Science.gov

Sample records for high altitude podophyllum

  1. Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle.

    PubMed

    Dogra, Vivek; Ahuja, Paramvir Singh; Sreenivasulu, Yelam

    2013-01-14

    Podophyllum hexandrum Royle (=Sinopodophyllum hexandrum) is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. An effective, conventional propagation method is by seed. However, seed germination is erratic, and seedling survival is low. A marginal increase in Podophyllum seed germination was attained with organic solvents. In the present study an attempt was made to decipher the physiological and biochemical barriers in terms of change in proteins during seed germination of Podophyllum. Comparative 2-DE analysis between un-germinated (dormant) and germinating seeds revealed nearly 113 differentially expressed proteins, whereas Peptide Mass Fingerprint (PMF) analysis of 97 protein spots revealed appearance of 27 proteins, up-accumulation of 11 proteins, down-accumulation of 19 proteins and disappearance of 40 proteins with germination. Identified 59 proteins in the homology search were involved in metabolism (carbohydrate and amino acid metabolism; 20 proteins), ABA/GA signaling (17 proteins) and stress (15 proteins) related proteins. Seven proteins were with unknown function. Two-DE, and MS/MS analysis in conjunction with semi-quantitative RT-PCR data of cell wall hydrolyzing genes, revealed that in Podophyllum the radicle protrusion occurs might be because of the up-accumulation of cell wall hydrolases i.e. β-1, 3-glucanase and XET which weakens the thick walled micropylar endosperm.

  2. Cloning and functional characterization of β-1, 3-glucanase gene from Podophyllum hexandrum - a high altitude Himalayan plant.

    PubMed

    Dogra, Vivek; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions.

  3. Cloning and functional characterization of β-1, 3-glucanase gene from Podophyllum hexandrum - a high altitude Himalayan plant.

    PubMed

    Dogra, Vivek; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions. PMID:25303872

  4. Protective efficacy of semi purified fraction of high altitude podophyllum hexandrum rhizomes in lethally irradiated Swiss albino mice.

    PubMed

    Gupta, M L; Tyagi, S; Flora, S J S; Agrawala, P K; Choudhary, P; Puri, S C; Sharma, A; Devi, M; Haksar, A; Qazi, G N; Tripathi, R P

    2007-05-30

    A fraction of high altitude Podophyllum hexandrum rhizome, REC-2006, was evaluated for its radioprotective efficacy against lethal gamma-irradiation (10 Gy, whole body) in Swiss albino mice. The maximum tolerated dose (MTD) and LD50 of this fraction were found to be 45 mg/kg b.w. and 74 mg/kg b.w. respectively. Pre-irradiation (- 2 h, ) administration (i.p.) of 6 or 8 mg/kg b.w. of REC-2006 rendered > 90% survival in lethally irradiated mice. The dose reduction factor was calculated to be 1.62 considering survival as the end point. REC-2006 treatment marked in significant increase in endogenous spleen colony forming units. In REC-2006 treated group, super oxide dismutase activity was increased significantly compared to the radiation control group (Liver, p = 0.00, Jejunum p = 0.00). The extract also inhibited radiation induced lipid peroxidation in liver (p = 0.00) at 24 h. REC-2006 administration (100-200 microg/ml) significantly reduced the halo diameter in mice thymocytes. Nearly 10 fold difference between the effective dose (6 mg/kg b.w.) and LD50 and the high degree of whole body survival (> 90% against 10 Gy irradiation) indicates REC-2006 to be safe and highly promising to achieve significant radioprotection against lethal radiation. Further purification and identification of active molecules and their efficacy studies in higher animals therefore demand attention.

  5. Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: role in radiation protection.

    PubMed

    Chawla, Raman; Arora, Rajesh; Kumar, Raj; Sharma, Ashok; Prasad, Jagdish; Singh, Surendar; Sagar, Ravinder; Chaudhary, Pankaj; Shukla, Sandeep; Kaur, Gurpreet; Sharma, Rakesh Kumar; Puri, Satish Chander; Dhar, Kanaya Lal; Handa, Geeta; Gupta, Vinay Kumar; Qazi, Ghulam Nabi

    2005-05-01

    Whole extract of rhizomes of Podophyllum hexandrum has been reported earlier by our group to render whole-body radioprotection. High-altitude P. hexandrum (HAPH) was therefore fractionated using solvents of varying polarity (non-polar to polar) and the different fractions were designated as, n-hexane (HE), chloroform (CE), alcohol (AE), hydro-alcohol (HA) and water (WE). The total polyphenolic content (mg% of quercetin) was determined spectrophotometrically, while. The major constituents present in each fraction were identified and characterized using LC-APCI/MS/MS. In vitro screening of the individual fractions, rich in polyphenols and lignans, revealed several bioactivities of direct relevance to radioprotection e.g. metal-chelation activity, antioxidant activity, DNA protection, inhibition of radiation (250 Gy) and iron/ascorbate-induced lipid peroxidation (LPO). CE exhibited maximum protection to plasmid (pBR322) DNA in the plasmid relaxation assay (68.09% of SC form retention). It also showed maximal metal chelation activity (41.59%), evaluated using 2,2'-bipyridyl assay, followed by AE (31.25%), which exhibited maximum antioxidant potential (lowest absorption unit value: 0.0389 +/- 0.00717) in the reducing power assay. AE also maximally inhibited iron/ascorbate-induced and radiation-induced LPO (99.76 and 92.249%, respectively, at 2000 microg/ml) in mouse liver homogenate. Under conditions of combined stress (radiation (250 Gy) + iron/ascorbate), at a concentration of 2000 microg/ml, HA exhibited higher percentage of inhibition (93.05%) of LPO activity. HA was found to be effective in significantly (p < 0.05) lowering LPO activity over a wide range of concentrations as compared to AE. The present comparative study indicated that alcoholic (AE) and hydro-alcoholic (HA) fractions are the most promising fractions, which can effectively tackle radiation-induced oxidative stress.

  6. Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum- a high altitude plant.

    PubMed

    Dogra, Vivek; Bagler, Ganesh; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum seed Germination protein interaction Network (PGN) was constructed by using the differentially accumulated protein (DAP) data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein-protein interaction network (AtPIN). The developed PGN is comprised of a giant cluster with 1028 proteins having 10,519 interactions and a few small clusters with relevant gene ontological signatures. In this analysis, a germination pathway related cluster which is also central to the topology and information dynamics of PGN was obtained with a set of 60 key proteins. Among these, eight proteins which are known to be involved in signaling, metabolism, protein modification, cell wall modification, and cell cycle regulation processes were found commonly highlighted in both the proteomic and interactome analysis. The systems-level analysis of PGN identified the key proteins involved in radicle protrusion step of seed germination in Podophyllum.

  7. Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum- a high altitude plant

    PubMed Central

    Dogra, Vivek; Bagler, Ganesh; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum seed Germination protein interaction Network (PGN) was constructed by using the differentially accumulated protein (DAP) data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein–protein interaction network (AtPIN). The developed PGN is comprised of a giant cluster with 1028 proteins having 10,519 interactions and a few small clusters with relevant gene ontological signatures. In this analysis, a germination pathway related cluster which is also central to the topology and information dynamics of PGN was obtained with a set of 60 key proteins. Among these, eight proteins which are known to be involved in signaling, metabolism, protein modification, cell wall modification, and cell cycle regulation processes were found commonly highlighted in both the proteomic and interactome analysis. The systems-level analysis of PGN identified the key proteins involved in radicle protrusion step of seed germination in Podophyllum. PMID:26579141

  8. 3-O-beta-D-Galactopyranoside of quercetin as an active principle from high altitude Podophyllum hexandrum and evaluation of its radioprotective properties.

    PubMed

    Chawla, Raman; Arora, Rajesh; Sagar, Ravinder K; Singh, Shikha; Puri, Satish C; Kumar, Raj; Singh, Surender; Sharmaa, Ashok K; Prasada, Jagdish; Khan, Haider A; Sharma, Rakesh Kumar; Dhar, Kanaya Lal; Spiteller, Michael; Qazi, Ghulam Nabi

    2005-01-01

    The aqueous-ethanolic extract (AEE) of high altitude Podophyllum hexandrum has earlier been reported to render a radioprotective effect against lethal gamma radiation in in vitro model. AEE has also been reported to possess metal chelating and DNA protecting properties. The present study was undertaken to isolate and characterize the bioactive principle present in AEE and investigate its role in radiation protection. A novel molecule was found to be present in AEE and was assigned as 3-O-beta-D-galactoside of quercetin by acid hydrolysis, LC-MS, LC-APCI-MS/MS and 13C NMR spectra. Various biological activities were investigated at in vitro level. The antioxidant potential of AEE in lipid and aqueous phase was determined against numerous stresses. AEE was found to be significantly (p < 0.05) protective, i.e., against Fe2+ and Cu2+-induced linoleic acid degradation, respectively. Radiation-induced lipid oxidation studies revealed that AEE maximally works at a [lignan]/0.25 kGy ratio 400 (ratio of concentration of AEE divided by the radiation dose, i.e., 0.25 kGy) and no drug-induced lipid oxidation at all concentrations tested was found. In a time-dependent study, total antioxidant activity was maximally exhibited at 1 mg/ml. The site-specific and non-site-specific deoxyribose degradation assay exhibited a dose-dependant hydroxyl scavenging potential of AEE (0.05-500 microg/ml). The anti-lipid peroxidation ability of AEE against radiation (0.25 kGy)-induced lipid peroxidation was higher in case of neural tissue homogenate as compared to kidney homogenate [activity ratio: 0.039 (brain) < 0.24 (kidney)]. The protein protection study using bovine serum albumin was also done for two time intervals (2 h and 4 h) and significant (p < 0.05) protection was observed at 500 microg/ml (> 97%). This study implies that 3-O-beta-D-galactoside present in AEE renders radioprotection by protecting lipids, proteins in renal and neural model system against supra-lethal (0.25 kGy) gamma

  9. Radioprotective and antioxidant properties of low-altitude Podophyllum hexandrum (LAPH).

    PubMed

    Arora, Rajesh; Chawla, Raman; Puri, Satish Chander; Sagar, Ravinder; Singh, Shikha; Kumar, Raj; Sharma, Ashok Kumar; Prasad, Jagdish; Singh, Surender; Kaur, Gurpreet; Chaudhary, Pankaj; Qazi, Ghulam Nabi; Sharma, Rakesh Kumar

    2005-01-01

    The development of nontoxic yet effective radioprotectors is needed because of the increasing risk of human exposure to ionizing radiation. We have reported that high-altitude Podophyllum hexandrum (HAPH) confers a radioprotective effect in in vitro and in vivo models. The present study reports on the antioxidant and radioprotective properties of low-altitude Podophyllum hexandrum (LAPH), from which the toxic compound podophyllotoxin has been partially removed during the extraction process. Using HPLC,we estimated the relative content of two marker compounds, podophyllotoxin and podophyllotoxin glycoside, in low-altitude Podophyllum extract (LAPE) and found them to be 23.3% and 9.50%, respectively. The ferrous ion chelation potential of LAPE was estimated using the 2,2 bipyridyl assay, and the activity was found to be increased concomitantly with the increase in its concentration, with a maximal inhibition at 25 microg/mL (42.20%) as compared to quercetin (34.9%). The electron donation potential of LAPE was also evaluated, because the antioxidant activities of natural products are known to bear a direct correlation with their ability to donate electrons. The concentration required to attain unit absorbance values at 700 nm were 0.230541+/-0.09 and 0.041+/-0.06 for butylated hydroxyl toluene and LAPE, respectively, indicating a higher antioxidant activity of LAPE. The free radical scavenging ability of LAPE was also assessed and exhibited a dose-dependant increase (1-100 microg/mL), comparable to that of quercetin at 25 microg/mL. The role of LAPE in protecting DNA was evaluated, and it was found that LAPE (30 microg/mL) rendered its maximum radioprotection against the 250 Gy-induced damage in the plasmid (pBR322) relaxation assay. LAPE significantly inhibited radiation-induced, iron/ascorbate- and combined stress (iron/ascorbate and radiation)-induced formation of TBARS (p<0.05). We conclude that LAPH, with its easy accessibility, ease of cultivation, multifarious

  10. High-Altitude Illness

    MedlinePlus

    ... altitude illness: Acute mountain sickness High-altitude pulmonary edema (also called HAPE), which affects the lungs High-altitude cerebral edema (also called HACE), which affects the brain These ...

  11. Fulminant high altitude blindness.

    PubMed

    Mashkovskiy, Evgeny; Szawarski, Piotr; Ryzhkov, Pavel; Goslar, Tomaz; Mrak, Irena

    2016-06-01

    Prolonged altitude exposure even with acclimatization continues to present a physiological challenge to all organ systems including the central nervous system. We describe a case of a 41-year-old Caucasian female climber who suffered severe visual loss that was due to possible optic nerve pathology occurring during a high altitude expedition in the Himalayas. This case is atypical of classic high altitude cerebral oedema and highlights yet another danger of prolonged sojourn at extreme altitudes. PMID:27601532

  12. High-altitude headache.

    PubMed

    Marmura, Michael J; Hernandez, Pablo Bandres

    2015-05-01

    High-altitude headache is one of many neurological symptoms associated with the ascent to high altitudes. Cellular hypoxia due to decreased barometric pressure seems to be the common final pathway for headache as altitude increases. Susceptibility to high-altitude headache depends on genetic factors, history of migraine, and acclimatization, but symptoms of acute mountain sickness are universal at very high altitudes. This review summarizes the pathophysiology of acute mountain sickness and high-altitude headache as well as the evidence for treatment and prevention with different drugs and devices which may be useful for regular and novice mountaineers. This includes an examination of other headache disorders which may mimic high-altitude headache. PMID:25795155

  13. High-altitude medicine.

    PubMed

    West, John B

    2012-12-15

    Medical problems occur at high altitude because of the low inspired Po(2), which is caused by the reduced barometric pressure. The classical physiological responses to high altitude include hyperventilation, polycythemia, hypoxic pulmonary vasoconstriction-increased intracellular oxidative enzymes, and increased capillary density in muscle. However, with the discovery of hypoxia-inducible factors (HIFs), it is apparent that there is a multitude of responses to cellular hypoxia. HIFs constitute a master switch determining the general response of the body to oxygen deprivation. The recent discovery of genetic changes in Tibetans has opened up an exciting area of research. The two major human populations that have adapted well to high altitude, the Tibetans and Andeans, have strikingly different phenotypes. Diseases of lowlanders going to high altitude include acute mountain sickness, high-altitude pulmonary edema, and high-altitude cerebral edema. Diseases affecting permanent residents or highlanders include chronic mountain sickness and high-altitude pulmonary hypertension. Important recent advances have been made on mitigation of the effects of the hypoxic environment. Oxygen enrichment of room air is very powerful. Every 1% increase in oxygen concentration reduces the equivalent altitude by about 300 m. This procedure is used in numerous facilities at high altitude and in a Chinese train to Lhasa. An alternative strategy is to increase the barometric pressure as in aircraft cabins. A hybrid approach combining both strategies shows promise but has never been used. Mines that are being developed at increasingly high altitudes pose great medical problems.

  14. Podophyllotoxin content, above- and belowground biomass in relation to altitude in Podophyllum hexandrum populations from Kumaun region of the Indian Central Himalaya.

    PubMed

    Nadeem, M; Palni, L M S; Kumar, A; Nandi, S K

    2007-04-01

    The morphological features of Podophyllum hexandrum Royle, a 'critically endangered' medicinal herb and a source of podophyllotoxin, were studied in populations growing in different parts of the Kumaun region of the Indian Central Himalaya. Plant growth performance in terms of biomass accumulation and podopyllotoxin levels in the rhizomes collected from eleven natural populations (P1 to P11, altitude ranging from 2740 to 3350 m) were analyzed. Morphological features, e. g., plant height, stem diameter and leaf area were, in general, negatively correlated with an increase in the altitude. Maximum aboveground (8.46 g/individual) and belowground (48.18 g/individual) biomass values were recorded from a population (P9) at the lowest altitude (2740 m) and, in general, the species was found to perform better at the lower altitudes. The podophyllotoxin content of rhizomes ranged between 0.36-1.08% (on dry wt. basis) in different populations, and a positive correlation was observed between podophyllotoxin content and an increase in the altitude.

  15. High Altitude Medical Problems

    PubMed Central

    Hultgren, Herbert N.

    1979-01-01

    Increased travel to high altitude areas by mountaineers and nonclimbing tourists has emphasized the clinical problems associated with rapid ascent. Acute mountain sickness affects most sojourners at elevations above 10,000 feet. Symptoms are usually worse on the second or third day after arrival. Gradual ascent, spending one to three days at an intermediate altitude, and the use of acetazolamide (Diamox) will prevent or ameliorate symptoms in most instances. Serious and potentially fatal problems, such as high altitude pulmonary edema or cerebral edema, occur in approximately 0.5 percent to 1.0 percent of visitors to elevations above 10,000 feet—especially with heavy physical exertion on arrival, such as climbing or skiing. Early recognition, high flow oxygen therapy and prompt descent are crucially important in management. Our knowledge of the causes of these and other high altitude problems, such as retinal hemorrhage, systemic edema and pulmonary hypertension, is still incomplete. Even less is known of the effect of high altitudes on medical conditions common at sea level or on the action of commonly used drugs. ImagesFigure 2. PMID:483805

  16. Ear - blocked at high altitudes

    MedlinePlus

    ... ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... the middle ear and the back of the nose and upper throat. ... down from high altitudes. Chewing gum the entire time you are ...

  17. Cardiovascular medicine at high altitude.

    PubMed

    Whayne, Thomas F

    2014-07-01

    Altitude physiology began with Paul Bert in 1878. Chronic mountain sickness (CMS) was defined by Carlos Monge in the 1940s in the Peruvian Andes as consisting of excess polycythemia. Hurtado et al performed studies in the Peruvian Andes in the 1950s to 1960s which defined acclimatization in healthy altitude natives, including polycythemia, moderate pulmonary hypertension, and low systemic blood pressure (BP). Electrocardiographic changes of right ventricular hypertrophy (RVH) were noted. Acclimatization of newcomers to altitude involves hyperventilation stimulated by hypoxia and is usually benign. Acute mountain sickness (AMS) in travelers to altitude is characterized by hypoxia-induced anorexia, dyspnea, headache, insomnia, and nausea. The extremes of AMS are high-altitude cerebral edema and high-altitude pulmonary edema. The susceptible high-altitude resident can lose their tolerance to altitude and develop CMS, also referred to as Monge disease. The CMS includes extreme polycythemia, severe RVH, excess pulmonary hypertension, low systemic BP, arterial oxygen desaturation, and hypoventilation.

  18. Brain Food at High Altitude.

    PubMed

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  19. Brain Food at High Altitude.

    PubMed

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude. PMID:27651260

  20. Infectious Diseases at High Altitude.

    PubMed

    Basnyat, Buddha; Starling, Jennifer M

    2015-08-01

    Travel to elevations above 2,500 m is an increasingly common activity undertaken by a diverse population of individuals. These may be trekkers, climbers, miners in high-altitude sites in South America, and more recently, soldiers deployed for high-altitude duty in remote areas of the world. What is also being increasingly recognized is the plight of the millions of pilgrims, many with comorbidities, who annually ascend to high-altitude sacred areas. There are also 400 million people who reside permanently in high mountain ranges, which cover one-fifth of the Earth's surface. Many of these high-altitude areas are in developing countries, for example, the Himalayan range in South Asia. Although high-altitude areas may not harbor any specific infectious disease agents, it is important to know about the pathogens encountered in the mountains to be better able to help both the ill sojourner and the native high-altitude dweller. Often the same pathogens prevalent in the surrounding lowlands are found at high altitude, but various factors such as immunomodulation, hypoxia, poor physiological adaptation, and harsh environmental stressors at high altitude may enhance susceptibility to these pathogens. Against this background, various gastrointestinal, respiratory, dermatological, neurological, and other infections encountered at high altitude are discussed.

  1. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  2. Cardiovascular physiology at high altitude.

    PubMed

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed. PMID:21465906

  3. Cardiovascular physiology at high altitude.

    PubMed

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  4. Cardiovascular medicine at high altitude.

    PubMed

    Whayne, Thomas F

    2014-07-01

    Altitude physiology began with Paul Bert in 1878. Chronic mountain sickness (CMS) was defined by Carlos Monge in the 1940s in the Peruvian Andes as consisting of excess polycythemia. Hurtado et al performed studies in the Peruvian Andes in the 1950s to 1960s which defined acclimatization in healthy altitude natives, including polycythemia, moderate pulmonary hypertension, and low systemic blood pressure (BP). Electrocardiographic changes of right ventricular hypertrophy (RVH) were noted. Acclimatization of newcomers to altitude involves hyperventilation stimulated by hypoxia and is usually benign. Acute mountain sickness (AMS) in travelers to altitude is characterized by hypoxia-induced anorexia, dyspnea, headache, insomnia, and nausea. The extremes of AMS are high-altitude cerebral edema and high-altitude pulmonary edema. The susceptible high-altitude resident can lose their tolerance to altitude and develop CMS, also referred to as Monge disease. The CMS includes extreme polycythemia, severe RVH, excess pulmonary hypertension, low systemic BP, arterial oxygen desaturation, and hypoventilation. PMID:23892441

  5. Lung Disease at High Altitude

    PubMed Central

    Stream, JO; Luks, AM; Grissom, CK

    2016-01-01

    Large numbers of people travel to high altitudes, entering an environment of hypobaric hypoxia. Exposure to low oxygen tension leads to a series of important physiologic responses that allow individuals to tolerate these hypoxic conditions. However, in some cases hypoxia triggers maladaptive responses that lead to various forms of acute and chronic high altitude illness, such as high-altitude pulmonary edema or chronic mountain sickness. Because the respiratory system plays a critical role in these adaptive and maladaptive responses, patients with underlying lung disease may be at increased risk for complications in this environment and warrant careful evaluation before any planned sojourn to higher altitudes. In this review, we describe respiratory disorders that occur with both acute and chronic exposures to high altitudes. These disorders may occur in any individual who ascends to high altitude, regardless of his/her baseline pulmonary status. We then consider the safety of high-altitude travel in patients with various forms of underlying lung disease. The available data regarding how these patients fare in hypoxic conditions are reviewed, and recommendations are provided for management prior to and during the planned sojourn. PMID:20477353

  6. High altitude atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Hedin, Alan E.

    1988-01-01

    Five empirical models were compared with 13 data sets, including both atmospheric drag-based data and mass spectrometer data. The most recently published model, MSIS-86, was found to be the best model overall with an accuracy around 15 percent. The excellent overall agreement of the mass spectrometer-based MSIS models with the drag data, including both the older data from orbital decay and the newer accelerometer data, suggests that the absolute calibration of the (ensemble of) mass spectrometers and the assumed drag coefficient in the atomic oxygen regime are consistent to 5 percent. This study illustrates a number of reasons for the current accuracy limit such as calibration accuracy and unmodeled trends. Nevertheless, the largest variations in total density in the thermosphere are accounted for, to a very high degree, by existing models. The greatest potential for improvements is in areas where we still have insufficient data (like the lower thermosphere or exosphere), where there are disagreements in technique (such as the exosphere) which can be resolved, or wherever generally more accurate measurements become available.

  7. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  8. Sleep and Breathing at High Altitude.

    PubMed

    Wickramasinghe, Himanshu; Anholm, James D.

    1999-01-01

    Sleep at high altitude is characterized by poor subjective quality, increased awakenings, frequent brief arousals, marked nocturnal hypoxemia, and periodic breathing. A change in sleep architecture with an increase in light sleep and decreasing slow-wave and REM sleep have been demonstrated. Periodic breathing with central apnea is almost universally seen amongst sojourners to high altitude, although it is far less common in long-standing high altitude dwellers. Hypobaric hypoxia in concert with periodic breathing appears to be the principal cause of sleep disruption at altitude. Increased sleep fragmentation accounts for the poor sleep quality and may account for some of the worsened daytime performance at high altitude. Hypoxic sleep disruption contributes to the symptoms of acute mountain sickness. Hypoxemia at high altitude is most severe during sleep. Acetazolamide improves sleep, AMS symptoms, and hypoxemia at high altitude. Low doses of a short acting benzodiazepine (temazepam) may also be useful in improving sleep in high altitude. PMID:11898114

  9. Cognitive impairments at high altitudes and adaptation.

    PubMed

    Yan, Xiaodan

    2014-06-01

    High altitude hypoxia has been shown to have significant impact on cognitive performance. This article reviews the aspects in which, and the conditions under which, decreased cognitive performance has been observed at high altitudes. Neural changes related to high altitude hypoxia are also reviewed with respect to their possible contributions to cognitive impairments. In addition, potential adaptation mechanisms are reviewed among indigenous high altitude residents and long-term immigrant residents, with discussions about methodological concerns related to these studies.

  10. [Altitude adaptation. IV. Fertility and reproduction at high altitudes].

    PubMed

    Eckes, L

    1976-01-01

    High altitude populations have been reproducing for thousands of years. The mean total fertility is comparable to the respective mean values of the whole populations or is even higher. On the other hand, newcomers from sea level seem to have difficulties reproducing in high altitude, especially if they are caucasian. Cattle and other animals fail to reproduce to some extent (due to degeneration of the testes, asoospermia, abortation etc.), which can only be avoided after crossbreeding with aclimatized strains in several generations. But successful gestation in altitudes above 3000 metres is different from sea level gestation in several aspects, which may be important for the survival of mother and child, thus leaving open the question of selective pressure. The mean birth weight of man and animals is reduced, while the mean palcental weight is greater (relatively and absolutely) due to enlargement of the capillary volume. Placenta proves to be on higher risk for developing infarcts (the more in number and extetion, the greater the caucasian admixture). Due to the tendency to a greater extention of the surface, the rate of placenta praevia is extremely high (27%). The lower birth weight corresponds to a higher neonatal mortality, progressing with increasing altitude. Additional to the high altitude stress including the factors to which the newborn are exposed, such as cold, nuturtional deficiencies etc., particular socio-economic conditions influence the differential mortality. In the Bolivian mining-areas, mortality during the first year of life rises to 50%. Only high fertility rates compensate this loss so that high altitude population growth rates do not vary with the altitude.

  11. Molecular characterization and marker based chemotaxonomic studies of Podophyllum hexandrum Royle.

    PubMed

    Sultan, Phalisteen; Shawl, A S; Rehman, Suriya; Ahmed, S Fayaz; Ramteke, P W

    2010-06-01

    Detailed chemical studies and RAPD analysis were done in different populations of Podophyllum hexandrum collected from high altitude regions of North Western Himalayas. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity among the 12 collected accessions, attributed to their geographical and climatic conditions. HPLC analysis also revealed variation in the concentration of two major marker compounds which lead to the identification of a chemotype. The study demonstrated that RAPD and chemical markers are very useful tools to compare the genetic relationship and pattern of variation among such prioritized and endangered medicinal plants.

  12. High Altitude Cooking and Food Safety

    MedlinePlus

    ... Where to Place the Food Thermometer Recommended Internal Temperatures Is egg cookery affected at high altitudes? Is ... atmospheric pressure — affects both the time and the temperature of most everything that's cooked. Where the altitude ...

  13. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  14. The high-altitude brain.

    PubMed

    Hornbein, T F

    2001-09-01

    The highest place on our planet, Mount Everest (8850 m), appears to be close to the limit of how high an acclimatized human can go, albeit slowly. In this paper, I will explore the possibility that what limits human performance at such extreme degrees of hypoxia is the availability of oxygen to the brain. Also, one of the known costs of such extreme exposure is residual mild impairment of performance on neuropsychometric tests after return to sea level, implying injury to brain cells. That such injury could occur in the absence of any overt impairment of function, much less without loss of consciousness, is unexpected. I will speculate about physiological mechanisms that might cause or contribute to both decrements in real-time performance while at altitude and residual deficits for a time after return to low elevations; the effects of hypoxia on brain cells are an even greater puzzle at the present time.

  15. Hormonal contraceptives and travel to high altitude.

    PubMed

    Keyes, Linda E

    2015-03-01

    Women frequently ask about the safety and efficacy of using hormonal contraception (HC), either oral contraceptive pills (OC) or other forms, when traveling to high altitude locales. What are the risks and benefits of using HC at high altitude? Does HC affect acclimatization, exercise performance, or occurrence of acute mountain sickness? This article reviews current data regarding the risks and benefits of HC at high altitude, both demonstrated and theoretical, with the aim of helping health care providers to advise women traveling above 2500 meters. Most healthy women can safely use HC when traveling to high altitude, but should be aware of the potential risks and inconveniences.

  16. Hormonal contraceptives and travel to high altitude.

    PubMed

    Keyes, Linda E

    2015-03-01

    Women frequently ask about the safety and efficacy of using hormonal contraception (HC), either oral contraceptive pills (OC) or other forms, when traveling to high altitude locales. What are the risks and benefits of using HC at high altitude? Does HC affect acclimatization, exercise performance, or occurrence of acute mountain sickness? This article reviews current data regarding the risks and benefits of HC at high altitude, both demonstrated and theoretical, with the aim of helping health care providers to advise women traveling above 2500 meters. Most healthy women can safely use HC when traveling to high altitude, but should be aware of the potential risks and inconveniences. PMID:25759908

  17. Jupiter's High-Altitude Clouds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Multispectral Visible Imaging Camera (MVIC) snapped this incredibly detailed picture of Jupiter's high-altitude clouds starting at 06:00 Universal Time on February 28, 2007, when the spacecraft was only 2.3 million kilometers (1.4 million miles) from the solar system's largest planet. Features as small as 50 kilometers (30 miles) are visible. The image was taken through a narrow filter centered on a methane absorption band near 890 nanometers, a considerably redder wavelength than what the eye can see. Images taken through this filter preferentially pick out clouds that are relatively high in the sky of this gas giant planet because sunlight at the wavelengths transmitted by the filter is completely absorbed by the methane gas that permeates Jupiter's atmosphere before it can reach the lower clouds.

    The image reveals a range of diverse features. The south pole is capped with a haze of small particles probably created by the precipitation of charged particles into the polar regions during auroral activity. Just north of the cap is a well-formed anticyclonic vortex with rising white thunderheads at its core. Slightly north of the vortex are the tendrils of some rather disorganized storms and more pinpoint-like thunderheads. The dark 'measles' that appear a bit farther north are actually cloud-free regions where light is completely absorbed by the methane gas and essentially disappears from view. The wind action considerably picks up in the equatorial regions where giant plumes are stretched into a long wave pattern. Proceeding north of the equator, cirrus-like clouds are shredded by winds reaching speeds of up to 400 miles per hour, and more pinpoint-like thunderheads are visible. Although some of the famous belt and zone structure of Jupiter's atmosphere is washed out when viewed at this wavelength, the relatively thin North Temperate Belt shows up quite nicely, as does a series of waves just north of the belt. The north polar region of

  18. Psychological testing at high altitudes.

    PubMed

    Nelson, M

    1982-02-01

    Psychological testing was done on 20 subjects at various altitudes (sea level, 3,8,10 m, and 5,000 m) during a 35-d mountaineering expedition to Denali (Mt. McKinley). Intellectual functioning and personality changes were studied. While little variation was noted at the lower altitude, at 5,000 m there was a marked deterioration in cognitive ability. This was accompanied by a sharp increase in paranoia and obsessive-compulsiveness and smaller increases in depression and hostility.

  19. High altitude aircraft flight tests

    NASA Astrophysics Data System (ADS)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  20. [High altitude training: sense, nonsense, trends].

    PubMed

    Friedmann, B; Bärtsch, P

    1997-11-01

    Athletes who need high endurance capacity often use training at moderately high altitude (1500-3000 m) to improve oxygen delivery and utilization because of a hypoxia-induced increase of the red blood cell volume and adaptations at the muscular level. As maximal heart rates decrease at high altitude and plasma lactate levels for a given workload change during prolonged exposure to high altitude, it can be difficult to control and adapt the intensity and duration of the work-outs. Furthermore, maximal performance capacity decreases and therefore training intensity at high altitude is usually reduced compared to training at sea level. To avoid these disadvantages at high altitude a concept of living at moderately high altitude and training at lower elevations, termed "live high-train low" evolved, opposing the conventional concept of "live high-train high". A third option using a hypobaric chamber ("live low-train low") is hardly used anymore for training athletes. Studies on the effects of conventional high-altitude training for the improvement of athletic performance often lack a rigorous controlled design and yield controversial results. Regarding the new concept of "live high-train low" there is only one controlled study on college athletes and it shows a minor advantage of this new approach compared to conventional high-altitude training. However, training concepts are especially important for elite competitive athletes, and controlled studies with such individuals are very difficult to perform. Therefore, it appears that today we cannot answer the question of whether altitude-specific physiologic factors or non-altitude-related benefits of training camps account for the success of individual athletes.

  1. High Altitude Illnesses in Hawai‘i

    PubMed Central

    2014-01-01

    High Altitude Headache (HAH), Acute Mountain Sickness (AMS), and High Altitude Cerebral Edema (HACE) are all high altitude related illnesses in order of severity from the mildly symptomatic to the potentially life-threatening. High altitude illnesses occur when travelers ascend to high altitudes too rapidly, which does not allow enough time for the body to adjust. Slow graded ascent to the desired altitude and termination of ascent if AMS symptoms present are keys to illness prevention. Early recognition and rapid intervention of AMS can halt progression to HACE. Pharmacologic prophylaxis with acetazolamide is a proven method of prevention and treatment of high altitude illness. If prevention fails then treatment modalities include supplemental oxygen, supportive therapy, hyperbaric treatment, and dexamethasone. Given the multitude of visitors to the mountains of Hawai‘i, high altitude illness will continue to persist as a prevalent local condition. This paper will emphasize the prevention and early diagnosis of AMS so that the illness does not progress to HACE. PMID:25478293

  2. High-Altitude Hydration System

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott E.; Orndoff, Evelyne; Bue, Grant C.; Schaefbauer, Mark E.; Urban, Kase

    2010-01-01

    Three methods are being developed for keeping water from freezing during high-altitude climbs so that mountaineers can remain hydrated. Three strategies have been developed. At the time of this reporting two needed to be tested in the field and one was conceptual. The first method is Passive Thermal Control Using Aerogels. This involves mounting the fluid reservoir of the climber s canteen to an inner layer of clothing for better heat retention. For the field test, bottles were mounted to the inner fleece layer of clothing, and then aerogel insulation was placed on the outside of the bottle, and circumferentially around the drink straw. When climbers need to drink, they can pull up the insulated straw from underneath the down suit, take a sip, and then put it back into the relative warmth of the suit. For the field test, a data logger assessed the temperatures of the water reservoir, as well as near the tip of the drink straw. The second method is Passive Thermal Control with Copper-Shielded Drink Straw and Aerogels, also mounted to inner layers of clothing for better heat retention. Braided wire emanates from the inside of the fleece jacket layer, and continues up and around the drink straw in order to use body heat to keep the system-critical drink straw warm enough to keep water in the liquid state. For the field test, a data logger will be used to compare this with the above concept. The third, and still conceptual, method is Active Thermal Control with Microcontroller. If the above methods do not work, microcontrollers and tape heaters have been identified that could keep the drink straw warm even under extremely cold conditions. Power requirements are not yet determined because the thermal environment inside the down suit relative to the external environment has not been established. A data logger will be used to track both the external and internal temperatures of the suit on a summit day.

  3. Developmental functional adaptation to high altitude: review.

    PubMed

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  4. Sickness at high altitude: a literature review.

    PubMed

    Brundrett, G

    2002-03-01

    When some individuals spend just a few hours at low atmospheric pressure above 1,500 m (5,000 ft)--such as when climbing a mountain or flying in a plane at high altitude--they become ill. Altitude sickness studies originally concentrated on life-threatening illnesses which beset determined and athletic climbers at extreme altitudes. In recent years, however, research attention is moving towards milder forms of sickness reported by a significant proportion of the growing number of visitors to mountain and ski resorts at more moderate altitude. Some of this research is also relevant in understanding the problems experienced by passengers in newer planes that fly at a significantly higher equivalent cabin altitude, i.e. 2,440 m (8,000 ft), than earlier designs. Engineering solutions--such as enriched oxygen in enclosed spaces at altitude, or in the case of aircraft, lower cabin altitudes--are possible, but for an economic assessment to be realistic an engineer needs to identify the scale of the problem and to understand the factors determining susceptibility. This review concentrates on the problems of mountain sickness in the ordinary population at altitudes of around 3,000 m (10,000 ft); this is a problem of growing concern as ski resorts develop, mountain trekking increases in popularity, and as higher altitude cabin pressures are achieved in aircraft.

  5. Characterization of two epimers, 4alpha and 4beta, of a novel podophyllotoxin-4-O-(D)-6-acetylglucopyranoside from Podophyllum hexandrum by LC-ESI-MS-MS.

    PubMed

    Puri, S C; Handa, G; Bhat, B A; Dhar, K L; Spiteller, Michael; Qazi, G N

    2006-01-01

    High-performance liquid chromatography (HPLC) with diode array detection interfaced to electrospray ionization (ESI) mass spectrometry (MS) is applied to identify the two epimers of a novel and minor constituent, podophyllotoxin-4-O-(D)-6-acetylglucopyraniside from high-altitude Podophyllum hexandrum for the first time. This is done by matching the structural information from the tandem MS data with the reported lignan markers. The results show that LC-MS-MS is the method of choice for fast detection and detailed chemical analysis of mixtures in the crude extracts of Podophyllum. The method can be employed in the absence of reference standards for the markers and is particularly useful in view of the scarcity of these rare chemical standards.

  6. Comparative human ventilatory adaptation to high altitude.

    PubMed

    Moore, L G

    2000-07-01

    Studies of ventilatory response to high altitudes have occupied an important position in respiratory physiology. This review summarizes recent studies in Tibetan high-altitude residents that collectively challenge the prior consensus that lifelong high-altitude residents ventilate less than acclimatized newcomers do as the result of acquired 'blunting' of hypoxic ventilatory responsiveness. These studies indicate that Tibetans ventilate more than Andean high-altitude natives residing at the same or similar altitudes (PET[CO(2)]) in Tibetans=29.6+/-0.8 vs. Andeans=31.0+/-1.0, P<0.0002 at approximately 4200 m), a difference which approximates the change that occurs between the time of acute hypoxic exposure to once ventilatory acclimatization has been achieved. Tibetans ventilate as much as acclimatized newcomers whereas Andeans ventilate less. However, the extent to which differences in hypoxic ventilatory response (HVR) are responsible is uncertain from existing data. Tibetans have an HVR as high as those of acclimatized newcomers whereas Andeans generally do not, but HVR is not consistently greater in comparisons of Tibetan versus Andean highland residents. Human and experimental animal studies demonstrate that inter-individual and genetic factors affect acute HVR and likely modify acclimatization and hyperventilatory response to high altitude. But the mechanisms responsible for ventilatory roll-off, hyperoxic hyperventilation, and acquired blunting of HVR are poorly understood, especially as they pertain to high-altitude residents. Developmental factors affecting neonatal arterial oxygenation are likely important and may vary between populations. Functional significance has been investigated with respect to the occurrence of chronic mountain sickness and intrauterine growth restriction for which, in both cases, low HVR seems disadvantageous. Additional studies are needed to address the various components of ventilatory control in native Tibetan, Andean and other

  7. Sleep at high altitude: guesses and facts.

    PubMed

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  8. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. high-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated in to increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31 % increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  9. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent; Lyons, Valerie (Technical Monitor)

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  10. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2 percent of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20 percent increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2 percent of gross lift-off weight, this corresponds to 31 percent increase in payload (for 5-kilometer launch altitude) to 122 percent additional payload (for 25-kilometer launch altitude).

  11. Early history of high-altitude physiology.

    PubMed

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. PMID:25762218

  12. Early history of high-altitude physiology.

    PubMed

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude.

