacing. The two effects also weaken the faceting growth. Moreover, the instability of the solid-liquid interface is generated by the TEMF, which further leads to degrade the faceted growth. The length of mushy zone was changed by the TEMC and reached the minimum in the magnetic field of 0.5 T, which is in good agreement with the predicted value (0.83 T)

  16. High-brightness beamline for x-ray spectroscopy at the ALS

    SciTech Connect

    Perera, R.C.C.; Jones, G.; Lindle, D.W.

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  17. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  18. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  19. High temperature behavior of nanostructured Al powders obtained by mechanical alloying under NH3 flow

    NASA Astrophysics Data System (ADS)

    Caballero, E. S.; Cintas, J.; Cuevas, F. G.; Montes, J. M.; Herrera-García, M.

    2015-03-01

    Aluminium powder was mechanically alloyed under ammonia gas flow for different times (1-5 h) in order to produce a second-phase reinforcement, mainly by aluminium nitride (AlN). After milling, powders were consolidated by cold uniaxial pressing and vacuum sintering. A small amount of copper powder was added to the Al milled powder to improve its sintering behavior. Hardness and indirect tensile test were carried out at room and high temperature to evaluate the mechanical properties evolution. Results showed an remarkable hardness increase with the second phases content, even at high temperature (up to 229 HB at 400 °C). However, the high content of second phases of ceramic nature decreases the ductility, resulting in low values of tensile strength (lower than 160 MPa).

  20. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  1. High Sensitivity Stress Sensor Based on Hybrid Materials

    NASA Technical Reports Server (NTRS)

    Cao, Xian-An (Inventor)

    2014-01-01

    A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.

  2. Induction of engineered residual stresses fields and enhancement of fatigue life of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.

    2013-02-01

    Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

  3. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  4. Polysynthetic twinned TiAl single crystals for high-temperature applications.

    PubMed

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C T

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace. PMID:27322822

  5. AlN/GaN high electron mobility transistors on sapphire substrates for Ka band applications

    NASA Astrophysics Data System (ADS)

    Xubo, Song; Yuanjie, Lü; Guodong, Gu; Yuangang, Wang; Xin, Tan; Xingye, Zhou; Shaobo, Dun; Peng, Xu; Jiayun, Yin; Bihua, Wei; Zhihong, Feng; Shujun, Cai

    2016-04-01

    We report the DC and RF characteristics of AlN/GaN high electron mobility transistors (HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 mS/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 mW/mm has been demonstrated at a drain bias of 10 V. To the authors' best knowledge, this is the earliest demonstration of power density at the Ka band for AlN/GaN HEMTs in the domestic, and also a high frequency of load-pull measurements for AlN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 61306113).

  6. Polysynthetic twinned TiAl single crystals for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C. T.

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

  7. Polysynthetic twinned TiAl single crystals for high-temperature applications.

    PubMed

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C T

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

  8. Twin Roll Casting of Al-Mg Alloy with High Added Impurity Content

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Hari Babu, N.; Scamans, G. M.; Fan, Z.; O'Reilly, K. A. Q.

    2014-06-01

    The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) "floating" grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications.

  9. Constitutive Equations and ANN Approach to Predict the Flow Stress of Ti-6Al-4V Alloy Based on ABI Tests

    NASA Astrophysics Data System (ADS)

    Wang, Fuzeng; Zhao, Jun; Zhu, Ningbo

    2016-09-01

    The flow behavior of Ti-6Al-4V alloy was studied by automated ball indentation (ABI) tests in a wide range of temperatures (293, 493, 693, and 873 K) and strain rates (10-6, 10-5, and 10-4 s-1). Based on the experimental true stress-plastic strain data derived from the ABI tests, the Johnson-Cook (JC), Khan-Huang-Liang (KHL) and modified Zerilli-Armstrong (ZA) constitutive models, as well as artificial neural network (ANN) methods, were employed to predict the flow behavior of Ti-6Al-4V. A comparative study was made on the reliability of the four models, and their predictability was evaluated in terms of correlation coefficient (R) and mean absolute percentage error. It is found that the flow stresses of Ti-6Al-4V alloy are more sensitive to temperature than strain rate under current experimental conditions. The predicted flow stresses obtained from JC model and KHL model show much better agreement with the experimental results than modified ZA model. Moreover, the ANN model is much more efficient and shows a higher accuracy in predicting the flow behavior of Ti-6Al-4V alloy than the constitutive equations.

  10. Chinese high school students' academic stress and depressive symptoms: gender and school climate as moderators.

    PubMed

    Liu, Yangyang; Lu, Zuhong

    2012-10-01

    In a sample of 368 Chinese high school students, the present study examined the different effects of Chinese high school students' academic stress on their depressive symptoms and the moderating effects of gender and students' perceptions of school climate on the relationships between their academic stress and depressive symptoms. Regression mixture model identified two different kinds of subgroups in the effects of students' academic stress on their depressive symptoms. One subgroup contained 90% of the students. In this subgroup, the students' perceptions of academic stress from lack of achievement positively predicted their depressive symptoms. For the other 10% of the students, academic stress did not significantly predict their depressive symptoms. Next, multinomial regression analysis revealed that girls or students who had high levels of achievement orientation were more likely to be in the first subgroup. The findings suggested that gender and students' perceptions of school climate could moderate the relationships between Chinese high school students' academic stress and their depressive symptoms.

  11. Petrogenesis of the Northwest Africa 4898 high-Al mare basalt

    NASA Astrophysics Data System (ADS)

    Li, Shaolin; Hsu, Weibiao; Guan, Yunbin; Wang, Linyan; Wang, Ying

    2016-07-01

    Northwest Africa (NWA) 4898 is the only low-Ti, high-Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12-62Fs25-62Wo11-36), which display a continuous trend from Mg-rich cores toward Ca-rich mantles and then to Fe-rich rims. Plagioclase has relatively restricted compositions (An87-96Or0-1Ab4-13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high-Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high-Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high-Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed-system fractional crystallization.

  12. High resolution electron microscopy study of a high Cu variant of Weldalite (tm) 049 and a high strength Al-Cu-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.

  13. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  14. Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction

    NASA Astrophysics Data System (ADS)

    Mori, Kazuki; Takeda, Kunihiro; Kusafuka, Toshiki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi

    2016-05-01

    We investigated a V-based electrode for the realization of low ohmic-contact resistivity in n-type AlGaN with a high AlN molar fraction characterized by the circular transmission line model. The contact resistivity of n-type Al0.62Ga0.38N prepared using the V/Al/Ni/Au electrode reached 1.13 × 10-6 Ω cm2. Using this electrode, we also demonstrated the fabrication of UV light-emitting diodes (LEDs) with an emission wavelength of approximately 300 nm. An operating voltage of LED prepared using a V/Al/Ni/Au electrode was 1.6 V lower at 100 mA current injection than that prepared using a Ti/Al/Ti/Au electrode, with a specific contact resistance of approximately 2.36 × 10-4 Ω cm2 for n-type Al0.62Ga0.38N.

  15. Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction

    NASA Astrophysics Data System (ADS)

    Mori, Kazuki; Takeda, Kunihiro; Kusafuka, Toshiki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi

    2016-05-01

    We investigated a V-based electrode for the realization of low ohmic-contact resistivity in n-type AlGaN with a high AlN molar fraction characterized by the circular transmission line model. The contact resistivity of n-type Al0.62Ga0.38N prepared using the V/Al/Ni/Au electrode reached 1.13 × 10‑6 Ω cm2. Using this electrode, we also demonstrated the fabrication of UV light-emitting diodes (LEDs) with an emission wavelength of approximately 300 nm. An operating voltage of LED prepared using a V/Al/Ni/Au electrode was 1.6 V lower at 100 mA current injection than that prepared using a Ti/Al/Ti/Au electrode, with a specific contact resistance of approximately 2.36 × 10‑4 Ω cm2 for n-type Al0.62Ga0.38N.

  16. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  17. Double recessed AlInAs/GaInAs/InP HEMTs with high breakdown voltages

    SciTech Connect

    Hur, K.Y.; McTaggart, R.A.; LeBlanc, B.W.

    1995-12-31

    A double recessed T-gate process has been successfully utilized to increase gate-to-drain breakdown voltages of double pulse doped AlInAs/GaInAs/InP HEMTs. By varying lateral channel dimensions, breakdown voltages in the range 11-19 V can be tailored with maximum channel currents in the range 450-600 mA/mm. This combination of high breakdown voltages and high channel currents indicate that the double recess process is a promising approach for high power applications.

  18. Microstructural changes during high temperature deformation of an Al-Li(8090) alloy

    SciTech Connect

    Eddahbi, M.; Carreno, F.; Ruano, O.A.

    1998-05-05

    In this work, the high temperature tensile behavior of an aluminum-lithium (8090) alloy is studied at various strain rates and temperatures. In particular, special attention was paid to the oscillations observed in the true stress versus strain curves at high strain rate, 0.8 s{sup {minus}1}, and high temperatures in excess of 380 C (> 0.57 T{sub m}, where T{sub m} is the melting temperature). The changes in the microstructure were analyzed and correlated to the flow curves of the deformed samples.

  19. Stress corrosion cracking of several high strength ferrous and nickel alloys

    NASA Technical Reports Server (NTRS)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  20. In situ stress heterogeneity induced by weak natural fractures and faults with high slip-tendency

    NASA Astrophysics Data System (ADS)

    Chang, Chandong

    2014-05-01

    In situ stress measurements typically conducted using several geotechnical methods (hydraulic fracturing and overcoring) often show quite scattered and inconsistent stress magnitudes. Would they be artifacts from test errors or genuine stress signals in the crust? I report two field examples of stress measurements, in which lateral stresses represented by maximum (SHmax) and minimum (Shmin) horizontal principal stresses scatter quite widely, to investigate the cause of the observed stress heterogeneity. Hydraulic fracturing stress measurements were conducted in vertical boreholes at two different locations in South Korea. The boreholes are 300 and 400 m deep, respectively, both penetrating granites. Several isolated intervals of intact rocks over depths in the boreholes were vertically fractured by injecting water. Magnitudes of Shmin were determined from shut-in pressures. Magnitudes of SHmax were estimated based on the Hubbert-Willis (1957) equation using reliably determined hydraulic fracturing tensile strengths. The stress states in both locations are in reverse faulting stress regimes, in which vertical stress (Sv) is the least principal stress. The magnitudes of SHmax are generally within or close to stress range limited by frictional coefficients of 0.6-1.0 of nearby faults. However, SHmax do not increase consistently with depth, but rather scatter quite significantly. Over only a few tens of meter depth interval, the SHmax magnitudes jump up and down by an order of ~10 MPa, often resulting in lower SHmax values at deeper depths. Near the depths of relatively low stress, natural fractures and faults with wide apertures (for instance, wider than ~10 mm, observed from borehole image logs) are abundant, and near those of relatively high stress, those wide discontinuities are scarce. Such wide discontinuities are inferred to be filled with weak gouges or rock fragments, and thus tend to have relatively low frictional coefficients. In particular, the wide

  1. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Gömze, L. A.; Gömze, L. N.; Egész, Á.; Ojima, F.

    2013-12-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2-3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation.

  2. Compressibility anomaly in the superconducting material Nb3Al under high pressure

    NASA Astrophysics Data System (ADS)

    Yu, Z. H.; Li, C. Y.; Liu, H. Z.