  13. High altitude pulmonary edema in mountain climbers.

    PubMed

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment.

  14. [Health status of high-altitude population].

    PubMed

    Okumiya, Kiyoto

    2013-01-01

    The health status of high-altitude population in Qinghai (China), Ladakh (India), and Arunachal (India) was investigated using comprehensive geriatric functional assessment in relation to their recent lifestyle change with the socio-economic globalization. People in urban areas had a higher prevalence of lifestyle-related diseases and poorer geriatric functions, and a lower subjective quality of life (QOL) than people in rural areas. The optimal prevention of lifestyle-related diseases and preservation of a high QOL are important for the people living in each of the above-mentioned areas with a high altitude.

  15. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  16. Can High Altitude Influence Cytokines and Sleep?

    PubMed Central

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  17. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  18. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  19. Sleep of Andean high altitude natives.

    PubMed

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  20. High Altitude Synthetic Aperture Imaging of Titan

    NASA Astrophysics Data System (ADS)

    West, Richard; Stiles, B.; Anderson, Y.; Boehmer, R.; Callahan, P.; Gim, Y.; Hamilton, G.; Johnson, W. T.; Kelleher, K.; Wye, L.; Zebker, H.

    2006-09-01

    The Cassini spacecraft has been conducting observations of Titan since July 2004 . Currently, 6 close flyby's have collected synthetic aperture radar (SAR) data giving image resolutions down to 300 - 500 m. About 14 additional close radar imaging passes are planned. To improve radar coverage and increase the synergy with other Cassini imaging instruments such as VIMS and ISS, the radar team has started experimenting with very high altitude SAR imaging where conditions permit. This presentation will examine the performance trade-offs, special processing issues, and science potential of these high altitude SAR observations. These data collections are distinct from the normal Titan SAR images because the range will be much larger (around 20,000 km). To acquire enough signal in these circumstances, the radar operates in the lowest bandwidth scatterometer mode while spacecraft pointing control is used to slowly pan the central beam across a small swath. Due to a lower signal to noise ratio these high altitude images are designed to average together 150-200 independent looks to see features that may lie below the noise floor. So far, three high altitude images have been acquired during Titan flyby's T12, T13, and T15. In T12 imaging was attempted from 37000 km with an effective resolution around 5 km. In T13 the Huygens Probe landing site was imaged from 11000 km with effective resolution of 1 - 2 km. In T15 the Tsegehi area was imaged from 20000 km with effective resolution of 2 - 3 km.

  1. The morbid anatomy of high altitude

    PubMed Central

    Heath, Donald

    1979-01-01

    The morbid anatomical changes which take place in man and animals exposed to the chronic hypoxia of residence at high altitude are briefly reviewed. ImagesFig. 1Fig. 2Fig. 3Fig. 5Fig. 4Fig. 6Fig. 7Fig. 8 PMID:493205

  2. RP-HPLC method using one marker for quantification of four podophyllum lignans in medicinal plants.

    PubMed

    Lu, Ningwei; An, Qiong; Li, Ning; Dong, Yuming

    2014-07-01

    A high-performance liquid chromatographic method using a single standard has been established for the quantitative analysis of four podophyllum lignans in Dysosma versipellis (Hance) M. Cheng and Podophyllum emodi Wall. Var. chinesis Sprague. The method involved the quantitative analysis of multiple components by a single marker. The chromatographic method was validated for linearity and range, limit of detection and qualification, precision, stability, reproducibility and robustness. Relative correcting factors were calculated and examined by five concentrations of four podophyllum lignans, two high-performance liquid chromatographic systems and three chromatographic columns. The method was applied to analyze 10 batches of samples. The quantitative results were compared with the results by an external standard method through intra-class coefficient, which indicated that the established method was reliable for the determination of the four podophyllum lignans in the two medicinal plants.

  3. Insulin secretion at high altitude in man

    NASA Astrophysics Data System (ADS)

    Sawhney, R. C.; Malhotra, A. S.; Singh, T.; Rai, R. M.; Sinha, K. C.

    1986-09-01

    The effect of hypoxia on circulatory levels of insulin, its response to oral glucose administration (100 g) and changes in circadian rhythms of glucose as well as insulin were evaluated in euglycemic males at sea level (SL, 220 m) during their stay at high altitude (3500 m, SJ) and in high altitude natives (HAN). Basal glucose levels were not altered at high altitude but the rise in glucose (δ glucose) after glucose load was significantly higher in SJ and HAN (p<0.01) as compared to SL values. An increase (p<0.01) both in basal as well as glucose induced rise in insulin secretion (δ insulin) was observed at HA. The rise in insulin in SJ was significantly higher (p<0.01) than in HAN. This elevation in glucose and insulin levels was also evident at different times of the day. The circadian rhythmicity of glucose as well as insulin was altered by the altitude stress. The findings of the study show a rise in insulin level at HA but the hyperglycemia in the face of hyper-insulinism require the presumption of a simultaneous and dispropotionate rise of insulin antagonistic hormones upsetting the effect of insulin on glucose metabolism.

  4. High-altitude physiology: lessons from Tibet

    NASA Astrophysics Data System (ADS)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (P<0.05), enabled by both higher cardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  5. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  6. Stress-mediated adaptive response leading to genetic diversity and instability in metabolite contents of high medicinal value: an overview on Podophyllum hexandrum.

    PubMed

    Gupta, Manju Lata; Dutta, Ajaswrata

    2011-12-01

    Podophyllum hexandrum, known for its diversified clinical importance particularly for antineoplastic activity and valuable source for biological protection against high doses of radiation, has its unique position in the plant kingdom. Detailed understanding of mechanism and opportunity of chemical manipulations has amplified the scope of its bioactivity. Podophyllotoxin, the major active principle of this plant, has passed through various structural deviations with the basic aim of making the end product clinically more effective with minimal toxicity. However, over exploitation and limited growth has categorized this plant under endangered species. Depending upon the geographical variations, different species and subspecies of this plant have been explored. Morphological variations and quantitative differences in active principles are the major concern of its unstable medicinal value in whole and semifractionated preparations. The current review has addressed the issues related to the genetic diversity of P. hexandrum, extrinsic and intrinsic stresses responsible for its diversified nature, chemical modifications to enhance its multitasking bioactivity, and efforts for its cultivation and production of important metabolites to avoid collection of wild species due to its critically endangered nature.

  7. High Altitude Plasma Instrument (HAPI) data analysis

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The objectives of the Dynamics Explorer mission are to investigate the coupling of energy, mass, and momentum among the earth's magnetosphere, ionosphere, and upper atmosphere. At launch, on August 3, 1981, DE-1 was placed into an elliptical polar orbit having an apogee of 23,130 km to allow global auroral imaging and crossings of auroral field lines at altitudes of several thousand kilometers. At the same time DE-2 was placed into a polar orbit, coplanar with that of DE-1 but with a perigee altitude low enough (309 km) for neutral measurements and an apogee altitude of 1012 km. The DE-1 High Altitude Plasma Instrument (HAPI) provided data on low and medium energy electrons and ions from August 13, 1981 until December 1, 1981, when a high-voltage failure occured. Analysis of HAPI data for the time period of this contract has produced new results on the source mechanisms for electron conical distributions, particle acceleration phenomena in auroral acceleration regions, Birkeland currents throughout the nightside auroral regions, the source region for auroral kilometric radiation (AKR), and plasma injection phenomena in the polar cusp.

  8. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  9. Chromosome identification and karyotype analysis of Podophyllum hexandrum Roxb. ex Kunth using FISH.

    PubMed

    Nag, Akshay; Rajkumar, Subramani

    2011-07-01

    Podophyllum hexandrum is an important high altitude medicinal plant from Himalaya. Somatic chromosomes of this species were studied to delineate and physical mapping of repetitive rDNA sites to provide landmarks in chromosome identification. The karyotype formula of this species was found to be 6m + 2sm + 2st + 2t with secondary constriction in the chromosome 1 and 7. The FISH analysis of rDNA sites showed 4 sites for 18S rDNA and 2 sites for 5S rDNA. The chromosome number 1, 2, 5 and 6 can be identified based on 18S rDNA sites in their short arm and chromosome 1 and 2 can be identified by 5S rDNA site in the centromere region. The estimated genome size of this plant is 16.07 pg (1C).

  10. Mitochondrial function at extreme high altitude.

    PubMed

    Murray, Andrew J; Horscroft, James A

    2016-03-01

    At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. PMID:26033622

  11. Solar radiation monitoring for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  12. Solar radiation monitoring for high altitude aircraft

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.

    1981-10-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  13. The autonomic nervous system at high altitude

    PubMed Central

    Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976

  14. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    PubMed Central

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  15. Infrared reflectance of high altitude clouds.

    PubMed

    Hovis, W A; Blaine, L R; Forman, M L

    1970-03-01

    The spectral reflectance characteristics of cirrostratus, cirrus clouds, and a jet contrail, in the 0.68-2.4-micro spectral interval, are of interest for remote sensing of cloud types from orbiting satellites. Measurements made with a down-looking spectrometer from a high altitude aircraft show differences between the signatures of naturally formed ice clouds, a fresh jet contrail, and a snow covered surface.

  16. [High-altitude pulmonary edema in Japan].

    PubMed

    Kobayashi, T

    1995-12-01

    To understand the pathophysiology of high-altitude pulmonary edema (HAPE), we examined the pathway of adaptation to high altitude in lifelong of Tibet. The Tibetan natives had higher exercise performance, but lower maximal oxygen uptake and lower blood lactate concentrations than did acclimatized Han newcomers. Clinical and basic studies done to determine the pathophysiologic characteristics of 47 patients with HAPE and of subjects susceptible to HAPE. The altitude of onset was 2,680 m to 3,190 m above sea level. Results of hemodynamic studies and the presence of protein-rich edema fluid indicated that HAPE is noncardiogenic and is a type of increased permeability edema. The levels of IL-1 beta, IL-6, IL-8, and TNF-alpha in bronchoalveolar lavage fluid from subjects with HAPE were high on admission. The subjects susceptible to HAPE had much greater increases in an index of pulmonary vascular resistance than did the controls, which resulted in much higher levels of pulmonary arterial pressure during both acute hypoxia and hypobaria. The subjects susceptible to HAPE also has blunted hypoxic ventilatory drives. We studied whether human leukocyte antigen DR-6 functions as a genetic predisposition to HAPE. The frequency of DR-6 was increased in the subjects susceptible to HAPE, which suggests that they have a constitutional abnormality in the pulmonary circulatory, and ventilatory responses to hypoxia and hypobaria, and that genetic factors may be involved in the development of HAPE.

  17. The High Altitude Gamma Ray Observatory, HAWC

    NASA Astrophysics Data System (ADS)

    González, M. M.

    2011-10-01

    The Volcano Sierra Negra in Puebla, Mexico was selected to host HAWC (High Altitude Water Cherenkov), a unique obervatory of wide field of view (2π sr) capable of observing the sky continously at energies from 0.5 TeV to 100 TeV. HAWC is an array of 300 large water tanks (7.3 m diameter × 5 m depth) at an altitude of 4100 m. a. s. l. Each tank is instrumented with three upward-looking photomultipliers tubes. The full array will be capable of observing the most energetic gamma rays from the most violent events in the universe. HAWC will be 15 times more sensitive than its predecesor, Milagro. We present HAWC, the scientific case and capabilities.

  18. High altitude plumes at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia Muñoz, A.; Garcia Melendo, E.; Perez-Hoyos, S.; Gomez Forrellad, J. M.; Pellier, C.; Delcroix, M.; Lopez Valverde, M. A.; González Galindo, F.; Jaeschke, W.; Parker, D.; Phillips, J.; Peach, D.

    2015-10-01

    In March and April 2012 two extremely high altitude plumes were observed at the Martian terminator reaching 200 -250 km or more above the surface[1]. They were located at about 195o West longitude and 45o South latitude (at Terra Cimmeria) and extended ˜500 -1,000 km in both North-South and East- West, and lasted for about 10 days. Both plumes exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb. Another large plume was captured on Hubble Space Telescope images in May 1997 at 99º West longitude and 3º South latitude, but its altitude cannot be pr ecisely determined.Broad-band photometry was performed of both events in the spectral range 255 nm -1052 nm. Based on the observed properties, we discuss different possible scenarios for the mechanism responsible for the formation of these plumes.

  19. Central Sleep Apnea at High Altitude.

    PubMed

    Burgess, Keith R; Ainslie, Philip N

    2016-01-01

    The discovery of central sleep apnea (CSA) at high altitude is usually attributed to Angelo Mosso who published in 1898. It can occur in susceptible individuals at altitude above 2000 m, but at very high altitude, say above 5000 m, it will occur in most subjects. Severity is correlated with ventilatory responsiveness, particularly to hypoxia. Theoretically, it should spontaneously improve with time and acclimatization. Although the time course of resolution is not well described, it appears to persist for more than a month at 5000 m.It occurs due to the interaction of hypocapnia with stages 1 and 2 NREM sleep, in the presence of increased loop-gain. The hypocapnia is secondary to hypoxic ventilatory drive. With acclimatization, one might expect that the increase in PaO2 and cerebral blood flow (CBF) would mitigate the CSA. However, over time, both the hypoxic and hypercapnic ventilatory responses increase, causing an increase in loop gain which is a counteracting force.The severity of the CSA can be reduced by descent, supplemental oxygen therapy, oral or intravenous acetazolamide. Recent studies suggest that acute further increases in cerebral blood flow will substantially, but temporarily, reduce central sleep apnea, without altering acid based balance. Very recently, bi-level noninvasive ventilation has also been shown to help (mechanism unknown). Sleep quality can be improved independent of the presence of CSA by the use of benzodiazepine sedation. PMID:27343103

  20. Trajectory Control For High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Aaron, K.; Nock, K.; Heun, M.; Wyszkowski, C.

    We will discuss the continuing development of the StratoSailTM Balloon Trajectory Control System presented at the 33rd COSPAR in 2000. A vertical wing suspended on a 15-km tether from a high altitude balloon uses the difference in wind velocity between the altitude of the balloon and the altitude of the wing to create an aerodynamic sideforce. This sideforce, transmitted to the balloon gondola via the tether, causes the balloon to move laterally. Although the balloon's resultant drift velocity is quite small (a few meters per second), the effect becomes significant over long periods of time (hours to days). Recently, a full-scale wing, rudder and boom assembly has been fabricated, a winch system testbed has been completed, and a lightweight tether with reduced susceptibility to ultraviolet damage has been developed. The development effort for this invention, with pending international patents, has been funded by the NASA/SBIR program in support of the Ultra Long Duration Balloon (ULDB) program.

  1. Aerodynamics of Shuttle Orbiter at high altitudes

    NASA Technical Reports Server (NTRS)

    Rault, Didier F. G.

    1993-01-01

    The high-altitude/high-Knudsen number aerodynamics of the Shuttle Orbiter are computed from Low-Earth Orbit down to 100 km using three-dimensional direct simulation Monte Carlo and free molecule codes. Results are compared with Blanchard's latest Shuttle aerodynamic model, which is based on in-flight accelerometer measurements, and bridging formula models. Good comparison is observed, except for the normal force and pitching moment coefficients. The present results were obtained for a generic Shuttle geometry configuration corresponding to a zero deflection for all control surfaces.

  2. Physiology studies at high altitude; why and how.

    PubMed

    Mellor, Adrian; Woods, D

    2014-06-01

    The military has always had an important role in high altitude research. This is due to the fact that mountainous regions often span borders and provide a safe haven to enemies. Deploying troops rapidly into high altitude environments presents major problems in terms of the development of high altitude illness. This paper examines the rationale for carrying out research at high altitude and the opportunities within the UK Defence Medical Services for carrying out this research.

  3. Pulmonary Embolism in Young Natives of High Altitude.

    PubMed

    Singhal, Sanjay; Bhattachar, Srinivasa Alasinga; Paliwal, Vivek; Malhotra, Vineet Kumar; Addya, Kalyani; Kotwal, Atul

    2016-01-01

    Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude. PMID:27512534

  4. Pulmonary Embolism in Young Natives of High Altitude

    PubMed Central

    Singhal, Sanjay; Bhattachar, Srinivasa Alasinga; Paliwal, Vivek; Malhotra, Vineet Kumar; Addya, Kalyani; Kotwal, Atul

    2016-01-01

    Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude. PMID:27512534

  5. High altitude balloon experiments at IIA

    NASA Astrophysics Data System (ADS)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  6. HIGH LIFE: High altitude fatalities led to pulse oximetry.

    PubMed

    Severinghaus, John W

    2016-01-15

    In 1875, Paul Bert linked high altitude danger to the low partial pressure of oxygen when 2 of 3 French balloonists died euphorically at about 8,600 m altitude. World War I fatal crashes of high altitude fighter pilots led to a century of efforts to use oximetry to warn pilots. The carotid body, discovered in 1932 to be the hypoxia detector, led to most current physiologic understanding of the body's respiratory responses to hypoxia and CO2. The author describes some of his UCSF group's work: In 1963, we reported both the brain's ventral medullary near-surface CO2 (and pH) chemosensors and the role of cerebrospinal fluid in acclimatization to altitude. In 1966, we reported the effect of altitude on cerebral blood flow and later the changes of carotid body sensitivity at altitude and the differences in natives of high altitude. In 1973, pulse oximetry was invented when Japanese biophysicist Takuo Aoyagi read and applied to pulses a largely forgotten 35-year-old discovery by English medical student J. R. Squire of a method of computing oxygen saturation from red and infrared light passing through both perfused and blanched tissue.

  7. Flight Dynamics of High Altitude Research Balloons

    NASA Astrophysics Data System (ADS)

    Sohl, Ian

    2010-10-01

    Dramatic motions have been observed by instrumentation loaded in payloads attached to high altitude weather balloons. Several HARBOR flights have been completed with six-axis attitude sensors and a high definition video camera that allowed us to analyze the balloon's motion. Turbulence in the atmosphere, especially near the jet stream, results in dramatic oscillations---sometimes swinging the payload above the balloon. Other unexpected motions include rapid spinning (as in a barrel roll) of the entire package. We are correlating these motions with observed atmospheric conditions and addressing issues related to payload safety, mission tracking, and recovery. Also of interest are the dynamics of balloon rupture at low atmospheric pressure and the response of the parachute recovery system to that environment. HARBOR (High Altitude Reconnaissance Balloon for Outreach and Research) is a program in which scientific payloads are designed, constructed, and flown by students using weather balloons to reach the edge of space. These flights are similar to the hundreds of weather balloons launched twice a day by the National Oceanic and Atmospheric Administration for which very little is actually known about the flight dynamics.

  8. Detection of ocean color changes from high altitudes

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.; Forman, M. L.; Blaine, L. R.

    1973-01-01

    The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes.

  9. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    PubMed

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population. PMID:24974506

  10. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  11. High altitude living: genetic and environmental adaptation.

    PubMed

    Ramirez, G; Bittle, P A; Rosen, R; Rabb, H; Pineda, D

    1999-01-01

    High altitude (HA) living produces physiological changes for adaptation to chronic hypobaric-hypoxemic conditions. Although much is known about these physiologic adaptations, no clear separation has been made regarding what is "native" or "genetic" adaptation and what is "acquired." In this review, we describe the genetic vs. acquired adaptation and only include studies performed in a population native to HA and not in an acclimatized population or trekkers. The changes encountered in animals and humans living at HA in terms of hematology, muscular, respiratory, cerebral, cardiovascular, hormonal, fluid and electrolytes and reproduction, strongly suggest that genetics play a very important role in HA adaptation. Unfortunately, the characteristic physiology of HA natives has not been systematically defined to established specific measurable parameters of adaptation in comparison to the acquired ambient adaptation of the non-native population. Once the parameters are established, we can compare non-native populations exposed to HA that must emulate the HA physiology for a definite adaptation to be present. With measurable parameters, especially in the management of fluids and electrolytes, we can define how long it will take for a sea level native to adapt to an HA altitude. Until these studies are performed, speculation will continue and no rational medical intervention can be offered to HA newcomers who may experience HA difficulties.

  12. Development of the High Altitude Student Platform

    NASA Astrophysics Data System (ADS)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  13. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  14. Military applications of hypoxic training for high-altitude operations.

    PubMed

    Muza, Stephen R

    2007-09-01

    Rapid deployment of unacclimatized soldiers to high mountainous environments causes debilitating effects on operational capabilities (physical work performance), and force health (altitude sickness). Most of these altitude-induced debilitations can be prevented or ameliorated by a wide range of physiological responses collectively referred to as altitude acclimatization. Acclimatization to a target altitude can be induced by slow progressive ascents or continuous sojourns at intermediate altitudes. However, this "altitude residency" requirement reduces their utilization in rapid response military missions that exploit the air mobility capability of modern military forces to quickly deploy to an area of operations on short notice. A more recent approach to induce altitude acclimatization is the use of daily intermittent hypoxic exposures (IHE) in lieu of continuous residence at high altitudes. IHE treatments consist of three elements: 1) IHE simulated altitude (inspired oxygen partial pressure: PIO2), 2) IHE session duration, and 3) total number of IHE sessions over the treatment period. This paper reviews and summarizes the results of 25 published IHE studies. This review finds that an IHE altitude>or=4000 m, and daily exposure duration of at least 1.5 h repeated over a week or more are required to have a high probability of developing altitude acclimatization. The efficacy of shorter duration (<1.5 h) hypoxic exposures at >or=4000 m simulated altitudes, and longer exposures (>4 h) at moderate altitudes (2500-3500 m) is not well documented. The predominate IHE-induced altitude acclimatization response appears to be increased arterial oxygen content through ventilatory acclimatization. Thus, IHE is a promising approach to provide the benefits of altitude acclimatization to low-altitude-based soldiers before their deployment to high mountainous regions.

  15. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  16. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    PubMed Central

    Taylor, Andrew T.

    2011-01-01

    High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler. PMID:23908794

  17. Sleep apneas and high altitude newcomers.

    PubMed

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  18. HAWC: The high altitude water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  19. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  20. Live high, train low at natural altitude.

    PubMed

    Stray-Gundersen, J; Levine, B D

    2008-08-01

    For decades altitude training has been used by endurance athletes and coaches to enhance sea-level performance. Whether altitude training does, in fact, enhance sea level performance and, if so, by what means has been the subject of a number of investigations. Data produced principally by Levine and Stray-Gundersen have shown that living for 4 weeks at 2500 m, while performing the more intense training sessions near sea level will provide an average improvement in sea level endurance performance (duration of competition: 7-20 min) of approximately 1.5%, ranging from no improvement to 6% improvement. This benefit lasts for at least 3 weeks on return to sea level. Two mechanisms have been shown to be associated with improvement in performance. One is an increase in red cell mass ( approximately 8%) that results in an improved maximal oxygen uptake ( approximately 5%). That must be combined with maintenance of training velocities and oxygen flux to realize the improvement in subsequent sea level performance. We find no evidence of changes in running economy or markers of anaerobic energy utilization. Our results have been obtained in runners ranging from collegiate to elite. Wehrlin et al. have recently confirmed these results in elite orienteers. While there are no specific studies addressing the use of living high, training low in football players, it is likely that an improvement in maximal oxygen uptake, all other factors equal, would enhance football performance. This benefit must be weighed against the time away (4 weeks) from home and competition necessary to gain these benefits.

  1. Microgravity combustion experiment using high altitude balloon.

    NASA Astrophysics Data System (ADS)

    Kan, Yuji

    In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. (1) Add a control unit. (2) Add inside batteries for control unit and heater of combustion

  2. [Hormonal variation during physical exertion at high altitude].

    PubMed

    Sutton, J; Garmendia, F

    1977-01-01

    The influence of the physical exercise at high altitude on the endocrine function was studied in 8 normal native men of sea level and in 8 natives men of high altitude. The sea level dwellers were studied both, at sea level, during an acute exposure to low barometric pressure and after 3 months of acclimatization to altitudes over 3,500 meters above the sea level. The experiments at high altitude were conducted at an altitude of 4,500 meters above the sea level. Two types of exercise were carried out, sub-maximal and maximal, at fasting state, between 8 and 10 a.m. During an acute exposure to altitude the physical exercise produced a marked rise of glucose, cortisol and growth hormone and a fall in the insulin content of plasma. In the sea level dwellers, acclimatized to altitude during 3 months, an elevation of growth hormone was observed only during maximal physical effort. Marked variation in glucose and cortisol were observed during both types of exercise. This shows that in these subjects some adaptative changes have ocurred but of lesser extent as those observed in altitude natives. In the high altitude native higher basal concentrations of growth hormone and glucagón as well as a lower glucose concentration in blood, were found. During exercise the high altitude dweller showed no significant changes in somatotropin, meanwhile an important elevation of cortisol occurred. These findings indicate that the high altitude native has metabolic and endocrine responses to exercise similar to those found in well fitted atletes of sea level. The exposure to altitude provoked a rise in glucagon concentration directly proportional to the time of exposition ot altitude. The physical exercise did not elucidate any change in the glucagon content of blood. PMID:753199

  3. Preparation for football competition at moderate to high altitude.

    PubMed

    Gore, C J; McSharry, P E; Hewitt, A J; Saunders, P U

    2008-08-01

    Analysis of approximately 100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above approximately 2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1-2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is approximately 25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping approximately 8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1-2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.

  4. High Altitude Observatory YBJ and ARGO Project

    NASA Astrophysics Data System (ADS)

    Tan, Y.; ARGO Collaboration

    A 5800 m2 RPC (Resistive Plate Chamber) full coverage air shower array is under construction in the YangBaJing Cosmic Ray Observatory, Tibet of China, by the ChinaItaly ARGO Collaboration. YBJ is a large flat grassland with an area 10 × 70 km2 at 4300m altitude, about 90 north west from Lhasa. Its nearby power station, asphalt road to Lhasa, passing railway (will be constructed during the coming 5 years), optical fiber link to the INTERNET, rare snow and other favourable weather conditions are well suitable for setting an Astrophysical Observatory here. The installation of a large area carpet-like detector in this peculiar site will allow one to perform an all-sky and high duty cycle study of high energy gamma rays from 100GeV to 50 TeV as well as accurate measurements on UHE cosmic rays. To insure the stable and uniform working condition of RPCs, a 104 M2 carpet hall was constructed, the RPC installation have be started in it since last November. The natural distribution and daily variation of temperature in the hall, the data concerning the performances of the installed RPCs, have been measured, the results are presented. ce

  5. NASA/USRA high altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Richardson, Michael; Gudino, Juan; Chen, Kenny; Luong, Tai; Wilkerson, Dave; Keyvani, Anoosh

    1990-01-01

    At the equator, the ozone layer ranges from approximately 80,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 lbs. of payload. In addition, the aircraft must have a minimum of a 6,000 mile range. The low Mach number, payload, and long cruising time are all constraints imposed by the air sampling equipment. A pilot must be able to take control in the event of unforseen difficulties. Three aircraft configurations were determined to be the most suitable for meeting the above requirements, a joined-wing, a bi-plane, and a twin-boom conventional airplane. The techniques used have been deemed reasonable within the limits of 1990 technology. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  6. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  7. The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  8. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    PubMed

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  9. Users guide to high altitude imagery of Michigan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A guide to the high altitude imagery of Michigan outlines the areas of the state covered by selected recent high altitude aircraft and Earth Resources Technology Satellite flights. The types of remote sensing used are described. Maps of the flight coverage areas are included along with price lists of available imagery.

  10. Introductory address: lessons to be learned from high altitude.

    PubMed Central

    Houston, C. S.

    1979-01-01

    A historical account of the important landmarks in man's experience with the high altitude environment is followed by comments on the important stages in the understanding of its physiological effects. The work of The Mount Logan High Altitude Physiology Study on acute mountain sickness is reviewed from its inception in 1967 until the present. PMID:386292

  11. Biventricular thrombosis in a structurally normal heart at high altitude.

    PubMed

    Malani, Susheel; Chadha, Davinder; Banerji, Anup

    2014-01-01

    We present a rare case of biventricular thrombus in a young patient with a structurally normal heart at high altitude, complicated with pulmonary embolism. Detailed evaluation revealed him to have protein S deficiency. Altered environmental conditions at high altitude associated with protein S deficiency resulted in thrombus formation at an unusual location; the same is discussed in this case report.

  12. [Respiratory system at high altitude: pathophysiology and novel therapy options].

    PubMed

    Trübsbach, Suzan S; Pircher, Iris; Treml, Benedict; Löckinger, Alex; Kleinsasser, Axel T

    2011-02-01

    This mini-review conveys information on lung function in hypoxia. Included are presentations of shape and layering of the atmosphere, physiologic basics of lung function at high altitude, pathophysiology of high altitude pulmonary edema (HAPE) and of current and potential therapy approaches for HAPE. PMID:21318740

  13. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    PubMed Central

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  14. The effect of high altitude on olfactory functions.

    PubMed

    Altundağ, Aytuğ; Salihoglu, Murat; Çayönü, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-03-01

    It is known that high-altitude trips cause nasal congestion, impaired nasal mucociliary transport rate, and increased nasal resistance, due to decreased partial oxygen pressure and dry air. It is also known that olfactory perception is affected by barometric pressure and humidity. The aim of the present study was to investigate whether olfactory function changes in relation to high altitude in a natural setting. The present study included 41 volunteers with no history of chronic rhinosinusitis or nasal polyposis. The study group consisted of 31 men (76 %) and 10 women (24 %); the mean age of the study population was 38 ± 10 years. Olfactory testing was conducted using "Sniffin' Sticks" at a high altitude (2,200 ms) and at sea level. Odor test scores for threshold and identification were significantly better at sea level than at high altitude (p < 0.001). The major finding of this investigation was that olfactory functions are decreased at high altitudes.

  15. Turbulent mixing in high-altitude explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B. ); Ferguson, R.E. ); White, W.W.; McCartor, T.H. )

    1992-09-01

    Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t[sup [minus]1]. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.

  16. Turbulent mixing in high-altitude explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B.; Ferguson, R.E.; White, W.W.; McCartor, T.H.

    1992-09-01

    Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t{sup {minus}1}. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.

  17. Subsonic Airplane For High-Altitude Research

    NASA Technical Reports Server (NTRS)

    Chambers, Alan; Reed, R. Dale

    1993-01-01

    Report discusses engineering issues considered in design of conceptual subsonic airplane intended to cruise at altitudes of 100,000 ft or higher. Airplane would carry scientific instruments for research in chemistry and physics of atmosphere, particularly, for studies of ozone hole, greenhouse gases, and climatic effects.

  18. Perspectives on functional adaptation of the high altitude native.

    PubMed

    Frisancho, A R

    1983-01-01

    The major physiological processes that enable humans to attain a complete acclimatization to high altitude are briefly reviewed. The available data indicate that: (a) complete acclimatization to high altitude is associated with changes of environmentally modifiable functional traits such as lung volume but not associated with the expression of genetically controlled features such as chest size; (b) as judged by measurements of maximal aerobic power, the high altitude native has attained at high altitude an adaptation that is comparable to that attained by the low altitude native at sea level; the available information suggests that such adaptation is acquired through growth and development in an hypoxic environment; at present, however, we do not know the developmental modifications that occur within each component of the oxygen transport system, such as ventilation, pulmonary diffusion, and oxygen transport, that enable a sea level native to attain a complete functional adaptation to high altitude; and (c) at comparable altitudes among high altitude natives, there are some inter-regional differences in hemopoietic response, so that the samples derived from mining regions of the Andes are characterized by higher hemoglobin concentration than those derived from non-mining areas or the Himalayas. The source of these differences remains to be investigated. PMID:6364176

  19. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  20. [HIGH ALTITUDE EXPOSURE IN TRAVELERS WITH PREEXISTING MEDICAL CONDITIONS].

    PubMed

    Mintzer, Dalya Navat; Leshem, Eyal; Chazan, Bibiana; Schwartz, Eli

    2015-11-01

    The number of travelers visiting high altitude regions is increasing. High altitude areas have become more accessible in recent years, and reaching areas at altitudes over 3000 meters above sea level has become more common than before. In many circumstances older travelers, who are more likely to have pre-existing chronic diseases and for whom altitude and hypoxic condition might be a risk, reach high altitudes in a fast and tight schedule, therefore having a shorter time for adaptation and acclimatization. Pre-travel consultation, including the discussion of chronic illnesses and medication use, is therefore crucial for the reduction of the risk of acute mountain sickness and preventing the deterioration of their pre-existing medical conditions.

  1. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    PubMed

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  2. Improving oxygenation at high altitude: acclimatization and O2 enrichment.

    PubMed

    West, John B

    2003-01-01

    When lowlanders go to high altitude, the resulting oxygen deprivation impairs mental and physical performance, quality of sleep, and general well-being. This paper compares the effects of ventilatory acclimatization and oxygen enrichment of room air on the improvement of oxygenation as judged by the increase in the alveolar P(O2) and the reduction in equivalent altitude. The results show that, on the average, complete ventilatory acclimatization at an altitude of 5000 m increases the alveolar P(O2) by nearly 8 torr, which corresponds to a reduction in equivalent altitude of about 1000 m, although there is considerable individual variability. By comparison, oxygen enrichment to 27% at 5000 m can easily reduce the equivalent altitude to 3200 m, which is generally well tolerated. Because full ventilatory acclimatization at altitudes up to about 3600 m reduces the equivalent altitude to about 3000 m, oxygen enrichment is not justified for well-acclimatized persons. At an altitude of 4200 m, where several telescopes are located on the summit of Mauna Kea, full acclimatization reduces the equivalent altitude to about 3400 m, but the pattern of commuting probably would not allow this. Therefore, at this altitude, oxygen enrichment would be beneficial but is not essential. At higher altitudes such as 5050 m, where other telescopes are located or planned, the gain in oxygenation from acclimatization is insufficient to produce an adequate mental or physical performance for most work, and oxygen enrichment is highly desirable. Full ventilatory acclimatization requires at least a week of continuous exposure, although much of the improvement is seen in the first 2 days. PMID:14561244

  3. Archaic inheritance: supporting high-altitude life in Tibet.

    PubMed

    Huerta-Sánchez, Emilia; Casey, Fergal P

    2015-11-15

    The Tibetan Plateau, often called the roof of the world, sits at an average altitude exceeding 4,500 m. Because of its extreme altitude, the Plateau is one of the harshest human-inhabited environments in the world. This, however, did not impede human colonization, and the Tibetan people have made the Tibetan Plateau their home for many generations. Many studies have quantified their markedly different physiological response to altitude and proposed that Tibetans were genetically adapted. Recently, advances in sequencing technologies led to the discovery of a set of candidate genes which harbor mutations that are likely beneficial at high altitudes in Tibetans. Since then, other studies have further characterized this impressive adaptation. Here, in this minireview, we discuss the progress made since the discovery of the genes involved in Tibetans' adaptation to high altitude with a particular emphasis on describing the series of studies that led us to conclude that archaic human DNA likely contributed to this impressive adaptation.

  4. Optimal birthweights in Peruvian populations at high and low altitudes.

    PubMed

    Beall, C M

    1981-11-01

    This study tests the hypothesis that optimum birthweight for survival is lower among hospital-born infants in Puno, Peru (altitude 3860 m) than that among their counterparts at low altitude in Tacna, Peru (altitude 600 m). The data are derived from hospital birth records for 1971 and 1972 and municipal death records for 1971 through 1973. Linking these records permits analysis of the patterns of mortality in relation to birthweight. Stabilizing selection upon birthweight is operating in both populations. The high altitude population has a lower mean birthweight and a lower optimal birthweight. The Puno population is closer to its optimal birthweight distribution and, as a result of mortality during infancy, is approaching its optimum birthweight distribution for survival more rapidly than the Tacna population. It appears that the high altitude Puno population may well be adapted to its environment in the sense that there is less selective mortality on birthweight phenotypes.

  5. High-Altitude Magnetic Survey Over the United States

    NASA Astrophysics Data System (ADS)

    Hildenbrand, T. G.; Keller, G.; Pellerin, L.; Phillips, J.; Ravat, D.; Sabaka, T.

    2003-12-01

    The year 2004 offers an exciting and cost-effective opportunity to acquire a high-altitude magnetic data set over the U.S. A national mission is presently being planned to collect IFSAR imagery in addition to total and vector magnetic field data at an altitude of about 15 km. High-altitude magnetic data, needed as a reference field to properly level the U.S. low-altitude magnetic data set (0.3 km altitude), will also provide new insights on fundamental tectonic and thermal processes, thereby enabling a new view of the structural and lithologic framework of continental and offshore regions. A correctly merged, low-altitude magnetic database, using high-altitude magnetic data as a reference field, will be one of the most important legacies of a high-altitude magnetic mission, as it will greatly expand the utility of the invaluable U.S. magnetic data. However, the high-altitude data also have considerable independent scientific value. These unique data will bridge the spectral gap between the spectrums of the low-altitude aeromagnetic and satellite magnetic data. Based on our understanding of the magnetic properties of the lithosphere, the high-altitude data will clearly aid in the solution of a broad range of applied Earth science issues related to: the conundrum of long-wavelength magnetic anomalies; geologic and tectonic processes of crustal accretion and evolution; thermal and mechanical properties of the lithosphere; societal concerns including localization of favorable areas for mineral, energy, and thermal resources; and mitigation of earthquake and volcanic hazards. The wavelength band of a high-altitude survey will be particularly helpful in studying the lower crust--its composition, structure, and thermal regime--and large geologic/tectonic structures, such as basement terranes. In addition, these results will provide significant new constraints for geological interpretation of complementary regional topographic, seismic, electromagnetic, gravity, and heat

  6. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  7. 33. GENERAL HIGH ALTITUDE AERIAL VIEW OF COMPLEX AND GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. GENERAL HIGH ALTITUDE AERIAL VIEW OF COMPLEX AND GENERAL SETTING. October 1982 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 15, Upper Mississipi River (Arsenal Island), Rock Island, Rock Island County, IL

  8. 13. GENERAL HIGH ALTITUDE AERIAL VIEW OF COMPLEX AND GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. GENERAL HIGH ALTITUDE AERIAL VIEW OF COMPLEX AND GENERAL SETTING. October 1982 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL

  9. Evolutionary adaptation to high altitude: a view from in utero

    PubMed Central

    Julian, Colleen Glyde; Wilson, Megan J.; Moore, Lorna G.

    2010-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. A. Roberto Frisancho helped move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity and/or genetic adaptation in response to the high-altitude environment. We approach the question of human adaptation to high altitude from a somewhat unique vantage point; namely, by examining physiological characteristics – pregnancy and pregnancy outcome -- that are most closely associated with reproductive fitness. Here we review the potent example of high-altitude native population’s resistance to hypoxia-associated reductions in birth weight, which is often associated with higher infant morbidity and mortality at high altitude. With the exception of two recent publications, these comparative birth weight studies have utilized surnames, self-identification and/or linguistic characteristics to assess ancestry, and none have linked ‘advantageous’ phenotypes to specific genetic variations. Recent advancements in genetic and statistical tools have enabled us to assess individual ancestry with higher resolution, identify the genetic basis of complex phenotypes and to infer the effect of natural selection on specific gene regions. Using these technologies our studies are now directed to determine the genetic variations that underlie the mechanisms by which high-altitude ancestry protects fetal growth and, in turn, to further our understanding of evolutionary processes involved in human adaptation to high altitude. PMID:19367578

  10. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. PMID:26315373

  11. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude.

  12. Aging, Tolerance to High Altitude, and Cardiorespiratory Response to Hypoxia.

    PubMed

    Richalet, Jean-Paul; Lhuissier, François J

    2015-06-01

    Richalet, Jean-Paul, and François J. Lhuissier. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol. 16:117-124, 2015.--It is generally accepted that aging is rather protective, at least at moderate altitude. Some anecdotal reports even mention successful ascent of peaks over 8000 m and even Everest by elderly people. However, very few studies have explored the influence of aging on tolerance to high altitude and prevalence of acute high altitude related diseases, taking into account all confounding factors such as speed of ascent, altitude reached, sex, training status, and chemo-responsiveness. Changes in physiological responses to hypoxia with aging were assessed through a cross-sectional 20-year study including 4675 subjects (2789 men, 1886 women; 14-85 yrs old) and a longitudinal study including 30 subjects explored at a mean 10.4-year interval. In men, ventilatory response to hypoxia increased, while desaturation was less pronounced with aging. Cardiac response to hypoxia was blunted with aging in both genders. Similar results were found in the longitudinal study, with a decrease in cardiac and an increase in ventilatory response to hypoxia with aging. These adaptive responses were less pronounced or absent in post-menopausal untrained women. In conclusion, in normal healthy and active subjects, aging has no deleterious effect on cardiac and ventilatory responses to hypoxia, at least up to the eighth decade. Aging is not a contraindication for high altitude, as far as no pathological condition interferes and physical fitness is compatible with the intensity of the expected physical demand of one's individual. Physiological evaluation through hypoxic exercise testing before going to high altitude is helpful to detect risk factors of severe high altitude-related diseases.

  13. High altitude pulmonary edema. Epidemiologic observations in Peru.

    PubMed

    Hultgren, H N; Marticorena, E A

    1978-10-01

    The incidence of high altitude pulmonary edema was examined by a survey (via questionnaire) of residents living at 3,750 meters (12,303 feet) in the mining community of La Oroya, Peru. Ninety-seven subjects made a total of 1,157 ascents to high altitude after a stay at sea level of longer than 14 days. Sixty-four subjects experienced at least one episode of high-altitude pulmonary edema. The incidence was higher in subjects aged 13 to 20 years, where 17 percent (15) of 90 ascents resulted in episodes of high-altitude pulmonary edema, than in subjects 21 years or older (3 percent; 18/686 ascents). Young subjects (2 to 12 years old) had more severe episodes of high-altitude pulmonary edema (81 percent; 30/37 episodes) than adults (22 percent; 4/18 episodes). No episodes were observed in children under two years old. Five subjects under 21 years of age experienced recurrent episodes. Our estimated incidence of severe episodes of high altitude pulmonary edema per ascent in adults (0.6 percent; 4/686) is similar to that reported by other workers (incidence of 0.15 to 0.57 percent) in various parts of the world. PMID:699645

  14. High altitude cerebral oedema during adventure training on Mount Kenya.

    PubMed

    Raitt, S

    2012-09-01

    The trekking ascent to Point Lenana (4,985m) on Mount Kenya is a popular objective for soldiers on adventurous training in Kenya. The standard route previously taken has been the Naro Moru route which involves an ascent rate far in excess of that recommended to avoid altitude illness. This article describes the case of a British soldier who developed high altitude cerebral oedema during an ascent of Point Lenana via the Naro Moro route. Recommendations to reduce the risk of altitude illness on Mount Kenya include alternative and more gradual routes of ascent. Early symptom recognition and descent are vital to prevent clinical deterioration.

  15. [High altitude stay and air travel in coronary heart disease].

    PubMed

    Allemann, Y; Saner, H; Meier, B

    1998-04-25

    Acute exposure to high altitude produces hypoxia-associated stimulation of the sympathetic nervous system. This response is further enhanced by physical activity and induces an increase in heart rate and blood pressure. Consequently, cardiac work, myocardial oxygen consumption, and coronary blood flow are also increased. During the first 4 days of acute exposure to moderate or high altitude, coronary patients are at greatest risk of untoward events. Gradual ascent, early limitation of activity to a lower level than tolerated at low altitude, pre-ascent physical conditioning and rigorous blood pressure control should all help to minimise the cardiac risk. At altitudes of 2500 to 3000 m or lower, an asymptomatic coronary patient with good exercise tolerance, without exercise induced signs or symptoms of ischemia, and with an ejection fraction of the left ventricle > 50%, is at very low risk. However, several days' acclimatization before high-level activity at moderate or high altitude is recommended. High risk coronary patients should be investigated more carefully and precautionary measures should be more stringent. Left and right cardiac function and pulmonary artery pressure are the most helpful parameters for evaluation and counselling of patients with non-ischemic heart disease who plan to ascend to moderate or high altitudes. When advising patients who intend to fly as passengers in commercial aircraft, it is important to know that in-flight atmospheric pressure conditions in commercial jet aircraft approach altitude equivalents of 1500 to 2400 m. Propeller-driven planes are rarely pressurized but usually fly at altitudes below 3300 m. Relatively strict contraindications for air travel by coronary patients are uncomplicated myocardial infarction within the last 2 weeks, complicated myocardial infarction within the last 6 weeks, unstable angina, thoracic surgery within the last 3 weeks, and poorly controlled congestive heart failure, arrhythmia, or hypertension.

  16. Can patients with coronary heart disease go to high altitude?

    PubMed

    Dehnert, Christoph; Bärtsch, Peter

    2010-01-01

    Tourism to high altitude is very popular and includes elderly people with both manifest and subclinical coronary heart disease (CHD). Thus, risk assessment regarding high altitude exposure of patients with CHD is of increasing interest, and individual recommendations are expected despite the lack of sufficient scientific evidence. The major factor increasing cardiac stress is hypoxia. At rest and for a given external workload, myocardial oxygen demand is increased at altitude, particularly in nonacclimatized individuals, and there is some evidence that blood-flow reserve is reduced in atherosclerotic coronary arteries even in the absence of severe stenosis. Despite a possible imbalance between oxygen demand and oxygen delivery, studies on selected patients have shown that exposure and exercise at altitudes of 3000 to 3500 m is generally safe for patients with stable CHD and sufficient work capacity. During the first days at altitude, patients with stable angina may develop symptoms of myocardial ischemia at slightly lower heart rate x  blood-pressure products. Adverse cardiac events, however, such as unstable angina coronary syndromes, do not occur more frequently compared with sea level except for those who are unaccustomed to exercise. Therefore, training should start before going to altitude, and the altitude-related decrease in exercise capacity should be considered. Travel to 3500 m should be avoided unless patients have stable disease, preserved left ventricular function without residual capacity, and above-normal exercise capacity. CHD patients should avoid travel to elevations above 4500 m owing to severe hypoxia at these altitudes. The risk assessment of CHD patients at altitude should always consider a possible absence of medical support and that cardiovascular events may turn into disaster. PMID:20919884

  17. Global assessment of high-altitude wind power

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Caldeira, K.

    2008-12-01

    Wind speed generally increases with altitude to the tropopause; hence, the power available in high-altitude winds is enormous, especially near the jet streams. We assess for the first time the available wind power resource worldwide at altitudes between 500 and 12,000 m. The highest wind power densities are found near 10,000 m over Japan and eastern China, the eastern coast of the United States, southern Australia, and north-eastern Africa. Below 1000 m, the best locations are the southern tip of South America, the coasts along the northern Pacific and Atlantic oceans, the central-eastern coast of Africa, and the north-eastern coast of South America. Because jet streams vary locally and seasonally, however, the high-altitude wind power resource is less steady than needed for baseload power. However, dynamically reaching the height with the highest winds, increasing the area covered with high-altitude devices, and using batteries for storage can effectively reduce intermittency. When high-altitude wind power devices are distributed uniformly throughout the entire atmosphere, numerical simulations show negligible effects on the global climate for low densities, but surface cooling, decreased precipitation, and greater sea ice cover for high densities.

  18. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals.

    PubMed

    Zhang, Zhigang; Xu, Dongming; Wang, Li; Hao, Junjun; Wang, Jinfeng; Zhou, Xin; Wang, Weiwei; Qiu, Qiang; Huang, Xiaodan; Zhou, Jianwei; Long, Ruijun; Zhao, Fangqing; Shi, Peng

    2016-07-25

    Studies of genetic adaptation, a central focus of evolutionary biology, most often focus on the host's genome and only rarely on its co-evolved microbiome. The Qinghai-Tibetan Plateau (QTP) offers one of the most extreme environments for the survival of human and other mammalian species. Yaks (Bos grunniens) and Tibetan sheep (T-sheep) (Ovis aries) have adaptations for living in this harsh high-altitude environment, where nomadic Tibetan people keep them primarily for food and livelihood [1]. Adaptive evolution affects energy-metabolism-related genes in a way that helps these ruminants live at high altitude [2, 3]. Herein, we report convergent evolution of rumen microbiomes for energy harvesting persistence in two typical high-altitude ruminants, yaks and T-sheep. Both ruminants yield significantly lower levels of methane and higher yields of volatile fatty acids (VFAs) than their low-altitude relatives, cattle (Bos taurus) and ordinary sheep (Ovis aries). Ultra-deep metagenomic sequencing reveals significant enrichment in VFA-yielding pathways of rumen microbial genes in high-altitude ruminants, whereas methanogenesis pathways show enrichment in the cattle metagenome. Analyses of RNA transcriptomes reveal significant upregulation in 36 genes associated with VFA transport and absorption in the ruminal epithelium of high-altitude ruminants. Our study provides novel insights into the contributions of microbiomes to adaptive evolution in mammals and sheds light on the biological control of greenhouse gas emissions from livestock enteric fermentation. PMID:27321997

  19. Apex high-altitude research sailplane mock-up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows a mock-up of the Apex high-altitude research sailplane intended to be carried aloft by a balloon. The Apex High-Altitude Flight Experiment is expected to explore the aerodynamics of controlled flight at very high altitudes near 100,000 feet. The Apex will be hoisted aloft tail-first from Dryden by a large high-altitude balloon and released at about 110,000-feet altitude. As it gradually descends, its instrumentation will collect aerodynamic data. The remotely-piloted, semi-autonomous Apex will combine a modified ASC sailplane fuselage design with a new wing designed at the Massachusetts Institute of Technology. The wing will have a special airfoil designed for high subsonic speeds at extreme altitudes. A device extending behind the right wing is a 'wake rake,' which will measure aerodynamic drag behind a test section of the wing, while a rocket pack mounted beneath the fuselage will assist the Apex in transitioning to horizontal flight. Research flights were expected to begin in mid-1998, but a series of technical problems delayed them. In the spring of 1999, Apex entered mothball status. This continued for a year, and in the spring of 2000 NASA selected Apex as part of phase 1 of the Revolutionary Concepts effort.

  20. Increase in carbohydrate utilization in high-altitude Andean mice.

    PubMed

    Schippers, Marie-Pierre; Ramirez, Oswaldo; Arana, Margarita; Pinedo-Bernal, Percy; McClelland, Grant B

    2012-12-18

    The low oxygen levels at high altitude are a potent and unavoidable physiological stressor to which highland mammals must adapt. One hypothesized adaptation to high altitude is an increased reliance on carbohydrates to support aerobic activities. Based on stoichiometries of combustion, ATP yield per mole of oxygen from carbohydrates is approximately 15% higher than from lipids (observed difference closer to 30%), and increased carbohydrate use represents an important oxygen-saving strategy that may be under high selective pressure. Although this hypothesis was first proposed nearly 30 years ago, the in vivo patterns of whole-body fuel use during exercise remain undefined for any highland mammal (including humans). Here we use a powerful multispecies approach to show that wild-caught high-altitude (4,000-4,500 m) native species of mice (Phyllotis andium and Phyllotis xanthopygus) from the Peruvian Andes use proportionately more carbohydrates and have higher oxidative capacities of cardiac muscles compared to closely related low-altitude (100-300 m) native counterparts (Phyllotis amicus and Phyllotis limatus). These results strongly infer that highland Phyllotis have evolved a metabolic strategy to economize oxygen when performing energy-demanding tasks at altitude. This study provides compelling evidence of adjustments in fuel use as an adaptation to high-altitude hypoxia in mammals. PMID:23219722

  1. Effects of high altitude and exercise on marksmanship.

    PubMed

    Tharion, W J; Hoyt, R W; Marlowe, B E; Cymerman, A

    1992-02-01

    The effects of exercise and high altitude (3,700 m to 4,300 m) on marksmanship accuracy and sighting time were quantified in 16 experienced marksmen. Subjects dry-fired a disabled rifle equipped with a laser-based system from a free-standing position. The 2.3-cm circular target was at a distance of 5 m. Marksmanship was assessed under the following conditions: 1) at rest at sea level; 2) immediately after a 21-km run/walk ascent from 1,800 m to 4,300 m elevation; 3) at rest during days 1 to 3 at altitude; 4) at rest during days 14 to 16 at altitude; and 5) immediately after a second ascent after 17 d at altitude. Exercise reduced marksmanship accuracy (p less than 0.05) but did not affect sighting time. Acute altitude exposure reduced marksmanship accuracy, and decreased sighting time (p less than 0.05). However, after residence at altitude, accuracy and sighting time at rest returned to sea level values. Exercise and acute altitude exposure had similar but independent detrimental effects on marksmanship. PMID:1546938

  2. Plants at high altitude exhibit higher component of alternative respiration.

    PubMed

    Kumar, Narinder; Vyas, Dhiraj; Kumar, Sanjay

    2007-01-01

    Total respiration, capacities of cytochrome (CytR) and alternative respiration (AR) were studied in two varieties of barley (Horedum vulgare) and wheat (Triticum aestivum) each and one variety of pea (Pisum sativum) at low (Palampur; 1300 m) and high altitudes (Kibber; 4200 m). Similar studies were carried out in naturally growing Rumex nepalensis and Trifoilum repenses at Palampur, Palchan (2250 m) and Marhi (3250 m). All the plants species exhibited lower CytR but significantly higher AR capacity at high altitude (HA) (72-1117% higher) as compared to those at low altitude (LA). Glycolytic product, pyruvate and tricarboxylic acid cycle intermediate, citrate increased with increase in altitude. While the role of these metabolites in relation to HA biology is discussed, significantly higher AR at HA is proposed to be an adaptive mechanism against the metabolic perturbations wherein it might act to lower reactive oxygen species and also provides metabolic homeostasis to plants under the environment of HA.

  3. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  4. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  5. Pulmonary vascular disease in a rabbit a high altitude

    NASA Astrophysics Data System (ADS)

    Heath, Donald; Williams, David; Rios-Datenz, Jaime; Gosney, John

    1990-03-01

    A male weanling rabbit of the New Zealand White strain, born and living at an altitude of 3800 m in La Paz, Bolivia, developed right ventricular hypertrophy. This was found to be associated with growth of vascular smooth muscle cells in the intima of pulmonary arterioles, and contrasted with muscularization of the walls of pulmonary arterioles, without extension into the intima, found in a healthy, high-altitude control rabbit of the same strain. A low-altitude control showed no such muscularization. It is concluded that alveolar hypoxia, acting directly or through an intermediate agent, is a growth factor for vascular smooth muscle cells in pulmonary arterioles. This is the first report of pulmonary vascular disease due to high altitude in rabbits.

  6. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  7. Analysis of high-altitude de-acclimatization syndrome after exposure to high altitudes: a cluster-randomized controlled trial.

    PubMed

    He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong

    2013-01-01

    The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.

  8. Wilderness medicine at high altitude: recent developments in the field.

    PubMed

    Shah, Neeraj M; Hussain, Sidra; Cooke, Mark; O'Hara, John P; Mellor, Adrian

    2015-01-01

    Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS), increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. PMID:26445563

  9. Wilderness medicine at high altitude: recent developments in the field

    PubMed Central

    Shah, Neeraj M; Hussain, Sidra; Cooke, Mark; O’Hara, John P; Mellor, Adrian

    2015-01-01

    Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS), increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. PMID:26445563

  10. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage.

    PubMed

    Ma, Hailin; Wang, Yan; Wu, Jianhui; Wang, Baoxi; Guo, Shichun; Luo, Ping; Han, Buxin

    2015-01-01

    The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conflict modulation. The interaction between group and trial type was significant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in the incongruent trial. This result suggests that long-term exposure to high altitude affects conflict control in the conflict-resolving stage, and that attentional resources are decreased to resist the conflict control in the high-altitude group.

  11. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage

    PubMed Central

    Wu, Jianhui; Wang, Baoxi; Guo, Shichun; Luo, Ping; Han, Buxin

    2015-01-01

    The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conflict modulation. The interaction between group and trial type was significant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in the incongruent trial. This result suggests that long-term exposure to high altitude affects conflict control in the conflict-resolving stage, and that attentional resources are decreased to resist the conflict control in the high-altitude group. PMID:26671280

  12. Periodic Breathing and Behavioral Awakenings at High Altitude.

    PubMed

    Shogilev, Daniel J; Tanner, John B; Chang, Yuchiao; Harris, N Stuart

    2015-01-01

    Objectives. To study the relationship between nocturnal periodic breathing episodes and behavioral awakenings at high altitude. Methods. Observational study. It is 6-day ascent of 4 healthy subjects from Besisahar (760 meters) to Manang (3540 meters) in Nepal in March 2012. A recording pulse oximeter was worn by each subject to measure their oxygen saturation and the presence of periodic breathing continuously through the night. An actigraph was simultaneously worn in order to determine nocturnal behavioral awakenings. There were no interventions. Results. 187-hour sleep at high altitude was analyzed, and of this, 145 hours (78%) had at least one PB event. At high altitude, 10.5% (95% CI 6.5-14.6%) of total sleep time was spent in PB while 15 out of 50 awakenings (30%, 95% CI: 18-45%) occurring at high altitudes were associated with PB (P < 0.001). Conclusions. Our data reveals a higher than expected number of behavioral awakenings associated with PB compared to what would be expected by chance. This suggests that PB likely plays a role in behavioral awakenings at high altitude. PMID:26483979

  13. Can my patient with CVD travel to high altitude?

    PubMed

    Hoigné, Philipp; Gibbs, J Simon R

    2013-04-01

    Patients with borderline health should consult a physican before travelling to altitude. The physician will need to know the duration of the trip, ascent profile and how much exercise the patient plans to undertake. The presence of comorbid diseases which reduce oxygenation and ventilation should also be taken into account. Every patient must be assessed on an individual basis, there are no clinical investigations which reliably predict outcome at altitude. Complex cases may require advice from the patient's cardiologist. Travelling from sea level to an altitude of 2,500 m causes a 20% reduction in the partial pressure of inspired oxygen. There is an initial net increase in myocardial oxygen consumption during the first 3-5 days, this then falls as cardiac output on exercise is reduced. During this time patients with angina pectoris may become symptomatic at a lower level of exercise than at sea level and should be advised to reduce their activity. After five days at 2,500 m, the exertion threshold returns to sea level values. Patients should not travel to high altitude immediately after an acute coronary syndrome. Most patients with stable coronary artery disease with a sufficiently high exercise capacity at sea level can go as high as 3,000-3,500 m with only a minimally increased risk. Patients with heart failure have a greater reduction in exercise performance than healthy people at altitude. Patients with mild to moderately impaired systolic LVF and mild symptoms may travel up to 3,000-3,500 m for a day trip. Patients with poorly controlled hypertension should not travel to high altitude. Those with controlled hypertension should consider taking their own blood pressure during a stay at altitude.

  14. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude.

    PubMed

    Fan, Jui-Lin; Subudhi, Andrew W; Duffin, James; Lovering, Andrew T; Roach, Robert C; Kayser, Bengt

    2015-01-01

    Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  15. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude

    PubMed Central

    Fan, Jui-Lin; Subudhi, Andrew W.; Duffin, James; Lovering, Andrew T.; Roach, Robert C.; Kayser, Bengt

    2016-01-01

    Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude. PMID:26779030

  16. High-Altitude, Long-Endurance Airships for Coastal Surveillance

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Collozza, Anthony

    2005-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines applications and background of this type of concept vehicle, reviews the history of high altitude flight and provides a point design analysis. The capabilities and limitations of the airship are demonstrated and possible solutions are proposed. Factors such as time of year, latitude, wind speeds, and payload are considered in establishing the capabilities of the airship. East and west coast operation is evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. Results on power system requirements for year long operation is presented.

  17. The physiology and biomechanics of avian flight at high altitude.

    PubMed

    Altshuler, Douglas L; Dudley, Robert

    2006-02-01

    Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight altitudes that minimize energy expenditure via selection of advantageous tail- and cross-winds. Oxygen partial pressure decreases substantially to as little as 26% of sea-level values for the highest altitudes at which birds migrate, whereas many taxa reside above 3000 meters in hypoxic air. Birds exhibit numerous adaptations in pulmonary, cardiovascular, and muscular systems to alleviate such hypoxia. The systematic decrease in air density with altitude can lead to a benefit for forward flight through reduced drag but imposes an increased aerodynamic demand for hovering by degrading lift production and simultaneously elevating the induced power requirements of flight. This effect has been well-studied in the hovering flight of hummingbirds, which occur throughout high-elevation habitats in the western hemisphere. Phylogenetically controlled studies have shown that hummingbirds compensate morphologically for such hypodense air through relative increases in wing size, and kinematically via increased stroke amplitude during the wingbeat. Such compensatory mechanisms result in fairly constant power requirements for hovering at different elevations, but decrease the margin of excess power available for other flight behaviors.

  18. Anthropometric comparison between high- and low-altitude Saudi Arabians.

    PubMed

    Khalid, M

    1995-01-01

    Measurements of weight, height, mid-upper arm circumference, mid-upper arm muscle circumference and skinfold thickness over the triceps region were made in 437 high-altitude residents (3150m above sea level) aged 16-60 years and 468 low-altitude residents (500 m above sea level) aged 16-60 years in southern Saudi Arabia. Compared with low-altitude residents, high-altitude residents were found to be significantly heavier and taller, but to have nearly similar mid-upper arm circumference, mid-upper arm muscle circumference and triceps skinfold thickness. Estimates of body fat have been made from the triceps skinfold measurements. No significant difference in the percentage of fat was detected between high- and low-altitude residents. When fat mass (kg) and fat mass index (fat mass (kg)/height in m2) were considered, similar trends were found between highland and lowland men only. Highland women showed significantly higher fat mass and fat mass index when compared with lowland women. These differences in physique between highland and lowland residents of southern Saudi Arabia may be attributed to the effect of environmental factors, possibly the hot climate and parasitic infections prevalent in lowland areas, in addition to the higher physical activity observed in lowland women.

  19. Joseph Barcroft's studies of high-altitude physiology.

    PubMed

    West, John B

    2013-10-15

    Joseph Barcroft (1872-1947) was an eminent British physiologist who made contributions to many areas. Some of his studies at high altitude and related topics are reviewed here. In a remarkable experiment he spent 6 days in a small sealed room while the oxygen concentration of the air gradually fell, simulating an ascent to an altitude of nearly 5,500 m. The study was prompted by earlier reports by J. S. Haldane that the lung secreted oxygen at high altitude. Barcroft tested this by having blood removed from an exposed radial artery during both rest and exercise. No evidence for oxygen secretion was found, and the combination of 6 days incarceration and the loss of an artery was heroic. To obtain more data, Barcroft organized an expedition to Cerro de Pasco, Peru, altitude 4,300 m, that included investigators from both Cambridge, UK and Harvard. Again oxygen secretion was ruled out. The protocol included neuropsychometric measurements, and Barcroft famously concluded that all dwellers at high altitude are persons of impaired physical and mental powers, an assertion that has been hotly debated. Another colorful experiment in a low-pressure chamber involved reducing the pressure below that at the summit of Mt. Everest but giving the subjects 100% oxygen to breathe while exercising as a climber would on Everest. The conclusion was that it would be possible to reach the summit while breathing 100% oxygen. Barcroft was exceptional for his self-experimentation under hazardous conditions.

  20. [Medical certification for high altitude travel and scuba diving].

    PubMed

    Wuillemin, Timothée; Dos Santos Bragança, Angel; Ziltener, Jean-Luc; Berney, Jean-Yves; Lanier, Cédric

    2014-09-24

    People are more and more looking for adventures and discovery of unusual locations. Journeys to high altitude and scuba diving are part of these activities and their access has become easier for a lot of people not necessarily experienced with their dangers. The general practitioner will have to be able to deliver some advices and recommendations to his patients about the risks related to these activities and their ability to practice them. He will also have to deliver some certificates of medical fitness to dive. This paper proposes a brief review of the most important medical aspects to know about high altitude and scuba diving.

  1. [Medical certification for high altitude travel and scuba diving].

    PubMed

    Wuillemin, Timothée; Dos Santos Bragança, Angel; Ziltener, Jean-Luc; Berney, Jean-Yves; Lanier, Cédric

    2014-09-24

    People are more and more looking for adventures and discovery of unusual locations. Journeys to high altitude and scuba diving are part of these activities and their access has become easier for a lot of people not necessarily experienced with their dangers. The general practitioner will have to be able to deliver some advices and recommendations to his patients about the risks related to these activities and their ability to practice them. He will also have to deliver some certificates of medical fitness to dive. This paper proposes a brief review of the most important medical aspects to know about high altitude and scuba diving. PMID:25369697

  2. Effect of phosphate supplementation on oxygen delivery at high altitude

    NASA Astrophysics Data System (ADS)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  3. Calibration of solar cells using high-altitude aircraft.

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1971-01-01

    A high altitude airplane has been used to obtain the outer space short circuit current of solar cells. The solar cells are mounted in a collimating tube and are measured at approximately 5000 foot intervals between 12,000 and 47,000 feet. The air mass is calculated for each altitude using the standard formula and the resulting curve is extrapolated to air mass zero. The effects on the solar cell output of a haze layer located at the tropopause has been observed. It is necessary to fly above this layer to ensure accurate results. Airplane calibrations of several primary standard cells calibrated on high altitude balloons show agreement within 0.5 per cent. Prediction of the output of satellite power supplies using airplane calibrated cells shows an accuracy of better than 1 per cent.

  4. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia.

    PubMed

    Jefferson, J Ashley; Escudero, Elizabeth; Hurtado, Maria-Elena; Kelly, Jackeline Pando; Swenson, Erik R; Wener, Mark H; Burnier, Michel; Maillard, Marc; Schreiner, George F; Schoene, Robert B; Hurtado, Abdias; Johnson, Richard J

    2002-06-01

    Chronic exposure to high altitude is associated with the development of erythrocytosis, proteinuria, and, in some cases, hyperuricemia. We examined the relationship between high-altitude polycythemia and proteinuria and hyperuricemia in Cerro de Pasco, Peru (altitude, 4,300 m). We studied 25 adult men with hematocrits less than 65% and 27 subjects with excessive erythrocytosis (EE; hematocrit > 65%) living in Cerro de Pasco, Peru and compared them with 28 control subjects living in Lima, Peru (at sea level) and after 48 hours of exposure to high altitude. Serum urate levels were significantly elevated in patients with EE at altitude, and gout occurred in 4 of 27 of these subjects. Urate level strongly correlated with hematocrit (r = 0.71; P < 0.0001). Urate production (24-hour urine urate excretion and urine urate-creatinine ratio) was increased in this group compared with those at sea level. Fractional urate excretion was not increased, and fractional lithium excretion was reduced, in keeping with increased proximal reabsorption of filtrate. Significantly higher blood pressures and decreased renin levels in the EE group were in keeping with increased proximal sodium reabsorption. Serum urate levels correlated with mean blood pressure (r = 0.50; P < 0.0001). Significant proteinuria was more prevalent in the EE group despite normal renal function. Hyperuricemia is common in subjects living at high altitude and associated with EE, hypertension, and proteinuria. The increase in uric acid levels appears to be caused by increased urate generation secondary to systemic hypoxia, although a relative impairment in renal excretion also may contribute.

  5. Infrared astronomy research and high altitude observations

    NASA Technical Reports Server (NTRS)

    Jones, B.; Stein, W. A.; Willner, S. P.; Soifer, B. T.

    1984-01-01

    Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects.

  6. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. PMID:25455021

  7. A genetic mechanism for Tibetan high-altitude adaptation

    PubMed Central

    Lorenzo, Felipe R; Huff, Chad; Myllymäki, Mikko; Olenchock, Benjamin; Swierczek, Sabina; Tashi, Tsewang; Gordeuk, Victor; Wuren, Tana; Ri-Li, Ge; McClain, Donald A; Khan, Tahsin M; Koul, Parvaiz A; Guchhait, Prasenjit; Salama, Mohamed E; Xing, Jinchuan; Semenza, Gregg L; Liberzon, Ella; Wilson, Andrew; Simonson, Tatum S; Jorde, Lynn B; Kaelin, William G; Koivunen, Peppi; Prchal, Josef T

    2015-01-01

    Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower Km value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ~8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude. PMID:25129147

  8. The genetic architecture of adaptations to high altitude in Ethiopia.

    PubMed

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  9. Adaptation of iron requirement to hypoxic conditions at high altitude.

    PubMed

    Gassmann, Max; Muckenthaler, Martina U

    2015-12-15

    Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions.

  10. HCN ice in Titan's high-altitude southern polar cloud.

    PubMed

    de Kok, Remco J; Teanby, Nicholas A; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

    2014-10-01

    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009 (refs 1, 2). A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 kilometres. A temperature maximum was previously observed there, and condensation was not expected for any of Titan's atmospheric gases. Here we report that this cloud is composed of micrometre-sized particles of frozen hydrogen cyanide (HCN ice). The presence of HCN particles at this altitude, together with temperature determinations from mid-infrared observations, indicate a dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such cooling is in contrast to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. These results show that post-equinox cooling at the winter pole of Titan is much more efficient than previously thought. PMID:25279918

  11. Nonequilibrium viscous flow over Jovian entry probes at high altitudes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Szema, K. Y.; Tiwari, S. N.

    1979-01-01

    The viscous chemical nonequilibrium flow around a Jovian entry body is investigated at high altitudes using two different methods. First method is only for the stagnation region and integrates the full Navier-Stokes equations from the body surface to the freestream. The second method uses viscous shock layer equations between the body surface and the shock. Due to low Reynolds numbers, both methods use surface slip boundary conditions and the second method also uses shock slip boundary conditions. The results of the two methods are compared at the stagnation point. It is found that the entire shock layer is under chemical nonequilibrium at higher altitudes and that the slip boundary conditions are important at these altitudes.

  12. Use of the Gamow Bag by EMT-basic park rangers for treatment of high-altitude pulmonary edema and high-altitude cerebral edema.

    PubMed

    Freeman, Kimberly; Shalit, Marc; Stroh, Geoffrey

    2004-01-01

    As part of an emergency medical system protocol, national park service rangers certified at the level of an emergency medical technician-basic (EMT-B) are taught to recognize and treat high-altitude pulmonary edema and high-altitude cerebral edema. In Sequoia and Kings Canyon National Parks, this is done with the assistance of physician on-line medical control as a backup. High-altitude pulmonary edema and high-altitude cerebral edema are both potentially fatal altitude illnesses that can be particularly problematic in the backcountry, where evacuation may be delayed. We report a case of high-altitude pulmonary edema and high-altitude cerebral edema occurring at moderate altitude that was successfully treated by park rangers with the Gamow Bag.

  13. High altitude, prolonged exercise, and the athlete biological passport.

    PubMed

    Schumacher, Yorck O; Garvican, Laura A; Christian, Ryan; Lobigs, Louisa M; Qi, Jiliang; Fan, Rongyun; He, Yingying; Wang, Hailing; Gore, Christopher J; Ma, Fuhai

    2015-01-01

    The Athlete Biological Passport (ABP) detects blood doping in athletes through longitudinal monitoring of erythropoietic markers. Mathematical algorithms are used to define individual reference ranges for these markers for each athlete. It is unclear if altitude and exercise can affect the variables included in these calculations in a way that the changes might be mistaken for blood manipulation. The aim of this study was to investigate the influence of the simultaneous strenuous exercise and low to high altitude exposure on the calculation algorithms of the ABP. 14 sea level (SL) and 11 altitude native (ALT) highly trained athletes participated in a 14-day cycling stage race taking place at an average altitude of 2496 m above sea level (min. 1014 m, max. 4120 m), race distances ranged between 96 and 227 km per day. ABP blood measures were taken on days -1,3,6,10,14 (SL) and -1,9,15 (ALT) of the race. Four results from three samples of two different SL athletes exceeded the individual limits at the 99% specificity threshold and one value at 99.9%. In ALT, three results from three samples of three different athletes were beyond the individual limits at 99%, one at 99.9%. The variations could be explained by the expected physiological reaction to exercise and altitude. In summary, the abnormalities observed in the haematological ABP´s of well-trained athletes during extensive exercise at altitude are limited and in line with expected physiological changes.

  14. High altitude ataxia--its assessment and relevance.

    PubMed

    Bird, Brynn A; Wright, Alexander David; Wilson, Mark H; Johnson, Brian G; Imray, Chris H

    2011-06-01

    Ataxia at altitude is reviewed in relation to acute mountain sickness (AMS). The cause of ataxia occurring at altitude is unknown but may be hypoxia affecting basal ganglia and hindbrain activity. Ataxia is an important sign of high altitude cerebral edema (HACE) but is less well-established as a clinical feature of AMS. Assessment of ataxia is part of the Environmental Systems and the Lake Louise questionnaires, together with a heel-to-toe measurement. More precise measures of ataxia include the Sharpened Romberg Test (SRT) and the use of unstable platforms. Isolated ataxia at altitude may not be related to AMS or HACE. Age affects ataxia and careful baseline measurements are essential in older subjects before results at high altitude can be interpreted. Testing for ataxia needs to be standardized with sufficient learning time. Ataxia should be distinguished from weakness or fatigue occurring at altitude. Specialized tests have not been shown to be clinically important. Our results above 5000 m showed that an abnormal SRT may be specific for AMS but with relatively poor sensitivity. Wobble board results have not correlated with AMS scores consistently. Other authors using an unstable platform in a chamber and static posturography during 3 days of exposure to 4559 m also found no relationship with AMS scores. Ataxia is a common and important clinical feature of HACE but is unhelpful in the assessment of mild or even moderate AMS in the absence of an altered mental state. The simple heel-to-toe test remains a useful part of the assessment of more severe AMS bordering on HACE.

  15. 40 CFR 600.310-86 - Labeling of high altitude vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Labeling of high altitude vehicles... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.310-86 Labeling of high altitude vehicles... altitude vehicles according to § 600.306. (b) A high altitude vehicle may be labeled with a general...

  16. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  17. Snowpack and precipitation chemistry at high altitudes

    NASA Astrophysics Data System (ADS)

    Hidy, George M.

    As an observational scientist, James P. Lodge Jr. contributed to the knowledge of atmospheric chemistry significantly and in many ways. As far back as the 1960s, his achievements included organization and oversight of a national survey of precipitation chemistry. This paper recognizes his broad interest in precipitation, focusing on recent studies of snow chemistry in the high-elevation regimes. A brief overview of snow chemistry in the American Rocky Mountains is provided in the context of other snow chemistry studies in the United States, Europe, the Himalayas, and the polar ice-sheets. A comparison of major ion concentrations in snow and neighboring NADP wet deposition sites in the Rocky Mountains follows. These data are then put in perspective of the major ion concentrations observed in snow at different global locations. This comparison touches on the similarities and differences in ion concentrations in the mid-latitude sites and the Polar Regions. A case study is reviewed to identify specific sources of sulfur and nitrogen oxides affecting snow chemistry in the American Rockies. The survey closes with a brief discussion of potentially important recent observations of snowpack chemistry interactions with the troposphere, the hydrosphere and the lithosphere.

  18. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  19. Theodor Benzinger, German pioneer in high altitude physiology research and altitude protection.

    PubMed

    Harsch, Viktor

    2007-09-01

    Theodore Benzinger was a pilot-physician who performed pioneering research-often involving self-experimentation-in areas related to flight at high altitude during World War II. Of greatest historical interest to those of us in aerospace medicine is his work on the effects of rapid decompression and related oxygen equipment. Benzinger was born in Stuttgart, Germany, on 28th August 1905. He studied medicine and natural sciences at the universities of Tuebingen, Munich, and Berlin. From 1934 to 1944, Benzinger headed the aeromedical laboratory "EMed" in Rechlin, where he was instrumental in conducting studies related to stratospheric flight, including self-experimentation with rapid decompression up to 19,000 m (62,320 ft). His Rechlin experiments made an important contribution to understanding the physiology and life-support requirements for high-altitude aviation and later work under space-equivalent conditions. Following World War II, Benzinger joined the staff of the U.S. Army Air Force Aeromedical Center in Heidelberg. In 1947 he was recruited by "Operation Paperclip" to work at the U.S. Naval Medical Research Institute (NMRI) in Bethesda, MD, where he worked on various aspects of human physiology. He died as a U.S. citizen in Bethesda, MD, on 26th October 1999.

  20. Martian high-altitude photoelectrons independent of solar zenith angle

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Liemohn, Michael; Bougher, Stephen; Mitchell, David

    2016-04-01

    Many aspects of the Martian upper atmosphere are known to vary with solar zenith angle (SZA). One would assume that dayside photoelectron fluxes are also SZA dependent, especially when transport along a semivertical magnetic field line is significant. However, our investigation presented here of the observed Martian high-altitude (˜400 km) photoelectron fluxes by the magnetometer/electron reflectometer (MAG/ER) instruments on board Mars Global Surveyor (MGS) shows that the photoelectron fluxes are better correlated with just the solar irradiance, without SZA factored in, and also that the median photoelectron fluxes are independent of SZA, especially for high energies (above 100 eV). For lower energies (below 70 eV), the observed fluxes tend to vary to some degree with SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Two methods are used here to determine the altitude range of this exobase, which varies between 145 km and 165 km depending on the atmosphere and SZA. Through our SuperThermal Electron Transport (STET) model, we found that the integral of the production rate above the photoelectron exobase, and therefore the high-altitude photoelectron fluxes, is rather independent of SZA. Such an independent relationship concerns energy redistribution in the Martian upper atmosphere, using photoelectrons to map magnetic topology and connectivity, as well as ion escape. This finding can also be carefully adapted to other solar bodies with semivertical magnetic fields at ionospheric altitudes, such as Earth, Jupiter, and Saturn.

  1. Physiological characteristics of elite high-altitude climbers.

    PubMed

    Puthon, L; Bouzat, P; Rupp, T; Robach, P; Favre-Juvin, A; Verges, S

    2016-09-01

    Factors underlying the amplitude of exercise performance reduction at altitude and the development of high-altitude illnesses are not completely understood. To better describe these mechanisms, we assessed cardiorespiratory and tissue oxygenation responses to hypoxia in elite high-altitude climbers. Eleven high-altitude climbers were matched with 11 non-climber trained controls according to gender, age, and fitness level (maximal oxygen consumption, VO2 max ). Subjects performed two maximal incremental cycling tests, in normoxia and in hypoxia (inspiratory oxygen fraction: 0.12). Cardiorespiratory measurements and tissue (cerebral and muscle) oxygenation were assessed continuously. Hypoxic ventilatory and cardiac responses were determined at rest and during exercise; hypercapnic ventilatory response was determined at rest. In hypoxia, climbers exhibited similar reductions to controls in VO2 max (climbers -39 ± 7% vs controls -39 ± 9%), maximal power output (-27 ± 5% vs -26 ± 4%), and arterial oxygen saturation (SpO2 ). However, climbers had lower hypoxic ventilatory response during exercise (1.7 ± 0.5 vs 2.6 ± 0.7 L/min/%; P < 0.05) and lower hypercapnic ventilatory response (1.8 ± 1.4 vs 3.8 ± 2.5 mL/min/mmHg; P < 0.05). Finally, climbers exhibited slower breathing frequency, larger tidal volume and larger muscle oxygenation index. These results suggest that elite climbers show some specific ventilatory and muscular responses to hypoxia possibly because of genetic factors or adaptation to frequent high-altitude climbing.