    2012-09-01

    Nb3Al, which is widely used in high field magnets, was studied under a range of pressures up to 39.5 GPa using diamond anvil cell. The Nb3Al superconductor is structurally stable up to the highest pressure of the present investigation from previous reports. However, an anomaly of the compressibility beyond 19.2 GPa was detected in the pressure versus volume plot. The curve of volume versus pressure shows the existence of a plateau around 18.0 GPa as seen in several other highly correlated electrons systems, The observed pressure-induced isostructural phase transition was accomplished with a volume inclination without any symmetrical change (space group, Wyckoff position). The physical mechanism behind this isostructural phase transition is the interesting issue for further studies.

  3. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    PubMed

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  4. New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer

    NASA Astrophysics Data System (ADS)

    Yuan, Song; Duan, Baoxing; Yuan, Xiaoning; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-05-01

    In this letter, a new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with the AlGaN layer is partial etched is reported for the first time. The two-dimensional electron gas (2DEG) density in the HEMTs is changed by partially etching the AlGaN layer. A new electric field peak is introduced along the interface between the AlGaN layer and the GaN buffer by the electric field modulation effect. The high electric field near the gate in the proposed Al0.25Ga0.75N/GaN HEMT is effectively decreased, which makes the surface electric field more uniform. Compared with the conventional structure, the breakdown voltage can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMT and the current collapse can be reduced resulting from the more uniform surface electric field.

  5. Step buffer layer of Al0.25Ga0.75N/Al0.08Ga0.92N on P-InAlN gate normally-off high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.

    2016-07-01

    Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.

  6. Step buffer layer of Al0.25Ga0.75N/Al0.08Ga0.92N on P-InAlN gate normally-off high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.

    2016-07-01

    Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm‑1). At a drain bias of 15 V, the current density reached 263 mA mm‑1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.

  7. Effect of geometrical stress concentrators on the current-induced suppression of the serrated deformation in an aluminum-magnesium AlMg5 alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.; Kochegarov, S. S.

    2016-05-01

    The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum-magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin-Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.

  8. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    NASA Technical Reports Server (NTRS)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  9. Investigation of trap states under Schottky contact in GaN/AlGaN/AlN/GaN high electron mobility transistors

    SciTech Connect

    Ma, Xiao-Hua E-mail: yhao@xidian.edu.cn; Chen, Wei-Wei; Hou, Bin; Zhu, Jie-Jie; Zhang, Kai; Zhang, Jin-Cheng; Zheng, Xue-Feng; Hao, Yue E-mail: yhao@xidian.edu.cn

    2014-03-03

    Forward gate-bias stress experiments are performed to investigate the variation of trap states under Schottky contact in GaN-based high electron mobility transistors. Traps with activation energy E{sub T} ranging from 0.22 eV to 0.31 eV are detected at the gate-semiconductor interface by dynamic conductance technique. Trap density decreases prominently after stressing, particularly for traps with E{sub T} > 0.24 eV. X-ray photoelectron spectroscopy measurements reveal a weaker Ga-O peak on the stressed semiconductor surface. It is postulated that oxygen is stripped by Ni to form NiO upon electrical stress, contributing to the decrease in O{sub N} donor sates under the gate contact.

  10. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures

    SciTech Connect

    Dabiran, A. M.; Wowchak, A. M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Chow, P. P.; Look, D. C.

    2008-08-25

    Low defect AlN/GaN high electron mobility transistor (HEMT) structures, with very high values of electron mobility (>1800 cm{sup 2}/V s) and sheet charge density (>3x10{sup 13} cm{sup -2}), were grown by rf plasma-assisted molecular beam epitaxy (MBE) on sapphire and SiC, resulting in sheet resistivity values down to {approx}100 {omega}/{open_square} at room temperature. Fabricated 1.2 {mu}m gate devices showed excellent current-voltage characteristics, including a zero gate saturation current density of {approx}1.3 A/mm and a peak transconductance of {approx}260 mS/mm. Here, an all MBE growth of optimized AlN/GaN HEMT structures plus the results of thin-film characterizations and device measurements are presented.

  11. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  12. Ultrafast bulk diffusion of AlHx in high-entropy dehydrogenation intermediates of NaAlH4 [Highly mobile AlHx species and the dehydogenation kinetics of NaAlH4

    SciTech Connect

    Zhang, Feng; Wood, Brandon C.; Wang, Yan; Wang, Cai -Zhuang; Ho, Kai -Ming; Chou, Mei -Yin

    2014-07-21

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediate transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Lastly, our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.

  13. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  14. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  15. XRD and XAS structural study of CuAlO2 under high pressure

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Ferrer-Roca, Ch; Polian, A.; Munsch, P.; Kim, D.

    2013-03-01

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  16. XRD and XAS structural study of CuAlO2 under high pressure.

    PubMed

    Pellicer-Porres, J; Segura, A; Ferrer-Roca, Ch; Polian, A; Munsch, P; Kim, D

    2013-03-20

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites. PMID:23423689

  17. Parenting stress and parent support among mothers with high and low education.

    PubMed

    Parkes, Alison; Sweeting, Helen; Wight, Daniel

    2015-12-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers' migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed. PMID:26192130

  18. Parenting stress and parent support among mothers with high and low education.

    PubMed

    Parkes, Alison; Sweeting, Helen; Wight, Daniel

    2015-12-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers' migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed.

  19. A Study Concerning Stress among High School Students in Selected Rural Schools.

    ERIC Educational Resources Information Center

    Peach, Larry

    This study identifies stressful events in the lives of high school students in a rural region of Tennessee. Questionnaires were completed by 240 high school students (144 female and 96 male). The questionnaires included 19 statements to which the participants were to respond concerning their belief about the stressfulness of the situation…

  20. Parenting Stress and Parent Support Among Mothers With High and Low Education

    PubMed Central

    2015-01-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers’ migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed. PMID:26192130

  1. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the

  2. Acceleration of degradation by highly accelerated stress test and air-included highly accelerated stress test in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Tanahashi, Tadanori; Doi, Takuya; Masuda, Atsushi

    2016-02-01

    We examined the effects of hyper-hygrothermal stresses with or without air on the degradation of crystalline silicon (c-Si) photovoltaic (PV) modules, to shorten the required duration of a conventional hygrothermal-stress test [i.e., the “damp heat (DH) stress test”, which is conducted at 85 °C/85% relative humidity for 1,000 h]. Interestingly, the encapsulant within a PV module becomes discolored under the air-included hygrothermal conditions achieved using DH stress test equipment and an air-included highly accelerated stress test (air-HAST) apparatus, but not under the air-excluded hygrothermal conditions realized using a highly accelerated stress test (HAST) machine. In contrast, the reduction in the output power of the PV module is accelerated irrespective of air inclusion in hyper-hygrothermal test atmosphere. From these findings, we conclude that the required duration of the DH stress test will at least be significantly shortened using air-HAST, but not HAST.

  3. Families OverComing under Stress (FOCUS) for Early Childhood: Building Resilience for Young Children in High Stress Families

    ERIC Educational Resources Information Center

    Mogil, Catherine; Paley, Blair; Doud, Tricia; Havens, Linda; Moore-Tyson, Jessica; Beardslee, William R.; Lester, Patricia

    2010-01-01

    Parental distress and trauma affects the entire family, including the youngest children. Families OverComing Under Stress (FOCUS) is a targeted prevention program for high-risk families that aims to enhance family cohesion, support the parent-child relationship, and build emotional regulation, communication, and problem-solving skills across the…

  4. Stress

    MedlinePlus

    ... hurt or killed. Examples include a major accident, war, assault, or a natural disaster. This type of ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  5. Transverse vibrations of embedded nanowires under axial compression with high-order surface stress effects

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Pang, M.; Chen, W. Q.

    2015-02-01

    Implementing the high-order surface stress model into the Bernoulli-Euler beam theory, the transverse vibration of an axially compressed nanowire embedded in elastic medium is investigated. Closed-form expression is obtained for the natural frequency of a simply supported nanowire. The influences of compressive axial load, high-order surface stress and surrounding elastic medium on the natural frequency are discussed. Additionally, the analytical solution of axial buckling load for the simply supported nanowire is derived, which takes into account the effects of high-order surface stress and surrounding elastic medium. It is concluded from numerical results that the natural frequency of transverse vibration of the nanowire is dependent upon axial load, surrounding elastic medium, and high-order surface stress. Similarly, the dependences of the buckling load on surrounding elastic medium and high-order surface stress are significant.

  6. Sensitivity of on-resistance and threshold voltage to buffer-related deep level defects in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew M.; Allerman, Andrew A.; Baca, Albert G.; Sanchez, Carlos A.

    2013-07-01

    The influence of deep levels defects located in highly resistive GaN:C buffers on the on-resistance (RON) and threshold voltage (Vth) of AlGaN/GaN high electron mobility transistors (HEMTs) power devices was studied by a combined photocapacitance deep level optical spectroscopy (C-DLOS) and photoconductance deep level optical spectroscopy (G-DLOS) methodology as a function of electrical stress. Two carbon-related deep levels at 1.8 and 2.85 eV below the conduction band energy minimum were identified from C-DLOS measurements under the gate electrode. It was found that buffer-related defects under the gate shifted Vth positively by approximately 10%, corresponding to a net areal density of occupied defects of 8 × 1012 cm-2. The effect of on-state drain stress and off-state gate stress on buffer deep level occupancy and RON was also investigated via G-DLOS. It was found that the same carbon-related deep levels observed under the gate were also active in the access region. Off-state gate stress produced significantly more trapping and degradation of RON (˜140%) compared to on-state drain stress (˜75%). Greater sensitivity of RON to gate stress was explained by a more sharply peaked lateral distribution of occupied deep levels between the gate and drain compared to drain stress. The overall greater sensitivity of RON compared to Vth to buffer defects suggests that electron trapping is significantly greater in the access region compared to under the gate, likely due to the larger electric fields in the latter region.

  7. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  8. Evidence for a lower crustal origin of high-Al orthopyroxene megacrysts in Proterozoic anorthosites

    SciTech Connect

    Wiebe, R.A.

    1985-01-01

    Nodules and xenocrysts dominated by high-Al orthopyroxene (HAO) occur in strongly chilled Proterozoic basaltic dikes which cut the Nain anorthosite complex, Labrador. HAO (En 73-68, Al/sub 2/O/sub 3/ = 6.5-4.5) lacks exsolution; it occurs both as anhedral xenocrysts up to 10 cm in diameter and with euhedral plagioclase (An55) in ophitic nodules. Rarely, olivine occurs with HAO and Al-spinel with plagioclase. Scarce Fe-rich nodules contain: (1) opx + pig, (2) aug + pig, and (3) coarsely exsolved ulvospinel. Pyroxene pairs yield T's of 1250 to 1170/degree/C, whereas coexisting lamellae in exsolved ulvospinel yield T's between 1145 and 1120/degree/C, with fO/sub 2/ near the WM buffer. If all nodules came from a similar depth, the rare occurrence of olivine with plagioclase suggests a maximum pressure of about 11 kb. The high subsolidus T's of the nodules contrasts with the low T of the host anorthosites at the time of dike emplacement and hence indicates a deep source for the nodules. HAO is nearly identical in composition to the high-Al orthopyroxene megacrysts with exsolved plagioclase (HAOM) found in most Proterozoic anorthosites. Many nodules of plagioclase and HAO also have textures comparable to ophitic occurrences of HAOM in anorthosite. Rafting of cotectic nodules from the lower crust could explain occurrences of HAOM in shallow-level anorthosites. The nodules and xenocrysts are samples of lower crustal cumulates. Their compositions suggest that they were produced by magmas similar to those that were parental to the anorthosites. They lend support to models which derive anorthosites by fractional crystallization of basaltic magma.