  2. Project ARES 2: High-altitude battery-powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A high-altitude, battery-powered, propeller-driven aircraft was designed and is being built by undergraduate students at California State University, Northridge. The aircraft will fly at an altitude of 104,000 ft at Mach 0.2 (190 ft/sec) and will be instrumented to record flight performance data, including low Reynolds number propeller and airfoil information. This project will demonstrate the feasibility of electric-powered flight in a low-density, low-temperature Earth environment that models the atmosphere of Mars. Data collected will be used to design a Mars aircraft to investigate the surface of Mars prior to manned missions. The instrumented payload and the mission profile for the high-altitude Earth flight were determined. Detailed aerodynamic and structural analyses were performed. Control, tracking, and data recording subsystems were developed. Materials were obtained and fabrication begun. The aircraft has a 32-ft wing span, a wing area of 105 sq ft, is 17.5 ft long, has a 12-in payload bay, and weighs 42 lb. It is composed primarily of lightweight materials, including Mylar, and composite materials, including graphite/epoxy and aramid core honeycomb sandwich. Low-altitude flight testing to check guidance and control systems and to calibrate data-gathering instruments will take place this summer, followed shortly by the 104,000-ft flight.

  3. Anthropometric and body composition changes during expeditions at high altitude.

    PubMed

    Zaccagni, Luciana; Barbieri, Davide; Cogo, Annalisa; Gualdi-Russo, Emanuela

    2014-06-01

    The purpose of this study is to investigate separately in the two sexes the physical adaptations associated to exposure to high altitude in a sample of 18 nonacclimatized Caucasian subjects (10 males and 8 females, 22-59 years) who participated to scientific expeditions to Himalaya up to the Pyramid Laboratory (5050 m, Nepal) or Everest North Base Camp (5300 m, Tibet). Anthropometric traits (body height and weight, eight girths and six skinfolds) were collected according to standard procedures, before departure at sea level, during ascent (at altitude > 4000 m above sea level), and after return to low altitude. Body composition was assessed by means of the skinfold method. Both sexes lost on average 4.0% of initial body mass, corresponding to 7.6% of fat mass and 3.5% of fat free mass in males, and to 5.0% of fat mass and 3.6% of fat free mass in females. Average fat mass loss was greater in males than in females. Initial fat mass percentage was positively correlated to fat mass loss and negatively to FFM loss in males only, thus at HA leanest subjects lost more FFM and less FM than the fattest ones. Adaptations were faster in males than in females. In conclusion, the present research describes significant adaptations to high altitude, in terms of body weight reduction, regardless of the amount of performed physical activity. PMID:24665979

  4. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    PubMed

    Brutsaert, Tom

    2016-01-01

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise. PMID:27343091

  5. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    PubMed

    Brutsaert, Tom

    2016-01-01

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  6. An oxygen enrichment device for lowlanders ascending to high altitude

    PubMed Central

    2013-01-01

    Background When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. Methods The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl alcohol. The membrane was assembled in a frame and the performance was tested in terms of concentration of oxygen, flow rate of oxygen enriched air, pressure ratio across the membrane and ambient temperature. Furthermore, the oxygen concentration device was constructed using the membrane, a DC fan, vacuum pump and gas buffer. A nonrandomized preliminary field test was conducted, in which eight healthy male subjects were flown to Tibet (Lhasa, 3,700 m). First, subjects wore the oxygen enrichment device and performed an incremental exercise on cycle ergometer. The test included heart rate (HR), saturation of peripheral oxygen (SpO2) and physical work capacity (PWC). Then, after a rest period of 4 hours, the experimental protocol was repeated without oxygen enrichment device. Results The testing showed that the membrane could increase the oxygen concentration by up to 30%. Simulation test indicated that although the performance of the oxygen enrichment device decreased with altitudes, the oxygen concentration could still maintain 28% with flow rate of enriched air 110 cm3/s at 5000 m. The field test showed that higher SpO2, lower HR, and better PWC (measured by the PWC-170) were observed from all the subjects using oxygen enrichment device compared with non-using (P < 0.01). Conclusions We concluded that the new portable oxygen enrichment device would be effective in improving exercise performance when ascending to the high altitude. PMID:24103365

  7. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia

    PubMed Central

    Gou, Xiao; Wang, Zhen; Li, Ning; Qiu, Feng; Xu, Ze; Yan, Dawei; Yang, Shuli; Jia, Jia; Kong, Xiaoyan; Wei, Zehui; Lu, Shaoxiong; Lian, Linsheng; Wu, Changxin; Wang, Xueyan; Li, Guozhi; Ma, Teng; Jiang, Qiang; Zhao, Xue; Yang, Jiaqiang; Liu, Baohong; Wei, Dongkai; Li, Hong; Yang, Jianfa; Yan, Yulin; Zhao, Guiying; Dong, Xinxing; Li, Mingli; Deng, Weidong; Leng, Jing; Wei, Chaochun; Wang, Chuan; Mao, Huaming; Zhang, Hao; Ding, Guohui; Li, Yixue

    2014-01-01

    The hypoxic environment imposes severe selective pressure on species living at high altitude. To understand the genetic bases of adaptation to high altitude in dogs, we performed whole-genome sequencing of 60 dogs including five breeds living at continuous altitudes along the Tibetan Plateau from 800 to 5100 m as well as one European breed. More than 150× sequencing coverage for each breed provides us with a comprehensive assessment of the genetic polymorphisms of the dogs, including Tibetan Mastiffs. Comparison of the breeds from different altitudes reveals strong signals of population differentiation at the locus of hypoxia-related genes including endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) and beta hemoglobin cluster. Notably, four novel nonsynonymous mutations specific to high-altitude dogs are identified at EPAS1, one of which occurred at a quite conserved site in the PAS domain. The association testing between EPAS1 genotypes and blood-related phenotypes on additional high-altitude dogs reveals that the homozygous mutation is associated with decreased blood flow resistance, which may help to improve hemorheologic fitness. Interestingly, EPAS1 was also identified as a selective target in Tibetan highlanders, though no amino acid changes were found. Thus, our results not only indicate parallel evolution of humans and dogs in adaptation to high-altitude hypoxia, but also provide a new opportunity to study the role of EPAS1 in the adaptive processes. PMID:24721644

  8. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  9. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  10. High altitude solar power platform. [aircraft design analysis

    NASA Technical Reports Server (NTRS)

    Bailey, M. D.; Bower, M. V.

    1992-01-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  11. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  12. High-Altitude Cassini Radar Imaging of Titan

    NASA Astrophysics Data System (ADS)

    West, R. D.; Stiles, B.; Anderson, Y.; Boehmer, R.; Callahan, P.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.; Johnson, W. T.; Kelleher, K.; Lorenz, R.; Ostro, S.; Paganelli, F.; Shaffer, S.; Wye, L.; Zebker, H.

    2006-12-01

    The Cassini spacecraft is now about halfway through its primary Tour of the Saturn system. By the time of this meeting, the radar instrument will have collected seven synthetic aperture strips during close flyby's, with 13 more to come. These images have resolutions as fine as 300 m. We present here data acquired using another imaging mode, very high altitude synthetic aperture radar (SAR) imaging, which extends imaging radar coverage and increases coincidental coverage with other Cassini imaging instruments such as VIMS and ISS. We also discuss calibration of SAR images and other radar data from additional engineering observations. Here we examine the performance trade-offs, special processing issues, and science potential of the high- altitude image observations, and the latest results from the calibration data. The high-altitude data collections are distinct from the normal Titan radar images because the range is much larger (around 20,000 km vs 950 km to 5000 km for normal SAR passes). To increase the signal to noise ratio in these circumstances, the radar operates in the lowest bandwidth scatterometer mode while spacecraft pointing control is used to slowly pan the central beam across a small swath. These high altitude images incorporate 150-200 independent looks in order to let us discriminate features that may lie below the noise floor. So far, three high-altitude images have been acquired, during Titan flyby's T12, T13, and T15. In T12 imaging was attempted from 37000 km with an effective resolution around 5 km. In T13 the Huygens Probe landing site was imaged from 11000 km with effective resolution of 1 2 km. In T15 the Tsegehi area was imaged from 20000 km with effective resolution of 2 -3 km. Additional high altitude image segments are also planned during the T19 and T20 Titan flyby's. The calibration observations are conducted independently or coupled with a distant icy satellite observation. They consist of receive-only data in all four bandwidths

  13. Training-dependent cognitive advantage is suppressed at high altitude.

    PubMed

    Li, Peng; Zhang, Gang; You, Hai-Yan; Zheng, Ran; Gao, Yu-Qi

    2012-06-25

    Ascent to high altitude is associated with decreases in cognitive function and work performance as a result of hypoxia. Some workers with special jobs typically undergo intensive mental training because they are expected to be agile, stable and error-free in their job performance. The purpose of this study was to determine the risk to cognitive function acquired from training following hypoxic exposure. The results of WHO neurobehavioral core tests battery (WHO-NCTB) and Raven's standard progressive matrices (RSPM) tests of a group of 54 highly trained military operators were compared with those of 51 non-trained ordinary people and were investigated at sea level and on the fifth day after arrival at high altitudes (3900m). Meanwhile, the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin 1β (IL-1β) and vascular endothelial growth factor (VEGF) were examined. The result showed that at sea level, the trained group exhibited significantly better performance on neurobehavioral and RSPM tests. At high altitude, both groups had decreased accuracy in most cognitive tests and took longer to finish them. More importantly, the highly trained subjects showed more substantial declines than the non-trained subjects in visual reaction accuracy, auditory reaction speed, digit symbol scores, ability to report correct dots in a pursuit aiming test and total RSPM scores. This means that the training-dependent cognitive advantages in these areas were suppressed at high altitudes. The above phenomenon maybe associated with decreased BDNF and elevated inflammatory factor during hypoxia, and other mechanisms could not be excluded.

  14. High altitude pulmonary edema among “Amarnath Yatris”

    PubMed Central

    Koul, Parvaiz A.; Khan, Umar Hafiz; Hussain, Tajamul; Koul, Ajaz Nabi; Malik, Sajjad; Shah, Sanaullah; Bazaz, Sajjad Rajab; Rashid, Wasim; Jan, Rafi Ahmad

    2013-01-01

    Background: Annual pilgrimage (Yatra) to the cave shrine of Shri Amarnath Ji’ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft) in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft). The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41) had presented with acute onset breathlessness of 1-4 days (median 1.9 d) starting within 12-24 h of a rapid ascent; accompanied by cough (68%), headache (8%), dizziness and nausea (65%). Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea (n = 31), tachycardia (n = 23), bilateral chest rales (n = 29), cyanosis (n = 22) and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation (n = 3). Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment. PMID:24049253

  15. Evaluation of Podophyllum peltatum accessions for podophyllotoxin production.

    PubMed

    Moraes, Rita M; Bedir, Ebru; Barrett, Holly; Burandt, Charles; Canel, Camilo; Khan, Ikhlas A

    2002-04-01

    In an effort to develop a sustainable source of podophyllotoxin for the production of anticancer drugs such as etoposide, teniposide and etopophos, Podophyllum peltatum accessions with podophyllotoxin-rich leaf biomass were identified and transplanted to different growing conditions by vegetative cuttings. Results indicate that the lignan profile in leaves does not change over time or due to environment conditions. Podophyllotoxin and alpha-peltatin content in the blades seems to be stable with an inverse relationship of concentration between these compounds. A podophyllotoxin-rich leaf accession showed low biosynthetic capability to synthesize alpha- and beta-peltatin and the converse was also true, indicating that selection and cultivation of high-yielding podophyllotoxin leaf biomass may reduce production costs.

  16. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin.

    PubMed

    Eyberger, Amy L; Dondapati, Rajeswari; Porter, John R

    2006-08-01

    The lignan podophyllotoxin (1) is highly valued as the precursor to clinically useful anticancer drugs. Substantial drug development of this compound class continues, including potential new use for inflammatory disease. We have isolated two endophyte fungi, both strains of Phialocephala fortinii, from rhizomes of the plant Podophyllum peltatum. The fungi were identified through DNA sequencing and morphology. Both strains of fungi are slow-growing and produce 1 at low but measurable amounts in broth culture. The compound was confirmed through matching HPLC retention times, absorption spectra, and MS data to authentic 1. The yield of 1 has ranged from 0.5 to 189 microg/L in 4 weeks of culture. These fungi have implications for the sustained production of 1 independent of wild populations of the source plants.

  17. The University of Alberta High Altitude Balloon Program

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  18. Endogenous Asymmetric Dimethylarginine Pathway in High Altitude Adapted Yaks

    PubMed Central

    Mizuno, Shiro; Ishizaki, Takeshi; Toga, Hirohisa; Sakai, Akio; Isakova, Jainagul; Taalaibekova, Elnura; Baiserkeev, Zamirbek; Kojonazarov, Baktybek; Aldashev, Almaz

    2015-01-01

    Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS), dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks. PMID:26380264

  19. NEW HORIZONS FOR THE NATIONAL HIGH-ALTITUDE PHOTOGRAPHY PROGRAM.

    USGS Publications Warehouse

    Bermel, Peter F.

    1983-01-01

    The National High-Altitude Photography Program (NHAP) is a multi-Federal agency activity to acquire uniform imagery for the establishment of a national high-altitude photographic data base. Since the inception of NHAP in 1980, black-and-white and color infrared stereoscopic imagery has been acquired for about 50% of the 3,000,000 square miles in the conterminous United States. An additional 40% of the 48-State area is under contract to private aerial survey firms, and the sixth and final contract to achieve complete once-over coverage will be awarded early in 1985. Extensive use has been made of the newly established data base. The participating agencies have begun studies to define the requirements for a maintenance program which would provide cyclic coverage of the conterminous United States and imagery for specific agency needs.

  20. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  1. Population variation revealed high-altitude adaptation of Tibetan mastiffs.

    PubMed

    Li, Yan; Wu, Dong-Dong; Boyko, Adam R; Wang, Guo-Dong; Wu, Shi-Fang; Irwin, David M; Zhang, Ya-Ping

    2014-05-01

    With the assistance of their human companions, dogs have dispersed into new environments during the expansion of human civilization. Tibetan Mastiff (TM), a native of the Tibetan Plateau, was derived from the domesticated Chinese native dog and, like Tibetans, has adapted to the extreme environment of high altitude. Here, we genotyped genome-wide single-nucleotide polymorphisms (SNPs) from 32 TMs and compared them with SNPs from 20 Chinese native dogs and 14 gray wolves (Canis lupus). We identified 16 genes with signals of positive selection in the TM, with 12 of these candidate genes associated with functions that have roles in adaptation to high-altitude adaptation, such as EPAS1, SIRT7, PLXNA4, and MAFG that have roles in responses to hypoxia. This study provides important information on the genetic diversity of the TM and potential mechanisms for adaptation to hypoxia.

  2. THe high altitude reconnaissance platform (HARP) and its capabilities

    SciTech Connect

    Rusk, D.; Rose, R.L.; Gibeau, E.

    1996-10-01

    The High Altitude Reconnaissance Platform (HARP), a Learjet 36A, is a multi-purpose, long-range, high-altitude aircraft specially modified to serve as a meteorological observation platform. Its instrument suite includes: particle probes, Ka-band radar, two-color lidar, infrared spectroradiometer, thermometer, hygrometer, liquid water probe, and a gust probe. Aeromet scientists have developed software and hardware systems that combine data using sensor fusion concepts, providing detailed environmental information. The HARP answers the need for defining and predicting meteorological conditions throughout large atmospheric volumes particularly in areas where conventional surface and upper-air observations are not available. It also fills the need for gathering and predicting meteorological conditions along an optical sensor`s line of sight or a missile`s reentry path. 6 refs., 2 figs., 4 tabs.

  3. Coca: High Altitude Remedy of the Ancient Incas.

    PubMed

    Biondich, Amy Sue; Joslin, Jeremy D

    2015-12-01

    The use of coca leaf for medicinal purposes is a centuries-old tradition of the native peoples of South America. Coca products are thought by many laypersons to provide risk-free benefits to users participating in strenuous activities at high altitude. Physiologic studies of coca have increased understanding of its possible mechanism of action as well as its potential impact on high altitude activities. This present work explores the role of coca throughout the history of the Andean peoples and explores whether this ancient remedy has a place in modern medicine. A focused summary of research articles with particular relevance to the field of wilderness medicine is also included to better provide the reader with lessons not only from history but also from another culture.

  4. Population variation revealed high-altitude adaptation of Tibetan mastiffs.

    PubMed

    Li, Yan; Wu, Dong-Dong; Boyko, Adam R; Wang, Guo-Dong; Wu, Shi-Fang; Irwin, David M; Zhang, Ya-Ping

    2014-05-01

    With the assistance of their human companions, dogs have dispersed into new environments during the expansion of human civilization. Tibetan Mastiff (TM), a native of the Tibetan Plateau, was derived from the domesticated Chinese native dog and, like Tibetans, has adapted to the extreme environment of high altitude. Here, we genotyped genome-wide single-nucleotide polymorphisms (SNPs) from 32 TMs and compared them with SNPs from 20 Chinese native dogs and 14 gray wolves (Canis lupus). We identified 16 genes with signals of positive selection in the TM, with 12 of these candidate genes associated with functions that have roles in adaptation to high-altitude adaptation, such as EPAS1, SIRT7, PLXNA4, and MAFG that have roles in responses to hypoxia. This study provides important information on the genetic diversity of the TM and potential mechanisms for adaptation to hypoxia. PMID:24520091

  5. Considerations of high altitude emissions. [from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Broderick, A. J.; Krull, N. P.

    1976-01-01

    The status of the Federal Aviation Administration's High Altitude Pollution Program is described which was instituted to develop the detailed quantitative information needed to judge whether or not regulatory action to limit such exhaust emissions would be necessary. The complexities of this question and the nature and magnitude of uncertainties still present in our scientific understanding of the potential interactions between aircraft exhaust emissions and stratospheric ozone and climate are reviewed. The direction and scope of future Federal and international activities are described.

  6. Nike Black Brant V high altitude dynamic instability characteristics

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  7. [Radiation safety in flights of high-altitude aircraft].

    PubMed

    Kovalev, E E; Petrov, V M

    1975-01-01

    The major sources of radiation hazard for flights of supersonic high altitude aircraft--galactic and solar radiation--are described. Estimates of an equivalent dose rate at different distances from these sources are given. The estimates are compared with the radiation dosages allowed for the average population and special personnel. It is concluded that specific measures are needed to provide radiation safety of the crews and passengers aboard supersonic aircraft.

  8. Radiation safety in high-altitude air traffic

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1977-01-01

    Results of an experimental and theoretical study on dose equivalent rates at high altitudes are presented. The flight personnel flying 500 hours per year at SST cruise altitude in high latitudes (maximum of radiation) would be exposed to less than 14% of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr), averaged over the solar cycle. One-half or more is due to energetic secondary neutrons that are penetrant and highly biologically effective. Passengers would, in general, be exposed only to the low-level galactic cosmic rays, except for a relative few who encounter rare, intense, and energetic solar-particle events. If the airplane descends to subsonic altitudes during events such as that of Feb. 23, 1956 - the most intense and unique giant energy event of the last 35 years - passenger exposure even then remains at or below permissible levels (0.5 rem for the general population). Systems of radiation monitoring are briefly discussed which will prevent false alarms and which would be useful in disproving overexposure in potential malpractice suits against the airlines. In subsonic jet transports the exposure of the crews is lower by a factor 3 to 4; for passengers it is about the same for the same distance traveled. Solar events, except for giant energy events, will yield only a minor fraction of the MPD of the general population.

  9. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  10. High-altitude cerebral edema with absence of headache.

    PubMed

    Thomassen, Oyvind; Skaiaa, Sven Chr

    2007-01-01

    Headache is the cardinal symptom of acute mountain sickness (AMS). The headache normally worsens, with increased cerebral affection and the development of high-altitude cerebral edema (HACE). A Norwegian expedition aimed to climb Baruntse (7129 m) in Nepal in 2003. At 5400 m a 35-year-old man felt exhausted. The next day he aborted his attempt at further climbing as a result of extreme fatigue. Over the next 24 hours he developed cough, dyspnea, and severe hypoxia before progressing to ataxia and blurred vision. At no point did he experience headache or nausea. The patient was evacuated by helicopter. He improved immediately after descent and recovered completely within a week. The speed of progression from AMS to HACE varies. Abrupt onset of HACE is occasionally reported. High-altitude pulmonary edema (HAPE) may induce severe hypoxia that can lead to rapid development of HACE. High-altitude cerebral edema in the setting of HAPE was the most likely diagnosis despite the unusual lack of headache. Rapid onset of HAPE with subsequent severe desaturation should raise awareness of the development of HACE, even in the absence of headache. PMID:17447714

  11. High altitude impairs in vivo immunity in humans.

    PubMed

    Oliver, Samuel J; Macdonald, Jamie H; Harper Smith, Adam D; Lawley, Justin S; Gallagher, Carla A; Di Felice, Umberto; Walsh, Neil P

    2013-06-01

    The aim was to assess the effect of high altitude on the development of new immune memory (induction) using a contact sensitization model of in vivo immunity. We hypothesized that high-altitude exposure would impair induction of the in vivo immune response to a novel antigen, diphenylcyclopropenone (DPCP). DPCP was applied (sensitization) to the lower back of 27 rested controls at sea level and to ten rested mountaineers 28 hours after passive ascent to 3777 m. After sensitization, mountaineers avoided strenuous exercise for a further 24 hours, after which they completed alpine activities for 11-18 days. Exactly 4 weeks after sensitization, the strength of immune memory induction was quantified in rested mountaineers and controls at sea level, by measuring the response to a low, dose-series DPCP challenge, read at 48 hours as skin measures of edema (skinfold thickness) and redness (erythema). Compared with control responses, skinfold thickness and erythema were reduced in the mountaineers (skinfold thickness,-52%, p=0.01, d=0.86; erythema, -36%, p=0.02, d=0.77). These changes in skinfold thickness and erythema were related to arterial oxygen saturation (r=0.7, p=0.04), but not cortisol (r<0.1, p>0.79), at sensitization. In conclusion, this is the first study to show, using a contact sensitization model of in vivo immunity, that high altitude exposure impairs the development of new immunity in humans.

  12. Reference values for pulse oximetry at high altitude

    PubMed Central

    Gamponia, M; Babaali, H; Yugar, F; Gilman, R

    1998-01-01

    OBJECTIVE—To determine reference values for oxygen saturation (SaO2) in healthy children younger than 5 years living at high altitude.
DESIGN—One hundred and sixty eight children were examined for SaO2 at 4018 m during well child visits. Physiological state was also noted during the examination.
RESULTS—The mean SaO2 was 87.3% (95% confidence intervals (CI) 86.7%, 87.9%) with a median value of 87.7%. A significant difference was observed in SaO2 between children younger than 1 year compared with older children, although the difference was no longer demonstrable when sleeping children were excluded.
CONCLUSIONS—This study has provided a reference range of SaO2 values for healthy children under 5 years old so that pulse oximetry may be used as an adjunct in diagnosing acute respiratory infections. Younger children were also shown to have a lower mean SaO2 than older children living at high altitude, which suggests physiological adaptation to high altitude over time. In addition, sleep had a lowering effect on SaO2, although the clinical importance of this remains undetermined.

 PMID:9659095

  13. A High Altitude-Low Reynolds Number Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Don; Krake, Keith; Hamory, Phil; Drela, Mark; Lee, Seunghee (Technical Monitor)

    1999-01-01

    A sailplane is currently being developed at NASA's Dryden Flight Research Center to support a high altitude flight experiment. The purpose of the experiment is to measure the performance characteristics of an airfoil at altitudes between 100,000 and 70,000 feet at Mach numbers between 0.65 and 0.5. The airfoil lift and drag are measured from pilot and static pressures. The location of the separation bubble and vortex shedding are measured from a hot film strip. The details of the flight experiment are presented. A comparison of several estimates of the airfoil performance is also presented. The airfoil, APEX-16, was designed by Drela (MIT) with his MSES code. A two dimensional Navier-Stokes analysis has been performed by Tatineni and Zhong (UCLA) and another at the Dryden Flight Research Center. The role these analysis served to define the experiment is discussed.

  14. Applications of a high-altitude powered platform /HAPP/

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.

    1979-01-01

    The high-altitude powered platform (HAPP) is a conceptual unmanned vehicle which could be either an airship or airplane. It would keep station at an altitude of 70,000 ft above a fixed point on the ground. A microwave power transmission system would beam energy from the ground up to the HAPP to power an electric motor-driven propeller and the payload. A study of the HAPP has shown that it could potentially be a cost-competitive platform for such remote sensing applications as forest fire detection, Great Lakes ice monitoring and Coast Guard law enforcement. It also has significant potential as a communications relay platform for (among other things) direct broadcast to home TVs over a large region.

  15. Paleoindian settlement of the high-altitude Peruvian Andes.

    PubMed

    Rademaker, Kurt; Hodgins, Gregory; Moore, Katherine; Zarrillo, Sonia; Miller, Christopher; Bromley, Gordon R M; Leach, Peter; Reid, David A; Álvarez, Willy Yépez; Sandweiss, Daniel H

    2014-10-24

    Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America. PMID:25342802

  16. Neutron radiation dosimetry in high altitude flight personnel.

    PubMed

    Baily, P E

    1982-08-01

    In an attempt to determine cosmic radiation exposure in high altitude NASA flight personnel, eight WB-57F flight crewmen were monitored for a period of six months using a combination radiation dosimeter. Each dosimeter consisted of two thermoluminescent chips capable of measuring gamma dose and one Albedo and two Track Etch neutron dosimeters. A total of 78 flights were monitored consisting of 251 flight hours at altitudes above 14 km (45,000 ft). The maximum yearly dose equivalent measured was 104 mrem, a value well below the Maximum Permissible Dose (MPD) of 5.0 rem/y for occupational exposures and 0.5 rem/y for members of the general public. A discussion of the theory and use of several types of neutron dosimeters is included. PMID:7181814

  17. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.

    PubMed

    Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi

    2014-11-01

    The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.

  18. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  19. Human nutrition in cold and high terrestrial altitudes

    NASA Astrophysics Data System (ADS)

    Srivastava, K. K.; Kumar, Ratan

    1992-03-01

    The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.

  20. High altitude smoke in the NASA GISS GCM

    NASA Technical Reports Server (NTRS)

    Field, Robert; Luo, M.; Fromm, M.; Voulgarakis, A.; Mangeon, S.; Worden, J.

    2015-01-01

    High altitude smoke-plumes from large, explosive fires were discovered in the late 1990sThey can now be observed with unprecedented detail from space-borne instruments with high vertical resolution in the UTLS such as CALIOP, MLS and ACE. These events inject large quantities of pollutants into a relatively clean and dry environment They serve as unique natural experiments with which to understand, using chemical transport and composition-climate models, the chemical and radiative impacts of long-lived biomass burning emissions. We are currently studying the Black Saturday bushfires in Australia during February 2009

  1. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  2. Stratochip, a dual balloon high-altitude platform: controlled altitude flight experiments and potential applications in geosciences.

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves

    2014-05-01

    A high-altitude dual balloons system, the 'Stratochip', was designed at the Geological Survey of Belgium to serve as a development platform to carry measurement and earth observation equipments, in altitudes comprised between 1000 and 25000m. These working altitudes far exceed the range of current motor powered unmanned aerial vehicules, with a higher weight carrying capacity (up to 10-15kg). This platform is built around a two helium balloons configuration, than can be released one by one at a target altitude or location, allowing a partially controlled drift of the platform. Using a 'nowcasting' meteorological model, updated by flight telemetry, the predicted path can be refined live to follow and retrieve the equipment in a predicted landing area. All subsystems (balloon cut-off devices, flight controller, telemetry system) have been developed in-house. Three independent communication channels, designed to work at extremely low temperature (up to -60° C) ensure a continuous tracking until landing. A calibrated parachute is used to control the safe descent of the equipment. Several flight tests have been performed in Belgium to control the meteorological model accuracy for wind predictions (model based on National Oceanic and Atmospheric Administration data). Those tests demonstrated the capability of the platform to maintain its altitude in a predicted path, allowing using the platform for new types of atmospheric studies and affordable high-altitude remote-sensing applications (i.e. sub-meter resolution stereo imagery).

  3. Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage.

    PubMed

    Ma, Hailin; Wang, Yan; Wu, Jianhui; Luo, Ping; Han, Buxin

    2015-09-01

    To investigate the effects of high-altitude exposure on response inhibition, event-related potential (ERP) components N2 and P3 were measured in Go/NoGo task. The participants included an 'immigrant' high-altitude group (who had lived at high altitude for three years but born at low altitude) and a low-altitude group (living in low altitude only). Although the behavioural data showed no significant differences between the two groups, a delayed latency of NoGo-N2 was found in the high-altitude group compared to the low-altitude group. Moreover, larger N2 and smaller P3 amplitudes were found in the high-altitude group compared to the low-altitude group, for both the Go and NoGo conditions. These findings suggest that high-altitude exposure affects response inhibition with regard to processing speed during the conflict monitoring stage. In addition, high altitude generally increases the neural activity in the matching step of information processing and attentional resources. These results may provide some insights into the neurocognitive basis of the effects on high-altitude exposure on response inhibition.

  4. Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage.

    PubMed

    Ma, Hailin; Wang, Yan; Wu, Jianhui; Luo, Ping; Han, Buxin

    2015-01-01

    To investigate the effects of high-altitude exposure on response inhibition, event-related potential (ERP) components N2 and P3 were measured in Go/NoGo task. The participants included an 'immigrant' high-altitude group (who had lived at high altitude for three years but born at low altitude) and a low-altitude group (living in low altitude only). Although the behavioural data showed no significant differences between the two groups, a delayed latency of NoGo-N2 was found in the high-altitude group compared to the low-altitude group. Moreover, larger N2 and smaller P3 amplitudes were found in the high-altitude group compared to the low-altitude group, for both the Go and NoGo conditions. These findings suggest that high-altitude exposure affects response inhibition with regard to processing speed during the conflict monitoring stage. In addition, high altitude generally increases the neural activity in the matching step of information processing and attentional resources. These results may provide some insights into the neurocognitive basis of the effects on high-altitude exposure on response inhibition. PMID:26324166

  5. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  6. Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude.

    PubMed

    Miele, Catherine H; Schwartz, Alan R; Gilman, Robert H; Pham, Luu; Wise, Robert A; Davila-Roman, Victor G; Jun, Jonathan C; Polotsky, Vsevolod Y; Miranda, J Jaime; Leon-Velarde, Fabiola; Checkley, William

    2016-06-01

    Miele, Catherine H., Alan R. Schwartz, Robert H. Gilman, Luu Pham, Robert A. Wise, Victor G. Davila-Roman, Jonathan C. Jun, Vsevolod Y. Polotsky, J. Jaime Miranda, Fabiola Leon-Velarde, and William Checkley. Increased cardiometabolic risk and worsening hypoxemia at high altitude. High Alt Med Biol. 17:93-100, 2016.-Metabolic syndrome, insulin resistance, diabetes, and dyslipidemia are associated with an increased risk of cardiovascular disease. While excessive erythrocytosis is associated with cardiovascular complications, it is unclear how worsening hypoxemia of any degree affects cardiometabolic risk factors in high-altitude populations. We studied the relationship between daytime resting oxyhemoglobin saturation and cardiometabolic risk factors in adult participants living in Puno, Peru (3825 m above sea level). We used multivariable logistic regression models to study the relationship between having a lower oxyhemoglobin saturation and markers of cardiometabolic risk. Nine hundred and fifty-four participants (mean age 55 years, 52% male) had information available on pulse oximetry and markers of cardiometabolic risk. Average oxyhemoglobin saturation was 90% (interquartile range 88%-92%) and 43 (4.5%) had excessive erythrocytosis. Older age, decreased height-adjusted lung function, and higher body mass index (BMI) were associated with having an oxyhemoglobin saturation ≤85%. When adjusting for age, sex, socioeconomic status, having excessive erythrocytosis, and site, we found that each 5% decrease in oxyhemoglobin saturation was associated with a higher adjusted odds of metabolic syndrome (OR = 1.35, 95% CI: 1.07-1.72, p < 0.04), insulin resistance as defined by homeostasis model assessment-insulin resistance (HOMA-IR) >2 mass units (OR = 1.29, 95% CI: 1.00-1.67, p < 0.05), hemoglobin A1c ≥6.5% (OR = 1.66, 95% CI: 1.09-2.51, p < 0.04), and high sensitivity C-reactive protein (hs-CRP) ≥3 mg/L (OR = 1.46, 95% CI: 1.09-1.96, p

  7. 40 CFR Appendix III to Part 1068 - High-Altitude Counties

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false High-Altitude Counties III Appendix... Appendix III to Part 1068—High-Altitude Counties In some cases the standard-setting part includes requirements or other specifications that apply for high-altitude counties. The following counties...

  8. 40 CFR Appendix III to Part 1068 - High-Altitude Counties

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false High-Altitude Counties III Appendix... Appendix III to Part 1068—High-Altitude Counties In some cases the standard-setting part includes requirements or other specifications that apply for high-altitude counties. The following counties...

  9. 40 CFR Appendix III to Part 1068 - High-Altitude Counties

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false High-Altitude Counties III Appendix...—High-Altitude Counties In some cases the standard-setting part includes requirements or other specifications that apply for high-altitude counties. The following counties have substantial populated...

  10. 40 CFR Appendix III to Part 1068 - High-Altitude Counties

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false High-Altitude Counties III Appendix... Appendix III to Part 1068—High-Altitude Counties In some cases the standard-setting part includes requirements or other specifications that apply for high-altitude counties. The following counties...

  11. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  12. [Sperm count and seminal biochemistry of high altitude inhabitants and patients with chronic altitude sickness].

    PubMed

    García-Hjarles, M A

    1989-04-01

    Semen analysis has been studied in 9 healthy adult males from sea level (150 m), age 19-32 years old and 15 healthy males from high altitude (NA), 9 from Cerro de Pasco (4,300 m) and 6 from Morococha (4,540 m), ages 19-45 years old. Five patients with chronic mountain sickness (MMC), whose ages ranged from 23 to 52 years old were also studied. The volume and motility were similar in NA and MMC, however both were below than in sea level subjects, but still in the normal range; the number of spermatozoa per 1 ml was lower at sea level than in NA and MMC, although the total number was higher at sea level due to the higher semen volume. Fructose at sea level was 356 +/- 53 mg/100 ml (mean +/- S.E.) which is similar to NA 237 +/- 45 whereas a MMC was significantly lower, 142 +/- 60. Citric acid was lower at sea level than in NA and MMC. Na, K and Cl, were similar among the three groups. The lower concentration of fructose in MMC parallels the decreased testicular function already found in these groups. However it is worthy to point out that the fertility is preserved in all the groups. The normal reproductive function in MMC is against the concept that this process occurs as a consequence of environmental disadaptation.

  13. the APL Balloonborne High Altitude Research Platform (HARP)

    NASA Astrophysics Data System (ADS)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C

  14. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  15. Preliminary results of MUNDO high altitude pressure measurements

    SciTech Connect

    Banister, J.R.; Hereford, W.V.; Solomon, O.M.

    1987-01-01

    Four high altitude pressure measurement canisters were deployed for the MUNDO event. All canister parachutes deployed and the placement of instruments was quite satisfactory in spite of an unusual wind change. Fouled leak plugs caused the two intermediate pressure transducers to be driven out of range but a new and reasonably successful procedure was developed for recovering the pressure histories of these canisters from acceleration histories. The measurements bridged across from the central radiation cone to the transition region. Pressure levels and pressure histories at outer stations are atypical with the unexpected appearances of shock fronts. Pressure histories were more complicated with peak pressures lower than observed on RUMMY.

  16. Modelling of radiation exposure at high altitudes during solar storms.

    PubMed

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M

    2009-10-01

    A transport code analysis using Monte Carlo N-Particle eXtended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a ground-level event (GLE). A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer code has been developed to implement the model for routine analysis.

  17. Human Behaviour and Development under High-Altitude Conditions

    ERIC Educational Resources Information Center

    Virues-Ortega, Javier; Garrido, Eduardo; Javierre, Casimiro; Kloezeman, Karen C.

    2006-01-01

    Although we are far from a universally accepted pattern of impaired function at altitude, there is evidence indicating motor, perceptual, memory and behavioural deficits in adults. Even relatively low altitudes (2500 m) may delay reaction time, and impair motor function. Extreme altitude exposure (greater than 5000 m) may result in more pronounced…

  18. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas.

    PubMed

    Hackinger, Sophie; Kraaijenbrink, Thirsa; Xue, Yali; Mezzavilla, Massimo; Asan; van Driem, George; Jobling, Mark A; de Knijff, Peter; Tyler-Smith, Chris; Ayub, Qasim

    2016-04-01

    High-altitude adaptation in Tibetans is influenced by introgression of a 32.7-kb haplotype from the Denisovans, an extinct branch of archaic humans, lying within the endothelial PAS domain protein 1 (EPAS1), and has also been reported in Sherpa. We genotyped 19 variants in this genomic region in 1507 Eurasian individuals, including 1188 from Bhutan and Nepal residing at altitudes between 86 and 4550 m above sea level. Derived alleles for five SNPs characterizing the core Denisovan haplotype (AGGAA) were present at high frequency not only in Tibetans and Sherpa, but also among many populations from the Himalayas, showing a significant correlation with altitude (Spearman's correlation coefficient = 0.75, p value 3.9 × 10(-11)). Seven East- and South-Asian 1000 Genomes Project individuals shared the Denisovan haplotype extending beyond the 32-kb region, enabling us to refine the haplotype structure and identify a candidate regulatory variant (rs370299814) that might be interacting in an additive manner with the derived G allele of rs150877473, the variant previously associated with high-altitude adaptation in Tibetans. Denisovan-derived alleles were also observed at frequencies of 3-14% in the 1000 Genomes Project African samples. The closest African haplotype is, however, separated from the Asian high-altitude haplotype by 22 mutations whereas only three mutations, including rs150877473, separate the Asians from the Denisovan, consistent with distant shared ancestry for African and Asian haplotypes and Denisovan adaptive introgression.

  19. Studies on organ weights in naproxen treated rats after intermittent exposure to simulated high altitude

    NASA Astrophysics Data System (ADS)

    Saha, R. C.; Biswas, H. M.

    1990-06-01

    Rats were exposed intermittently for 8h per day over 6 days at simulated high altitude of 20 000 feet. One group of altitude-exposed animals was treated with naproxen, a prostaglandin inhibiting drug. Significant reduction in body weight gain was observed in both altitude-exposed and drug-treated altitude-exposed animals compared to the control group. Right and left ventricular weights and weights of the adrenal glands were increased significantly in altitude-exposed and altitude-exposed drug-treated animals. The weight of the spleen was increased significantly in altitude-exposed animals whereas no such increase of splenic weight was observed in drug-treated altitude-exposed group of animals. On the other hand, the weight of the liver was decreased significantly in both cases. In drug-treated altitude-exposed animals, the unaltered splenic weight was thought to be due to inhibition of the erythropoietic activity.

  20. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  1. Respiratory control in residents at high altitude: physiology and pathophysiology.

    PubMed

    León-Velarde, Fabiola; Richalet, Jean-Paul

    2006-01-01

    Highland population (HA) from the Andes, living above 3000 m, have a blunted ventilatory response to increasing hypoxia, breathe less compared to acclimatized newcomers, but more, compared to sea-level natives at sea level. Subjects with chronic mountain sickness (CMS) breathe like sea-level natives and have excessive erythrocytosis (EE). The respiratory stimulation that arises through the peripheral chemoreflex is modestly less in the CMS group when compared with the HA group at the same P(ET(O2)). With regard to CO(2) sensitivity, CMS subjects seem to have reset their central CO(2) chemoreceptors to operate around the sea-level resting P(ET(CO2)). Acetazolamide, an acidifying drug that increases the chemosensitivity of regions in the brain stem that contain CO(2)/H(+) sensitive neurons, partially reverses this phenomenon, thus, providing CMS subjects with the possibility to have high CO(2) changes, despite small changes in ventilation. However, the same type of adjustments of the breathing pattern established for Andeans has not been found necessarily in Asian humans and/or domestic animals nor in the various high altitude species studied. The differing time frames of exposure to hypoxia among the populations, as well as the reversibility of the different components of the respiratory process at sea level, provide key concepts concerning the importance of time at high altitude in the evolution of an appropriate breathing pattern.

  2. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the

  3. Elevated suicide rates at high altitude: sociodemographic and health issues may be to blame.

    PubMed

    Betz, Marian E; Valley, Morgan A; Lowenstein, Steven R; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-10-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low<1000m; middle=1000-1999m; high≥2000m). Of reported suicides, 5% were at high and 83% at low altitude, but unadjusted suicide rates per 100,000 population were higher at high (17.7) than at low (5.7) altitude. High and low altitude victims differed with respect to race, ethnicity, rural residence, intoxication, depressed mood preceding the suicide, firearm use and recent financial, job, legal, or interpersonal problems. Even after multivariate adjustment, there were significant differences in personal, mental health, and suicide characteristics among altitude groups. Compared to low altitude victims, high altitude victims had higher odds of having family or friends report of a depressed mood preceding the suicide (OR 1.78; 95%CI:1.46-2.17) and having a crisis within 2weeks before death (OR 2.00; 95%CI:1.63-1.46). Suicide victims at high and low altitudes differ significantly by multiple demographic, psychiatric, and suicide characteristics; these factors, rather than hypoxia or altitude itself, may explain increased suicide rates at high altitude. PMID:21883411

  4. Lungs at high-altitude: genomic insights into hypoxic responses.

    PubMed

    Mishra, Aastha; Mohammad, Ghulam; Norboo, Tsering; Newman, John H; Pasha, M A Qadar

    2015-07-01

    Hypobaric hypoxia at high altitude (HA) results in reduced blood arterial oxygen saturation, perfusion of organs with hypoxemic blood, and direct hypoxia of lung tissues. The pulmonary complications in the cells of the pulmonary arterioles due to hypobaric hypoxia are the basis of the pathophysiological mechanisms of high-altitude pulmonary edema (HAPE). Some populations that have dwelled at HA for thousands of years have evolutionarily adapted to this environmental stress; unadapted populations may react with excessive physiological responses that impair health. Individual variations in response to hypoxia and the mechanisms of HA adaptation provide insight into physiological responses. Adaptive and maladaptive responses include alterations in pathways such as oxygen sensing, hypoxia signaling, K(+)- and Ca(2+)-gated channels, redox balance, and the renin-angiotensin-aldosterone system. Physiological imbalances are linked with genetic susceptibilities, and nonhomeostatic responses in gene regulation that occur by small RNAs, histone modification, and DNA methylation predispose susceptible humans to these HA illnesses. Elucidation of the interaction of these factors will lead to a more comprehensive understanding of HA adaptations and maladaptations and will lead to new therapeutics for HA disorders related to hypoxic lungs.

  5. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  6. High altitude Venus haze from Pioneer Venus limb scans

    NASA Astrophysics Data System (ADS)

    Lane, W. A.; Opstbaum, R.

    1983-04-01

    High-resolution limb scans of Venus made with the Orbiter Cloud Photopolarimeter aboard Pioneer Venus have been used to observe the high altitude Venus haze and its variation over almost one half a Venusian year. A model for a spherical atmosphere with tangential viewing geometry was used to analyze the observations and derive the haze properties. Values are found for the particle size and refractive index, particle number density and scale height, and eddy diffusion coefficient. Single scattering computations show good agreement with observed intensities for particles smaller than 0.3 micron radius and refractive index less than 1.7, consistent with, but not limited to, concentrated sulfuric acid. Particle scale height in the 0.5 to 2 mbar pressure regions varies between 1 and 3 km over the season, latitude, and local time ranges of the observations. Detached layers of haze are sometimes present. An average particle scale height of 2.2 km at 84 km altitude yields an eddy diffusion coefficient of 130,000 sq cm/sec.

  7. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    NASA Astrophysics Data System (ADS)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  8. [Should hypertensive patients adapt their antihypertensive drugs during high altitude exposure?].

    PubMed

    Wuerzner, G; Allemann, Y

    2015-09-01

    High altitude exposure during leisure time is becoming more and more frequent. Due to the high prevalence of hypertension in the general population, high altitude exposure in hypertensive patients may not be uncommon. The increase in blood pressure with altitude has been confirmed by ambulatory blood pressure measurement in normotensive as well as in hypertensive patients. Compared to a placebo, most hypertensive drugs keep their blood pressure lowering effect up to a certain altitude. It is recommended that hypertensive patients measure their blood pressure during high altitude, exposure and plan a possible adaptation of treatment with their physician before their sojourn.

  9. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  10. Isothermal pumping analysis for high-altitude tethered balloons.

    PubMed

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573

  11. The High Altitude Student Platform Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Ellison, Steven B.; Gould, Randy; Granger, Douglas; Smith, Douglas; Stewart, Michael; Wefel, John P.

    The High Altitude Student Platform (HASP) is designed to carry multiple student payloads to an altitude of about 36 kilometers with flight durations of 15 to 20 hours using a small volume, zero pressure balloon. To date HASP has had two successful flights (2006, 2007) and is anticipating a third flight this September (2008). Including the upcoming flight, HASP has supported 29 student payloads from 15 institutions across the United States involving about 110 undergraduate and graduate students. By participating in a HASP flight, students gain practical, real-world experience in the design, fabrication, system testing, operation, data analysis and management of an aerospace payload. Such experiences are very difficult to achieve in a normal classroom setting and play an important role in training new aerospace scientists and engineers. During the flights, the HASP control systems have functioned exceptionally well and the modular electronics design has enabled us to maintain flexibility, improve reliability and decrease flight-line support expenses. These capabilities, plus new advances in miniaturized balloon vehicle control systems, may enable the overall weight of HASP to be significantly reduced potentially reducing launch costs and/or improving the student payload to system mass ratio. During the presentation we will discuss the HASP program, previous flights, science results / lessons learned from the student payloads and plans for improving the efficiency of future flights.

  12. Time course of asymptomatic interstitial pulmonary oedema at high altitude.

    PubMed

    Bouzat, Pierre; Walther, Guillaume; Rupp, Thomas; Doucende, Gregory; Payen, Jean-François; Levy, Patrick; Verges, Samuel

    2013-03-01

    The time course of asymptomatic pulmonary oedema during high-altitude exposure and its potential relationship with changes in cardiac function remain to clarify. Eleven volunteers were rapidly exposed to 4350m during a 4-day period. Each subject received clinical examination and thoracic ultrasonography to assess ultrasound lung comets (USLC) on day 1, 2 and 3 after arrival. Echocardiography was performed on day 2 and 4 at 4350m. All subjects had a significant increase in the number of USLC on day 1 (n=8±3), day 2 (n=7±4) and day 3 (n=3±2) compared to sea level (n=1±1) (P<0.01). Although left ventricle diastolic function and systolic tricuspid regurgitation gradient were significantly different at altitude compared to sea level, they did not correlate with the number of USLC (P>0.05). Asymptomatic pulmonary oedema seems to be transiently present in fast-ascending recreational climbers. The lack of correlation between the number of USLC and indices of cardiac changes suggest that non-cardiogenic mechanisms may underlie this transient increase in lung water. PMID:23279868

  13. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  14. Isothermal pumping analysis for high-altitude tethered balloons

    PubMed Central

    Kuo, Kirsty A.; Hunt, Hugh E. M.

    2015-01-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573

  15. Scientific verification of High Altitude Water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  16. Development and testing of airfoils for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  17. Elevated Suicide Rates at High Altitude: Sociodemographic and Health Issues May Be to Blame

    ERIC Educational Resources Information Center

    Betz, Marian E.; Valley, Morgan A.; Lowenstein, Steven R.; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-01-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low less…

  18. An Investigation into the Nature of High Altitude Cosmic Radiation in the Stratosphere

    ERIC Educational Resources Information Center

    Bancroft, Samuel; Bancroft, Ben; Greenwood, Jake

    2014-01-01

    An experiment was carried out to investigate the changes in ionizing cosmic radiation as a function of altitude. This was carried out using a Geiger-Müller tube on-board a high altitude balloon, which rose to an altitude of 31 685 m. The gathered data show that the Geiger-Müller tube count readings increased to a maximum at an altitude of about 24…

  19. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  20. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  1. Electric Power System for High Altitude UAV Technology Survey

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Electric powertrain technologies with application to high altitude Unmanned Aerial Vehicles (UAV) are assessed. One hundred twenty five solar electric UAV configurations and missions were simulated. Synergistic design opportunities were investigated with the premise that specific benefits may be realized, for example, if a single component can serve multiple functions, such as a battery being used for energy storage as well as for a structural component of the aircraft. For each UAV mission simulation, the airframe structure, powertrain configuration (type of solar cells, energy storage options) and performance baseline (1997 or 2001) were specified. It has been found that the use of the high efficiency (multijunction) solar cells or the use of the synergistic amorphous silicon solar cell configuration yields aircraft that can accomplish the majority of the missions of interest for any latitude between 0 deg and 55 deg, hence, a single versatile aircraft can be constructed and implemented to accomplish these missions.

  2. Aeroelastic considerations for continuous patrol/high altitude surveillance platforms

    NASA Technical Reports Server (NTRS)

    Turner, C. D.; Rocketts, R. H.

    1983-01-01

    For the last several years, an investigation has been conducted regarding the feasibility of unmanned, airborne, High-Altitude Powered Platforms (HAPP), and High Surveillance Platforms for Over-the-Horizon Targeting (HI-SPOT). These airborne platforms have been proposed as a means of achieving a continuous regional communication-relay or for continuous regional surveillance for use in agricultural research or military applications, i.e., fleet support. These platforms would offer improvements over existing orbiting satellites. These improvements are related to better resolution and increased mission flexibility. The required mission endurance up to six months, would be obtained through the use of either solar power, a cryogenically fueled engine, or microwave-power. Attention is given to airborne platform configuration, structure, structural and aerodynamic modeling, modal analysis, and flutter analysis.

  3. Centurion solar-powered high-altitude aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  4. High-altitude Cusp Precipitation for Different IMF Orientations

    NASA Astrophysics Data System (ADS)

    Nemecek, Z.; Safrankova, J.; Simunek, J.

    2005-12-01

    Reconnection is the most important process in the magnetospheric physics. Dayside reconnection of interplanetary and terrestrial magnetic fields supplies the magnetosphere with a huge amount of the solar wind plasma that is then released due to reconnection occurring in the tail. In spite of its principal importance, reconnection is still understood insufficiently. The main problem is probably connected with the fact that both MHD and kinetic processes are equally important for its initialization and further development. Experimental investigations are difficult because reconnection spots are limited in space and time and a probability that a spacecraft is located in appropriate time at a right position is very low. However, all possible places where magnetopause reconnection can occur are magnetically connected to the cusp and thus the plasma proceeding along reconnected magnetic field lines brings information on reconnection. As observed by the various spacecraft at both low and high altitudes, a cusp precipitation is often characterized by ion energy dispersion. During southward IMF, ion energy falls with increasing magnetic latitudes due to the convection electric field operating as a velocity filter on particles from the injection point to the observation point. The high-energy ions rapidly reach lower latitudes and the lower-energy ions appear later at higher latitudes. By contrast, if reconnection takes place in the tail lobes, the high-energy ions quickly reach higher latitudes, whereas the low-energy ions are convected to lower latitudes and thus the ion energy-latitude dispersion signifies the boundary of open and closed magnetic field lines. We are presenting case studies of crossings of the cusp region at high altitudes which reveal that both spatial and temporal changes should be taken into account for an explanation of the observed features. Moreover, our study shows that the cusp can be supplied from two simultaneously operating reconnection sites

  5. Stability of heartbeat interval distributions in chronic high altitude hypoxia.

    PubMed

    Meyer, M; Rahmel, A; Marconi, C; Grassi, B; Cerretelli, P; Skinner, J E

    1998-01-01

    Recent studies of nonlinear dynamics of the long-term variability of heart rate have identified nontrivial long-range correlations and scale-invariant power-law characteristics (l/f noise) that were remarkably consistent between individuals and were unrelated to external or environmental stimuli (Meyer et al., 1998a). The present analysis of complex nonstationary heartbeat patterns is based on the sequential application of the wavelet transform for elimination of local polynomial nonstationary behavior and an analytic signal approach by use of the Hilbert transform (Cumulative Variation Amplitude Analysis). The effects of chronic high altitude hypoxia on the distributions and scaling functions of cardiac intervals over 24 hr epochs and 4 hr day/nighttime subepochs were determined from serial heartbeat interval time series of digitized 24 hr ambulatory ECGs recorded in 9 healthy subjects (mean age 34 yrs) at sea level and during a sojourn at high altitude (5,050 m) for 34 days (Ev-K2-CNR Pyramid Laboratory, Sagarmatha National Park, Nepal). The results suggest that there exists a hidden, potentially universal, common structure in the heterogeneous time series. A common scaling function with a stable Gamma distribution defines the probability density of the amplitudes of the fluctuations in the heartbeat interval time series of individual subjects. The appropriately rescaled distributions of normal subjects at sea level demonstrated stable Gamma scaling consistent with a single scaled plot (data collapse). Longitudinal assessment of the rescaled distributions of the 24 hr recordings of individual subjects showed that the stability of the distributions was unaffected by the subject's exposure to a hypobaric (hypoxic) environment. The rescaled distributions of 4 hr subepochs showed similar scaling behavior with a stable Gamma distribution indicating that the common structure was unequivocally applicable to both day and night phases and, furthermore, did not undergo

  6. Risk assessment of high altitude free flight commercial aircraft operations

    SciTech Connect

    Kimura, C.Y.; Sandquist, G.M.; Slaughter, D.M.; Sanzo, D.L.

    1998-04-23

    A quantitative model is under development to assess the safety and efficiency of commercial aircraft operations under the Free Flight Program proposed for air traffic control for the US National Airspace System. The major objective of the Free Flight Program is to accommodate the dramatic growth anticipated in air traffic in the US. However, the potential impacts upon aircraft safety from implementing the Program have not been fully explored and evaluated. The model is directed at assessing aircraft operations at high altitude over the continental US airspace since this action is the initial step for Free Flight. Sequential steps with analysis, assessment, evaluation, and iteration will be required to satisfactorily accomplish the complete transition of US commercial aircraft traffic operations.

  7. The High-Altitude Water Cherenkov Observatory: First Light

    NASA Astrophysics Data System (ADS)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  8. A nominal set of high-altitude EMP environments

    SciTech Connect

    Longmire, C.L.; Hamilton, R.M.; Hahn, J.M.

    1987-02-01

    This report presents high-altitude EMP (HEMP) environments calculated by the CHAP code for a nominal large yield burst at 400 km over the central US. Nominal, unclassified weapon output parameters were used, along with unclassified EMP theory and calculational techniques. While the resulting environments do not represent upper bounds, they should be useful in developing understanding of the effect of HEMP on electrical and electronic systems. The calculated environments illustrate the wide variability of the HEMP from a single burst, depending on ground range and azimuth from ground zero. Analytic fits to the HEMP fields are provided to facilitate coupling calculations. The CHAP results are justified by a detailed examination of Compton currents, air conductivities, and the resulting fields. It is shown that both HEMP theory and the calculations conserve energy scrupulously.

  9. Pulmonary vascular remodelling in a high-altitude Aymara Indian

    NASA Astrophysics Data System (ADS)

    Heath, Donald; Williams, David

    1991-12-01

    A histological study of the pulmonary vasculature in a young male high-altitude Aymara Indian revealed four aspects of interest. There was muscularization of the terminal portion of the pulmonary arterial tree to involve pulmonary arterioles as small as 15 μm in diameter, thus forming a basis for the slightly increased pulmonary vascular resistance of native highlanders. Intimal longitudinal muscle was found in pulmonary arteries and arterioles and thought to be due to chronic alveolar hypoxia. Inner muscular tubes similar to those found in chronic obstructive lung disease were present. Pulmonary veins and venules also showed intimal muscularization suggesting that alveolar hypoxia affects vascular smooth muscle cells per se irrespective of their situation. The nature of the remodelling in a pulmonary blood vessel depends on a combination of hypoxia and haemodynamics.

  10. Recent gamma background measurements at high mountain altitude.

    PubMed

    Mishev, A L; Hristova, E

    2012-11-01

    Results from recent measurements of radiation gamma background at high mountain altitude, namely at Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are reported. The measurements are fulfilled with several devices, namely IGS-421 gamma probe and MDU Liulin. A comparative analysis with previous measurements performed with SBN-90 SAPHYMO NaI(Tl) gamma probe is carried out. A temperature effect during winter period of SAPHYMO probe is observed. In addition the measurements are compared with CaSO(4):Dy TLD. The obtained results are widely discussed. A numerical model for galactic cosmic ray contribution to the dose rate in air is presented. The model is based on a full Monte Carlo simulation of cosmic ray induced cascade in the atmosphere. The simulation is carried out with CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. PMID:22659148

  11. New horizons for the national high-altitude photography program

    USGS Publications Warehouse

    Bermel, Peter F.

    1983-01-01

    The National High-Altitude Photography Program (NHAP) is a multi-Federal agency activity to acquire uniform imagery for the establishment of a national high-altitude photographic data base. Federal agencies participating in NHAP have pooled their resources and consolidated photographic requirements in a systematic 6-year effort that will minimize duplication of photographic programs, reduce overall Federal expenditures for aerial photography, and provide imagery for a wide range of public and private users, The U.S. Geological Survey has the lead coordination role and shares, with the other participating agencies, the responsibility for funding the acquisition of photography. Since the inception of NHAP in 1980, black-and-white and color infrared stereoscopic imagery has been acquired for about 50% of the 3,000,000 square miles in the conterminous United States. An additional 40% of the 48-State area is under contract to provide aerial survey firms, and the sixth and final contract to achieve complete once-over coverage will be awarded early in 1985. Extensive use has been made of the newly established data base for mapping, landform studies, land use planning, natural resource inventory, evaluation and management, engineering, and education. In anticipation of the completion of once-over coverage, the participating agencies have begun studies to define the requirements for a maintenance program which would provide cyclic coverage of the conterminous United States and imagery for specific agency needs. Although continued funding at the same level is not assured, under consideration are requirements for new cameras, films, and other remote sensors, photographic parameters, and extension of program coverage to Alaska, Hawaii, and outlying areas. In addition, new applications of the data base to prepare cartographic map and data products are being investigated. It is becoming increasingly clear that some major decision needs to be made soon if a NHAP II is to begin in

  12. A High-Altitude Search for Vulcanoids: Progress Report

    NASA Astrophysics Data System (ADS)

    Durda, D. D.; Stern, S. A.; Terrell, D. C.; Weidenschilling, S. J.

    2002-09-01

    We are conducting a unique, high-altitude observing campaign to search for vulcanoids, a population of small, asteroid-like bodies hypothesized to reside in the dynamically stable region interior to Mercury's orbit (i.e., orbits with aphelia <0.21 AU). This airborne search campaign utilizes our versatile and highly capable SWUIS-A (Southwest Universal Imaging System - Airborne) instrument flown with the flight astronomer (SAS and DDD) to an altitude of 49,000 MSL aboard NASA F/A-18B aircraft in order to obtain darker twilight conditions for near-Sun observing than are possible from the ground. The first observing run was successfully completed at NASA's Dryden Flight Research Center during the March/April 2002 vernal equinox observing opportunity. On each of the three evening flights we recorded image data covering 250 square degrees of sky centered on the ecliptic from solar elongations of 6-18 deg. Initial reduction of portions of the Mar/Apr 2002 data set demonstrates that we are reliably detecting objects to magnitude V = 9.5 at 15 degrees solar elongation. This is at least a magnitude fainter than the best previous ground-based searches and comparable to the faintest stars visible in our space-based SOHO LASCO C3 coronagraph vulcanoids search. The SWUIS-A instrument itself is capable of imaging objects as faint as magnitude V = 13, corresponding to vulcanoids less than 10 km across, with a sufficiently dark sky background; we are working to mitigate sky background brightness to reach these deeper magnitude limits for a second F/A-18B observing run during the September 2002 autumnal equinox observing opportunity. We thank NASA research pilots Rick Searfoss, Dana Purifoy, and Craig Bomben. This research is supported by the NASA Planetary Astronomy program, NASA's Dryden Flight Research Center, and the National Geographic Society.

  13. [Human life at high altitudes: myths and realities].

    PubMed

    Vargas, E; Villena, M

    1989-01-01

    Life at high altitude presents very interesting biological and medical aspects. For countries such as the Andeans, it also has socio-economical implications. The most important towns of Bolivia are situated between 3,000 and 4,850 m. It's to say that a great percentage of the population is permanently staying there. Moreover owing to the improvement of the roads and transport, an extensive migration (professional life, business, tourism, sport) developed some years ago. At 3,000 to 4,850 m, an oxygen arterial pressure (PaO2) between 40 and 70 mm Hg is resulting from the environmental hypoxia. The adaptation to hypoxia takes place in two phases: --that incomplete, observed at short time in people who recently arrived, --that at very long time, observed in the native. The rapid arrival at more than 3,000 m, exposes the traveller to an hypoxic ventilatory stimulus which produces a hyperventilation response to increased PaO2. This hyperventilation brings out a decreasing of carbon dioxide arterial pressure (PaCO2) and alkalosis of the blood. This respiratory alkalosis seems to be responsible for most troubles which are present in the Acute Mountain Sickness linked to the CO2 role in cerebral blood circulation. At the same time but more slowly the classical high altitude polycythemia develops which permits compensate partially the hypoxic effect in 3 to 4 weeks. In the native the adaptation implies physiological variations of some parameters concerning the individual development. The principal studies showed that the native present a notable hyposensitivity to hypoxia and also to the stimulus CO2-H+. The Chronic Mountain Sickness patients have a less sensitivity to the same stimuli than the natives.

  14. AltitudeOmics: enhanced cerebrovascular reactivity and ventilatory response to CO2 with high-altitude acclimatization and reexposure.

    PubMed

    Fan, Jui-Lin; Subudhi, Andrew W; Evero, Oghenero; Bourdillon, Nicolas; Kayser, Bengt; Lovering, Andrew T; Roach, Robert C

    2014-04-01

    The present study is the first to examine the effect of high-altitude acclimatization and reexposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the steady-state estimates of these parameters during acclimatization with the modified rebreathing method. We assessed changes in steady-state responses of middle cerebral artery velocity (MCAv), cerebrovascular conductance index (CVCi), and ventilation (V(E)) to varied levels of CO2 in 21 lowlanders (9 women; 21 ± 1 years of age) at sea level (SL), during initial exposure to 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon reexposure to altitude following either 7 (POST7) or 21 days (POST21) at low altitude (1,525 m). In the nonacclimatized state (ALT1), MCAv and V(E) responses to CO2 were elevated compared with those at SL (by 79 ± 75% and 14.8 ± 12.3 l/min, respectively; P = 0.004 and P = 0.011). Acclimatization at ALT16 further elevated both MCAv and Ve responses to CO2 compared with ALT1 (by 89 ± 70% and 48.3 ± 32.0 l/min, respectively; P < 0.001). The acclimatization gained for V(E) responses to CO2 at ALT16 was retained by 38% upon reexposure to altitude at POST7 (P = 0.004 vs. ALT1), whereas no retention was observed for the MCAv responses (P > 0.05). We found good agreement between steady-state and modified rebreathing estimates of MCAv and V(E) responses to CO2 across all three time points (P < 0.001, pooled data). Regardless of the method of assessment, altitude acclimatization elevates both the cerebrovascular and ventilatory responsiveness to CO2. Our data further demonstrate that this enhanced ventilatory CO2 response is partly retained after 7 days at low altitude.

  15. From Low Altitude to High Altitude: Assimilating SAMPEX Data in Global Radiation Belt Models by Quantifying Precipitation and Loss

    NASA Astrophysics Data System (ADS)

    Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.

    2012-12-01

    Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM

  16. The HAMMER: High altitude multiple mission environmental researcher

    NASA Technical Reports Server (NTRS)

    Hayashi, Darren; Zylla, Cara; Amaro, Ernesto; Colin, Phil; Klause, Thomas; Lopez, Bernardo; Williamson, Danna

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number is maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  17. Neurologic decompression sickness following cabin pressure fluctuations at high altitude.

    PubMed

    Auten, Jonathan D; Kuhne, Michael A; Walker, Harlan M; Porter, Henry O

    2010-04-01

    Decompression sickness (DCS) occurs in diving, altitude chamber exposures, and unpressurized or depressurized high-altitude flights. Because DCS takes many forms, in-flight cases may be misinterpreted as hypoxia, hyperventilation, or viral illness, with resulting failure to respond appropriately. In this case, a 28-yr-old male pilot of a single-seat, tactical aircraft experienced 12 rapid pressure fluctuations while flying at 43,000 ft above sea level. He had no symptoms and decided to complete the flight, which required an additional 2 h in the air. Approximately 1 h later he began to experience fatigue, lightheadedness, and confusion, which he interpreted as onset of a viral illness. However, symptoms progressed to visual, cognitive, motor, and sensory degradations and it was with some difficulty that he landed safely at his destination. Neurologic DCS was suspected on initial evaluation by flight line medical personnel because of the delayed onset and symptom progression. He was transferred to a local Emergency Department and noted to have altered mental status, asymmetric motor deficits, and non-dermatomal paresthesias of the upper and lower extremities. Approximately 3.5 h after the incident and 2.5 h after the onset of symptoms he began hyperbaric oxygen therapy. He received partial relief at 30 min of the Navy DiveTable 6 and full resolution at 90 min; there were no recurrent symptoms at a 1-yr follow-up. This case highlights the importance of early recognition of in-flight DCS symptoms and landing as soon as possible rather than as soon as practical in all likely scenarios. PMID:20377149

  18. Protection of the hemopoietic system by Podophyllum hexandrum against gamma radiation-induced damage.

    PubMed

    Sagar, Ravinder Kumar; Chawla, Raman; Arora, Rajesh; Singh, Shikha; Krishna, Bal; Sharma, Rakesh Kumar; Puri, Satish Chandra; Singh, Pankaj; Kumar, Raj; Sharma, Ashok Kumar; Singh, Surender; Prasad, Jagdish; Gupta, Vinay; Ahmed, Bilal; Dhar, Kanaya Lal; Khan, Haider Ali; Gupta, Manju Lata; Qazi, Ghulam Nabi

    2006-02-01

    A semi-purified extract of low-altitude Podophyllum hexandrum (REC-2001) containing a relatively low content of podophyllotoxin (3.25 %) exhibited potent antioxidant ability in lipid media (at 1000 microg/mLagainst 0.25 kGy) and significant (p < 0.05) hydroxyl ion scavenging potential (78.83 % at 500 microg/mL). In vitro investigations revealed the ability of REC-2001 to significantly (p < 0.05) reduce radiation-induced hemolysis (2 microg/mL; 46.184 %) and nitric oxide scavenging levels (IC (50): 792 +/- 1.25 microg/mL). Protection of the hemopoietic system of Strain 'A' mice administered 20 mg/kg BW REC-2001 30 min prior to lethal irradiation (10 Gy) was recorded and was mediated by free radical scavenging and lowering of lipid oxidation. Further studies investigating the effects of REC-2001 on stem cell modulation are warranted.

  19. Deducing high-altitude precipitation from glacier mass balance measurements

    NASA Astrophysics Data System (ADS)

    Giesen, Rianne H.; Immerzeel, Walter W.; Wanders, Niko

    2016-04-01

    The spatial distribution of precipitation in mountainous terrain is generally not well known due to underrepresentation of gauge observations at higher elevations. Precipitation tends to increase with elevation, but since observations are mainly performed in the valleys, the vertical precipitation gradient cannot be deduced from these measurements. Furthermore, the spatial resolution of gridded meteorological data is often too coarse to resolve individual mountain chains. Still, a reliable estimate of high-elevation precipitation is required for many hydrological applications. We present a method to determine the vertical precipitation gradient in mountainous terrain, making use of glacier mass balance observations. These measurements have the advantage that they provide a basin-wide precipitation estimate at high elevations. The precipitation gradient is adjusted until the solid precipitation over the glacier area combined with the calculated melt gives the measured annual glacier mass balance. Results for the glacierized regions in Central Europe and Scandinavia reveal spatially coherent patterns, with predominantly positive precipitation gradients ranging from -4 to +28 % (100 m)‑1. In some regions, precipitation amounts at high elevations are up to four times as large as in the valleys. A comparison of the modelled winter precipitation with observed snow accumulation on glaciers shows a good agreement. Precipitation measured at the few high-altitude meteorological stations is generally lower than our estimate, which may result from precipitation undercatch. Our findings will improve the precipitation forcing for glacier modelling and hydrological studies in mountainous terrain.

  20. Medical continuing education: reform of teaching methods about high altitude disease in China.

    PubMed

    Luo, Yongjun; Zhou, Qiquan; Huang, Jianjun; Luo, Rong; Yang, Xiaohong; Gao, Yuqi

    2013-06-01

    The purpose of high altitude continuing medical education is to adapt knowledge and skills for practical application on the plateau. Most trainees have experience with academic education and grassroots work experience on the plateau, so they want knowledge about new advances in the pathogenesis, diagnosis, and treatment of high altitude disease. As such, traditional classroom teaching methods are not useful to them. Training objects, content, and methods should attempt to conduct a variety of teaching practices. Through continuing medical education on high altitude disease, the authors seek to change the traditional teaching model away from a single classroom and traditional written examinations to expand trainees' abilities. These innovative methods of training can improve both the quality of teaching and students' abilities to prevent and treat acute mountain sickness, high altitude pulmonary edema, high altitude cerebral edema, and chronic mountain sickness to increase the quality of high altitude medical care.

  1. [A review of drug metabolism under hypoxia environment at high altitude].

    PubMed

    Zhang, Juan-ling; Li, Xiang-yang

    2015-09-01

    The special environmental features of high altitude, such as hypobaric hypoxia, low temperature, arid, high solar radiation, variable climate and geochemical anomaly, cause great effects on human physiology and health. It will provide valuable references and new ideas to study drug's metabolism in special environment of high altitude hypoxia, and give the guidance to clinical reasonable medication, avoiding adverse reactions and personalized medicine in plateau areas. This article reviewed the effect of high altitude hypoxia on drug metabolism, elaborated metabolic characteristics of some drugs and the activity and expression of drug metabolism enzymes under hypoxia environment at high altitude, and discussed related mechanism.

  2. [A review of drug metabolism under hypoxia environment at high altitude].

    PubMed

    Zhang, Juan-ling; Li, Xiang-yang

    2015-09-01

    The special environmental features of high altitude, such as hypobaric hypoxia, low temperature, arid, high solar radiation, variable climate and geochemical anomaly, cause great effects on human physiology and health. It will provide valuable references and new ideas to study drug's metabolism in special environment of high altitude hypoxia, and give the guidance to clinical reasonable medication, avoiding adverse reactions and personalized medicine in plateau areas. This article reviewed the effect of high altitude hypoxia on drug metabolism, elaborated metabolic characteristics of some drugs and the activity and expression of drug metabolism enzymes under hypoxia environment at high altitude, and discussed related mechanism. PMID:26757541

  3. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.

    PubMed

    Scott, Graham R; Richards, Jeffrey G; Milsom, William K

    2009-10-01

    Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP stimulation (with single or multiple inputs to the electron transport system) and cytochrome oxidase excess capacity (with an exogenous electron donor) and were generally 20-40% higher in bar-headed geese when creatine was present. When respiration rates were extrapolated to the entire pectoral muscle mass, bar-headed geese had a higher mass-specific aerobic capacity. This may represent a surplus capacity that counteracts the depressive effects of hypoxia on mitochondrial respiration. However, there were no differences in activity for mitochondrial or glycolytic enzymes measured in homogenized muscle. The [ADP] leading to half-maximal stimulation (K(m)) was approximately twofold higher in bar-headed geese (10 vs. 4-6 microM), and, while creatine reduced K(m) by 30% in this species, it had no effect on K(m) in low-altitude birds. Mitochondrial creatine kinase may therefore contribute to the regulation of oxidative phosphorylation in flight muscle of bar-headed geese, which could promote efficient coupling of ATP supply and demand. However, this was not based on differences in creatine kinase activity in isolated mitochondria or homogenized muscle. The unique differences in bar-headed geese existed without prior exercise or hypoxia exposure and were not a result of phylogenetic history, and may, therefore, be important evolutionary specializations for high-altitude flight.

  4. [Pathophysiological changes in mitochondria of mammalian exposed to hypoxia at high altitude].

    PubMed

    Gao, Wen-xiang; Wu, Gang; Gao, Yu-qi

    2014-11-01

    As human beings ascend to high altitude, a number of reactions may occur against hypoxic injuries. These hypoxic responses are related to intake, transportation and utility of the oxygen. As a crucial subcellular organelle of oxygen utility, mitochondrion is a central link of high altitude acclimatization, adaptation and mountain sicknesses. In this review, we discussed the recent advances in researches on hypoxic mitochondrial responses at high altitude. PMID:26016358

  5. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (∼ 100 GeV to ∼ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ∼ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  6. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  7. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    PubMed

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer.

  8. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    PubMed

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans. PMID:20417338

  9. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    PubMed

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  10. Podoverine A--a novel microtubule destabilizing natural product from the Podophyllum species.

    PubMed

    Tran, Tuyen Thi Ngoc; Gerding-Reimers, Claas; Schölermann, Beate; Stanitzki, Bettina; Henkel, Thomas; Waldmann, Herbert; Ziegler, Slava

    2014-09-15

    Natural products represent compound classes with high chemical and structural diversity and various biological activities. Libraries based on natural products are valuable starting point in the search for novel biologically active substances. Here we report on the identification of the natural product podoverine A from the plant Podophyllum versipelle Hance as a novel tubulin-acting agent. A natural product compound collection was subjected to a high-content screen that monitors changes in cytoskeleton and DNA and podoverine A was identified as inhibitor of mitosis. This natural product causes mitotic arrest and inhibits microtubule polymerization in vitro and in cells by targeting the vinca binding site on tubulin.

  11. Health, Safety and Performance in High Altitude Observatories: A Sustainable Approach

    NASA Astrophysics Data System (ADS)

    Böcker, Michael; Vogt, Joachim; Christ, Oliver; Müller-Leonhardt, Alice

    2009-09-01

    The research project “Optimising Performance, Health and Safety in High Altitude Observatories” was initiated by ESO to establish an approach to promote the well-being of staff working at its high altitude observatories, and in particular at the Antiplano de Chajnantor. A survey by a questionnaire given to both workers and visitors was employed to assess the effects of working conditions at high altitude. Earlier articles have outlined the project and reported early results. The final results and conclusions are presented, together with a concept for sustainable development to improve the performance, health and safety at high altitude employing Critical Incident Stress Management.

  12. Time lapse photography of clouds from high altitude balloons.

    PubMed

    Vonnegut, B

    1970-08-01

    Time lapse pictures of clouds taken by cameras flown at altitudes of 30 km on balloons provide valuable insights into the convection and electrification of cloud systems. Simple camera arrangements for taking such pictures are described.

  13. When is O+ Observed in the High Altitude Polar Cap?

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    2000-01-01

    Solar wind and IMF properties are correlated with the properties of O+ and H+ in the polar cap at altitudes greater than 5.5 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the Polar satellite. O+ is of primary interest in this study because the fraction of O+ present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. O+ is observed to be most abundant at lower latitudes when the solar wind speed is low and across most of the polar cap at high solar winds speeds and Kp. As the solar wind dynamic pressures increases more O+ is present in the polar cap. The O+ density is also shown to be more highly correlated with the solar wind dynamic pressure when IMF Bz is positive. H+ was not as well correlated with solar wind and IMF parameters although some correlation with IMF By is observed. H+ is more plentiful when IMF By is negative than when it is positive. In this data set H+ is very dominate so that if this plasma makes it to the plasma sheet its contribution to the plasma sheet would have a very low O+ to H+ ratio.

  14. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  15. Raman spectroscopy of hot desert, high altitude epilithic lichens.

    PubMed

    Villar, Susana E Jorge; Edwards, Howell G M; Seaward, Mark R D

    2005-05-01

    Twenty-three highly-coloured lichen specimens belonging to the genera Candelariella, Aspicilia and Xanthoria from high altitude sites in the Atacama Desert, Chile, 2300-4500 metres, have been analysed non-destructively by Raman spectroscopy. The vibrational band assignments in the spectra of the specimens, which were still attached to their limestone or sandstone substrata, were accomplished by comparison with the chemical compositions obtained from wet chemical extraction methods. Carotenoids and chlorophyll were found in all specimens as major components and the characteristic spectral signatures of calcium oxalate monohydrate (whewellite) and dihydrate (weddellite) could be identified; chemical signatures were found for these materials even in lichen thalli growing on the non-calcareous substrata, indicating probably that the calcium was provided here from wind- or rain-borne sources. The Raman spectral biomarkers for a variety of protective biomolecules and accessory pigments such as usnic acid, calycin, pulvinic acid dilactone and rhizocarpic acid have been identified in the lichens, in broad agreement with the chemical extraction profiles. The present study indicates that some form of non-destructive taxonomic identification based on Raman spectroscopy was also possible.

  16. Incidence of high altitude illnesses among unacclimatized persons who acutely ascended to Tibet.

    PubMed

    Ren, Yusheng; Fu, Zhongming; Shen, Weimin; Jiang, Ping; He, Yanlin; Peng, Shaojun; Wu, Zonggui; Cui, Bo

    2010-01-01

    High altitude illnesses pose health threats to unwary travelers after their acute ascent to high altitude locations. The incidence of high altitude illnesses among unacclimatized persons who acutely ascend to Tibet has not been previously reported. In the present study, we surveyed the incidence of high altitude illness among 3628 unacclimatized persons who had no previous high altitude experience and who traveled to Tibet by air to an altitude of 3600 m. These subjects were asked to answer questions in a written questionnaire about symptoms associated with high altitude illnesses that occurred within 2 weeks of their first arrival, their severity, and possible contributing factors. Physical examination and appropriate laboratory tests were also performed for hospitalized subjects. We found that 2063 respondents had mild acute mountain sickness with an incidence of 57.2%, and 249 (12.07%) of them were hospitalized for treatment. The incidence of high altitude pulmonary edema was 1.9%, while no case of high altitude cerebral edema was found. Additionally, there was no report of death. Psychological stresses and excessive physical exertions possibly contributed to the onset of HAPE. Acute mountain sickness is common among unacclimatized persons after their acute ascent to Tibet. The incidence of HAPE and HACE, however, is very low among them. PMID:20367487

  17. Radar-anomalous, high-altitude features on Venus

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Butler, Bryan J.

    1992-01-01

    Over nearly all of the surface of Venus the reflectivity and emissivity at centimeter wavelengths are about 0.15 and 0.85 respectively. These values are consistent with moderately dense soils and rock populations, but the mean reflectivity is about a factor of 2 greater than that for the Moon and other terrestrial planets. Pettingill and Ford, using Pioneer Venus reflectivities and emissivities, found a number of anomalous features on Venus that showed much higher reflectivities and much lower emissivities with both values approaching 0.5. These include Maxwell Montes, a number of high regions in Aphrodite Terra and Beta Regio, and several isolated mountain peaks. Most of the features are at altitudes above the mean radius by 2 to 3 km or more. However, such features have been found in the Magellan data at low altitudes and the anomalies do not exist on all high structures, Maat Mons being the most outstanding example. A number of papers have been written that attempt to explain the phenomena in terms of the geochemistry balance of weathering effects on likely surface minerals. The geochemists have shown that the fundamentally basaltic surface would be stable at the temperatures and pressures of the mean radius in the form of magnetite, but would evolve to pyrite and/or pyrrhotite in the presence of sulfur-bearing compounds such as SO2. Pyrite will be stable at altitudes above 4 or 5 km on Venus. Although the geochemical arguments are rather compelling, it is vitally important to rationally look at other explanations for radar and radio emission measurements such as that presented by Tryka and Muhleman. The radar reflectivity values are retrieved from the raw Magellan backscatter measurements by fitting the Hagfors' radar scattering model in which a surface roughness parameters and a normal incidence electrical reflectivity are estimated. The assumptions of the theory behind the model must be considered carefully before the results can be believed. These include

  18. The body weight loss during acute exposure to high-altitude hypoxia in sea level residents.

    PubMed

    Ge, Ri-Li; Wood, Helen; Yang, Hui-Huang; Liu, Yi-Ning; Wang, Xiu-Juan; Babb, Tony

    2010-12-25

    Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P<0.01), while the correlation was absent in the moderate altitude group (r=0.296, P>0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate

  19. Coronagraphic Imaging of Exoplanets from a High Altitude Balloon Platform

    NASA Astrophysics Data System (ADS)

    Unwin, S.