  9. High-temperature studies of multiple fluorinated traps within an Al2O3 gate dielectric for E-Mode AlGaN/GaN power MIS-HEMTs

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Hsiang; Liang, Yung C.; Samudra, Ganesh S.; Chu, Po-Ju; Liao, Ya-Chu; Huang, Chih-Fang; Kuo, Wei-Hung; Lo, Guo-Qiang

    2016-02-01

    Normally-off AlGaN/GaN MIS-HEMT devices with multiple fluorinated ALD-Al2O3 layers as the gate dielectric have been reported to achieve a high threshold voltage for normally-off operations with satisfactory performance for both on and off states at room temperature. However, a large swing in gate threshold voltage is found when devices operate at elevated temperatures. Hence, further study of the gate dielectric on the distribution of fluorinated trap states in the energy band are required to assess the gate function at higher temperatures. Through the use of the charge analytical model and Poole-Frenkel trap emission theory, the gate voltage stressing measurement was carried out to accurately find the effective trap state distribution within the Al2O3 energy bandgap created by fluorinated treatments. For the samples fabricated and used in the investigation, we found that a higher population of fluorinated trap states located deeper than 1.1 eV corresponding to emission levels above 200 °C would allow more trapped charges to remain in the dielectric at high temperature for better threshold voltage retention. We also discovered that a higher fluorine treatment power on the gate dielectric could yield a higher trap state density at deeper levels, resulting in better temperature stability.

  10. Teachers Stress in Public High Schools in Kuwait

    ERIC Educational Resources Information Center

    Tayeh, Raja

    2013-01-01

    The purpose of this study was to identify the factors that may influence stress levels of secondary teachers in Kuwait. This study was important for two reasons; first, no previous investigation on this topic among Kuwaiti secondary educators had taken place, and second, the findings of this study could serve to develop and implement secondary…

  11. Crystallographic variant selection of martensite at high stress/strain

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2015-07-01

    The phenomenological theory of martensitic transformation is well understood that the displacive phase transformations are mainly influenced by the externally applied stress. Martensitic transformation occurs with 24 possible Kurdjomov-Sachs (K-S) variants, where each variant shows a distinct lattice orientation. The elegant transformation texture model of Kundu and Bhadeshia for crystallographic variant selection of martensite in metastable austenite at various stress/strain levels has been assessed in this present research. The corresponding interaction energies have also been evaluated. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed at different stress/strain levels. It has been investigated that the mechanical driving force alone is able to explain the observed martensite microtextures at all stress/strain levels under uniaxial tensile deformation of metastable austenite under low temperature at a slow strain rate. The present investigation also proves that the Patel and Cohen's classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.

  12. High-resolution imagery of active faulting offshore Al Hoceima, Northern Morocco

    NASA Astrophysics Data System (ADS)

    d'Acremont, E.; Gutscher, M.-A.; Rabaute, A.; Mercier de Lépinay, B.; Lafosse, M.; Poort, J.; Ammar, A.; Tahayt, A.; Le Roy, P.; Smit, J.; Do Couto, D.; Cancouët, R.; Prunier, C.; Ercilla, G.; Gorini, C.

    2014-09-01

    Two recent destructive earthquakes in 1994 and 2004 near Al Hoceima highlight that the northern Moroccan margin is one of the most seismically active regions of the Western Mediterranean area. Despite onshore geodetic, seismological and tectonic field studies, the onshore-offshore location and extent of the main active faults remain poorly constrained. Offshore Al Hoceima, high-resolution seismic reflection and swath-bathymetry have been recently acquired during the Marlboro-2 cruise. These data at shallow water depth, close to the coast, allow us to describe the location, continuity and geometry of three active faults bounding the offshore Nekor basin. The well-expressed normal-left-lateral onshore Trougout fault can be followed offshore during several kilometers with a N171°E ± 3° trend. Westward, the Bousekkour-Aghbal normal-left-lateral onshore fault is expressed offshore with a N020°E ± 4° trending fault. The N030°E ± 2° Bokkoya fault corresponds to the western boundary of the Plio-Quaternary offshore Nekor basin in the Al Hoceima bay and seems to define an en échelon tectonic pattern with the Bousekkour-Aghbal fault. We propose that these three faults are part of the complex transtensional system between the Nekor fault and the Al-Idrissi fault zone. Our characterization of the offshore expression of active faulting in the Al Hoceima region is consistent with the geometry and nature of the active fault planes deduced from onshore geomorphological and morphotectonic analyses, as well as seismological, geodetic and geodynamic data.

  13. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  14. Phase composition and elemental partitioning in glass-ceramics containing high-Na/Al high level waste

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Sorokaletova, A. N.; Nikonov, B. S.

    2012-05-01

    Mixtures of surrogates of high level waste with high sodium and aluminum contents and sodium-lithium borosilicate frit were melted in alumina crucibles in a resistive furnace followed by quenching of one portion of the melt and annealing of the residual material in a turned-off furnace. The annealed materials with waste loading of up to 45 wt.% contained minor spinel type phase and trace of nepheline (Na,K)AlSiO4. In the annealed materials contained waste oxides in amount of 50 wt.% and more nepheline and spinel were found to be major and minor phases, respectively. At high waste loadings two extra phases: Cs-aluminosilicate (CsAlSiO4) and mixed Na/Cs-aluminosilicate were found in amount of 3-5 vol.% each. The latter phase contains of up to ˜5.7 wt.% SO3 or 0.13 formula units S (Na0.75K0.05Cs0.29Ca0.02Sr0.02Al0.99Fe0.03Si0.76S0.13O4). Sulfur incorporation as S6+ or SO42- ions into crystal lattice may be facilitated in the presence of large-size Cs+ cations. Simplified suggested formula of this phase may be represented as Na0.8Cs0.3AlSi0.8S0.1O3.95. It was also synthesized by sintering of mixture of chemicals at 1300 °C and found to be instable at temperatures higher than 1300 °C.

  15. Electrical characteristics of high- Tc superconducting mini-model cable under mechanical stresses in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Kwag, D. S.; Kim, Y. S.; Kim, S. H.

    2005-01-01

    To develop 22.9 kV class high- Tc superconducting (HTS) cable in Korea, we have been studying electrical insulation properties of dielectric paper, such as breakdown voltage, partial discharge, which is one of the HTS cable structure elements. However, the research on the mechanical stress of dielectric paper compared to breakdown properties of dielectric paper is insufficient. A cracking and variation of the electrical insulation due to mechanical stresses during cooling and bending of HTS cables in cryogenic temperature is a serious problem. Thus, we investigated tensile stress and breakdown stress of dielectric paper under mechanical stress. Moreover, we manufactured mini-model cables investigated breakdown stress under bending stress to design a cable drum for conveyance. In the AC, impulse and partial discharge properties, all test results showed a similar tendency, and the suitable bending radius ratio R/ r was decided to be more than 25.

  16. Atomic Structure of Luminescent Centers in High-Efficiency Ce-doped w-AlN Single Crystal

    PubMed Central

    Ishikawa, Ryo; Lupini, Andrew R.; Oba, Fumiyasu; Findlay, Scott D.; Shibata, Naoya; Taniguchi, Takashi; Watanabe, Kenji; Hayashi, Hiroyuki; Sakai, Toshifumi; Tanaka, Isao; Ikuhara, Yuichi; Pennycook, Stephen J.

    2014-01-01

    Rare-earth doped wurtzite-type aluminum nitride (w-AlN) has great potential for high-efficiency electroluminescent applications over a wide wavelength range. However, because of their large atomic size, it has been difficult to stably dope individual rare-earth atoms into the w-AlN host lattice. Here we use a reactive flux method under high pressure and high temperature to obtain cerium (Ce) doped w-AlN single crystals with pink-colored luminescence. In order to elucidate the atomic structure of the luminescent centers, we directly observe individual Ce dopants in w-AlN using annular dark-field scanning transmission electron microscopy. We find that Ce is incorporated as single, isolated atoms inside the w-AlN lattice occupying Al substitutional sites. This new synthesis method represents a new alternative strategy for doping size-mismatched functional atoms into wide band-gap materials. PMID:24445335

  17. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Oba, Fumiyasu; Findlay, Scott D; Shibata, Naoya; Taniguchi, Takashi; Watanabe, Kenji; Hayashi, Hiroyuki; Sakai, Toshifumi; Tanaka, Isao; Ikuhara, Yuichi; Pennycook, Stephen J

    2014-01-01

    Rare-earth doped wurtzite-type aluminum nitride (w-AlN) has great potential for high-efficiency electroluminescent applications over a wide wavelength range. However, because of their large atomic size, it has been difficult to stably dope individual rare-earth atoms into the w-AlN host lattice. Here we use a reactive flux method under high pressure and high temperature to obtain cerium (Ce) doped w-AlN single crystals with pink-colored luminescence. In order to elucidate the atomic structure of the luminescent centers, we directly observe individual Ce dopants in w-AlN using annular dark-field scanning transmission electron microscopy. We find that Ce is incorporated as single, isolated atoms inside the w-AlN lattice occupying Al substitutional sites. This new synthesis method represents a new alternative strategy for doping size-mismatched functional atoms into wide band-gap materials. PMID:24445335

  18. ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts

    PubMed Central

    Wang, Zhenheng; Liu, Naicheng; Shi, Tongguo; Zhou, Gang; Wang, Zhenzhen; Gan, Jingjing; Guo, Ting; Qian, Hongbo; Bao, Nirong; Zhao, Jianning

    2015-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown. In the present study, we investigated the effect of ER (endoplasmic reticulum) stress induced by TiAl6V4 particles (TiPs) in human synovial fibroblasts and calvarial resorption animal models. The expression of ER stress markers, including IRE1-α, GRP78/Bip and CHOP, were determined by western blot in fibroblasts that had been treated with TiPs for various times and concentration. To address whether ER stress was involved in the expression of RANKL, the effects of ER stress blockers (including 4-PBA and TUDCA) on the expression of RANKL in TiPs-treated fibroblasts were examined by real-time PCR, western blot and ELISA. Osteoclastogenesis was assessed by tartrate resistant acid phosphatase (TRAP) staining. Our study demonstrated that ER stress markers were markedly upregulated in TiPs-treated fibroblasts. Blocking ER stress significantly reduced the TiPs-induced expression of RANKL both in vitro and in vivo. Moreover, the inhibition of ER stress ameliorated wear particle-induced osteolysis in animal models. Taken together, these results suggested that the expression of RANKL induced by TiPs was mediated by ER stress in fibroblasts. Therefore, down regulating the ER stress of fibroblasts represents a potential therapeutic approach for wear particle-induced periprosthetic osteolysis. PMID:26366858

  19. Mixed-mode fatigue-crack growth thresholds in Ti-6Al-4V at high frequency

    SciTech Connect

    Campbell, J.P.; Ritchie, R.O.