    2012-04-01

    Direct imaging of exoplanets orbiting nearby stars is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. Such a system could image and characterize the atmospheres of exoplanets, and also observe exozodiacal dust within the exoplanetary system. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology as well as performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper, we show how progress in key technologies leads to a balloon experiment as a logical future step toward a space mission. The HCIT testbed has shown ultra-high contrast using small optics in a vacuum testbed. A recent ground-based experiment has demonstrated the ability to control three active optics in series - a lightweight controllable primary mirror, and two deformable mirrors - to achieve close to the best wavefront correction possible with large optics in an in-air testbed. We briefly describe the Wallops Arcsecond Pointer (WASP), which as had a very successful first flight, showing the capability of a balloon platform to stably point to the accuracy required for a coronagraph payload experiment. A balloon-borne coronagraph mission would incorporate all of these advances in an instrument that verifies each one in a space-like environment, and enabling forefront science. Such an experiment would be a step toward mitigating the technical risks of a major space-based exoplanet coronagraph. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2012. California Institute of Technology. Government sponsorship acknowledged.

  20. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    PubMed

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m), and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  1. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    PubMed Central

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500m altitude, 3650m altitude, 3day, 1, and 3 month post arriving at the base camp (4400m), and 1 month after coming back to the 500m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  2. The scavenging of high altitude aerosol by small ice crystals

    NASA Astrophysics Data System (ADS)

    Andrew Bell, D.; Saunders, Clive P. R.

    There have been several global models developed for the theoretical investigation of the removal of high altitude aerosol from the atmosphere, following concern about the injection of particulate material by nuclear explosions and volcanic events. These models lack a knowledge of the scavenging efficiencies of the small ice crystals associated with cirus clouds and storm ice anvils. These are the only hydrometers that could remove the injected particles. In the past there have been a number of practical studies into the scavenging efficiencies of large ice crystaks and snowflakes. A comparison of the extrapolated results of these findings and the theoretical models of Martin et al. (1980, Pure appl. Phys.188, 1109-1129, J. atmos. Sci.37, 1628-1638) for the small crystal situation has been made. It was found that in general the extrapolated results gave efficiencies that were significantly higher than the predicted value. This difference was found to be enhanced as the crystal diameter decreased. Experiments used small ice plates grown at ˜-18.5°C in a cloud chamber, which were then permitted to fall through a dense aerosol cloud, to provide the first direct measurements of the scavenging efficiencies of this small crystals under cloud conditions. Initial results are presented for mono-disperse NaCl aerosol particles of size 4-6 μm.

  3. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    NASA Technical Reports Server (NTRS)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  4. An automatic parachute release for high altitude scientific balloons

    NASA Astrophysics Data System (ADS)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  5. Design of a MIPAS Instrument for high-altitude aircraft

    SciTech Connect

    Piesch, C.; Gulde, T.; Sartorius, F.F.V.

    1996-11-01

    A new MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is being designed for remote sensing of atmospheric trace constituents from high-altitude aircraft. The main goal is the measurement of cross sections of stratospheric species relevant to ozone research, such as ClONO{sub 2}, N{sub 2}O{sub 5}, NO, NO{sub 2} and HNO{sub 3}. The instrument measures the mid-infrared thermal emission of the atmosphere by limb- and upward sounding. From the spectra the two-dimensional distribution of the trace species along the flight trajectory can be derived. The instrument development is based on the approved balloon-borne MIPAS-B2 and aircraft MIPAS-FT systems. The system will be located in unpressurized compartments and thus operate under ambient temperature and pressure conditions. Major design constraints are the low mass-budget (max. 200 kg) and the automated operation without personnel intervention. The paper presents the concept and current status of the instrument development. 6 refs., 7 figs., 1 tab.

  6. ASTER Views A High Altitude Tibetan Lake In Stereo

    NASA Astrophysics Data System (ADS)

    Matthews, J. P.; Wallis, S. R.; Yamaguchi, Y.

    2004-10-01

    The lakes of the Tibetan Plateau (Figure 1) have been investigated by Western and Chinese scientists over many years[e.g., Gasse et al., 1991; Zheng, 1997]. They are often located in extremely remote and inhospitable terrain at altitudes above 4000 m and, as a result, boat-based research campaigns aimed toward an improved understanding of the limnology and limnogeology of these water bodies are time consuming and difficult to perform. In order to support recent field studies of the Tibetan lakes, high spatial resolution imagery acquired by ASTER (the Advanced Spaceborne Thermal Emission and Reflection Radiometer) has been used. These data were gathered in the visible, near-infrared, and thermal infrared bands as ASTER operated on the TERRA platform[ Yamaguchi et al., 1998], a component of NASA's Earth Observing System (EOS). The research outlined here has benefited, in particular, from the availability of stereo data gathered by ASTER, in which regions are imaged first at nadir and then from a backward looking slant view some 55 s later in the near-infrared (channel 3B, 0.781-0.86μm).

  7. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  8. An extremely high altitude plume seen at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  9. Phenomenological investigations in high-altitude EMP (HEMP)

    SciTech Connect

    Cabayan, H.S.

    1984-07-01

    This report describes the presently available state-of-the-art analysis tools and extensions of these that are applicable to enhancing our understanding of the interaction and coupling phenomena associated with the high-altitude nuclear electromagnetic pulse (HEMP) and its effects on military systems. Such an in-depth understanding would provide the framework for a more scientific approach to system testing and hardening. In the report, we also briefly review past research programs in this area and evaluate the degree of their success. The emphasis in system assessment tools is placed on a probabilistic failure analysis approach that can provide a framework for vulnerabilities assessment and hardening. In coupling the emphasis is placed on a phenomenological understanding which involves a multifaceted approach involving analytical, computational, and experimental techniques in a complementary way. In component susceptibility, the emphasis is on the development of validated one, two and possibly three dimensional computer models that include the major physical phenomena such as heat and electronic transport equations. A gap exists in being able to express physics quantities in these codes in terms of nonlinear circuit parameters that can be used in the circuit codes.

  10. Dermatoglyphics of a high altitude Peruvian population and interpopulation comparisons.

    PubMed

    Baca, O R; Del Valle Mendoza, L; Guerrero, N A

    2001-01-01

    Studies of genetic structures of Andean human populations have not been numerous, even though these studies could be used to answer questions concerning migration routes of the indigenous peoples who populated America. Such studies could provide basic genetic information and clarify uncertainties surrounding genetic relatedness of South American indigenous peoples. This present work describes, quantifies, and analyzes the digital and palmar dermatoglyphics of 120 people in the community of San Pedro de Casta, Perú. The results were then compared using distance analysis to all other Peruvian population values studied to date and other South American populations. The dermatoglyphic indicators studied were the distribution of digital pattern frequencies, the total ridge counts (TRC), the pattern intensity index (PII), the atd angle, and the a-b ridge counts. The results did not show statistically significant differences for digital patterns between hands, neither within a sex nor between sexes. The means and standard deviations of PII and TRC were 12.32 +/- 3.97 and 112.18 +/- 45.09, respectively. The means and standard deviations for the other two indicators were the following: atd angle, 94.85 degrees +/- 12.33; and a-b ridge counts, 81.57 +/- 9.06. The distance analyses results suggest the existence of two different genetic lines among high altitude populations, as well as the need for further research.

  11. Fit for high altitude: are hypoxic challenge tests useful?

    PubMed

    Matthys, Heinrich

    2011-01-01

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  12. Fit for high altitude: are hypoxic challenge tests useful?

    PubMed Central

    2011-01-01

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  13. Fit for high altitude: are hypoxic challenge tests useful?

    PubMed

    Matthys, Heinrich

    2011-01-01

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  14. Hands-on Space Exploration through High Altitude Ballooning

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Gyuk, G.

    2010-01-01

    The Adler Planetarium's "Far Horizons" high-altitude ballooning effort serves as the focus for a diverse set of educational activities, including middle school summer camps, a high school summer program (the Astro-Science Workshop), school-year internships for high school students, summer internships for undergraduates, a NSF-funded graduate fellowship, and a thriving public volunteer program. The relatively low costs of both the reusable hardware (less than $1000) and expendable supplies (around $150 per launch) allow us to mount frequent missions throughout the year - and make such a program ideal for replication at institutions of any size. The rapid development schedule for each individual mission permits the cradle-to-grave involvement of short-term participants, making it easy to draw in a wide audience. Students are involved literally in a hands-on manner in all aspects of the construction, launch, tracking, and recovery of simple experimental payloads, which typically include sensors for temperature, pressure, light intensity, and radiation. Stunning imagery provided by onboard cameras can attract significant media interest, which can bring outreach efforts to a very broad audience. Future plans include the design and construction of CubeSats - decimeter-sized picosatellites carried to orbit as secondary payloads. Our first satellite will be a relatively simple Earth-imager, built from commercial, off-the-shelf components. As in the ballooning program, students and volunteers will be involved in all stages of this effort. Once operational, imagery and other data from the satellite will be incorporated into a museum exhibit that will allow visitors to submit target requests. This material is based in part upon work supported by the National Science Foundation under Grant No. 0525995.

  15. High Altitude Aerial Natural Gas Leak Detection System

    SciTech Connect

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  16. High-altitude paragangliomas diagnostic and therapeutic considerations.

    PubMed

    Rodriguez-Cuevas, H; Lau, I; Rodriguez, H P

    1986-02-01

    Forty-one cervical paragangliomas that occurred in 40 patients born and living in Mexico City, Mexico, were studied. Tumors were most common in women (38/40); were unilateral (39/40), without a side preference; were of the nonhereditary type; and were not malignant. Tumor imaging with radionucleaide angiographic scanning was noninvasive, innocuous, and reliable for screening, whereas selective carotid angiography allowed for definitive diagnosis and clinical stratification of patients. Surgical resection was performed in 29 patients; in 23 cases, en bloc resection was accomplished without a vascular compromise, whereas in 4 patients, a portion of the external carotid artery had to be ligated and resected. Two other patients required a vascular graft to restore blood flow to the internal carotid. Seven patients had postoperative transient cranial nerve palsies, and one had an incomplete hemiplegia. Permanent nerve damage occurred in seven patients. It was concluded that high-altitude paragangliomas are hyperplastic growths that result from adaptation to hypoxia. They are rarely true neoplasm and, in general, are not associated with functional loss. In view of this and of the high morbidity rate associated with surgical removal, it was recommended that these patients be referred to research centers where efforts toward the elucidation of the etiology and pathophysiology of these tumors can be carried out. Surgery should be reserved for symptomatic cases or cases in which the diagnosis remains in doubt. The decision to operate must weigh the following factors: The tumor's benign nature, its slow growth rate, the technical difficulties associated with its resection, the high postoperative morbidity rate, and the general condition of the patient. PMID:3943005

  17. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.

    PubMed

    Chapman, Robert F; Karlsen, Trine; Resaland, Geir K; Ge, R-L; Harber, Matthew P; Witkowski, Sarah; Stray-Gundersen, James; Levine, Benjamin D

    2014-03-15

    Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.

  18. Influence of high altitude clouds on upper tropospheric radiance measurements.

    PubMed

    Schmidt, E O; Patterson, E M; Williams, W J

    1990-10-01

    Altitude profiles of atmospheric window radiance measured with upward-looking sensors frequently show a rapid decrease in radiance with increasing height over a narrow altitude region in the upper troposphere. This region of rapid decrease is termed a radiometric knee in the altitude profile. The top of this knee defines a radiometric tropopause with a latitudinal height dependence similar to that of the usually defined barometric tropopause. Atmospheric window (10-12-microm) radiance at these altitudes can be associated with the presence of ice particulates. Comparison of the measurements with predicted altitude profiles of atmospheric radiance from the LOWTRAN 7 atmospheric model code shows that a well-defined knee occurs when there is a cloud layer (liquid or ice) such as a subvisual cirrus cloud present. The rate and magnitude of the radiance decrease depend on the optical depth and, therefore, the water content of the layer. Atmospheric background radiance values for near horizontal (large zenith angle) viewing with upward-looking sensors can be as much as a factor of 100 lower above the knee than below it. Comparisons between calculated and observed radiance profiles were used to estimate the vertical extent, total optical depth, and water content of the clouds.

  19. Exhaustive exercise and vitamins C and E modulate thyroid hormone levels at low and high altitudes

    PubMed Central

    Al-Hashem, Fahaid; Alkhateeb, Mahmoud; Al-Ani, Bahjat; Sakr, Hussein; Khalil, Mohammad

    2012-01-01

    Thyroid hormones play an important role in cell growth and differentiation and regulation of oxygen consumption and thermogenesis. The effect of altitude and vitamin supplementation on thyroid hormone levels in animals or humans performing acute exhaustive exercise have not been investigated before. Therefore, we thought to test whether exhaustive exercise-induced stress with antioxidant supplementation was capable of modulating the level of thyroid hormones at different altitudes. Serum levels of T4 (Thyroxin), T3 (Triiodothyronine), and TSH (Thyroid Stimulating Hormone) were measured in rats (N=36) born and bred in low altitude (600 m above sea level) and high altitude (2200 m above sea level) following forced swimming with or without vitamins C and E (25 mg/kg) pre-treatments. Thyroid levels were significantly decreased in resting rats at high altitude compared to low altitude, and swimming exercise moderately increased T3 and TSH at both high and low altitudes, whereas T4 was markedly increased (62 %) at low altitude compared to a moderate high altitude increase (28 %). Co-administration of vitamins C and E augmented the observed forced swimming-induced thyroid release. However, the conversion of T4 to T3 was reduced in both altitude areas following swimming exercise and vitamin pre-treatment had no effect. We conclude that acute stress induced thyroidal hormones in rats, which was augmented by antioxidant drugs in both high and low altitude areas. These findings may play an important role in the human pathophysiology of thyroid gland at different altitudes. PMID:27540343

  20. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning.

    PubMed

    West, J B

    2015-11-01

    Neonatal mortality increases with altitude. For example, in Peru the incidence of neonatal mortality in the highlands has been shown to be about double that at lower altitudes. An important factor is the low inspired PO2 of newborn babies. Typically, expectant mothers at high altitude will travel to low altitude to have their babies if possible, but often this is not feasible because of economic factors. The procedure described here raises the oxygen concentration in the air of rooms where neonates are being housed and, in effect, this means that both the mother and baby are at a much lower altitude. Oxygen conditioning is similar to air conditioning except that the oxygen concentration of the air is increased rather than the temperature being reduced. The procedure is now used at high altitude in many hotels, dormitories and telescope facilities, and has been shown to be feasible and effective. PMID:26426252

  1. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning.

    PubMed

    West, J B

    2015-11-01

    Neonatal mortality increases with altitude. For example, in Peru the incidence of neonatal mortality in the highlands has been shown to be about double that at lower altitudes. An important factor is the low inspired PO2 of newborn babies. Typically, expectant mothers at high altitude will travel to low altitude to have their babies if possible, but often this is not feasible because of economic factors. The procedure described here raises the oxygen concentration in the air of rooms where neonates are being housed and, in effect, this means that both the mother and baby are at a much lower altitude. Oxygen conditioning is similar to air conditioning except that the oxygen concentration of the air is increased rather than the temperature being reduced. The procedure is now used at high altitude in many hotels, dormitories and telescope facilities, and has been shown to be feasible and effective.

  2. Canadian Academy of Sport and Exercise Medicine position statement: athletes at high altitude.

    PubMed

    Koehle, Michael S; Cheng, Ivy; Sporer, Benjamin

    2014-03-01

    Many sports incorporate training at altitude as a key component of their athlete training plan. Furthermore, many sports are required to compete at high altitude venues. Exercise at high altitude provides unique challenges to the athlete and to the sport medicine clinician working with these athletes. These challenges include altitude illness, alterations in training intensity and performance, nutritional and hydration difficulties, and challenges related to the austerity of the environment. Furthermore, many of the strategies that are typically utilized by visitors to altitude may have implications from an anti-doping point of view.This position statement was commissioned and approved by the Canadian Academy of Sport and Exercise Medicine. The purpose of this statement was to provide an evidence-based, best practices summary to assist clinicians with the preparation and management of athletes and individuals travelling to altitude for both competition and training.

  3. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    NASA Astrophysics Data System (ADS)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  4. Physiological and Clinical Implications of Adrenergic Pathways at High Altitude.

    PubMed

    Richalet, Jean-Paul

    2016-01-01

    The adrenergic system is part of a full array of mechanisms allowing the human body to adapt to the hypoxic environment. Triggered by the stimulation of peripheral chemoreceptors, the adrenergic centers in the medulla are activated in acute hypoxia and augment the adrenergic drive to the organs, especially to the heart, leading to tachycardia. With prolonged exposure to altitude hypoxia, the adrenergic drive persists, as witnessed by elevated blood concentrations of catecholamines and nerve activity in adrenergic fibers. In response to this persistent stimulation, the pathways leading to the activation of adenylate cyclase are modified. A downregulation of β-adrenergic and adenosinergic receptors is observed, while muscarinic receptors are upregulated. The expression and activity of Gi and Gs proteins are modified, leading to a decreased response of adenylate cyclase activity to adrenergic stimulation. The clinical consequences of these cellular and molecular changes are of importance, especially for exercise performance and protection of heart function. The decrease in maximal exercise heart rate in prolonged hypoxia is fully accounted for the observed changes in adrenergic and muscarinic pathways. The decreased heart rate response to isoproterenol infusion is another marker of the desensitization of adrenergic pathways. These changes can be considered as mechanisms protecting the heart from a too high oxygen consumption in conditions where the oxygen availability is severely reduced. Similarly, intermittent exposure to hypoxia has been shown to protect the heart from an ischemic insult with similar mechanisms involving G proteins and downregulation of β receptors. Other pathways with G proteins are concerned in adaptation to hypoxia, such as lactate release by the muscles and renal handling of calcium. Altogether, the activation of the adrenergic system is useful for the acute physiological response to hypoxia. With prolonged exposure to hypoxia, the autonomous

  5. Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning

    ERIC Educational Resources Information Center

    Coleman, Jill S. M.; Mitchell, Melissa

    2014-01-01

    This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…

  6. [Bacterial leaf blight affecting Syngonium podophyllum in Argentina].

    PubMed

    Alippi, A M; Ronco, L; Alippi, H E

    1994-01-01

    Bacterial leaf blight of Syngonium podophyllum caused by Xanthomonas campestris pv. syngonii is recorded for the first time in Argentina. The first symptom of the disease was an interveinal watersoaking of leaves, the tissues became chlorotic and finally necrotic over areas of about 4 cm. The identification of the causal microorganism was based on disease symptoms, morphological, physiological and biochemical characteristics and pathogenicity test.

  7. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  8. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels.

    PubMed

    Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao

    2015-12-22

    The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  9. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    PubMed Central

    Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao

    2015-01-01

    The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption. PMID:26703703

  10. Current concept of chronic mountain sickness: pulmonary hypertension-related high-altitude heart disease.

    PubMed

    Ge, R L; Helun, G

    2001-01-01

    High-altitude heart disease, a form of chronic mountain sickness, has been well established in both Tibet and Qinghai provinces of China, although little is known regarding this syndrome in other countries, particularly in the West. This review presents a general overview of high-altitude heart disease in China and briefly summarizes the existing data with regard to the prevalence, clinical features, and pathophysiology of the illness. The definition of high-altitude heart disease is right ventricular enlargement that develops primarily (by high-altitude exposure) to pulmonary hypertension without excessive polycythemia. The prevalence is higher in children than adults and in men than women, but is lower in both sexes of Tibetan high-altitude residents compared with acclimatized newcomers, such as Han Chinese. Clinical symptoms consist of headache, dyspnea, cough, irritability, and sleeplessness. Physical findings include a marked cyanosis, rapid heart and respiratory rates, edema of the face, liver enlargement, and rales. Most patients have complete recovery on descent to a lower altitude, but symptoms recur with a return to high altitude. Right ventricular enlargement, pulmonary hypertension, and remodeling of pulmonary arterioles are hallmarks of high-altitude heart disease. It is hoped that this information will assist in understanding this type of chronic mountain sickness, facilitate international exchange of data, and stimulate further research into this poorly understood condition.

  11. Oviposition of aquatic insects in a tropical high altitude stream.

    PubMed

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  12. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.

  13. Special problems and capabilities of high altitude lighter than air vehicles

    NASA Technical Reports Server (NTRS)

    Wessel, P. R.; Petrone, F. J.

    1975-01-01

    Powered LTA vehicles have historically been limited to operations at low altitudes. Conditions exist which may enable a remotely piloted unit to be operated at an altitude near 70,000 feet. Such systems will be launched like high altitude balloons, operate like nonrigid airships, and have mission capabilities comparable to a low altitude stationary satellite. The limited lift available and the stratospheric environment impose special requirements on power systems, hull materials and payloads. Potential nonmilitary uses of the vehicle include communications relay, environmental monitoring and ship traffic control.

  14. Bats aloft: Variation in echolocation call structure at high altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  15. Wind compensation by radiometer arrays in high altitude propulsion

    NASA Astrophysics Data System (ADS)

    Gimelshein, Natalia; Gimelshein, Sergey; Ketsdever, Andrew; Young, Marcus

    2012-11-01

    Numerical analysis has been conducted to assess the feasibility of using radiometer arrays mounted on a near-space vehicle, for wind disturbance compensation. The results indicate the possibility of using radiometric force for that purpose for altitudes of 80 km and smaller, and head winds up to 30 m/s.

  16. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.

    PubMed

    Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H

    2016-07-01

    Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. PMID:26957629

  17. An efficient in vitro system for somatic embryogenesis and podophyllotoxin production in Podophyllum hexandrum Royle.

    PubMed

    Rajesh, Manoharan; Sivanandhan, Ganeshan; Jeyaraj, Murugaraj; Chackravarthy, Rajan; Manickavasagam, Markandan; Selvaraj, N; Ganapathi, Andy

    2014-09-01

    Podophyllum hexandrum Royle known as Indian mayapple is an important medicinal plant found only in higher altitudes (2,700 to 4,200 m) of the Himalayas. The highly valued anticancer drug Podophyllotoxin is obtained from the roots of this plant. Due to over exploitation, this endemic plant species is on the verge of extinction. In vitro culture for efficient regeneration and the production of podophyllotoxin is an important research priority for this plant. Hence, in the present study, an efficient plant regeneration system for mass multiplication through somatic embryogenesis was developed. We have screened P. hexandrum seeds collected from three different regions in the Himalayas to find their regenerative potentials. These variants showed variation in germination percentage as well as somatic embryogenic frequency. The seeds collected from the Milam area of Pithoragarh district showed better germination response (99.3%) on Murashige and Skoog (MS) medium fortified with Gibberellic acid (GA3 [5 mg/l]) and higher direct somatic embryogenic frequency (89.6%). Maximum production of embryogenic callus (1.2 g fresh weight [FW]) was obtained when cotyledons containing the direct somatic embryo clusters were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D [1.5 mg/l]) after 4 week of culture in complete darkness. In the present investigation, somatic embryogenesis was accomplished either by direct organogenesis or callus mediated pathways. The latter method resulted in a higher frequency of somatic embryo induction in hormone-free MS medium yielding 47.7 embryos/50 mg of embryogenic callus and subsequent germination in MS medium supplemented with GA3 (5 mg/l). Seventy-nine percent of embryos attained complete maturity and germinated into normal plants with well-developed roots. Systematic histological analysis revealed the origin of somatic embryo and their ontogenesis. The higher level of podophyllotoxin (1.8 mg/g dry weight [DW]) was

  18. Podophyllum hexandrum (Himalayan mayapple) extract provides radioprotection by modulating the expression of proteins associated with apoptosis.

    PubMed

    Kumar, Raj; Singh, Pankaj Kumar; Sharma, Ashok; Prasad, Jagdish; Sagar, Ravinder; Singh, Surender; Arora, Rajesh; Sharma, Rakesh Kumar

    2005-08-01

    Podophyllum hexandrum Royale (Himalayan mayapple), a high-altitude Himalayan plant, has been shown to provide over 80% whole-body radioprotection in mice. To investigate the radioprotective potential of P. hexandrum at the molecular level, expression patterns of various proteins associated with apoptosis were studied in the spleen of male Swiss albino strain A mice by immunoblotting. Treatment with P. hexandrum [200 mg/kg of body weight; an ethanolic 50% (w/v) extract delivered intraperitoneally] 2 h before irradiation resulted in MAPKAP (mitogen-activated protein kinase-activated protein) kinase-2 activation along with HSF-1 (heat-shock transcription factor-1), leading to up-regulation of HSP-70 (heat-shock protein-70) as compared with sham-irradiated (10 Gy) mice. Strong inhibition of AIF (apoptosis-inducing factor) expression was observed in the mice treated with P. hexandrum 2 h before irradiation as compared with the sham-irradiated group. Inhibition in the translocation of free NF-kappaB (nuclear factor kappaB) from cytoplasm to nucleus was observed upon P. hexandrum pretreatment 2 h before irradiation when compared with radiation-treated mice. P. hexandrum pre-treatment (2 h before irradiation) resulted in inhibition of NF-kappaB translocation, and the expression of tumour suppressor protein p53 was observed to be down-regulated as compared with sham-irradiated control. An increase in the expression of proteins responsible for cell proliferation [Bcl-2 (B-cell chronic lymphocytic lymphoma 2), Ras-GAP (Ras-GTPase-activating protein) and PCNA (proliferating cell nuclear antigen)] was observed in the P. hexandrum-pretreated irradiated mice as compared with sham-irradiated controls. Caspase 3 activation resulted PARP [poly(ADP-ribose) DNA polymerase] cleavage, and DNA degradation was strongly inhibited in the mice treated with P. hexandrm (+/-irradiation) as compared with the mice treated with radiation (+/-heat shock). The present study thus clearly

  19. Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.

    PubMed

    Lague, Sabine L; Chua, Beverly; Farrell, Anthony P; Wang, Yuxiang; Milsom, William K

    2016-07-01

    Bar-headed geese (Anser indicus) fly at high altitudes during their migration across the Himalayas and Tibetan plateau. However, we know relatively little about whether rearing at high altitude (i.e. phenotypic plasticity) facilitates this impressive feat because most of what is known about their physiology comes from studies performed at sea level. To provide this information, a comprehensive analysis of metabolic, cardiovascular and ventilatory responses to progressive decreases in the equivalent fractional composition of inspired oxygen (FiO2 : 0.21, 0.12, 0.09, 0.07 and 0.05) was made on bar-headed geese reared at either high altitude (3200 m) or low altitude (0 m) and on barnacle geese (Branta leucopsis), a low-altitude migrating species, reared at low altitude (0 m). Bar-headed geese reared at high altitude exhibited lower metabolic rates and a modestly increased hypoxic ventilatory response compared with low-altitude-reared bar-headed geese. Although the in vivo oxygen equilibrium curves and blood-oxygen carrying capacity did not differ between the two bar-headed goose study groups, the blood-oxygen carrying capacity was higher than that of barnacle geese. Resting cardiac output also did not differ between groups and increased at least twofold during progressive hypoxia, initially as a result of increases in stroke volume. However, cardiac output increased at a higher FiO2  threshold in bar-headed geese raised at high altitude. Thus, bar-headed geese reared at high altitude exhibited a reduced oxygen demand at rest and a modest but significant increase in oxygen uptake and delivery during progressive hypoxia compared with bar-headed geese reared at low altitude. PMID:27385754

  20. Radioprotective mechanism of Podophyllum hexandrum during spermatogenesis.

    PubMed

    Samanta, N; Kannan, K; Bala, M; Goel, H C

    2004-12-01

    RP-1, a herbal preparation of Podophyllum hexandrum has already been reported to provide protection against whole body lethal gamma irradiation (10 Gy). It has also been reported to render radioprotection to germ cells during spermatogenesis. Present study was undertaken to unravel the cellular and molecular mechanism of action of RP-1 on testicular system in strain 'A' mice. Various antioxidant parameters such as thiol content, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) enzyme activity, lipid peroxidation (LPO) and total protein levels were investigated. Thiol content was seen to increase significantly (p < 0.05) in both RP-1 alone and RP-1 pretreated irradiated groups over the irradiated groups at 8, 16 and 24 h. Irradiation (10 Gy) significantly decreased GPx, GST and GR activity in comparison to untreated control but RP-1 treatment before irradiation significantly (p < 0.05) countered radiation-induced decrease in the activity of these enzymes. Radiation-induced LPO was also found to be reduced at all time intervals by RP-1 treatment before irradiation. As compared to irradiated group the protein content in testicular tissue was increased in RP-1 pretreated irradiated group at 4 and 16 h significantly (p < 0.05). Comets revealed by single-cell gel electrophoresis were significantly longer (p < 0.001) in irradiated mice than in unirradiated control. RP-1 treatment before irradiation, however, rendered significant increase (p < 0.05) in comet length over the corresponding control and irradiated group initially at 4 h but at later time points, this was reduced significantly (p < 0.01) as compared to the irradiated group. RP-1 treatment alone rendered shorter comets at 8, 16 and 24 h than irradiated groups (p < 0.001). This study implies that RP-1 offers radioprotection at biochemical and cytogenetic level by protecting antioxidant enzymes, reducing LPO and increasing thiol content.

  1. Model of Atmospheric Links on Optical Communications from High Altitude

    NASA Technical Reports Server (NTRS)

    Subich, Christopher

    2004-01-01

    Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a

  2. AltitudeOmics: Decreased reaction time after high altitude cognitive testing is a sensitive metric of hypoxic impairment.

    PubMed

    Roach, Emma B; Bleiberg, Joseph; Lathan, Corinna E; Wolpert, Lawrence; Tsao, Jack W; Roach, Robert C

    2014-04-01

    Humans experiencing hypoxic conditions exhibit multiple signs of cognitive impairment, and high altitude expeditions may be undermined by abrupt degradation in mental performance. Therefore, the development of psychometric tools to quickly and accurately assess cognitive impairment is of great importance in aiding medical decision-making in the field, particularly in situations where symptoms may not be readily recognized. The present study used the Defense Automated Neurobehavioral Assessment (DANA), a ruggedized and portable neurocognitive assessment tool, to examine cognitive function in healthy human volunteers at sea level, immediately after ascending to an elevation over 5000 m, and following 16 days of acclimatization to this high altitude. The DANA battery begins with a simple reaction time test (SRT1) which is followed by a 20-min series of complex cognitive tests and ends with a second test of simple reaction time (SRT2). Tabulating the performance scores from these two tests allows the calculation of an SRT change score (dSRT=SRT1 - SRT2) that reflects the potential effect of mental effort spent during the 20-min testing session. We found that dSRT, but not direct SRT in comparison to sea-level baseline performance, is highly sensitive to acute altitude-related performance deficits and the remission of impairment following successful acclimatization. Our results suggest that dSRT is a potentially useful analytical method to enhance the sensitivity of neurocognitive assessment.This is an open access article distributed under the Creative Commons Attribution- Non Commercial License, where it is permissible to download, share and reproduce the work in any medium, provided it is properly cited. The work cannot be used commercially. PMID:24722229

  3. Star volumes of villi and intervillous pores in placentae from low and high altitude pregnancies.

    PubMed Central

    Lee, R; Mayhew, T M

    1995-01-01

    Histological sections of placentae from pregnancies completed at low altitude (400 m) and high altitude (3600 m) in Bolivia were analysed using a stereological estimator of the star volumes of villous 'domains' and intervillous 'pores'. The purpose was to test whether or not differences in the overall volumes of these compartments are accompanied by changes in their geometrical relationships. Whilst total placental volume did not vary with altitude, the total volume of villi declined by about 25% and total intervillous volume increased by 40% at high altitude. The star volume of villi also decreased by 25% (from 1.5 x 10(6) microns 3 at low altitude to 1.1 x 10(6) microns 3 at high altitude) whilst the star volume of intervillous pores increased 4-fold (from 87 x 10(6) microns 3 to 461 x 10(6) microns 3). These figures imply that villous domains decrease in size but may be constant in number. The most likely explanation is that villous trees at high altitude are scaled-down versions of their low-altitude counterparts. By contrast, although the intervillous pores enlarge they may decrease in number in the highland organ. This may reflect a change in the number of maternal cotyledons or in the spatial arrangement of villous trees. PMID:7649834

  4. Stunting and the Prediction of Lung Volumes Among Tibetan Children and Adolescents at High Altitude.

    PubMed

    Weitz, Charles A; Garruto, Ralph M

    2015-12-01

    This study examines the extent to which stunting (height-for-age Z-scores ≤ -2) compromises the use of low altitude prediction equations to gauge the general increase in lung volumes during growth among high altitude populations. The forced vital capacity (FVC) and forced expiratory volume (FEV1) of 208 stunted and 365 non-stunted high-altitude Tibetan children and adolescents between the ages of 6 and 20 years are predicted using the Third National Health and Nutrition Examination Survey (NHANESIII) and the Global Lung Function Initiative (GLF) equations, and compared to observed lung volumes. Stunted Tibetan children show smaller positive deviations from both NHANESIII and GLF prediction equations at most ages than non-stunted children. Deviations from predictions do not correspond to differences in body proportions (sitting heights and chest circumferences relative to stature) between stunted and non-stunted children; but appear compatible with the effects of retarded growth and lung maturation that are likely to exist among stunted children. These results indicate that, before low altitude standards can be used to evaluate the effects of hypoxia, or before high altitude populations can be compared to any other group, it is necessary to assess the relative proportion of stunted children in the samples. If the proportion of stunted children in a high altitude population differs significantly from the proportion in the comparison group, lung function comparisons are unlikely to yield an accurate assessment of the hypoxia effect. The best solution to this problem is to (1) use stature and lung function standards based on the same low altitude population; and (2) assess the hypoxic effect by comparing observed and predicted values among high altitude children whose statures are most like those of children on whom the low altitude spirometric standard is based-preferably high altitude children with HAZ-scores ≥ -1.

  5. CONDOR: Long endurance high altitude vehicle, volume 5

    NASA Technical Reports Server (NTRS)

    Andrews, L. Cullen; Augsburger, Bill; Cote, Thomas; Ghitea, Mihael; Lee, Il Sik; Lee, Susik; Leong, Gary

    1988-01-01

    The results of a design study resulting in the proposed CONDOR aircraft are presented. The basic requirements are for the aircraft to maintain continuous altitude at or above 45,000 feet for at least a 3-day mission, be able to comfortably support a two-man crew during this period with their field of vision not obstructed to a significant degree, carry a payload of 200 pounds, and provide a power supply to the payload of 2000 watts. The take-off and landing distances must be below 5000. feet, and time to reach cruise altitude must not exceed 3 hours. The subjects discussed are configuration selection, structural analysis, stability and control, crew and payload accomodations, and economic estimates.

  6. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  7. Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum.

    PubMed

    Moinuddin, Syed G A; Youn, Buhyun; Bedgar, Diana L; Costa, Michael A; Helms, Gregory L; Kang, ChulHee; Davin, Laurence B; Lewis, Norman G

    2006-03-01

    Secoisolariciresinol dehydrogenase (SDH) catalyzes the NAD+ dependent enantiospecific conversion of secoisolariciresinol into matairesinol. In Podophyllum species, (-)-matairesinol is metabolized into the antiviral compound, podophyllotoxin, which can be semi-synthetically converted into the anticancer agents, etoposide, teniposide and Etopophos. Matairesinol is also a precursor of the cancer-preventative "mammalian" lignan, enterolactone, formed in the gut following ingestion of, for example, various high fiber dietary foods, as well as being an intermediate to numerous defense compounds in vascular plants. This study investigated the mode of enantiospecific Podophyllum SDH catalysis, the order of binding, and the stereospecificity of hydride abstraction/transfer from secoisolariciresinol to NAD+. SDH contains a highly conserved catalytic triad (Ser153, Tyr167 and Lys171), whose activity was abolished with site-directed mutagenesis of Tyr167Ala and Lys171Ala, whereas mutagenesis of Ser153Ala only resulted in a much reduced catalytic activity. Isothermal titration calorimetry measurements indicated that NAD+ binds first followed by the substrate, (-)-secoisolariciresinol. Additionally, for hydride transfer, the incoming hydride abstracted from the substrate takes up the pro-S position in the NADH formed. Taken together, a catalytic mechanism for the overall enantiospecific conversion of (-)-secoisolariciresinol into (-)-matairesinol is proposed.

  8. On the High- and Low- Altitude Limits of the Auroral Electric Field Region

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    1993-01-01

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the

  9. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.

    PubMed

    Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou

    2015-08-10

    Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation.

  10. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    PubMed

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  11. Piloted simulation study of a balloon-assisted deployment of an aircraft at high altitude

    NASA Technical Reports Server (NTRS)

    Murray, James; Moes, Timothy; Norlin, Ken; Bauer, Jeffrey; Geenen, Robert; Moulton, Bryan; Hoang, Stephen

    1992-01-01

    A piloted simulation was used to study the feasibility of a balloon assisted deployment of a research aircraft at high altitude. In the simulation study, an unmanned, modified sailplane was carried to 110,000 ft with a high altitude balloon and released in a nose down attitude. A remote pilot controlled the aircraft through a pullout and then executed a zoom climb to a trimmed, 1 g flight condition. A small parachute was used to limit the Mach number during the pullout to avoid adverse transonic effects. The use of small rocket motor was studied for increasing the maximum attainable altitude. Aerodynamic modifications to the basic sailplane included applying supercritical airfoil gloves over the existing wing and tail surfaces. The aerodynamic model of the simulated aircraft was based on low Reynolds number wind tunnel tests and computational techniques, and included large Mach number and Reynolds number effects at high altitude. Parametric variations were performed to study the effects of launch altitude, gross weight, Mach number limit, and parachute size on the maximum attainable stabilized altitude. A test altitude of approx. 95,000 ft was attained, and altitudes in excess of 100,000 ft was attained.

  12. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347–356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205–214), and isoform 1 of fibrinogen α chain precursor (FGA 588–624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  13. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach.

    PubMed

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-01-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  14. High altitude medicine in China in the 21st century: opportunities and challenges.

    PubMed

    Huang, Lan

    2014-01-01

    China has the largest plateau, Qinghai-Tibet Plateau, where inhabited the most high altitude populations. Moreover, millions of people from plain areas come to the plateau for travel and work purposes and the number of the newcomers has been increasing every year. The hypoxic environment of plateau raised a series of related health issues in the new immigrants, so have created a special medical discipline - High Altitude Medicine. Over the past decades, researches on high altitude medicine have never being ceased in China, and lots of research findings have been reported. Application and practice of these achievements have greatly decreased the mobility and mortality of high-altitude diseases, however, there remained lots of questions to be elucidated. In view of this, the authors were granted a special project from the National Health and Family Planning Commission of China, and conducted a multi-center, prospective, on-scene high altitude medicine study for the acute mountain sickness. Some innovative findings were achieved, and the parameters for diagnosis and application conditions were proposed. Furthermore, the different diagnoses and treatment effects were compared, and a more standardized, reasonable scheme was drawn up. Regarding the unbalanced medical resources in the vast high altitude area, an application system for the public and the army has been established. In the 21st century, innovations in China and novel research approaches have provided great opportunities for the development of high altitude medicine. It is believed that the researchers in China are able to catch the opportunities and address the challenges.

  15. High altitude medicine education in China: exploring a new medical education reform.

    PubMed

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education. PMID:22429234

  16. High altitude medicine education in China: exploring a new medical education reform.

    PubMed

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.