    1999-10-22

    Multiaxial loading conditions exist at fatigue-critical locations within turbine engine components, particularly in association with fretting fatigue in the blade dovetail/disk contact section. For fatigue-crack growth in such situations, the resultant crack-driving force is a combination of the influence of a mode I (tensile opening) stress-intensity range, {Delta}K{sub I}, as well as mode II (in-plane shear) and/or mode III (anti-plane shear) stress-intensity ranges, {Delta}K{sub II} and {Delta}K{sub III}, respectively. For the case of the high-cycle fatigue of turbine-engine alloys, it is critical to quantify such behavior, as the extremely high cyclic loading frequencies ({approximately}1--2 kHz) and correspondingly short times to failure may necessitate a design approached based on the fatigue-crack growth threshold. Moreover, knowledge of such thresholds is required for accurate prediction of fretting fatigue failures. Accordingly, this paper presents the mixed-mode fatigue crack growth thresholds for mode I + II loading (phase angles from 0{degree} to 82{degree}) in a Ti-6Al-4V blade alloy. These results indicate that when fatigue-crack growth in this alloy is characterized in terms of the crack-driving force {Delta}G, which incorporates both the applied tensile and shear loading, the mode 1 fatigue-crack growth threshold is a lower bound (worst case) with respect to mixed-mode (I + II) crack-growth behavior.

  20. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    NASA Technical Reports Server (NTRS)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  1. Effects of annealing on texture evolution of cross shear rolled high-purity Al foils

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, Y.; Song, X.; He, J.; Zuo, L.

    2015-04-01

    The effects of annealing on recrystallization texture of cross shear rolled high-purity Al foil were investigated by orientation distribution functions (ODFs) and electron backscattered diffraction (EBSD). The results show that the intermediate annealing is beneficial to the development of the cube texture. The cube texture can be promoted by annealing, and the critical annealing temperature is about 280 °C. The cubic orientation grains firstly nucleate, and then expand into other grains with a high growth speed, and large angle grain boundary ratio increases, finally can swallow up most of the original grains, which results in the cube texture

  2. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  3. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    SciTech Connect

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  4. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  5. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  6. Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.

    PubMed

    Jiménez-Martí, E; Zuzuarregui, A; Gomar-Alba, M; Gutiérrez, D; Gil, C; del Olmo, M

    2011-01-31

    One of the stress conditions that can affect Saccharomyces cerevisiae cells during their growth is osmotic stress. Under particular environments (for instance, during the production of alcoholic beverages) yeasts have to cope with osmotic stress caused by high sugar concentrations. Although the molecular changes and pathways involved in the response to saline or sorbitol stress are widely understood, less is known about how cells respond to high sugar concentrations. In this work we present a comprehensive study of the response to this form of stress which indicates important transcriptomic changes, especially in terms of the genes involved in both stress response and respiration, and the implication of the HOG pathway. We also describe several genes of an unknown function which are more highly expressed under 20% (w/v) glucose than under 2% (w/v) glucose. In this work we focus on the YHR087w (RTC3) gene and its encoded protein. Proteomic analysis of the mutant deletion strain reveals lower levels of several yeast Hsp proteins, which establishes a link between this protein and the response to several forms of stress. The relevance of YHR087W for the response to high sugar and other stress conditions and the relationship of the encoded protein with several Hsp proteins suggest applications of this gene in biotechnological processes in which response to stress is important.

  7. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    SciTech Connect

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-15

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (−10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  8. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Tan, Ren-Bing; Qin, Hua; Zhang, Xiao-Yu; Xu, Wen

    2013-11-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density).

  9. A high performance InAlN/GaN HEMT with low Ron and gate leakage

    NASA Astrophysics Data System (ADS)

    Chunlei, Ma; Guodong, Gu; Yuanjie, Lü

    2016-02-01

    InAlN/GaN high-electron mobility transistors (HEMTs) with a gate length of 100 nm and oxygen plasma treatment were fabricated. A Si/Ti/Al/Ni/Au ohmic contact was also used to reduce the contact resistance. DC and RF characteristics of the devices were measured. The fabricated devices show a maximum drain current density of 2.18 A/mm at VGS = 2 V, a low on-resistance (Ron) of 1.49 ω·mm and low gate leakage current. An excellent frequency response was also obtained. The current cut-off frequency (fT) is 81 GHz and the maximum oscillation frequency is 138 GHz, respectively. Project supported by the National Natural Science Foundation of China (No. 61306113).

  10. Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.

    2016-09-01

    We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.

  11. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  12. Normally-ON/OFF AlN/GaN High Electron Mobility Transistors

    SciTech Connect

    Chang, C. Y.; Lo, C. F.; Ren, F.; Pearton, S. J.; Kravchenko, Ivan I; Dabiran, A. M.; Cui, B.; Chow, P. P.

    2010-01-01

    We report on the novel normally-on/off AlN/GaN high electron mobility transistors (HEMTs) grown by plasma-assisted molecular beam epitaxy. With simple oxygen plasma exposure, the threshold voltage can be tuned from -2.76 V to +1.13 V depending on the treatment time. The gate current was reduced and gate current-voltage curve show metal-oxide semiconductor diode-like characteris-tics after oxygen plasma exposure. The extrinsic trans-conductance of HEMTs decreased with increasing oxy-gen plasma exposure time due to the thicker Al oxide formed on the gate area. The unity current gain cut-off frequency, fT, and the maximum frequency of oscillation, fmax, were 20.4 GHz and 36.5 GHz, respectively, for a enhancement-mode HEMT with the gate dimension of 0.4 100 m2.

  13. High Pressure Measurements of the Resistivity of β-YbAlB4

    NASA Astrophysics Data System (ADS)

    Tomita, T.; Kuga, K.; Uwatoko, Y.; Nakatsuji, S.

    2015-03-01

    The electric resistivity ρ(T) under hydrostatic pressure up to 8 GPa was measured above 2 K using a high-quality single crystal of the Yb-based heavy fermion system β-YbAlB4. We found pressure-induced magnetic ordering above the critical pressure Pc ≈ 2.4 GPa. This phase transition temperature TM is enhanced with pressure and reaches 30 K at a pressure of 8 GPa, which is the highest transition temperature for the Yb-based heavy fermion compounds. In contrast, the resistivity is insensitive to pressure below Pc and exhibits the T-linear behavior in the temperature range between 2 and 20 K. Our results indicate that quantum criticality for β-YbAlB4 is also located near Pc in addition to the ambient pressure.

  14. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-04-14

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K.

  15. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1973-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651 and titanium 6Al-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 7) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity), and demineralized distilled water. Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, titanium stressed specimens showed no reactions to its environment. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 and aluminum 2014-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl), while aluminum 2219-T87 seem to resist stress corrosion cracking in sodium chloride at three levels of stress (25%, 50%, and 75% Y.S.). In organic fluids of methyl, ethyl, and iso-propyl alcohol, 2014-T6 and 7075-T651 did not fail by SCC; but 2014-T651 was susceptible to SCC in methly alcohol, but resistant in ethyl alcohol, iso-propyl alcohol and demineralized distilled water.

  16. Development of a high-rate, rechargeable bipolar LiAl/FeS{sub 2} battery

    SciTech Connect

    Kaun, T.D.; Jansen, A.N.; Hash, M.C.; Prakash, J.; Turner, R.L.; Henriksen, G.L.

    1996-06-01

    Materials refinements have improved bipolar Li-Al/FeS{sub 2} batteries for power-demand applications. Current technology uses a two-phase Li-alloy cathode, LiCl-LiBr-KBr electrolyte, and an upper-plateau (UP) FeS{sub 2} anode for a battery operated at 440 C; the battery is in sealed bipolar form. The two-phase Li alloy ({alpha}+{beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) cathode provides in situ overcharge tolerance that makes the bipolar design viable. The use of LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` cells achieves low-burdened cells with low area-specific impedance, with MgO powder separator. Combining dense UP FeS{sub 2} electrodes with a CuFeS{sub 2} additive and a LiI-modified electrolyte produces a stable and reversible couple, with high power capabilities. Long cycle life depends on peripheral seals for each cell in the bipolar stack. Seal composition is based on stable sulfide ceramic/sealant materials that produce strong bonds between metals and ceramics. Using these seals, bipolar Li-Al/FeS{sub 2} cells and four-cell stacks are being built and tested (25 Ah, 13-cm dia). Adding 5 mol% LiI to the electrolyte increased specific energy by 50% under a 140 W/kg, constant power C/1 rate and a 544 W/kg power pulse (8-s) schedule. Cell capacity under the high-power pulse-demand approximates the C/3 rate discharge capacity. Cell specific energy is 155 Wh/kg at the C/3 rate.

  17. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Medjdoub, Farid; Kabouche, Riad; Linge, Astrid; Grimbert, Bertrand; Zegaoui, Malek; Gamarra, Piero; Lacam, Cédric; Tordjman, Maurice; di Forte-Poisson, Marie-Antoinette

    2015-10-01

    We report on the improvement of the electron transport properties of the two-dimensional electron gas (2DEG) confined at a nearly lattice-matched quaternary barrier InAlGaN/AlN/GaN heterostructure using a sub-10 nm ultrathin barrier. Electron mobilities of 1800 (RT) and 6800 cm2 V-1 s-1 (77 K) are achieved while delivering a high electron density of 1.9 × 1013 cm-2, resulting in extremely low sheet resistances of 191 Ω/□ at RT and below 50 Ω/□ at 77 K. These 2DEG properties exceed the best ones ever reported for III-N structures. The excellent current and power gain cut-off frequencies of 60 and 190 GHz at VDS = 15 V obtained using 0.25 µm technology reflect the outstanding 2DEG properties.

  18. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  19. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    PubMed

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. PMID:27388472

  20. Stress analysis at the interface between Ni-P coating and SiC p/Al substrate of space mirror

    NASA Astrophysics Data System (ADS)

    Guo, Shaowen; Li, Libo; Zhang, Guangyu; Wang, Wuyi; Zhao, Xuezeng

    2009-01-01

    This paper investigates the mechanical properties at the interface of the coating-substrate system, which comprises the electroless nickel-phosphorus (Ni-P) coating and the aluminum matrix composite substrate reinforced by the silicon carbide particles (SiC p/Al), and is used for the space mirror. To estimate the adhesion of Ni-P coating on SiC p/Al substrate, the scratch adhesion testing has been performed by drawing a spherically tipped diamond indenter with a radius of 200 μm over the coated surface. The influence of the coating thickness on the interfacial stress induced by the inertial accelerations, temperature gradients and thermal soaks has been evaluated by simulation analysis based on the finite element method. The results of the scratch testing indicate that the adhesion strength of Ni-P coating to SiC p/Al composite is more than 3.0 GPa. Compared the maximum value of the interfacial stress obtained by simulation analysis with results of the scratch testing, it is can be seen that the mirror has enough safety margin. Furthermore, the most significant conclusion that can be drawn from this work is that the coating thickness should not exceed 45 μm in order to ensure the performance and reliability of Ni-P coating and SiC p/Al substrate system for space applications.