  17. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  18. Total antioxidant status at high altitude in lowlanders and native highlanders: role of uric acid.

    PubMed

    Sinha, Sanchari; Singh, Som Nath; Ray, Uday Sankar

    2009-01-01

    Hypobaric hypoxia causes oxidative stress and the antioxidant system of the body plays a vital role in controlling it. Urate contributes up to two-thirds of the antioxidant capacity of human blood. The urate production is catalyzed by xanthine oxidase with a concomitant release of free radicals. This study was designed to appraise the role of urate as an antioxidant at high altitude. The study was conducted on 92 male lowlanders and 66 highlanders after ascent to high altitude at 4560 m. Blood was collected at sea level and after 4 weeks of high altitude exposure. In lowlanders, a significant increase in levels of hydroperoxide (551.4 +/- 4.2 micromol/mL vs. 582.0 +/- 3.55, p < 0.001], protein carbonyl (2.4 +/- 0.11 micromol/mL/mg protein vs. 3.03 +/- 0.11, p < 0.001), TAS (1.02 +/- 0.01 mmol/L vs. 1.19 +/- 0.02, p < 0.001), and UA (298.0 +/- 6.68 micromol/L vs. 383.0 +/- 6.55, p < 0.001) was observed at high altitude. These measurements were significantly lower in highlanders than in lowlanders at high altitude. Total antioxidant status (TAS) and uric acid (UA) showed a positive correlation in lowlanders at sea level and in highlanders at high altitude. Hydroperoxide and TAS also showed a positive correlation in both groups at high altitude. This indicates increased oxidative stress at high altitude despite an increase in antioxidant capacity in lowlanders. To conclude, a hypoxia-induced increase in UA contributes an appreciable portion of plasma total antioxidant capacity, but may not be effective in preventing oxidative stress at high altitude. PMID:19775217

  19. High-altitude balloon-launched aircraft - A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Moes, Timothy R.; Norlin, Ken

    1993-01-01

    A real-time piloted simulation at the NASA Dryden Flight Research Facility was used to study the feasibility of launching a research aircraft from a high-altitude balloon. In the study, the simulated aircraft was launched in a nosedown attitude at zero airspeed from 110,000 ft. After launch, the pilot flew the aircraft through a near-maximum-lift pullout and then through a zoom climb to a trimmed, l-g flight condition at the test altitude. The study included parametric variations to measure the effects of launch altitude, gross weight, Mach number limit, and parachute size on the test altitude attained. The aerodynamic model of the simulated aircraft was based on flight test results, low Reynolds number windtunnel tests, and computational models; the model included significant Mach number and Reynolds number effects at high altitude. A small parachute was included in the simulation to limit Mach number during the pullout to avoid adverse transonic effects and their resultant energy losses. A small rocket motor was included in the simulation and was investigated for boosting the aircraft to a higher test altitude. In the study, a test altitude of approximately 95,000 ft was attained without rocket boost, and a test altitude in excess of 100,000 ft was attained using small rocket boost.

  20. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    PubMed

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered. PMID:25962370

  1. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    PubMed

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  2. High-altitude pulmonary hypertension: a pathophysiological entity to different diseases.

    PubMed

    Maggiorini, M; Léon-Velarde, F

    2003-12-01

    Pulmonary hypertension is a hallmark of high-altitude pulmonary oedema (HAPE) and of congestive right heart failure in subacute mountain sickness (SMS) and chronic mountain sickness (CMS) in the Himalayas and in the end-stage of CMS (Monge's disease) in the Andes. There are studies to suggest that transmission of excessively elevated pulmonary artery pressure and/or flow to the pulmonary capillaries leading to alveolar haemorrhage is the pathophysiological mechanism of HAPE. In the Himalayas, HAPE was successfully prevented by extending the acclimatisation period from a few days to 5 weeks, however, this did not prevent the occurrence of congestive right heart failure after several weeks of stay at 6,000 m. This leads to the concept that rapid remodelling of the small precapillary arteries prevents HAPE but not the development of right heart failure in SMS and CMS. Unresponsiveness of pulmonary hypertension to oxygen at high altitude and its complete resolution only after weeks of stay at low altitude suggest that structural rather than functional changes are its pathophysiological mechanism. Since pulmonary hypertension at high altitude is the driving force leading to high-altitude pulmonary oedema and "high-altitude right heart failure" in newcomers and residents of high altitude, the authors propose to adjust current terminology accordingly.

  3. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension.

    PubMed

    Berger, Marc M; Dehnert, Christoph; Bailey, Damian M; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Mairbäurl, Heimo; Bärtsch, Peter; Swenson, Erik R

    2009-01-01

    Berger, Marc M., Christoph Dehnert, Damian M. Bailey, Andrew M. Luks, Elmar Menold, Christian Castell, Guido Schendler, Vitalie Faoro, Heimo Mairbäurl, Peter Bärtsch, and Eric R. Swenson. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt. Med. Biol. 10:17-24, 2009.- Thirty-four mountaineers were studied at low (110 m) and high altitude (4559 m) to evaluate if increased pulmonary artery systolic pressure (PASP) at high altitude is associated with increased pulmonary endothelin-1 (ET-1) availability and alterations in nitrite metabolism across the lung. Blood samples were obtained using central venous and radial artery catheters for plasma ET-1 and nitrite. Pulmonary blood flow was measured by inert gas rebreathing to calculate transpulmonary exchange of plasma ET-1 and nitrite, and PASP was assessed by transthoracic Doppler echocardiography. After ascent to high altitude, PASP increased from 23 +/- 4 to 39 +/- 10 mmHg. Arterial and central venous plasma ET-1 increased, while plasma nitrite did not change significantly. At low altitude there was a transpulmonary loss of plasma ET-1, but a transpulmonary gain at high altitude. In contrast was a transpulmonary gain of plasma nitrite at low altitude and a transpulmonary loss at high altitude. PASP positively correlated with a transpulmonary gain of plasma ET-1 and negatively correlated with a transpulmonary loss of plasma nitrite. These results suggest that a transpulmonary gain of plasma ET- 1 is associated with higher PASP at high altitude. Transpulmonary loss of plasma nitrite indicates either less pulmonary nitric oxide (NO) production, which contributes to higher PASP, or increased NO bioavailability arising from nitrite reduction, which may oppose ET-1-mediated vasoconstriction.

  4. Respiratory physiology of high-altitude anurans: 55 years of research on altitude and oxygen.

    PubMed

    Navas, Carlos A; Chauí-Berlinck, José Guilherme

    2007-09-30

    In a 1951 paper, perhaps the first one addressing adjustments of respiratory physiology in high-elevation anurans, L.C. Stuart tested the hypothesis that hemoglobin values were higher in the high-elevation Bufo bocourti than in the low-elevation species Bufo marinus. We use Stuart's paper as a starting point for a historical review of the field that encompasses the past 55 years. We start with the early search for evidence of physiological adjustments that took place in the 1960s, move to the studies with Telmatobius that dominated the 1970s and the 1980s, continue with the contributions of experimental physiology that characterized the 1990s, and finish with the discovery of mechanisms enhancing hemoglobin oxygen affinity in high-elevation anurans (2000s). When analyzing the last mentioned topic, we highlight the contributions by the late Professor Carlos Monge, to whom we dedicate this paper. Finally, we discuss the current state of the field, and propose directions for further studies.

  5. Domain Specific Changes in Cognition at High Altitude and Its Correlation with Hyperhomocysteinemia

    PubMed Central

    Sharma, Vijay K.; Das, Saroj K.; Dhar, Priyanka; Hota, Kalpana B.; Mahapatra, Bidhu B.; Vashishtha, Vivek; Kumar, Ashish; Hota, Sunil K.; Norboo, Tsering; Srivastava, Ravi B.

    2014-01-01

    Though acute exposure to hypobaric hypoxia is reported to impair cognitive performance, the effects of prolonged exposure on different cognitive domains have been less studied. The present study aimed at investigating the time dependent changes in cognitive performance on prolonged stay at high altitude and its correlation with electroencephalogram (EEG) and plasma homocysteine. The study was conducted on 761 male volunteers of 25–35 years age who had never been to high altitude and baseline data pertaining to domain specific cognitive performance, EEG and homocysteine was acquired at altitude ≤240 m mean sea level (MSL). The volunteers were inducted to an altitude of 4200–4600 m MSL and longitudinal follow-ups were conducted at durations of 03, 12 and 18 months. Neuropsychological assessment was performed for mild cognitive impairment (MCI), attention, information processing rate, visuo-spatial cognition and executive functioning. Total homocysteine (tHcy), vitamin B12 and folic acid were estimated. Mini Mental State Examination (MMSE) showed temporal increase in the percentage prevalence of MCI from 8.17% on 03 months of stay at high altitude to 18.54% on 18 months of stay. Impairment in visuo-spatial executive, attention, delayed recall and procedural memory related cognitive domains were detected following prolonged stay in high altitude. Increase in alpha wave amplitude in the T3, T4 and C3 regions was observed during the follow-ups which was inversely correlated (r = −0.68) to MMSE scores. The tHcy increased proportionately with duration of stay at high altitude and was correlated with MCI. No change in vitamin B12 and folic acid was observed. Our findings suggest that cognitive impairment is progressively associated with duration of stay at high altitude and is correlated with elevated tHcy in the plasma. Moreover, progressive MCI at high altitude occurs despite acclimatization and is independent of vitamin B12 and folic acid. PMID:24988417

  6. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  7. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    PubMed Central

    Pandey, Priyanka; Mohammad, Ghulam; Singh, Yogendra; Qadar Pasha, MA

    2015-01-01

    Objective To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. Methods For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. Results A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK. Conclusion The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. PMID:26586960

  8. Rummy high-altitude pressure measurements and analysis

    SciTech Connect

    Banister, J.R.; Hereford, W.V.

    1982-01-01

    Five pressure-measurement canisters equipped with parachutes were deployed from an A7C aircraft on the Rummy test. Their altitudes above Yucca flat were over 8.5 km when the pressure pulse arrived. Three successful measurements were obtained. These time histories showed a more complicated behavior than histories obtained on Pahute Mesa tests because the Rummy event developed double spall closures over a large area. Excellent agreement was obtained between the observed pressure histories and those calculated from surface acceleration measurements. The Yucca Flat terrain was so level that pressure pulses were not appreciably changed or weakened by elevation differences.

  9. Flow separation in rocket nozzles under high altitude condition

    NASA Astrophysics Data System (ADS)

    Stark, R.; Génin, C.

    2016-03-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  10. Evaluating the Risks of High Altitude Travel in Chronic Liver Disease Patients.

    PubMed

    Luks, Andrew M; Swenson, Erik R

    2015-06-01

    Luks, Andrew M., and Erik R. Swenson. Clinician's Corner: Evaluating the risks of high altitude travel in chronic liver disease patients. High Alt Med Biol 16:80-88, 2015.--With improvements in the quality of health care, people with chronic medical conditions are experiencing better quality of life and increasingly participating in a wider array of activities, including travel to high altitude. Whenever people with chronic diseases travel to this environment, it is important to consider whether the physiologic responses to hypobaric hypoxia will interact with the underlying medical condition such that the risk of acute altitude illness is increased or the medical condition itself may worsen. This review considers these questions as they pertain to patients with chronic liver disease. While the limited available evidence suggests there is no evidence of liver injury or dysfunction in normal individuals traveling as high as 5000 m, there is reason to suspect that two groups of cirrhosis patients are at increased risk for problems, hepatopulmonary syndrome patients, who are at risk for severe hypoxemia following ascent, and portopulmonary hypertension patients who may be at risk for high altitude pulmonary edema and acute right ventricular dysfunction. While liver transplant patients may tolerate high altitude exposure without difficulty, no information is available regarding the risks of long-term residence at altitude with chronic liver disease. All travelers with cirrhosis require careful pre-travel evaluation to identify conditions that might predispose to problems at altitude and develop risk mitigation strategies for these issues. Patients also require detailed counseling about recognition, prevention, and treatment of acute altitude illness and may require different medication regimens to prevent or treat altitude illness than used in healthy individuals.

  11. High-altitude medical and operations problems and solutions for the Millimeter Array

    NASA Astrophysics Data System (ADS)

    Napier, Peter J.; West, John B.

    1998-07-01

    The 5000m altitude of the potential site for the Millimeter Array (MMA) in Northern Chile is so high that high-altitude problems for both the staff and equipment must be considered and included in planing for the facility. The very good accessibility of the site, only one hour's drive from the nearest town at altitude 2440m, makes it possible for MMA workers to sleep and perform much of their work at low altitude. Workers on the site will have 11 percent less oxygen available than workers at Mauna Kea Observatory. It is expected that the mental abilities and ability to do hard physical labor of workers on the high site will be reduced by 10 percent to 30 percent compared to sea-level. In-doors working areas on the MMA site will have their atmospheres oxygen enriched to provide an effective working altitude of 3500m where loss of mental ability should be small. Tests of oxygen enrichment at high-altitude Chilean mines and at the University of California White Mountain Research Station show that it is feasible and economic. Problems of equipment operation at 5000m altitude are expected to be manageable.

  12. Cardiovascular effects of chronic carbon monoxide and high-altitude exposure

    SciTech Connect

    McGrath, J.J. )

    1989-07-01

    At higher altitudes, ambient carbon monoxide levels are increasing with the number of residents and tourists and their use of motor vehicles and heating devices (such as fireplaces, furnaces, and stoves). Although chronic exposure to carbon monoxide or high altitude causes pronounced cardiovascular changes in humans as well as in animals, there is little information on the effects elicited by these stressors combined. Data from acute studies and theoretical considerations suggest that carbon monoxide inhaled at altitude may be more detrimental than carbon monoxide inhaled at sea level. It is not known, however, if the cardiovascular system adapts or deteriorates with continuous, concurrent exposure to carbon monoxide and high altitude. Male laboratory rats were exposed for six weeks in steel barometric chambers to altitudes ranging from 3,300 ft (ambient) to 18,000 ft and to concentrations ranging from 0 to 500 parts per million (ppm)2. Carbon monoxide had no effect on body weight at any altitude. There was a tendency for hematocrit to increase even at the lowest concentration of carbon monoxide (9 ppm), but the increase did not become significant until 100 ppm. At 10,000 ft, there was a tendency for total heart weight to increase in rats inhaling 100 ppm carbon monoxide. Although its effects on the heart at altitude are complex, carbon monoxide, in concentrations of 500 ppm or less, had little effect on the right ventricle; it did not exacerbate any effects due to altitude. There was a tendency for the left ventricle weight to increase with exposure to 35 ppm carbon monoxide at altitude, but the increase was not significant until 100 ppm carbon monoxide. Heart rate, blood pressure, cardiac output, and peripheral resistance were unaffected by exposure to 35 ppm carbon monoxide or 10,000-ft altitude singly or in combination.

  13. Metabolic Characteristics and Response to High Altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a Lizard Dwell at Altitudes Higher Than Any Other Living Lizards in the World

    PubMed Central

    Tang, Xiaolong; Xin, Ying; Wang, Huihui; Li, Weixin; Zhang, Yang; Liang, Shiwei; He, Jianzheng; Wang, Ningbo; Ma, Ming; Chen, Qiang

    2013-01-01

    Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2. PMID:23951275

  14. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world.

    PubMed

    Tang, Xiaolong; Xin, Ying; Wang, Huihui; Li, Weixin; Zhang, Yang; Liang, Shiwei; He, Jianzheng; Wang, Ningbo; Ma, Ming; Chen, Qiang

    2013-01-01

    Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  15. Renin and aldosterone at high altitude in man.

    PubMed

    Keynes, R J; Smith, G W; Slater, J D; Brown, M M; Brown, S E; Payne, N N; Jowett, T P; Monge, C C

    1982-01-01

    Measurements have been made of hormonal changes relevant to salt and water balance during prolonged exposure to hypoxia to improve our understanding of the syndrome of acute mountain sickness. We have attempted to delineate the detailed inter-relationships between the renin-aldosterone and the vasopressin systems by a metabolically controlled study, involving an orthostatic stress (45 degrees head-up tilt) and an injection of a standard dose of ACTH to test adrenal responsiveness. Three Caucasian medical students underwent a 7-day equilibration at 150 m (Lima, Peru), followed by a 6-day sojourn at 4350 m (Cerro de Pasco, Peru) and a final 7 days at 150 m. Measurements were made of sodium and potassium balance, body weight and the 24-h renal excretion of vasopressin, cortisol and aldosterone 18-glucuronide. These variables showed little change, except for that of aldosterone 18-glucuronide, which fell sharply at altitude and rebounded even more sharply on return to sea level. At altitude, basal plasma levels of renin activity and aldosterone fell, and the response to orthostasis was attenuated, but the fall of plasma renin activity, as compared to plasma aldosterone, was delayed; on return to sea level this dissociation was exacerbated with the return of normal renin responsiveness lagging behind that of aldosterone. We suggest that unknown factors which dissociate the orthodox renin-aldosterone relationship, other than the activity of the angiotensin I-converting enzyme, are operative on exposure to hypoxia. PMID:7057120

  16. Renin and aldosterone at high altitude in man.

    PubMed

    Keynes, R J; Smith, G W; Slater, J D; Brown, M M; Brown, S E; Payne, N N; Jowett, T P; Monge, C C

    1982-01-01

    Measurements have been made of hormonal changes relevant to salt and water balance during prolonged exposure to hypoxia to improve our understanding of the syndrome of acute mountain sickness. We have attempted to delineate the detailed inter-relationships between the renin-aldosterone and the vasopressin systems by a metabolically controlled study, involving an orthostatic stress (45 degrees head-up tilt) and an injection of a standard dose of ACTH to test adrenal responsiveness. Three Caucasian medical students underwent a 7-day equilibration at 150 m (Lima, Peru), followed by a 6-day sojourn at 4350 m (Cerro de Pasco, Peru) and a final 7 days at 150 m. Measurements were made of sodium and potassium balance, body weight and the 24-h renal excretion of vasopressin, cortisol and aldosterone 18-glucuronide. These variables showed little change, except for that of aldosterone 18-glucuronide, which fell sharply at altitude and rebounded even more sharply on return to sea level. At altitude, basal plasma levels of renin activity and aldosterone fell, and the response to orthostasis was attenuated, but the fall of plasma renin activity, as compared to plasma aldosterone, was delayed; on return to sea level this dissociation was exacerbated with the return of normal renin responsiveness lagging behind that of aldosterone. We suggest that unknown factors which dissociate the orthodox renin-aldosterone relationship, other than the activity of the angiotensin I-converting enzyme, are operative on exposure to hypoxia.

  17. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    PubMed Central

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  18. The physiological effects of resveratrol and its potential application in high altitude medicine.

    PubMed

    Zhu, Hui-li; Nie, Hong-jing; Li, Pei-bing; Deng, Bing-nan; Duan, Rui-feng; Jin, Hong; Chen, Zhao-li

    2015-11-01

    Resveratrol, as a natural polyphenolic compound, has a wide range of beneficial effects, which includes anti-tumor, cardiovascular protection, anti-oxidant and estrogen-like effects, and so on. Its various physiological properties are closely related to the therapeutic principle for prevention and treatment of high altitude hypoxia injury. Resveratrol may play an important role in relieving or curing high altitude diseases, especially high altitude polycythemia(HAPC). However, the literature about study and application of resveratrol in plateau medicine field is rarely reported up to now. In this review, we summarized the physiological effects of resveratrol, discussed the possible main principle of resveratrol for HAPC therapy, and looked forward to resveratrol's perspective or potential application in high altitude medicine.

  19. Dual Wavelength Lidar Observation of Tropical High-Altitude Cirrus Clouds During the ALBATROSS 1996 Campaign

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Schafer, J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    1998-01-01

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel POLARSTERN on the Atlantic ocean in October-November 1996.

  20. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    PubMed

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  1. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  2. High rate of schistosomiasis in travelers after a brief exposure to the high-altitude Nyinambuga crater lake, Uganda.

    PubMed

    Lachish, Tamar; Tandlich, Moshik; Grossman, Tamar; Schwartz, Eli

    2013-11-01

    Travel-related schistosomiasis is usually associated with prolonged freshwater exposure. Until recently, Uganda's crater lakes were considered schistosomiasis free due to their high-altitude location. We describe an outbreak of acute schistosomiasis after a brief exposure (mean, 22 ± 9.5 minutes) to a high-altitude crater lake.

  3. High Diversity of Drosophilidae in High-Altitude Wet Forests in Northeastern Brazil.

    PubMed

    Monteiro, L S; Garcia, A C L; Oliveira, G F; Rohde, C

    2016-06-01

    The high-altitude wet forests of northeastern Brazil, locally known as "Brejos de Altitude," are enclaves of the Atlantic Forest situated above 500 m, surrounded by dryland vegetation, the Caatinga. The aim of this study was to characterize drosophilid communities in these upland forests, since few ecological studies on drosophilid communities have been conducted in northeastern Brazil. Four sites were investigated in three different times of the year throughout standardized traps. The results reveal the presence of 55 different species in a total of 13,064 specimens collected. The data were evaluated using ecological diversity measurements and compared with those obtained for other environments in the same geographic region. As for species composition, the Bonito upland forest, in a boundary forest location, stood out as having high species richness.

  4. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    NASA Technical Reports Server (NTRS)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  5. [Dynamic structure of the cardiac rhythm in the process of adapting to high-altitude hypoxia].

    PubMed

    Shukurov, F A; Nidekker, I G

    1981-01-01

    On the basis of dynamic series of RR intervals of electrocardiograms of healthy male test subjects exposed for a different period of time to high altitude hypoxia, autoregression clouds were built. The patterns of distribution thus obtained were compared with physical work capacity of the test subjects. It is suggested that when selecting people to work actively at high altitudes autoregression clouds can be used as quantitative estimates of their health state and as predictions of potential adaptation failures.

  6. Initial feasibility study of a microwave-powered sailplane as a high-altitude observation platform

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1978-01-01

    It is shown that a microwave-powered sailplane can be a reasonable substitute for a satellite in some missions requiring only limited coverage of the surface of the earth. A mode of operation in which the aircraft cyclically climbs to high altitude in the beam, and then glides for several hundred kilometers, is feasible and takes advantage of the inherent forward speed of the sailplane at high altitude.

  7. Separation and determination of podophyllum lignans by micellar electrokinetic chromatography.

    PubMed

    Liu, S; Tian, X; Chen, X; Hu, Z

    2001-08-31

    A micellar electrokinetic chromatography method was established for the quantitative analysis of seven podophyllum lignans in Podophyllum emodi Wall. var. chinesis sprague. The optimum buffer system was 10 mM NaH2PO4-5 mM borate-100 mM sodium dodecylsulfate-30% isopropanol (pH 7.20). Voltage was 18 kV and detection at 214 nm. The second derivative chromatogram was used to determine a low-content component and those not fully separated from adjacent ones. The RSD values of migration times and peak areas were <2.2 and <5.5%, respectively. The effects of several CE parameters on the resolutions were studied systematically.

  8. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  9. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  10. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  11. Using ultrasound lung comets in the diagnosis of high altitude pulmonary edema: fact or fiction?

    PubMed

    Wimalasena, Yashvi; Windsor, Jeremy; Edsell, Mark

    2013-06-01

    High altitude pulmonary edema is a life-threatening condition that remains a concern for climbers and clinicians alike. Within the last decade, studies have shown ultrasonography to be valuable in the accurate diagnosis of a variety of lung pathologies, including cardiogenic pulmonary edema, pleural effusion, pneumothorax, and lung consolidation. Recently, studies conducted in remote areas have demonstrated that ultrasound lung comets can be used as a measure of subacute pulmonary edema and high altitude pulmonary edema in climbers ascending to altitude. This clinical review article provides an overview of lung ultrasonography and its relevance as a diagnostic aid to respiratory pathology. In addition, we describe a standardized technique for identifying ultrasound lung comets and its utility in recognizing the presence of extravascular lung water, as well as the results of studies that have used this approach at sea level and high altitude. PMID:23453728

  12. Aerodynamic characteristics of a hypersonic viscous optimized waverider at high altitudes

    NASA Technical Reports Server (NTRS)

    Rault, Didier F. G.

    1992-01-01

    The present paper addresses the applicability of the basic concept of waveriding at high altitudes, and the extent to which the large viscous forces degrade the aerodynamic performance of waveriders. The waverider under consideration was designed using a continuum flow methodology. It is shown that the lift-to-drag ratio of high-altitude/high-Knudsen-number waveriders can be expected to be significantly lower than their low altitude/low Knudsen number counterparts. The aerodynamic performance of a representative waverider which was optimized for a 90-km, Mach-25 application is studied for altitudes ranging from 97 km to 145 km and incidence angles of 0 to 30 deg. Typical values of the lift-to-drag ratio were computed to be in the range of 0 to 0.3. Friction forces are mostly responsible for this poor performance. Friction forces account for more than 93 percent of the drag and significantly reduce lift.

  13. Plasma and electric field boundaries at high and low altitudes on July 29, 1977

    NASA Technical Reports Server (NTRS)

    Fennell, J. F.; Johnson, R. G.; Young, D. T.; Torbert, R. B.; Moore, T. E.

    1982-01-01

    Hot plasma observations at high and low altitudes were compared. The plasma ion composition at high altitudes outside the plasmasphere was 0+. Heavy ions were also observed at low altitudes outside the plasmasphere. It is shown that at times these ions are found well below the plasmapause inside the plasmasphere. Comparisons of the low altitude plasma and dc electric fields show that the outer limits of the plasmasphere is not always corotating at the low L-shells. The corotation boundary, the estimated plasmapause boundary at the boundary of the inner edge of plasma sheet ions were at the same position. The inner edge of plasma sheet electrons is observed at higher latitudes than the plasmasphere boundary during disturbed times. The inner edge of the plasma sheaths shows a strong dawn to dusk asymmetry. At the same time the inner edge of the ring current and plasma sheath also moves to high latitudes reflecting an apparent inflation of the magnetosphere.

  14. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    PubMed

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  15. Adaptation of the Long-Lived Monocarpic Perennial Saxifraga longifolia to High Altitude1[OPEN

    PubMed Central

    Morales, Melanie; Fleta-Soriano, Eva; Garcia, Maria B.

    2016-01-01

    Global change is exerting a major effect on plant communities, altering their potential capacity for adaptation. Here, we aimed at unveiling mechanisms of adaptation to high altitude in an endemic long-lived monocarpic, Saxifraga longifolia, by combining demographic and physiological approaches. Plants from three altitudes (570, 1100, and 2100 m above sea level [a.s.l.]) were investigated in terms of leaf water and pigment contents, and activation of stress defense mechanisms. The influence of plant size on physiological performance and mortality was also investigated. Levels of photoprotective molecules (α-tocopherol, carotenoids, and anthocyanins) increased in response to high altitude (1100 relative to 570 m a.s.l.), which was paralleled by reduced soil and leaf water contents and increased ABA levels. The more demanding effect of high altitude on photoprotection was, however, partly abolished at very high altitudes (2100 m a.s.l.) due to improved soil water contents, with the exception of α-tocopherol accumulation. α-Tocopherol levels increased progressively at increasing altitudes, which paralleled with reductions in lipid peroxidation, thus suggesting plants from the highest altitude effectively withstood high light stress. Furthermore, mortality of juveniles was highest at the intermediate population, suggesting that drought stress was the main environmental driver of mortality of juveniles in this rocky plant species. Population structure and vital rates in the high population evidenced lower recruitment and mortality in juveniles, activation of clonal growth, and absence of plant size-dependent mortality. We conclude that, despite S. longifolia has evolved complex mechanisms of adaptation to altitude at the cellular, whole-plant and population levels, drought events may drive increased mortality in the framework of global change. PMID:27440756

  16. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction?

    PubMed

    Berger, Marc Moritz; Macholz, Franziska; Mairbäurl, Heimo; Bärtsch, Peter

    2015-11-15

    Preconditioning refers to exposure to brief episodes of potentially adverse stimuli and protects against injury during subsequent exposures. This was first described in the heart, where episodes of ischemia/reperfusion render the myocardium resistant to subsequent ischemic injury, which is likely caused by reactive oxygen species (ROS) and proinflammatory processes. Protection of the heart was also found when preconditioning was performed in an organ different from the target, which is called remote ischemic preconditioning (RIPC). The mechanisms causing protection seem to include stimulation of nitric oxide (NO) synthase, increase in antioxidant enzymes, and downregulation of proinflammatory cytokines. These pathways are also thought to play a role in high-altitude diseases: high-altitude pulmonary edema (HAPE) is associated with decreased bioavailability of NO and increased generation of ROS, whereas mechanisms causing acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) seem to involve cytotoxic effects by ROS and inflammation. Based on these apparent similarities between ischemic damage and AMS, HACE, and HAPE, it is reasonable to assume that RIPC might be protective and improve altitude tolerance. In studies addressing high-altitude/hypoxia tolerance, RIPC has been shown to decrease pulmonary arterial systolic pressure in normobaric hypoxia (13% O2) and at high altitude (4,342 m). Our own results indicate that RIPC transiently decreases the severity of AMS at 12% O2. Thus preliminary studies show some benefit, but clearly, further experiments to establish the efficacy and potential mechanism of RIPC are needed.

  17. Computer generated image of Apex high-altitude research sailplane in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computer-generated image depicts the current design concept of the Apex high-altitude research aircraft being developed by Advanced Soaring Concepts (ASC) for NASA's Environmental Research Aircraft and Sensor Technology program, based at NASA's Dryden Flight Research Center, Edwards, California. The Apex High-Altitude Flight Experiment is expected to explore the aerodynamics of controlled flight at very high altitudes near 100,000 feet. The Apex will be hoisted aloft tail-first from Dryden by a large high-altitude balloon and released at about 110,000-feet altitude. As it gradually descends, its instrumentation will collect aerodynamic data. The remotely-piloted, semi-autonomous Apex will combine a modified ASC sailplane fuselage design with a new wing designed at the Massachusetts Institute of Technology. The wing will have a special airfoil designed for high subsonic speeds at extreme altitudes. A device extending behind the right wing is a 'wake rake,' which will measure aerodynamic drag behind a test section of the wing, while a rocket pack mounted beneath the fuselage will assist the Apex in transitioning to horizontal flight. Research flights were expected to begin in mid-1998, but a series of technical problems delayed them. In the spring of 1999, Apex entered mothball status. This continued for a year, and in the spring of 2000 NASA selected Apex as part of phase 1 of the Revolutionary Concepts effort.

  18. Does hypoxia impair ovarian function in Bolivian women indigenous to high altitude?

    PubMed

    Vitzthum, V J; Ellison, P T; Sukalich, S; Caceres, E; Spielvogel, H

    2000-01-01

    Fertility appears to be reduced in at least some high altitude populations relative to their counterparts at lower elevations. Inferring from the difficulties with reproduction of newcomers to high altitude and from animal experiments, it has been hypothesized that this apparent reduction is the result of hypoxia acting to reduce fecundity and/or increase fetal loss. In humans, however, several behavioral as well as biological factors may affect fertility levels. These many factors have been organized by demographers into a framework of seven proximate determinants that includes fecundability (the monthly probability of conception) of which successful ovulation is one component. To test whether ovarian function is impaired in women indigenous to high altitude, we measured salivary progesterone (P) in a sample (n = 20) of Quechua women (aged 19-42 years) residing at 3,100 m. It was found that mean luteal P = 179 pmol/L and mean midluteal P = 243 pmol/L, levels that fall about midway in the range of known values for several populations and are higher than some lower altitude populations. These findings suggest that hypoxia does not appear to significantly impair ovarian function in those with lifelong residence at high altitude. There are, however, several factors common to many high altitude populations that may act to reduce fecundability and fertility including intercourse patterns (affected by marriage and migration practices), prolonged lactation, dietary insufficiency, and hard labor.

  19. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  20. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    NASA Technical Reports Server (NTRS)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  1. Systemic oxygen extraction during exercise at high altitude

    PubMed Central

    Martin, D. S.; Cobb, A.; Meale, P.; Mitchell, K.; Edsell, M.; Mythen, M. G.; Grocott, M. P. W.; Adams, Tom; Biseker, Lindsay; Booth, Adam; Burdall, Oliver; Cobb, Alexandra; Cumpstey, Andrew; Dauncey, Steve; Edsell, Mark; Farrant, James; Feelisch, Martin; Fernandez, Bernadette; Firth, Oliver; Gilbert, Edward; Grant, Daniel; Grocott, Michael; Hennis, Phil; Jackson, Laura; Jenner, Will; van der Kaaij, Jildou; Khosravi, Maryam; Kortekaas, Edith; Levett, Denny; Mahomed, Zeyn; Martin, Daniel; Meale, Paula; Milledge, Jim; Mitchell, Kay; Mole, Damian; Moses, Oliver; Mythen, Michael; Rigat, Fabio; O'Doherty, Alasdair; Salam, Alex; Sanborn, Matt; Sheperdigian, Adam; Shrubb, Fiona; Simpson, Jo; Talbot, Nick; Wandrag, Liesel; Wijesingha, Savini; Williamson, Wilby; Woolley, Tom; Yow, Heng

    2015-01-01

    Background Classic teaching suggests that diminished availability of oxygen leads to increased tissue oxygen extraction yet evidence to support this notion in the context of hypoxaemia, as opposed to anaemia or cardiac failure, is limited. Methods At 75 m above sea level, and after 7–8 days of acclimatization to 4559 m, systemic oxygen extraction [C(a−v)O2] was calculated in five participants at rest and at peak exercise. Absolute [C(a−v)O2] was calculated by subtracting central venous oxygen content (CcvO2) from arterial oxygen content (CaO2) in blood sampled from central venous and peripheral arterial catheters, respectively. Oxygen uptake (V˙O2) was determined from expired gas analysis during exercise. Results Ascent to altitude resulted in significant hypoxaemia; median (range) SpO2 87.1 (82.5–90.7)% and PaO2 6.6 (5.7–6.8) kPa. While absolute C(a−v)O2 was reduced at maximum exercise at 4559 m [83.9 (67.5–120.9) ml litre−1 vs 99.6 (88.0–151.3) ml litre−1 at 75 m, P=0.043], there was no change in oxygen extraction ratio (OER) [C(a−v)O2/CaO2] between the two altitudes [0.52 (0.48–0.71) at 4559 m and 0.53 (0.49–0.73) at 75 m, P=0.500]. Comparison of C(a−v)O2 at peak V˙O2 at 4559 m and the equivalent V˙O2 at sea level for each participant also revealed no significant difference [83.9 (67.5–120.9) ml litre1 vs 81.2 (73.0–120.7) ml litre−1, respectively, P=0.225]. Conclusion In acclimatized individuals at 4559 m, there was a decline in maximum absolute C(a−v)O2 during exercise but no alteration in OER calculated using central venous oxygen measurements. This suggests that oxygen extraction may have become limited after exposure to 7–8 days of hypoxaemia. PMID:25501722

  2. UVER and UV index at high altitude in Northwestern Argentina.

    PubMed

    Utrillas, M P; Marín, M J; Esteve, A R; Salazar, G; Suarez, H; Castillo, J; Martínez-Lozano, J A

    2016-10-01

    Measurements of ultraviolet erythemal radiation (UVER) made during two years at three sites located at altitudes over 1000ma.s.l. in Northwestern Argentina (Salta, San Carlos, and El Rosal) have been used to estimate and analyze the UV Index (UVI) and the cumulative doses at these locations. For the UVER irradiance, data of January (maximum values) and June (minimum values) have been analyzed as representative of the year for all locations. The UVI reaches extreme (>11) values in >20% of the analyzed days in Salta (1190ma.s.l.), while these are reached in San Carlos (1611ma.s.l.) and El Rosal (3355ma.s.l.) in >40% of the analyzed days. Finally, the cumulative doses over an average year have also been studied for each location. The doses received during austral summer and autumn are of the same order, and represent one third of the annual dose, while the doses received during austral winter and spring represent one sixth of the annual dose approximately. PMID:27607308

  3. UVER and UV index at high altitude in Northwestern Argentina.

    PubMed

    Utrillas, M P; Marín, M J; Esteve, A R; Salazar, G; Suarez, H; Castillo, J; Martínez-Lozano, J A

    2016-10-01

    Measurements of ultraviolet erythemal radiation (UVER) made during two years at three sites located at altitudes over 1000ma.s.l. in Northwestern Argentina (Salta, San Carlos, and El Rosal) have been used to estimate and analyze the UV Index (UVI) and the cumulative doses at these locations. For the UVER irradiance, data of January (maximum values) and June (minimum values) have been analyzed as representative of the year for all locations. The UVI reaches extreme (>11) values in >20% of the analyzed days in Salta (1190ma.s.l.), while these are reached in San Carlos (1611ma.s.l.) and El Rosal (3355ma.s.l.) in >40% of the analyzed days. Finally, the cumulative doses over an average year have also been studied for each location. The doses received during austral summer and autumn are of the same order, and represent one third of the annual dose, while the doses received during austral winter and spring represent one sixth of the annual dose approximately.

  4. High Altitude Small Engine Test Techniques at the NASA Glenn Propulsion Systems Lab

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo

    2001-01-01

    A High Altitude Test was performed in the Propulsion Systems Lab (PSL) at the NASA Glenn Research Center using a Pratt and Whitney Canada PW545 jet engine. This engine was tested to develop a highaltitude database on small, high-bypass ratio, engine performance and operability. Industry is interested in the use of high-bypass engines for Uninhabited Aerial Vehicles (UAV's) to perform high altitude surveillance. The tests were a combined effort between Pratt & Whitney Canada (PWC) and NASA Glenn Research Center. A large portion of this test activity was to collect performance data with a highly instrumented low-pressure turbine. Low-pressure turbine aerodynamic performance at low Reynolds numbers was collected and compared to analytical models developed by NASA and PWC. This report describes the test techniques implemented to obtain high accuracy turbine performance data in an altitude test facility, including high accuracy airflow at high altitudes, very low mass flow, and low air temperatures. Major accomplishments from this test activity were to collect accurate and repeatable turbine performance data at high altitudes to within 1 percent. Data were collected at 19,800m, 16,750m, and 13,700m providing documentation of diminishing LPT performance with reductions in Reynolds number in an actual engine flight environment. The test provided a unique database for the development of engine analysis codes to be used for future LPT performance improvements.

  5. Flight test evaluation of an RAF high altitude partial pressure protective assembly

    NASA Technical Reports Server (NTRS)

    Ashworth, G. R.; Putnam, T. W.; Dana, W. J.; Enevoldson, E. K.; Winter, W. R.

    1979-01-01

    A partial pressure suit was evaluated during tests in an F-104 and F-15 as a protective garment for emergency descents. The garment is an pressure jerkin and modified anti-g suit combined with an oronasal mask. The garment can be donned and doffed at the aircraft to minimize thermal buildup. The oronasal mask was favored by the pilots due to its immobility on the face during high g-loading. The garment was chosen to provide optimum dexterity for the pilot, which is not available in a full pressure suit, while protecting the pilot at altitudes up to 18,288 meters, during a cabin decompression, and subsequent aircraft descent. During cabin decompressions in the F-104 and F-15, cabin pressure altitude was measured at various aircraft angles of attack, Mach numbers, and altitudes to determine the effect of the aerodynamic slipstream on the cabin altitude.