  1. Record-low contact resistance for InAlN/AlN/GaN high electron mobility transistors on Si with non-gold metal

    NASA Astrophysics Data System (ADS)

    Arulkumaran, Subramaniam; Ng, Geok Ing; Ranjan, Kumud; Mohan Manoj Kumar, Chandra; Chuen Foo, Siew; Ang, Kian Siong; Vicknesh, Sahmuganathan; Dolmanan, Surani Bin; Bhat, Thirumaleshwara; Tripathy, Sudhiranjan

    2015-04-01

    We have demonstrated 0.17-µm gate-length In0.17Al0.83N/GaN high-electron-mobility transistors (HEMTs) on Si(111) substrates using a non-gold metal stack (Ta/Si/Ti/Al/Ni/Ta) with a record-low ohmic contact resistance (Rc) of 0.36 Ω mm. This contact resistance is comparable to the conventional gold-based (Ti/Al/Ni/Au) ohmic contact resistance (Rc = 0.33 Ω mm). A non-gold ohmic contact exhibited a smooth surface morphology with a root mean square surface roughness of ˜2.1 nm (scan area of 5 × 5 µm2). The HEMTs exhibited a maximum drain current density of 1110 mA/mm, a maximum extrinsic transconductance of 353 mS/mm, a unity current gain cutoff frequency of 48 GHz, and a maximum oscillation frequency of 66 GHz. These devices exhibited a very small (<8%) drain current collapse for the quiescent biases (Vgs0 = -5 V, Vds0 = 10 V) with a pulse width/period of 200 ns/1 ms. These results demonstrate the feasibility of using a non-gold metal stack as a low Rc ohmic contact for the realization of high-frequency operating InAlN/AlN/GaN HEMTs on Si substrates without using recess etching and regrowth processes.

  2. The role of fungal symbiosis in the adaptation of plants to high stress environments

    USGS Publications Warehouse

    Rodriguez, Russell J.; Redman, Regina S.; Henson, Joan M.

    2004-01-01

    All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.

  3. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    PubMed

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  4. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Paskova, T.; Evans, K. R.; Leach, J.; Li, X.; Özgür, Ü.; Morkoç, H.; Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D.

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  5. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  6. High mobility AlGaN/GaN devices for β--dosimetry

    NASA Astrophysics Data System (ADS)

    Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan

    2016-05-01

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β--emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β--particle interactions with a metallic surface covering. We demonstrate that the source-drain current is modulated in dependence on the kinetic energy of the incident β--particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β--dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  7. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  8. High-temperature dilatometry of Ti-46Al-8Nb refractory alloy

    NASA Astrophysics Data System (ADS)

    Kartavykh, A. V.; Tcherdyntcev, V. V.; Stepashkin, A. A.; Gorshenkov, M. V.

    2013-07-01

    The temperature dependence of the linear thermal expansion coefficient K L of the intermetallic Ti-46Al-8Nb (at %) alloy is experimentally determined for the first time within the temperature range from 373 to 1773 K (solidus point). The determined boundaries of phase fields are compared with the results of differential thermal analysis and the calculated phase diagram of the alloy. The high-temperature limit (1384 K) of the alloy structure thermostability is detected from signs of the α2 + γ ⇆ α + γ phase transition in dilatometric curves. The restructuring mechanism in the α + γ field is studied by scanning electron microscopy. It is shown that the α2 + γ → α + γ phase transition is accompanied by selective structural degradation of single-crystalline α2 lamellae and the related destruction of a fine lamellar α2-Ti3Al(Nb) + γ-TiAl(Nb) texture. The average values of K L of the alloy are calculated within 100-K ranges in the low-temperature α2 + γ phase field, which is of interest from a practical viewpoint, according to the State Standard GOST 8.018-2007.

  9. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  10. High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys

    SciTech Connect

    Kastner, Johann; Harrer, Bernhard; Degischer, H. Peter

    2011-01-15

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.

  11. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  12. Quantitative assessment of pore development at Al2O3/FeAl interfaces during high temperature oxidation

    SciTech Connect

    Hou, Peggy Y.; Van Leiden, C.; Niu, Y.; Gesmundo, F.

    2001-04-24

    Alloys of commercial grades that do not contain a reactive element, such as yttrium, often develop pores at the scale/alloy interface. The accumulation and growth of these pores greatly weaken scale adhesion. The purpose of this study is to evaluate pore development in Fe-40at% Al and determine the change in pore volume with oxidation time. Experimental results are then compared to a theoretical calculation where all vacancies are allowed to condense as voids. After removing the oxide scales that formed after various times of oxidation at 1000 C in oxygen, the alloy surface was analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to determine the size and depth of interfacial pores. Results are discussed in light of possible mechanisms involved in pore formation at scale/alloy interfaces.

  13. Stress and success: individual differences in the glucocorticoid stress response predict behavior and reproductive success under high predation risk.

    PubMed

    Vitousek, Maren N; Jenkins, Brittany R; Safran, Rebecca J

    2014-11-01

    A fundamental element of how vertebrates respond to stressors is by rapidly elevating circulating glucocorticoid hormones. Individual variation in the magnitude of the glucocorticoid stress response has been linked with reproductive success and survival. But while the adaptive value of this response is believed to stem in part from changes in the expression of hormone-mediated behaviors, it is not clear how the behavior of stronger and weaker glucocorticoid responders differs during reproduction, or during exposure to ecologically relevant stressors. Here we report that in a population of barn swallows (Hirundo rustica erythrogaster) experiencing high rates of nest predation, circulating levels of corticosterone (the primary avian glucocorticoid) during exposure to a standardized stressor predict aspects of subsequent behavior and fitness. Individuals that mounted a stronger corticosterone stress response during the early reproductive period did not differ in clutch size, but fledged fewer offspring. Parents with higher stress-induced corticosterone during the early reproductive period later provisioned their nestlings at lower rates. Additionally, in the presence of a model predator stress-induced corticosterone was positively associated with the latency to return to the nest, but only among birds that were observed to return. Model comparisons revealed that stress-induced hormones were better predictors of the behavioral and fitness effects of exposure to transient, ecologically relevant stressors than baseline corticosterone. These findings are consistent with functional links between individual variation in the hormonal and behavioral response to stressors. If such links occur, then selection on the heritable components of the corticosterone stress response could promote adaptation to novel environments or predation regimes.

  14. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    DOEpatents

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  15. Improved high-temperature characteristics of a symmetrically graded AlGaAs/InxGa1-xAs/AlGaAs pHEMT

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Chin; Hsu, Wei-Chou; Lee, Ching-Sung; Chang, Wei-Chen; Huang, Dong-Hai

    2006-12-01

    This work investigates the superior high-temperature and high-linearity characteristics of a double δ-doped AlGaAs/InxGa1-xAs/AlGaAs pseudomorphic high electron mobility transistor (pHEMT) with a symmetrically linearly graded InxGa1-xAs channel and a wide energy gap AlGaAs barrier. Distinguished high-temperature device characteristics are presented, including an extrinsic transconductance (gm,max) of 182 (223) mS mm-1, a drain-source saturation current density (IDSS) of 428 (524) mA mm-1, an output conductance of 0.334 (0.352) mS mm-1, a gate-voltage swing (GVS) of 1.45 (1.5) V, a voltage gain (Av) of 505 (658) and a reverse breakdown voltage (BVGD) of -24.1 (-31.2) V at 500 (300) K, respectively, with gate dimensions of 0.65 × 200 µm2. In addition, the device demonstrates a superior stable thermal threshold coefficient (∂Vth/∂T) of -0.55 mV K-1, a thermal GVS coefficient (∂GVS/∂T) of -0.25 mV K-1 and a wide gate-bias range of 1.25 V for a unity-gain cut-off frequency (ft) of over 20 GHz. Consequently, the proposed device shows good potential for high-temperature and high-linearity circuit applications.

  16. High-Performance Laser Peening for Effective Mitigation of Stress Corrosion Cracking

    SciTech Connect

    Hackel, L; Hao-Lin, C; Wong, F; Hill, M

    2002-10-02

    Stress corrosion cracking (SCC) in the Yucca Mountain waste package closure welds is believed to be the greatest threat to long-term containment. Use of stress mitigation to eliminate tensile stresses resulting from welding can prevent SCC. A laser technology with sufficient average power to achieve high throughput has been developed and commercially deployed with high peak power and sufficiently high average power to be an effective laser peening system. An appropriately applied version of this process could be applied to eliminate SCC in the waste package closure welds.

  17. Terbium-Aluminum (TbAl2) Binary Alloy as High Magnetostrictive Material

    NASA Astrophysics Data System (ADS)

    Boghosian, Mary; Sanchez, Carlos; Bernal, Oscar; Kocharian, Armen; Cal State LA Team

    2015-03-01

    Magnetic phase diagram for the cubic intermetallic terbium-aluminum (Tb-Al) binary alloy is being investigated for the purpose of developing material with high magnetostrain properties that can be used for energy harvesting. Low temperature magnetizations, specific heat, combined with structural examinations are few of the techniques that are being used for this purpose. Preliminary DC magnetization results on as-cast material show magnetic ordering of around 109 K in zero applied fields that varies in magnitude and direction with the increase of applied magnetic field. The preliminary results will be discussed. Supported by Grant # NS-DMR1105380.

  18. Growth of High Quality AlN Single Crystals and Their Optical Properties

    NASA Astrophysics Data System (ADS)

    Strassburg, M.; Senawiratne, J.; Dietz, N.; Haboeck, U.; Hoffmann, A.; Noveski, V.; Dalmau, R.; Schlesser, R.; Sitar, Z.

    2005-06-01

    Growth and optical properties of high quality AlN single crystals grown by physical vapor transport using powder sublimation is presented. Crystallinity, incorporated impurities and their effects on the optical properties are evaluated for different crucible materials and growth environments. A significant reduction of impurity incorporation was achieved using a two-step growth process in a TaN crucible. Crystal defects and the effect of incorporated impurities on the optical properties have been analyzed by their characteristic photoluminescence and absorption, Raman- and glow discharge mass spectroscopy.

  19. Trenholm State (AL) Technical College High School Science Enrichment Program 1996-1997 Evaluation Report

    NASA Technical Reports Server (NTRS)

    Ross, Elizabeth G.

    1997-01-01

    This document presents findings based on a third-year evaluation of Trenholm State (AL) Technical College's National Aeronautics and Space Administration (NASA) - supported High School Science Enrichment Program (HSSEP). HSSEP is an external (to school) program for area students from groups that are underrepresented in the mathematics, science, engineering and technology (MSET) professions. In addition to gaining insight into scientific careers, HSSEP participants learn about and deliver presentations that focus on mathematics applications, scientific problem-solving and computer programming during a seven-week summer or 10-week Academic-Year Saturday session.

  20. High-temperature relaxation in a Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. C.; Han, F. S.

    2003-09-01

    Two relaxational internal friction peaks were found in a (wt%)Fe-25Cr-5Al alloy. The low-temperature peak is related to Zener relaxation and the high-temperature one to grain-boundary relaxation. Their activation energy values are 2.55 (+/-0.14) eV for the Zener peak and 4.07(+/-0.15) eV for the grain-boundary relaxation peak, respectively. Grain-boundary relaxation strength remarkably increases with decreasing grain size, while the Zener peak is independent of the grain size. (

  1. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  2. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  3. Mean stress effects on high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G E

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649{degree}C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs.

  4. Boechera species exhibit species-specific responses to combined heat and high light stress.

    PubMed

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  5. Stress selectively and lastingly promotes learning of context-related high arousing information.

    PubMed

    Smeets, Tom; Wolf, Oliver T; Giesbrecht, Timo; Sijstermans, Kevin; Telgen, Sebastian; Joëls, Marian

    2009-09-01

    The secretion of adrenal stress hormones in response to acute stress is known to affect learning and memory, particularly for emotionally arousing memory material. Here, we investigated whether stress-induced modulation of learning and memory performance depends on (i) the conceptual relatedness between the material to be learned/remembered and the stressor and (ii) the timing of stress exposure versus learning phase. Participants learned stressor-related and stressor-unrelated words of varying arousal 1h prior to, immediately following, or 2h after exposure to the Trier Social Stress Test (all groups n=16). Twenty-four hours later, delayed free recall was assessed. Cortisol and alpha-amylase were sampled to evaluate if concurrent stress-induced raised glucocorticoid levels and high adrenergic activity are implicated in modulating learning performance. Our results demonstrate that immediate and delayed post-stress learning selectively enhanced the learning and delayed recall of stressor-related high arousing words. This enhancing effect was strongly associated with concurrent stress-induced cortisol and sympathetic activity. Our data suggest that when to-be-learned information is conceptually related to a stressor and considered important (i.e., arousing) by the individual, learning under stressful circumstances results in improved memorability afterwards.

  6. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  7. Boechera species exhibit species-specific responses to combined heat and high light stress.

    PubMed

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  8. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  9. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    SciTech Connect

    Wu, Tian-Li Groeseneken, Guido; Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan; Bakeroot, Benoit; Roelofs, Robin

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  10. Combat high or traumatic stress: violent offending is associated with appetitive aggression but not with symptoms of traumatic stress.

    PubMed

    Köbach, Anke; Schaal, Susanne; Elbert, Thomas

    2014-01-01

    Former members of armed groups in eastern DR Congo had typically witnessed, experienced, and perpetrated extreme forms of violence. Enhanced trauma-related symptoms had been shown in prior research. But also lashing out in self-defense is a familiar response to threat defined as reactive aggression. Another potential response is appetitive aggression, in which the perpetration of excessive violence is perceived as pleasurable (combat high). What roles do these forms of aggressive behavior play in modern warfare and how are they related to posttraumatic stress symptoms? To answer the question, we sought to determine predictors for appetitive aggressive and trauma-related mental illness, and investigated the frequency of psychopathological symptoms for high- and low-intensity conflict demobilization settings. To this end, we interviewed 213 former members of (para)military groups in the eastern Democratic Republic of Congo in regard to their combat exposure, posttraumatic stress, appetitive aggression, depression, suicidality, and drug dependence. Random forest regression embedded in a conditional inference framework revealed that perpetrated violent acts are not necessarily stressful. In fact, the experience of violent acts that typically implicated salient cues of hunting (e.g., blood, suffering of the victim, etc.) had the strongest association with an appetite for aggression. Furthermore, the number of lifetime perpetrated violent acts was the most important predictor of appetitive aggression. However, the number of perpetrated violent acts did not significantly affect the posttraumatic stress. Greater intensity of conflict was associated with more severe posttraumatic stress symptoms and depression. Psychotherapeutic interventions that address appetitive aggression in addition to trauma-related mental illness, including drug dependence, therefore seem indispensible for a successful reintegration of those who fought in the current civil wars. PMID:25709586

  11. Combat high or traumatic stress: violent offending is associated with appetitive aggression but not with symptoms of traumatic stress

    PubMed Central

    Köbach, Anke; Schaal, Susanne; Elbert, Thomas

    2015-01-01

    Former members of armed groups in eastern DR Congo had typically witnessed, experienced, and perpetrated extreme forms of violence. Enhanced trauma-related symptoms had been shown in prior research. But also lashing out in self-defense is a familiar response to threat defined as reactive aggression. Another potential response is appetitive aggression, in which the perpetration of excessive violence is perceived as pleasurable (combat high). What roles do these forms of aggressive behavior play in modern warfare and how are they related to posttraumatic stress symptoms? To answer the question, we sought to determine predictors for appetitive aggressive and trauma-related mental illness, and investigated the frequency of psychopathological symptoms for high- and low-intensity conflict demobilization settings. To this end, we interviewed 213 former members of (para)military groups in the eastern Democratic Republic of Congo in regard to their combat exposure, posttraumatic stress, appetitive aggression, depression, suicidality, and drug dependence. Random forest regression embedded in a conditional inference framework revealed that perpetrated violent acts are not necessarily stressful. In fact, the experience of violent acts that typically implicated salient cues of hunting (e.g., blood, suffering of the victim, etc.) had the strongest association with an appetite for aggression. Furthermore, the number of lifetime perpetrated violent acts was the most important predictor of appetitive aggression. However, the number of perpetrated violent acts did not significantly affect the posttraumatic stress. Greater intensity of conflict was associated with more severe posttraumatic stress symptoms and depression. Psychotherapeutic interventions that address appetitive aggression in addition to trauma-related mental illness, including drug dependence, therefore seem indispensible for a successful reintegration of those who fought in the current civil wars. PMID:25709586

  12. Evaluation of Wheat Chromosome Translocation Lines for High Temperature Stress Tolerance at Grain Filling Stage

    PubMed Central

    Pradhan, Gautam Prasad; Prasad, P. V. Vara

    2015-01-01

    High temperature (HT, heat) stress is detrimental to wheat (Triticum aestivum L.) production. Wild relatives of bread wheat may offer sources of HT stress tolerance genes because they grow in stressed habitats. Wheat chromosome translocation lines, produced by introgressing small segments of chromosome from wild relatives to bread wheat, were evaluated for tolerance to HT stress during the grain filling stage. Sixteen translocation lines and four wheat cultivars were grown at optimum temperature (OT) of 22/14°C (day/night). Ten days after anthesis, half of the plants were exposed to HT stress of 34/26°C for 16 d, and other half remained at OT. Results showed that HT stress decreased grain yield by 43% compared with OT. Decrease in individual grain weight (by 44%) was the main reason for yield decline at HT. High temperature stress had adverse effects on leaf chlorophyll content and Fv/Fm; and a significant decrease in Fv/Fm was associated with a decline in individual grain weight. Based on the heat response (heat susceptibility indices, HSIs) of physiological and yield traits to each other and to yield HSI, TA5594, TA5617, and TA5088 were highly tolerant and TA5637 and TA5640 were highly susceptible to HT stress. Our results suggest that change in Fv/Fm is a highly useful trait in screening genotypes for HT stress tolerance. This study showed that there is genetic variability among wheat chromosome translocation lines for HT stress tolerance at the grain filling stage and we suggest further screening of a larger set of translocation lines. PMID:25719199

  13. A highly selective colorimetric and fluorescent turn-on chemosensor for Al3 + based on naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Xing, Zhi-Yong; Ma, Xiao-Yuan; Liu, Ya-Tong; Zhang, Yu

    2016-10-01

    A new chemosensor L based on the naphthalimide moiety was synthesized and characterized. L exhibited the high selectivity and sensitivity for Al3 + in CH3OH, along with colorimetric and fluorometric dual-signaling responses based on the joint contribution of the ICT and CHEF processes. A 1:1 stoichiometry for the L-Al3 + complex was formed with an association constant of 7.6 × 104 M- 1, and the limit of detection for Al3 + was determined as 6.9 μM. In addition, L was successfully applied to the determination of Al3 + in real water samples.

  14. A highly selective colorimetric and fluorescent turn-on chemosensor for Al(3+) based on naphthalimide derivative.

    PubMed

    Kang, Lei; Xing, Zhi-Yong; Ma, Xiao-Yuan; Liu, Ya-Tong; Zhang, Yu

    2016-10-01

    A new chemosensor L based on the naphthalimide moiety was synthesized and characterized. L exhibited the high selectivity and sensitivity for Al(3+) in CH3OH, along with colorimetric and fluorometric dual-signaling responses based on the joint contribution of the ICT and CHEF processes. A 1:1 stoichiometry for the L-Al(3+) complex was formed with an association constant of 7.6×10(4)M(-1), and the limit of detection for Al(3+) was determined as 6.9μM. In addition, L was successfully applied to the determination of Al(3+) in real water samples. PMID:27244702

  15. Analysis of thermal residual stress in a thick-walled ring of Duralcan-base Al-SiC functionally graded material

    SciTech Connect

    Fukui, Yasuyoshi; Watanabe, Yoshimi

    1996-12-01

    A ring-cutting test and an elastic theory were applied to evaluate the macroscopic residual stress in a thick-walled ring made of Al-SiC functionally graded material (FGM). The FGM ring specimens, with outer diameter 90 mm, radial thickness approximately 8.4 to 10 mm, and width 30 mm, were fabricated by the centrifugal casting method from an ingot of Duralcan F3D.20S of Al-20 vol pct SiC master composite. Because of a difference in centrifugal forces of SiC particles and of molten aluminum alloy, the rings had a graded composition of SiC particles in the radial direction. The volume fractions of SiC particles in each ring specimen varied in the range of 0 to 43 vol pct from the inner to the outer surface of the ring, depending on the applied mold spin speed. A ring diametral compression test was performed to validate an analytical formula based on the curved beam theory that can account for the graded properties of the material. Excellent agreement between the theory that can account for the graded properties of the material. Excellent agreement between the theory and the experiment was found. The residual stress was found to be generated by a cooling of {Delta}T = 140 K, which was from half the melting point corresponding stress-free condition to the ambient temperature. The hoop residual stresses in the FGM ring varied in the range of {minus}50 to +35 MPa and from tension at the inner surface to compression at the outer space because of the graded composition. With an increase in wall thickness and/or composition gradation, the residual stresses were found to increase.

  16. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  17. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  18. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure

    SciTech Connect

    Wang Juan; Wang Guowei; Xu Yingqiang; Xing Junliang; Xiang Wei; Tang Bao; Zhu Yan; Ren Zhengwei; He Zhenhong; Niu Zhichuan

    2013-07-07

    InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al{sub 0.75}Ga{sub 0.25}Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al{sub 0.75}Ga{sub 0.25}Sb buffer were optimized. Al{sub 0.75}Ga{sub 0.25}Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al{sub 0.75}Ga{sub 0.25}Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 A. The electron mobility has reached as high as 27 000 cm{sup 2}/Vs with a sheet density of 4.54 Multiplication-Sign 10{sup 11}/cm{sup 2} at room temperature.

  19. High plastic Zr-Cu-Fe-Al-Nb bulk metallic glasses for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wang, Shu-shen; Wang, Yun-liang; Wu, Yi-dong; Wang, Tan; Hui, Xi-dong

    2015-06-01

    Four Zr-Cu-Fe-Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr-Cu-Fe-Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.

  20. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  1. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  2. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells.

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan

    2015-10-01

    Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway.

  3. Occupational Stress and Cardiovascular Risk Factors in High-Ranking Government Officials and Office Workers

    PubMed Central

    Mirmohammadi, Seyyed Jalil; Taheri, Mahmoud; Mehrparvar, Amir Houshang; Heydari, Mohammad; Saadati Kanafi, Ali; Mostaghaci, Mehrdad

    2014-01-01

    Background: Cardiovascular diseases are among the most important sources of mortality and morbidity, and have a high disease burden. There are some major well-known risk factors, which contribute to the development of these diseases. Occupational stress is caused due to imbalance between job demands and individual’s ability, and it has been implicated as an etiology for cardiovascular diseases. Objectives: This study was conducted to evaluate the cardiovascular risk factors and different dimensions of occupational stress in high-ranking government officials, comparing an age and sex-matched group of office workers with them. Patients and Methods: We invited 90 high-ranking officials who managed the main governmental offices in a city, and 90 age and sex-matched office workers. The subjects were required to fill the occupational role questionnaire (Osipow) which evaluated their personal and medical history as well as occupational stress. Then, we performed physical examination and laboratory tests to check for cardiovascular risk factors. Finally, the frequency of cardiovascular risk factors and occupational stress of two groups were compared. Results: High-ranking officials in our study had less work experience in their current jobs and smoked fewer pack-years of cigarette, but they had higher waist and hip circumference, higher triglyceride level, more stress from role overload and responsibility, and higher total stress score. Our group of office workers had more occupational stress because of role ambiguity and insufficiency, but their overall job stress was less than officials. Conclusions: The officials have higher scores in some dimensions of occupational stress and higher overall stress score. Some cardiovascular risk factors were also more frequent in managers. PMID:25389469

  4. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    SciTech Connect

    Hans, M. Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  5. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  6. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  7. AlGaInP red-emitting light emitting diode under extremely high pulsed pumping

    NASA Astrophysics Data System (ADS)

    Yadav, Amit; Titkov, Ilya E.; Sokolovskii, Grigorii S.; Karpov, Sergey Y.; Dudelev, Vladislav V.; Soboleva, Ksenya K.; Strassburg, Martin; Pietzonka, Ines; Lugauer, Hans-Juergen; Rafailov, Edik U.

    2016-03-01

    Efficiency of commercial 620 nm AlGaInP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. To understand the nature of LED efficiency decrease with current, pulse width variation is used. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major factor controlling the LED efficiency reduction at CW and sub-microsecond pumping. The overheating can be effectively avoided by the use of sub-nanosecond current pulses. A direct correlation between the onset of the efficiency decrease and LED overheating is demonstrated.

  8. High-Voltage AlGaN/GaN-Based Lateral Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Kang, He; Wang, Quan; Xiao, Hong-Ling; Wang, Cui-Mei; Jiang, Li-Juan; Feng, Chun; Chen, Hong; Yin, Hai-Bo; Wang, Xiao-Liang; Wang, Zhan-Guo; Hou, Xun

    2014-06-01

    Lateral Schottky barrier diodes (SBDs) on AlGaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increasing the Schottky-Ohmic contact spacing or increasing the Schottky contact diameter. However, the specific on-resistance is increased at the same time. A high breakdown voltage of 1400 V and low reverse leakage current below 20nA are achieved by the device with a Schottky contact diameter of 100 μm and a contact spacing of 40 μm, yielding a high V2BR/RON,sp value of 194 MW.cm-2.

  9. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Thapa, Resham; Alur, Siddharth; Kim, Kyusang; Tong, Fei; Sharma, Yogesh; Kim, Moonil; Ahyi, Claude; Dai, Jing; Wook Hong, Jong; Bozack, Michael; Williams, John; Son, Ahjeong; Dabiran, Amir; Park, Minseo

    2012-06-01

    Label-free electrical detection of deoxyribonucleic acid (DNA) hybridization was demonstrated using an AlGaN/GaN high electron mobility transistor (HEMT) based transducer with a biofunctionalized gate. The HEMT DNA sensor employed the immobilization of amine-modified single strand DNA on the self-assembled monolayers of 11-mercaptoundecanoic acid. The sensor exhibited a substantial current drop upon introduction of complimentary DNA to the gate well, which is a clear indication of the hybridization. The application of 3 base-pair mismatched target DNA showed little change in output current characteristics of the transistor. Therefore, it can be concluded that our DNA sensor is highly specific to DNA sequences.

  10. Propagation Behavior of a Fatigue Crack of High Strength Al Alloy

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki; Kariya, Kohji; Kawagoishi, Norio; Nu, Yan; Goto, Masahiro

    In order to investigate the effect of humidity change on growth behavior of a fatigue crack of an extruded and age-hardened Al alloy 7075-T6, rotating bending fatigue tests were carried out using plain specimens in relative humidity of 25% and 85%. In constant humidity, a crack propagated in a tensile mode macroscopically in low humidity and in a shear mode in high humidity. The crack growth rate was accelerated by high humidity. By changing humidity, the growth rate and the growth mode of a crack were changed to those corresponding to the changed humidity. That is, cumulative fatigue life in humidity change may be estimated by the fatigue life in constant humidity.

  11. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect

    Danilchenko, B. A.; Tripachko, N. A.; Belyaev, A. E.; Vitusevich, S. A. Hardtdegen, H.; Lüth, H.

    2014-02-17

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2 K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8 × 10{sup 7} cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  12. Effects of postgrowth rapid thermal annealing on InAlAs/InGaAs metamorphic high-electron-mobility transistor grown on a compositionally graded InAlAs/InGaAlAs buffer

    SciTech Connect

    Ihn, Soo-Ghang; Jo, Seong-June; Song, Jong-In

    2005-07-25

    Effects of postgrowth rapid thermal annealing (RTA) on structural and electrical properties of an In{sub 0.52}Al{sub 0.48}As/In{sub 0.52}Ga{sub 0.48}As metamorphic high-electron-mobility transistor (MHEMT) structure grown on a GaAs substrate utilizing a compositionally graded InAlAs/InGaAlAs buffer layer were investigated. High-resolution triple-axis x-ray diffraction, photoluminescence, and van der Pauw-Hall measurements were used for the investigation. While the RTA improved the structural property of the MHEMT, it degraded the channel mobility of the MHEMT due to defect-assisted impurity redistribution.

  13. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  14. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  15. Solution chemistry effects on the stress corrosion cracking behavior of alloy 2090 (Al-Li-Cu) and alloy 2024 (Al-Cu-Mg)

    NASA Technical Reports Server (NTRS)

    Moran, James P.; Stoner, Glenn E.

    1989-01-01

    The SCC initiation behavior of alloys 2090 and 2024 is examined in various NaCl-based environments. The pre-exposure and bulk/local solution chemistry effects discovered by Holroyd et al. (1986) are investigated, with emphasis on the effect of bulk solution chemistries and atmospheric CO2 on the occluded cell environment and the role of the occluded environment in the crack initiation and early-stage propagation processes. It was found that constant immersion in NaCl does not promote SCC in alloy 2090 or alloy 2024. Upon removal from NaCl, SCC is quickly facilitated, but only in the presence of atmospheric CO2. The need for CO2 is attributed to an increase in carbonate concentrations, eventually allowing passivation of blunted fissures by precipitation of Li2CO3. It is inferred that any effects due to aging are small in magnitude, relative to the effects of subtle changes in the bulk/local solution chemistries.

  16. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  17. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  18. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  19. Reliability of high-power AlGaAs/GaAs QW laser diodes

    NASA Astrophysics Data System (ADS)

    Dabkowski, Ferdynand P.; Pendse, D. R.; Barrett, Richard J.; Chin, Aland K.; Jollay, Richard A.; Clausen, Edward M., Jr.; Hughes, L. C.; Sanders, Neil B.

    1996-09-01

    High power laser diodes have been continuously gaining more practical applications. In the majority of these applications, device performance is a determining factor. However, device reliability determines whether a laser diode can be successfully introduced in a commercial product. We review some device reliability problems and their solutions found through customer experience while supplying packaged high power AlGaAs/GaAs quantum well laser diodes, utilized in medical, high resolution printers. The reliability problems were related to either photo-induced chemical reactions on the output facet leading to visible optical damage or the propensity of the material to rapidly develop dark line defects. To improve the reliability of high power laser diodes, we have performed numerous aging studies, followed by detailed failure mode analysis. Both hermetically packaged devices and devices exposed to air ambient were evaluated. The devices whose parameters deteriorated during aging were examined with optical microscopy, infrared microscopy, scanning electron microscopy, Auger spectroscopy, residual gas analysis and also electron beam induced current. We report the results of the failure mode analysis and suggest solutions to eliminate failures of high power laser diodes.

  20. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  1. HIGH TEMPERATURE STRESS ON FLORAL DEVELOPMENT AND YIELD OF COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because a number of reproductive processes must occur in highly concerted fashion during the progamic phase (from pollination to fertilization) for successful fertilization and seed production to occur, final yield in cotton is exceptionally sensitive to high temperatures during the flowering period...

  2. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  3. Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly-heterogeneous crustal stress

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    It has been proposed that the crustal stress field contains small-length-scale heterogeneity of much larger amplitude than the uniform background stress. This model predicts that earthquake focal mechanisms should reflect the loading stress rather than the uniform background stress. So, if the heterogeneous stress hypothesis is correct, focal mechanisms before and after a large earthquake should align with the tectonic loading and the earthquake-induced static stress perturbation, respectively. However, I show that the off-fault triggered aftershocks of the 1992 M7.3 Landers, California, earthquake align with the same stress field as the pre-Landers mechanisms. The aftershocks occurred on faults that were well oriented for failure in the pre-Landers stress field and then loaded by the Landers-induced static stress change. Aftershocks in regions experiencing a 0.05 to 5 MPa coseismic differential stress change align with the modeled Landers-induced static stress change, implying that they were triggered by the stress perturbation. Contrary to the heterogeneous stress hypothesis, these triggered aftershocks are also well aligned with the pre-Landers stress field obtained from inverting the pre-Landers focal mechanisms. Therefore, the inverted pre-Landers stress must represent the persistent background stress field. Earthquake focal mechanisms provide an unbiased sample of the spatially coherent background stress field, which is large relative to any small-scale stress heterogeneity. The counterexample provided by the Landers earthquake is strong evidence that the heterogeneous stress model is not widely applicable.

  4. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  5. Structural evolution of electroless Ni-P coating on Al-12 wt.% Si alloy during heat treatment at high temperatures

    NASA Astrophysics Data System (ADS)

    Vojtěch, D.; Novák, M.; Zelinková, M.; Novák, P.; Michalcová, A.; Fabián, T.

    2009-01-01

    The work is concerned with the high-temperature heat treatment of an Al-12 wt.% Si alloy coated by an electroless Ni-P layer. The electroless deposition took place on a pre-treated substrate in a bath containing nickel hypophosphite, nickel lactate and lactic acid. Resulting Ni-P deposit showed a thickness of about 8 μm. The coated samples were heat-treated at 200-550 °C/1-24 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adherence to the substrate was estimated from the scratch test and microhardness of the heat-treated layers was also measured. It is found that various phase transformations occur, as both temperature and annealing time increase. These include (1) amorphous Ni-P → Ni + Ni 3P, (2) Al + Ni → Al 3Ni, (3) Ni 3P → Ni 12P 5 + Ni, (4) Ni 12P 5 → Ni 2P + Ni, and (5) Al 3Ni + Ni → Al 3Ni 2. The formation of intermetallic phases, particularly Al 3Ni 2, leads to significant surface hardening, however, too thick layers of intermetallics reduce the adherence to the substrate. Based on the growth kinetics of the intermetallic phases, diffusion coefficients of Ni in Al 3Ni and Al 3Ni 2 at 450-550 °C are estimated as follows: D(Al 3Ni, 450 °C) ≈ 6 × 10 -12 cm 2 s -1, D(Al 3Ni, 550 °C) ≈ 4 × 10 -11 cm 2 s -1, D(Al 3Ni 2, 450 °C) ≈ 1 × 10 -12 cm 2 s -1 and D(Al 3Ni 2, 550 °C) ≈ 1 × 10 -11 cm 2 s -1. Mechanisms of phase transformations are discussed in relation to the elemental diffusion.

  6. High Resolution Characterization of the Precipitation Behavior of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Li, Yi-Yun; Kovarik, Libor; Phillips, Patrick J.; Hsu, Yung-Fu; Wang, Wen-Hsiung; Mills, Michael J.

    2012-04-01

    The metastable particles in an Al-Zn-Mg-Cu alloy have been examined at atomic-resolution using high-angle annular dark field (HAADF) imaging. In underaged conditions, thin {eta}' plates were formed with a thickness of 7 atomic planes parallel to the {l_brace}111{r_brace}Al planes. The five inner planes of the {eta}' phase appear to be alternatively enriched in Mg and Zn, with two outer planes forming distinct Zn-rich interfacial planes. Similar Zn rich interfacial enrichment has also been identified for the {eta} phase, which is a minimum 11-planes thick structure. In rare instances, particles less than 7 planes were found indicating a very early preference for 7-layer particle formation. Throughout the aging, the plate thickness appears constant, while the plate radius increases and no particles between 7 and 11 planes were observed. Based on the HAADF contrast, our observations do not support the {eta}' models previously set forth by other authors. Clear structural similarities between {eta}' and {eta} were observed, suggesting that drawing distinctions between {eta}' and {eta} phases may not be necessary or useful.

  7. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  8. The stability of Al,Fe-bearing phase H and a new pyrite-type hydroxide at high pressures

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Irifune, T.

    2015-12-01

    Water plays an important role in the structure, dynamics, and evolution of planets because hydrogen can affect the physical properties and stabilities of constituent minerals in the planets. Since alumimous phase H (MgSiO4H2-AlOOH) is stable over the entire pressure range of the lower mantle, the hydrated subducting plate may deliver a certain amount of water into the bottom of the Earth's mantle (Tsuchiya 2013, Nishi et al. 2013, Ohira et al. 2014, Walter et al. 2015). Compositional analysis of phase H grains synthesized from natural serpentine shows the presence of the Fe component in this phase (Nishi et al., 2015). This result suggests that phase H would also form solid solutions with ɛ-FeOOH, since ɛ-FeOOH is isostructural to phase H and δ-AlOOH. Moreover, an ab initio calculation has recently predicted that the new high pressure form of AlOOH, which has pyrite-type structure, would be stabilized at pressures above 170 GPa (Tsuchiya and Tsuchiya, 2011). Although this pyrite-type hydroxide has been found in InOOH, this structure in AlOOH has not been reported by experimental studies. Here we examine the composition and stability of Al,Fe-bearing phase H using a multi-anvil apparatus combined with sintered diamond anvils. Results show that large amounts of Fe and Al are partitioned into phase H relative to bridgmanite. Fe likely affects the stability of phase H in the lower mantle. Also, we conducted high pressure experiments on pure δ-AlOOH by using laser-heated diamond anvil cell (DAC) techniques up to 200 GPa and 2,500 K. In-situ X-ray diffraction (XRD) measurements indicated that the transition from the δ-AlOOH to the pyrite-type structure occurs at high pressures above 190 GPa. Our experimental results exhibited a density reduction of 2.6 wt.% through the structural transition, and both experimental data plots and theoretical calculations showed similar compressibilities of δ-AlOOH and pyrite-type AlOOH. In recent years, hundreds of extra

  9. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  10. Mediation of depression by perceptions of defeat and entrapment in high-stress mothers.

    PubMed

    Willner, P; Goldstein, R C

    2001-12-01

    Previous studies have demonstrated a causal role of stress in depression, and an association between depression and perceptions of defeat and entrapment. The present study was conducted to determine whether perceptions of defeat/entrapment mediate the relationship between stress and depression. Seventy-six mothers of children attending specialist educational provision for a range of special needs completed the Parenting Stress Index-Short Form (PSI-SF), Defeat and Entrapment Scales, the Beck Depression Inventory (BDI), and the Fawcett-Clark Pleasure Capacity Scale (FCPCS). Relative to population norms, respondents reported very high levels of stress, moderately high levels of defeat/entrapment, mild depression, and very low hedonic capacities. Most of these measures were more extreme in younger mothers and those with a prior history of depression. FCPCS scores were correlated negatively with stress, after controlling for levels of defeat/entrapment, but were not correlated with BDI scores, suggesting that the FCPCS may be an unsuitable instrument for use in the present participant population. Significant positive correlations were found between all measures of stress, defeat/entrapment and depression. After controlling for PSI-SF scores, correlations between BDI and defeat/entrapment scores remained highly significant. However, after controlling for defeat/entrapment, correlations between BDI and PSI-SF scores were non-significant. Hence, perceptions of defeat/entrapment mediate the relationship between stress and depression. This relationship was confirmed formally using regression analysis. Because respondents reported high levels of stress in contrast to mild levels of depression, a causal link can be inferred, running from stress via defeat/entrapment to depression.

  11. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower

  12. Assessing Cumulative Thermal Stress in Fish During Chronic Exposure to High Temperature

    SciTech Connect

    Bevelhimer, M.S.; Bennett, W.R.

    1999-11-14

    As environmental laws become increasingly protective, and with possible future changes in global climate, thermal effects on aquatic resources are likely to receive increasing attention. Lethal temperatures for a variety of species have been determined for situations where temperatures rise rapidly resulting in lethal effects. However, less is known about the effects of chronic exposure to high (but not immediately lethal) temperatures and even less about stress accumulation during periods of fluctuating temperatures. In this paper we present a modeling framework for assessing cumulative thermal stress in fish. The model assumes that stress accumulation occurs above a threshold temperature at a rate depending on the degree to which the threshold is exceeded. The model also includes stress recovery (or alleviation) when temperatures drop below the threshold temperature as in systems with large daily variation. In addition to non-specific physiological stress, the model also simulates thermal effects on growth.

  13. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.

  14. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress

    SciTech Connect

    Weinberger,M.; Tolbert, S.; Kavner, A.

    2008-01-01

    Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

  15. Complexity of physiological responses decreases in high-stress musical performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P

    2013-12-01

    For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public. PMID:24068177

  16. Processing routes for intertransformation between low- and high-temperature 8090 Al-Li superplastic sheets

    SciTech Connect

    Pu, H.P.; Huang, J.C.

    1995-08-01

    The current paper reports a series of processing routes for fabrication and inter-transformation of the low-temperature and high-temperature superplastic 8090 Al-Li sheets. There required on preloading procedure for one to transfer the low-temperature superplastic sheet into a high-temperature one, which might satisfy the needs of various industry applications. The thermomechanical treatment (TMT) process included hot rolling, solution treatment, prolonged overaging, warm or cold rolling, and final heating and loading to desired properties. The resulting low-temperature superplastic (LTSP) and high-temperature superplastic (HTSP) thin sheets exhibited good superplastic elongations at either low (350 C) or high (525 C) temperatures, respectively, with or without adding back pressure. Warm rolling yielded slightly higher elongations, but such a minor degradation when using cold rolling may be acceptable for practical applications. The m-values over strain rates of 2--8{times}10{sup {minus}4} s{sup {minus}1} were within 0.28--0.35 for the self-processed LTSP sheets when loaded at 350 C and 0.45--0.50 for the self-processed HTSP materials when tested at 525 C. The final (sub)grain size, after 400--700% elongation was around 3.0-4.0 {micro}m in the LTSP materials and 10--15 {micro}m in the HTSP sheets.

  17. High-Temperature Galling Characteristics of Ti-6Al-4V with and without Surface Treatments

    SciTech Connect

    Blau, Peter Julian; ERDMAN III, DONALD L; Ohriner, Evan Keith; Jolly, Brian C

    2011-01-01

    Galling is a severe form of surface damage in metals and alloys that typically arises under relatively high normal force, low-sliding speed, and in the absence of effective lubrication. It can lead to macroscopic surface roughening and seizure. The occurrence of galling can be especially problematic in high-temperature applications like diesel engine exhaust gas recirculation system components and adjustable turbocharger vanes, because suitable lubricants may not be available, moisture desorption promotes increased adhesion, and the yield strength of metals decreases with temperature. Oxidation can counteract these effects to some extent by forming lubricative oxide films. Two methods to improve the galling resistance of titanium alloy Ti-6Al-4V were investigated: (a) applying an oxygen diffusion treatment, and (b) creating a metal-matrix composite with TiB2 using a high-intensity infrared heating source. A new, oscillating three-pin-on-flat, high-temperature test method was developed and used to characterize galling behavior relative to a cobalt-based alloy (Stellite 6B ). The magnitude of the oscillating torque, the surface roughness, and observations of surface damage were used as measures of galling resistance. Owing to the formation of lubricative oxide films, the galling resistance of the Ti-alloy at 485o C, even non-treated, was considerably better than it was at room temperature. The IR-formed composite displayed reduced surface damage and lower torque than the substrate titanium alloy.

  18. Analysis of thermal residual stress for metal-matrix composite with Al/SiC particles. Master's thesis

    SciTech Connect

    Hur, S.H.

    1988-06-01

    When a metal-matrix composite is cooled down to room temperature from the fabrication or annealing temperature, residual stresses are induced in the composite due to the mismatch of the thermal-expansion coefficients between the matrix and fiber. A method can be derived for calculating the particles due to differences in thermal-expansion coefficients. Special attention is paid to creep deformation in the matrix phase. The analysis shows that considerable internal stresses and creep deformation appear in the composites when subjected to cooling.

  19. Why Stress Remains an Ambiguous Concept: Reply to McEwen & McEwen (2016) and Cohen et al. (2016).

    PubMed

    Kagan, Jerome

    2016-07-01

    This reply to the commentaries by Cohen, Giannaros, and Manuck (2016, this issue) and McEwen and McEwen (2016, this issue) acknowledges investigators' reluctance to relinquish the term stress, despite the lack of agreement on its meaning and the evidence that is a sign of its presence. This brief reply urges scientists studying the exemplars of this ambiguous concept to search for robust relations that specify the type of event, the properties of the agent, the agent's circumstances, and the behavioral or biological consequences. The accumulation of these relations will reveal that the word stress adds little to our understanding. PMID:27474135

  20. Why Stress Remains an Ambiguous Concept: Reply to McEwen & McEwen (2016) and Cohen et al. (2016).

    PubMed

    Kagan, Jerome

    2016-07-01

    This reply to the commentaries by Cohen, Giannaros, and Manuck (2016, this issue) and McEwen and McEwen (2016, this issue) acknowledges investigators' reluctance to relinquish the term stress, despite the lack of agreement on its meaning and the evidence that is a sign of its presence. This brief reply urges scientists studying the exemplars of this ambiguous concept to search for robust relations that specify the type of event, the properties of the agent, the agent's circumstances, and the behavioral or biological consequences. The accumulation of these relations will reveal that the word stress adds little to our understanding.