  6. High altitude medicine in China in the 21st century: opportunities and challenges.

    PubMed

    Huang, Lan

    2014-01-01

    China has the largest plateau, Qinghai-Tibet Plateau, where inhabited the most high altitude populations. Moreover, millions of people from plain areas come to the plateau for travel and work purposes and the number of the newcomers has been increasing every year. The hypoxic environment of plateau raised a series of related health issues in the new immigrants, so have created a special medical discipline - High Altitude Medicine. Over the past decades, researches on high altitude medicine have never being ceased in China, and lots of research findings have been reported. Application and practice of these achievements have greatly decreased the mobility and mortality of high-altitude diseases, however, there remained lots of questions to be elucidated. In view of this, the authors were granted a special project from the National Health and Family Planning Commission of China, and conducted a multi-center, prospective, on-scene high altitude medicine study for the acute mountain sickness. Some innovative findings were achieved, and the parameters for diagnosis and application conditions were proposed. Furthermore, the different diagnoses and treatment effects were compared, and a more standardized, reasonable scheme was drawn up. Regarding the unbalanced medical resources in the vast high altitude area, an application system for the public and the army has been established. In the 21st century, innovations in China and novel research approaches have provided great opportunities for the development of high altitude medicine. It is believed that the researchers in China are able to catch the opportunities and address the challenges. PMID:25937936

  7. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    PubMed

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  8. Control of breathing and the circulation in high-altitude mammals and birds.

    PubMed

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.

  9. Attenuation of S-cone function at high altitude assessed by electroretinography.

    PubMed

    Schatz, Andreas; Dominik Fischer, M; Schommer, Kai; Zrenner, Eberhart; Bartz-Schmidt, Karl-Ulrich; Gekeler, Florian; Willmann, Gabriel

    2014-04-01

    As impaired S-cone function has been reported psychophysically this study assessed S-cone function during high altitude exposure using electroretinography (ERG) and investigated a possible association with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Standard ERG equipment was used (Diagnosys LLC, Cambridge, UK) with special protocol settings to extract S-cone function. Twelve subjects were analyzed in the current study and examinations were performed in Tübingen, Germany (341m) as baseline and thereafter at the Capanna Margherita, Italy (4559m) at high altitude. Results were compared using a paired t-test. Correlations between ERG measurements and oxygen saturation (SpO2), heart rate (HR) and scores of acute mountain sickness (AMS-C and LL) were calculated using Pearson's correlation coefficients. Amplitudes of S-cone b-waves decreased significantly at high altitude (p=0.02). No significant changes were observed for implicit times of b-waves (p=0.63), a-waves (p=0.75) or for a-wave amplitudes (p=0.78). The incidence of AMS was 50% at high altitude according to AMS-C and LL scores (AMS-C⩾0.7 and LL⩾5). Heart rate increased to 84±10min(-1) and SpO2 decreased to 71.9±5.7% at high altitude. No significant correlation was found between S-cone ERG parameters and SpO2, HR, AMS-C and LL. For the first time our study defines a significant impairment of S-cone function at high altitude time using objective state of the art examination methods. No correlation between the functional impairment of S-cones and levels of AMS was detected. PMID:24576750

  10. Heart rate and respiratory rhythm dynamics on ascent to high altitude

    NASA Technical Reports Server (NTRS)

    Lipsitz, L. A.; Hashimoto, F.; Lubowsky, L. P.; Mietus, J.; Moody, G. B.; Appenzeller, O.; Goldberger, A. L.

    1995-01-01

    OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P < 0.01) at high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress.

  11. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    PubMed

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences. PMID:26669710

  12. Study on the radiation property of high temperature gas relation with flight altitude and velocity

    NASA Astrophysics Data System (ADS)

    Meng, Weihua; Xu, Hang; Xiang, Jingbo; Song, Jiangtao

    2013-08-01

    While flying in the aerosphere at high speed, it will form shock wave around the noddle of flight vehicle. The radiation of hot air behind shock wave is a major factor responsible for the infrared signature of the vehicle, and has an important influence on the infrared detection system mounted in it. Calculating the infrared radiation of high temperature gas is significant for selecting an optimal detection band and improving detection capability of the IR system. In this paper, focused on the high-speed flight in typical altitude, the line-by-line method was adopted to calculate the radiation properties of high temperature gas around the noddle of the vehicle to study the relationship with the flight altitude and velocity. At first, based on the flight altitude, the related parameters of the flow, such as pressure, temperature and density, were calculated using the standard atmosphere model. Then, the parameters of the air which had passed through the shock wave were calculated according to the shock wave theory. At last, the line-by-line method had been used to calculate the radiant absorption coefficient of high temperature gas in different velocity and flight altitude. The results of calculation show that in the same velocity, the average absorption coefficient of high temperature gas is smaller while the higher flight altitude; in the same flight altitude, the coefficient is bigger while the higher velocity. And so, while flying in low altitude with high speed, the radiation of the hot air should be taken into consideration more carefully for infrared system design.

  13. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-11-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high-altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  14. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  15. Mutation effect of high altitude balloon flight on rice and green pepper seeds.

    PubMed

    Li, J; Wang, P; Han, D; Chen, F; Deng, L; Guo, Y

    1997-04-01

    Dry seeds of rice and green pepper were carried in the basket of a high altitude balloon to 30-40 km for 8 h. The treated seeds were planted on the ground and characters of these seeds and their progenies, such as development, fruiting, disease resistance were observed. The results showed that the SP2 generation of the treated rice showed strong mutation. A Japonica male fertility restorer rice line was found out. It could be hybridized with sterile line of Indica rice, and their progeny had strong hybrid vigor, high setting percentage and good plumpness of grain. Disease resistance, high-yield, big-fruit and high vitamin C content strains were selected from the progenies of treated green pepper seeds. The above results indicated that the special conditions in high altitude could produce a variety of mutations and most of them are hereditable. Therefore, high altitude balloon flight can be used as a new method of mutation breeding. PMID:11539903

  16. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wanders, N.; Lutz, A. F.; Shea, J. M.; Bierkens, M. F. P.

    2015-05-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high altitude precipitation. Yet direct observations of high altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high altitude precipitation in the upper Indus Basin and show that the amount of precipitation required to sustain the observed mass balances of the large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation is up to a factor ten higher than previously thought. We conclude that these findings alter the present understanding of high altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs and the regional geopolitical situation in general.

  17. Body and organ weights of rats exposed to carbon monoxide at high altitude.

    PubMed

    McGrath, J J

    1988-01-01

    Although chronic exposure to carbon monoxide (CO) or high altitude produces pronounced cardiovascular changes in humans as well as animals, there is little information on the effects elicited by these stressors combined. Theoretical considerations, as well as data from acute studies, suggest that CO inhaled at high altitude may be more detrimental than CO inhaled at low altitude. The purpose of these studies was to construct a system in which CO and altitude could be controlled precisely, and to investigate the effects of continuous exposure to CO and high altitude on body weights and hematocrit ratios, as well as heart, spleen, adrenals, kidneys, and pituitary weights. Male, laboratory rats were exposed for 6 wk in steel barometric chambers to (1) 100 ppm CO, (2) 15,000 ft simulated high altitude (SHA), and (3) CO at SHA. Altitude was simulated by a system of gate valves and a vacuum pump, and measured by an altimeter. CO, from high-pressure cylinders, was introduced into the air supplying each chamber through a mass flow controller and measured by a nondispersive infrared (NDIR) analyzer. Although SHA had no affect on left ventricle plus septum (LV + S), adrenal, spleen, or kidney weights, SHA decreased body weights, and increased hematocrit ratios, as well as right ventricle (RV), total heart (HT), and pituitary weights. CO had no affect on body weights, RV, HT, adrenal, spleen, or kidney weights, but CO increased hematocrit ratios and LV + S weights. There was no significant interaction between SHA and CO on any parameter except kidney weight. These results indicate that, in general, the effects produced by 15,000 ft SHA are not intensified by exposure to 100 ppm CO. PMID:3351978

  18. High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes.

    PubMed

    Gonzales, Gustavo F; Tapia, Vilma; Gasco, Manuel; Rubio, Julio; Gonzales-Castañeda, Cynthia

    2011-12-01

    Chronic mountain sickness (CMS), a lack of adaptation to altitude characterized by excessive erythrocytosis (EE), is a health problem associated with life at high altitude. The erythropoietic process is regulated by both erythropoietin and testosterone. Zinc (Zn) is known to be related with testosterone and hemoglobin levels; meanwhile, nitric oxide was also associated with adaptation to high altitude. The aim of this study was to determine the relationship of hemoglobin and CMS score with serum levels of zinc, total testosterone (TT), calculated free testosterone (cFT), bioavailable testosterone (BAT), hemoglobin, and nitric oxide in men at high altitude with or without EE. Men residing in Lima (150 m) and Cerro de Pasco (4,340 m), Peru, were divided into three groups: (1) low altitude, (2) high altitude without EE (hemoglobin < 21 g/dl), and (3) high altitude with EE (hemoglobin ≥ 21 g/dl). Adjusted multivariable regression models showed that serum testosterone (total or free) and Zn levels were independently correlated with increased hemoglobin levels. Similarly, hemoglobin was positively related with signs/symptoms of CMS; however, both increased the serum Zn and the nitric oxide levels correlated with reduced risk for signs/symptoms of CMS. In conclusion, higher serum testosterone levels and Zn levels were associated with EE, and low scores of signs/symptoms of CMS were associated with higher Zn and nitric oxide levels.

  19. Elevated performance: the unique physiology of birds that fly at high altitudes.

    PubMed

    Scott, Graham R

    2011-08-01

    Birds that fly at high altitudes must support vigorous exercise in oxygen-thin environments. Here I discuss the characteristics that help high fliers sustain the high rates of metabolism needed for flight at elevation. Many traits in the O(2) transport pathway distinguish birds in general from other vertebrates. These include enhanced gas-exchange efficiency in the lungs, maintenance of O(2) delivery and oxygenation in the brain during hypoxia, augmented O(2) diffusion capacity in peripheral tissues and a high aerobic capacity. These traits are not high-altitude adaptations, because they are also characteristic of lowland birds, but are nonetheless important for hypoxia tolerance and exercise capacity. However, unique specializations also appear to have arisen, presumably by high-altitude adaptation, at every step in the O(2) pathway of highland species. The distinctive features of high fliers include an enhanced hypoxic ventilatory response, an effective breathing pattern, larger lungs, haemoglobin with a higher O(2) affinity, further augmentation of O(2) diffusion capacity in the periphery and multiple alterations in the metabolic properties of cardiac and skeletal muscle. These unique specializations improve the uptake, circulation and efficient utilization of O(2) during high-altitude hypoxia. High-altitude birds also have larger wings than their lowland relatives to reduce the metabolic costs of staying aloft in low-density air. High fliers are therefore unique in many ways, but the relative roles of adaptation and plasticity (acclimatization) in high-altitude flight are still unclear. Disentangling these roles will be instrumental if we are to understand the physiological basis of altitudinal range limits and how they might shift in response to climate change.

  20. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans.

    PubMed

    Ge, Ri-Li; Simonson, Tatum S; Cooksey, Robert C; Tanna, Uran; Qin, Ga; Huff, Chad D; Witherspoon, David J; Xing, Jinchuan; Zhengzhong, Bai; Prchal, Josef T; Jorde, Lynn B; McClain, Donald A

    2012-06-01

    Recent studies have identified genes involved in high-altitude adaptation in Tibetans. Genetic variants/haplotypes within regions containing three of these genes (EPAS1, EGLN1, and PPARA) are associated with relatively decreased hemoglobin levels observed in Tibetans at high altitude, providing corroborative evidence for genetic adaptation to this extreme environment. The mechanisms that afford adaptation to high-altitude hypoxia, however, remain unclear. Considering the strong metabolic demands imposed by hypoxia, we hypothesized that a shift in fuel preference to glucose oxidation and glycolysis at the expense of fatty acid oxidation would improve adaptation to decreased oxygen availability. Correlations between serum free fatty acid and lactate concentrations in Tibetan groups living at high altitude and putatively selected haplotypes provide insight into this hypothesis. An EPAS1 haplotype that exhibits a signal of positive selection is significantly associated with increased lactate concentration, the product of anaerobic glycolysis. Furthermore, the putatively advantageous PPARA haplotype is correlated with serum free fatty acid concentrations, suggesting a possible decrease in the activity of fatty acid oxidation. Although further studies are required to assess the molecular mechanisms underlying these patterns, these associations suggest that genetic adaptation to high altitude involves alteration in energy utilization pathways.

  1. NAU's High Altitude Balloon Satellite Program for Middle and High School Students

    NASA Astrophysics Data System (ADS)

    Lutz, Barry L.

    2007-10-01

    Northern Arizona University is entering its fourth year of offering a high altitude balloon satellite program designed for middle and high school students. The program, called Changes in Altitudes, was originally piloted by the NAU Space Grant, a member of the Arizona Space Grant Consortium, and is currently being supported by the University of Arizona's Phoenix Mars Mission as a robotics strand of its Education and Public Outreach program. Each year, ten schools from across Arizona, selected on a competitive basis, are invited to form teams of fours student each to design and build payloads that they will fly on a high altitude weather balloon up to 100, 000 ft above sea level. The baseline payload consists of 6-inch cube containing a pressure data logger, a temperature/relative humidity data logger, and a small film camera that is modified to take photographs approximately every three minutes during the flight. The students track the balloon from launch through burst to touch down. They recover their payloads in the field to retrieve the pressure and temperature profiles of the atmosphere and the images of the Earth recorded during the flight. A post-flight debriefing allows students to see and share their data with students from the other schools. Each school is participates in four flights over a period of two years allowing up to 16 students from each school to experience the project. In addition, the teachers are provided a training workshop and launch to prepare them for leading their student teams. In this poster, examples of student data are presented and the failures and successes are discussed, along with the challenges associated with offering such a program at the pre-college level. The handbook used for teacher training will be available, along with words of encouragement to build a similar program in your state.

  2. Butterflies of the high-altitude Atacama Desert: habitat use and conservation

    PubMed Central

    Despland, Emma

    2014-01-01

    The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants. PMID:25309583

  3. Butterflies of the high-altitude Atacama Desert: habitat use and conservation.

    PubMed

    Despland, Emma

    2014-01-01

    The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants.

  4. Effects of simulated heliox diving at high altitudes on blood cells, liver functions and renal functions.

    PubMed

    Hu, Hui-Jun; Fan, Dan-Feng; Lv, Yan; Zhang, Yu; Yang, Chen; Zhao, Ling; Zhao, Ru-Gang; Pan, Xiao-Wen

    2013-01-01

    The aim of the present study was to examine the effects of simulated heliox diving at high altitudes on divers' blood cells, liver functions and renal functions. In this experiment, four divers lived for nine consecutive days in a dual-function high-low pressure chamber, which simulated air pressure at an altitude of 3,000 meters and at a 30-meter depth; an altitude of 4,000 meters and 30-meter depth; and at an altitude of 5,200 meters and 30 meters and 50 meters in depth. Total time underwater was 60 minutes. The subjects breathed heliox (with oxygen at 40% and helium at 60%) during the simulated 30-meter dive from zero altitude to 30 meters and while remaining underwater; they breathed air while ascending from 30 meters to 18. They breathed heliox (with oxygen at 26.7% and helium at 73.3%) in the simulated dive from zero altitude to 50 meters underwater, in remaining underwater and in ascending from 50 meters to 29; air while ascending from 29 meters to 18. Pure oxygen was breathed while ascending from 18 meters to the surface; then air. Results indicated: (1) the correlating indices of routine blood, liver and renal functions, and urine routine were all within normal reference ranges; and (2) the indices tested at other periods of time were not significantly different (p > 0.05) from the results at zero-meter level and 3,000-meter level. The study suggests that the heliox diving processes at different high altitudes simulated in this experiment have no significant impact upon divers' blood routine, liver functions and renal functions.

  5. Preparation for high altitude expedition and changes in cardiopulmonary and biochemical laboratory parameters with ascent to high altitude in transplant patients and live donors.

    PubMed

    Suh, Kyung-Suk; Kim, Taehoon; Yi, Nam-Joon; Hong, Geun

    2015-11-01

    High-altitude climbing has many risks, and transplant recipients should discuss the associated risks and means of preparation with their physicians. This study aimed to help prepare athletic transplant donors and recipients for mountain climbing and was designed to evaluate physical performance and changes in cardiopulmonary and biochemical laboratory parameters of transplant recipients and donors in extreme conditions of high altitude. Ten subjects-six liver transplant recipients, two liver donors, and one kidney transplant recipient and his donor-were selected for this expedition to Island Peak, Himalayas, Nepal. Six healthy subjects joined the group for comparison. Blood samplings, vital signs, and oxygen saturation were evaluated, as was the Lake Louise acute mountain sickness score. All transplant subjects and donors reached the base camp (5150 m), and two liver transplant recipients and a liver donor reached the summit (6189 m). The blood levels of immunosuppressants were well maintained. The serum erythropoietin level was significantly higher in transplant recipients taking tacrolimus. With proper preparation, certain liver transplant patients and donors can tolerate strenuous physical activity and can tolerate high altitude similarly to normal healthy control subjects without significant biochemical laboratory changes in liver and renal function.

  6. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    NASA Technical Reports Server (NTRS)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  7. Daniel Vergara Lope and Carlos Monge Medrano: two pioneers of high altitude medicine.

    PubMed

    Rodríguez de Romo, Ana Cecilia

    2002-01-01

    Daniel Vergara Lope from Mexico and Carlos Monge Medrano from Peru were brilliant scientists in their own countries. Both scientists studied high altitude physiology and defined the physiological and anatomical mechanisms of adaptation to high elevations. The Mexican physiologist proposed his ideas 40 years before his Peruvian counterpart. This paper studies the contribution of Vergara Lope and Monge Medrano to the understanding of high altitude medicine and proposes explanations of why history has given priority to Monge, whereas Vergara Lope is relegated to anonymity. PMID:12396886

  8. Daniel Vergara Lope and Carlos Monge Medrano: two pioneers of high altitude medicine.

    PubMed

    Rodríguez de Romo, Ana Cecilia

    2002-01-01

    Daniel Vergara Lope from Mexico and Carlos Monge Medrano from Peru were brilliant scientists in their own countries. Both scientists studied high altitude physiology and defined the physiological and anatomical mechanisms of adaptation to high elevations. The Mexican physiologist proposed his ideas 40 years before his Peruvian counterpart. This paper studies the contribution of Vergara Lope and Monge Medrano to the understanding of high altitude medicine and proposes explanations of why history has given priority to Monge, whereas Vergara Lope is relegated to anonymity.

  9. Effect of major nutrients on podophyllotoxin production in Podophyllum hexandrum suspension cultures.

    PubMed

    Chattopadhyay, S; Mehra, R S; Srivastava, A K; Bhojwani, S S; Bisaria, V S

    2003-01-01

    The effect of major medium ingredients (sugar, nitrogen source and phosphate) in Podophyllum hexandrum suspension cultures was investigated in order to increase the production of podophyllotoxin, the raw material in the synthesis of anticancer drugs. Amongst B5, Eriksson, MS, Nitsch, Street and White's medium, MS medium resulted in high growth and podophyllotoxin accumulation. The optimum level of nitrogen was found to be 60 mM, with a combination of ammonium salts and nitrate in the ratio of 1:2. The highest level of podophyllotoxin was obtained at 60 g glucose/l and at 1.25 mM phosphate after 30 days. Statistical design was adopted to determine the optimum levels of the parameters for cell growth and podophyllotoxin production.

  10. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    PubMed

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  11. Pulmonary gas exchange, diffusing capacity in natives and newcomers at high altitude.

    PubMed

    Vincent, J; Hellot, M F; Vargas, E; Gautier, H; Pasquis, P; Lefrançois, R

    1978-08-01

    At high altitude, in resting conditions, no differences have been observed between High Altitude Natives (HAN) and acclimatized Sea Level Natives (SLN) in AaDO2, aADCO2 or venous admixture. In acclimatized SLN, AaDO2 is smaller than at sea level because of: (1) The minor effect on arterial oxygenation of the probably constant venous admixture. (2) The reduction of VA/Q inequality as shown by a smaller aADCO2. In HAN, DLCO is greater than in SLN; the contribution of DM or VC in this difference remains unsettled, mainly because of the difficulties of measurement of DM and VC in HAN suddenly exposed to acute hyperoxia. In SLN, in acute hypoxia, DLCO increased transitorily. Asynchronous mechanisms of adaptation to high altitude are evoked.

  12. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses.

    PubMed

    Luks, Andrew M

    2015-03-01

    With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management.

  13. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings.

  14. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. PMID:26139219

  15. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  16. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses.

    PubMed

    Luks, Andrew M

    2015-03-01

    With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management. PMID:25539941

  17. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  18. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  19. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  20. [High altitude medicine is a concern also for Swedish primary care. Knowledge needed to identify high risk patients and provide appropriate advice].

    PubMed

    Kiwanuka, Olivia

    2015-05-26

    With the increasing amount of people traveling to high altitude regions, the number of people at risk of acquiring altitude illness increases. Altitude illness entails three syndromes; acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema. These syndromes are potentially lethal acquired medical conditions that in most cases are preventable. Health care providers need to inform travelers of the risks associated with mountaineering and the prophylactic measures available as well as identify underlying conditions that require specific considerations. This article provides a summary of the pathophysiology, symptoms and treatment of altitude illness and aims to be an orientation for general practitioners.

  1. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  2. Effects of high-altitude electromagnetic pulse (HEMP) on telecommunications assets. Final Technical Information Bulletin

    SciTech Connect

    Not Available

    1988-06-01

    The objective of the Electromagnetic Pulse (EMP) Mitigation Program is the removal of EMP as a significant impediment to timely reestablishment of regional and national telecommunications following an attack against the United States that includes high-altitude nuclear detonations. The program approach involves estimating the effects of High-altitude EMP (HEMP) on telecommunication connectivity and traffic-handling capability, assessing the impact of available HEMP mitigation alternatives, and developing a comprehensive plan for implementating mitigation alternatives. This report summarizes available test results as they apply to the EMP Mitigation Program, and supercedes all previous versions of this report.

  3. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  4. Moderate Altitude Affects High Intensity Running Performance in a Collegiate Women's Soccer Game.

    PubMed

    Bohner, Jonathan D; Hoffman, Jay R; McCormack, William P; Scanlon, Tyler C; Townsend, Jeremy R; Stout, Jeffrey R; Fragala, Maren S; Fukuda, David H

    2015-09-29

    The effect of altitude on soccer game activity profiles was retrospectively examined in six NCAA Division I female soccer players. Comparisons were made between two matches played at sea level (SL) and one match played at a moderate altitude (1839 m). A 10-Hz global positioning system device was used to measure distance and velocity. The rate of total distance capacity (TDC) and high intensity running (HIR) as well as percent of time at HIR were evaluated. Significant differences were seen in the distance rate (120.55 ± 8.26 m·min-1 versus 105.77 ± 10.19 m·min-1) and the HIR rate (27.65 ± 9.25 m·min-1 versus 25.07 ± 7.66 m·min-1) between SL and altitude, respectively. The percent of time at HIR was not significantly different (p = 0.064), yet tended to be greater at SL (10.4 ± 3.3%) than at altitude (9.1 ± 2.2%). Results indicate that teams residing at SL and competing at a moderate altitude may have a reduced ability in distance covered and a high intensity run rate.

  5. Moderate Altitude Affects High Intensity Running Performance in a Collegiate Women’s Soccer Game

    PubMed Central

    Bohner, Jonathan D.; Hoffman, Jay R.; McCormack, William. P.; Scanlon, Tyler C.; Townsend, Jeremy R.; Stout, Jeffrey R.; Fragala, Maren S.; Fukuda, David H.

    2015-01-01

    The effect of altitude on soccer game activity profiles was retrospectively examined in six NCAA Division I female soccer players. Comparisons were made between two matches played at sea level (SL) and one match played at a moderate altitude (1839 m). A 10-Hz global positioning system device was used to measure distance and velocity. The rate of total distance capacity (TDC) and high intensity running (HIR) as well as percent of time at HIR were evaluated. Significant differences were seen in the distance rate (120.55 ± 8.26 m·min−1 versus 105.77 ± 10.19 m·min−1) and the HIR rate (27.65 ± 9.25 m·min−1 versus 25.07 ± 7.66 m·min−1) between SL and altitude, respectively. The percent of time at HIR was not significantly different (p = 0.064), yet tended to be greater at SL (10.4 ± 3.3%) than at altitude (9.1 ± 2.2%). Results indicate that teams residing at SL and competing at a moderate altitude may have a reduced ability in distance covered and a high intensity run rate. PMID:26557199

  6. Moderate Altitude Affects High Intensity Running Performance in a Collegiate Women's Soccer Game.

    PubMed

    Bohner, Jonathan D; Hoffman, Jay R; McCormack, William P; Scanlon, Tyler C; Townsend, Jeremy R; Stout, Jeffrey R; Fragala, Maren S; Fukuda, David H

    2015-09-29

    The effect of altitude on soccer game activity profiles was retrospectively examined in six NCAA Division I female soccer players. Comparisons were made between two matches played at sea level (SL) and one match played at a moderate altitude (1839 m). A 10-Hz global positioning system device was used to measure distance and velocity. The rate of total distance capacity (TDC) and high intensity running (HIR) as well as percent of time at HIR were evaluated. Significant differences were seen in the distance rate (120.55 ± 8.26 m·min-1 versus 105.77 ± 10.19 m·min-1) and the HIR rate (27.65 ± 9.25 m·min-1 versus 25.07 ± 7.66 m·min-1) between SL and altitude, respectively. The percent of time at HIR was not significantly different (p = 0.064), yet tended to be greater at SL (10.4 ± 3.3%) than at altitude (9.1 ± 2.2%). Results indicate that teams residing at SL and competing at a moderate altitude may have a reduced ability in distance covered and a high intensity run rate. PMID:26557199

  7. Changes in labial capillary density on ascent to and descent from high altitude

    PubMed Central

    Gilbert-Kawai, Edward; Coppel, Jonny; Phillip, Hennis; Grocott, Michael; Ince, Can; Martin, Daniel

    2016-01-01

    Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021). There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017). Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area), despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains elevated on

  8. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    PubMed Central

    2009-01-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude. PMID:20038496

  9. Subtle Cognitive Dysfunction in Resolving High Altitude Cerebral Edema Revealed by a Clock Drawing Test.

    PubMed

    Quigley, Ian; Zafren, Ken

    2016-06-01

    High altitude cerebral edema (HACE) is a life-threatening condition that can affect people who ascend to altitudes above 2500 m. Altered mental status and the presence of ataxia distinguishes HACE from acute mountain sickness (AMS). We describe a patient with subtle cognitive dysfunction, likely due to HACE that had not fully resolved. When he initially presented, the patient appeared to have normal mental status and was not ataxic. The diagnosis of HACE was missed initially but was made when further history became available. Cognitive dysfunction was then diagnosed based on abnormal performance of a clock drawing test. A formal mental status examination, using a clock drawing test, may be helpful in assessing whether a patient at high altitude with apparently normal mental status and with normal gait has HACE.

  10. Verbal free recall in high altitude: proper names vs common names.

    PubMed

    Pelamatti, Giovanna; Pascotto, Milena; Semenza, Carlo

    2003-02-01

    Exposure to extreme altitude is known to cause a general impairment of cognitive functions. In this study we investigated the effect of high altitude on the recall of supraspan lists of proper and common names. High altitude seems to have a dramatic effect on the recall of proper names, while common names are more resistant to hypoxia. This effect, however, seems to selectively concern the early items of the lists. This damage to the primacy effect in proper name recall seems permanent over time. The absence of damage in recalling names from the last serial position clearly shows how STM functions are relatively more resistant to the lack of cognitive sources caused by hypoxia.

  11. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds

    NASA Technical Reports Server (NTRS)

    Jarzembski, M. A.; Srivastava, V.

    1995-01-01

    Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

  12. Air Quality Standards for Particulate Matter (PM) at high altitude cities.

    PubMed

    Bravo Alvarez, H; Sosa Echeverria, R; Sanchez Alvarez, P; Krupa, S

    2013-02-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. PMID:23202983

  13. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.A.; Blanc, E.

    1997-03-01

    The presence of ionization associated with high-altitude discharges has been detected using an HF radar operating at 2.2, 2.5, and 2.8 MHz. On several occasions, oblique echoes lasting several hundred ms at night and 1{r_arrow}10s during the day were observed. The echoes turned on in several interpulse times of 70 ms and were generally correlated with strong lightning activity prior to onset. The angles of arrival of sferics detected at three goniometer stations were used to determine the distance to thunderstorms. The data are consistent with specular reflections from columns of ionization produced at 55{endash}65 km altitude and having minimum electron densities of 6{times}10{sup 4}{endash}10{sup 5}cm{sup {minus}3}. The source of the ionization is believed to be high-altitude discharges.{copyright} 1997 American Geophysical Union

  14. The High Altitude Water Čerenkov (HAWC) TeV Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    de la Fuente, Eduardo; Oceguera-Becerra, Tomas; García-Torales, Guillermo; García-Luna, José Luis

    The High Altitude Water Čerenkov observatory is a second generation ground based very high-energy γ-ray detector under construction in Sierra Negra, Puebla, México at an altitude of 4,100m. Higher altitude, improved design and a larger physical size used to reject cosmic ray background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view (˜2sr) and over 90% duty cycle make it ideal to search for several types of TeV astronomical γ-ray sources, diffuse emission, cosmic anisotropy, and transients. Details and status of HAWC at date, and a galactic star formation application are here presented.

  15. Air Quality Standards for Particulate Matter (PM) at high altitude cities.

    PubMed

    Bravo Alvarez, H; Sosa Echeverria, R; Sanchez Alvarez, P; Krupa, S

    2013-02-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated.

  16. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  17. Novel Airborne Imaging Polarimeter Undergoes High-Altitude Flight Testing

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Pingree, Paula J.; Chipman, Russell A.

    2015-01-01

    Optical and signal processing technologies for high-accuracy polarimetric imaging, aimed at studying the impact of atmospheric haze and clouds on Earth's climate, have been demonstrated on checkout flights aboard NASA's ER-2 aircraft.

  18. Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle.

    PubMed

    Kumar, Pawan; Pal, Tarun; Sharma, Neha; Kumar, Varun; Sood, Hemant; Chauhan, Rajinder S

    2015-09-01

    Podophyllum hexandrum Royle is known for its vast medicinal properties, particularly anticancer. It contains higher amount of podophyllotoxin (4.3 %), compared to Podophyllum peltatum (0.025 %) and other plant species; as a result, it has been used worldwide in the preparation of various drugs including anticancer, antimalarial, antiviral, antioxidant, antifungal, and so on. Currently, Etoposide (VP-16-213), Vumon® (Teniposide; VM-26), Etopophos®, Pod-Ben- 25, Condofil, Verrusol, and Warticon are available in the market. Due to highly complex synthesis and low cell culture yields of podophyllotoxin (0.3 %), the supply of raw material cannot be met due to increasing industrial demands. The knowledge on podophyllotoxin biosynthetic pathway vis-à-vis expression status of genes is fragmentary. Quantitative expression analysis of 21 pathway genes has revealed 9 genes, namely SD, PD, PCH, CM, CMT, CAD, CCR, C4H, and ADH, that showed increase in transcript abundance up to 1.4 to 23.05 folds, respectively, vis-à-vis podophyllotoxin content in roots (1.37 %) and rhizomes (3.05 %) of P. hexandrum. In silico analysis of putative cis-regulatory elements in promoter regions of overexpressed genes showed the presence of common Skn-1 motif and MBS elements in CMT, CAD, CCR, C4H, and ADH genes, thereby, suggesting their common regulation. The outcome of the study has resulted in the identification of suitable candidate genes which might be contributing to podophyllotoxin biosynthesis that can act as potential targets for any genetic intervention strategies aimed at its enhanced production.

  19. High-Altitude Laser Altimetry from the Global Hawk UAV for Regional Mapping of Surface Topography

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Wake, S.; Hofton, M. A.; Michell, S.

    2012-12-01

    NASA's Land, Vegetation, and Ice Sensor (LVIS) is a high-altitude, full-waveform, geodetic-imaging laser altimeter system of which a UAV-based version (LVIS-GH) is currently being tested. From 20 km above the surface in the Global Hawk UAV, LVIS-GH images surface topography and roughness (including forest height) across a 4 km wide swath using 15 m diameter footprints. In recent years, the LVIS has been flown at altitudes of up to 14 km over Greenland and Antarctica on flights up to 12 hours in duration, enabling the efficient and precise mapping of large areas from the air. The Global Hawk will extend this capability to up to 32 hours and altitudes approaching 20 km. In order to achieve decimeter level vertical precision and accuracy from high altitude, advanced parameter estimation techniques, based on those implemented in NASA's GEODYN software, are used to estimate the angular, spatial, and temporal biases required to accurately georeference the component lidar data sets. Data from specific in-air maneuvers are utilized in order to isolate the effects of different error sources and to break correlations between biases. Examples of high-altitude data and airborne/spaceborne sensor intercomparison and fusion will be shown. For example, the comparison of data from NASA's ICESat-1 mission with coincident LVIS data collected around 86S (the maximum extent of data collected during ICESat) to quantify inter-campaign biases in Icesat-1 elevation measurements and improve estimates of long -term elevation change rates of ice sheets will be shown. These results illustrate the utility of high-altitude wide swath imaging, particularly from platforms such as the Global-Hawk, for enhancing spacebased data sets.

  20. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  1. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  2. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  3. Review of "Do High Flyers Maintain Their Altitude?"

    ERIC Educational Resources Information Center

    Lee, Jaekyung

    2011-01-01

    The research report reviewed here concludes that many initially high-achieving students are falling further and further behind over the course of their years in school. The report intends to raise the alarm and to advocate for improved programs for these students. It is, however, a false alarm due to biased methodology and misleading arguments.…

  4. Experiments and Modeling of High Altitude Chemical Agent Release

    SciTech Connect

    Nakafuji, G.; Greenman, R.; Theofanous, T.

    2002-07-08

    Using ASCA data, we find, contrary to other researchers using ROSAT data, that the X-ray spectra of the VY Scl stars TT Ari and KR Aur are poorly fit by an absorbed blackbody model but are well fit by an absorbed thermal plasma model. The different conclusions about the nature of the X-ray spectrum of KR Aur may be due to differences in the accretion rate, since this Star was in a high optical state during the ROSAT observation, but in an intermediate optical state during the ASCA observation. TT Ari, on the other hand, was in a high optical state during both observations, so directly contradicts the hypothesis that the X-ray spectra of VY Sol stars in their high optical states are blackbodies. Instead, based on theoretical expectations and the ASCA, Chandra, and XMM spectra of other nonmagnetic cataclysmic variables, we believe that the X-ray spectra of VY Sol stars in their low and high optical states are due to hot thermal plasma in the boundary layer between the accretion disk and the surface of the white dwarf, and appeal to the acquisition of Chandra and XMM grating spectra to test this prediction.

  5. Comparison of muscle force, muscle endurance, and electromyogram activity during an expedition at high altitude

    NASA Astrophysics Data System (ADS)

    Terasawa, K.; Fujiwara, T.; Sakai, A.; Yanagidaira, N.; Asano, K.; Yanagisawa, K.; Kashimura, N.; Ueda, G.; Wu, T.; Zhang, Y.

    1996-09-01

    Handgrip force (HF), maximal pinch force (MF), muscle endurance (ME), and the median power frequency (MdPF) of the activity shown in the electromyogram (EMG) were studied at various altitudes in eight normal healthy subjects. MF and ME were measured between the index finger and thumb, and all measurements were obtained at altitudes ranging from 610 to 4860 m during an expedition in the Qinghai Plateau in China. With the change in altitude HF, ME, and MF showed no significant change. Compared to the MdPF at 2260 m on ascent, the MdPF at other altitudes showed a significant decrease ( P<0.01). Thus, we conclude that muscle performance (HF, MF, and ME) was not affected by the environment at high altitude. However, MdPF was affected and the mean MdPF at 610 m after the expedition did not recover to initial values of MdPF. We suggest these results may have been affected by fatigue and chronic exposure to the hypobaric hypoxic environment, since the members of the expedition party expressed feelings of sluggishness and fatigue after the expedition.

  6. High altitude measurements of fluctuations in the CMB

    SciTech Connect

    Davies, R.D. )

    1990-01-15

    The detection of fluctuations in the primordial CMB emission requires long integrations on limited areas of the sky; such extensive observations are best made from the ground on (high) dry sites. A current programme of measurements is described covering the frequency range 5 to 32 GHz using equipment at Teide Observatory, Tenerife, and in Antarctica. A bolometer system is under development for observations in the range 100 to 300 GHz to be made on Mauna Kea.

  7. Meteorological Support of the Helios World Record High Altitude Flight to 96,863 Feet

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Donohue, Casey J.; Wright, Patrick T.; DelFrate, John (Technical Monitor)

    2002-01-01

    In characterizing and understanding atmospheric behavior when conducting high altitude solar powered flight research flight planning engineers and meteorologists are able to maximize the use of available airspace and coordinate aircraft maneuvers with pilots to make the best use of changing sun elevation angles. The result of this cooperative research produced a new world record for absolute altitude of a non-rocket powered aircraft of 96,863 ft (29,531.4 m). The Helios prototype solar powered aircraft, with a wingspan of 247 ft (75.0m), reached this altitude on August 13, 2001, off the coast of Kauai, Hawaii. The analyses of the weather characterization, the planning efforts, and the weather-of-the-day summary that led to at record flight are described in this paper.

  8. Thermal comfort and clothing insulation of resting tent occupants at high altitude.

    PubMed

    Cena, Krzysztof; Davey, Nicole; Erlandson, Tamara

    2003-11-01

    Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3-4 weeks and climbing up to 5500m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than 'neutral' for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7clo for thermal sensations of between 0 ('neutral') and +1 ('slightly warm') on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported 'cool' or 'cold' sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.

  9. Tibetan and Andean contrasts in adaptation to high-altitude hypoxia.

    PubMed

    Beall, C M

    2000-01-01

    High-altitude environments provide natural experimental settings to investigate adaptation to environmental stress. An important evolutionary and functional question is whether sea-level human biology constrains the adaptive response. This paper presents evidence that indigenous populations of the Tibetan and Andean plateaus exhibit quantitatively different responses to hypobaric hypoxic stress. At the same altitude, Tibetan mean resting ventilation and hypoxic ventilatory response were more than one-half standard deviation higher than Andean Aymara means while Tibetan mean oxygen saturation and hemoglobin concentration were more than one standard deviation below the Andean means. Quantitative genetic analyses of the familial patterning of these traits provided indirect evidence of population differences in genes influencing them. The Tibetan and Andean patterns of oxygen transport appear equally effective functionally as evaluated by birthweight and maximal aerobic capacity across a range of altitudes.

  10. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  11. Carbohydrate supplementation and exercise performance at high altitude: a randomized controlled trial.

    PubMed

    Oliver, Samuel J; Golja, Petra; Macdonald, Jamie H

    2012-03-01

    Acute carbohydrate supplementation decreases effort perception and increases endurance exercise capacity at sea level. It also improves laboratory-based endurance performance at altitude. However, the effect of chronic carbohydrate supplementation at altitude, when acclimatization may attenuate carbohydrate effects, achieved doses are lower and metabolic effects may be different, is unknown and was therefore focused on in the present study. Forty-one members of a 22-day high altitude expedition were randomized in a double-blind design to receive either placebo or carbohydrate supplementation. Diet was manipulated with commercially available energy drinks consumed ad libitum throughout the expedition. Participants performed a mountaineering time trial at 5192 m, completed submaximal incremental exercise step tests to assess cardiovascular parameters before, during, and after the expedition, and recorded spontaneous physical activity by accelerometer on rest days. Compared to placebo, compliant individuals of the carbohydrate-supplemented group received daily an additional 3.5±1.4 g carbohydrate·kg body mass(-1). Compliant individuals of the carbohydrate supplemented group reported 18% lower ratings of perceived exertion during the time trial at altitude, and completed it 17% faster than the placebo group (both p<0.05 by t-test). However, cardiovascular parameters obtained during submaximal exercise and spontaneous physical activity on rest days were similar between the two groups (all p>0.05 by analysis of variance). This study utilized testing protocols of specific relevance to high altitude sojourners, including the highest mountaineering time trial completed to date at altitude. Chronic carbohydrate supplementation reduced ratings of perceived exertion and improved physical performance, especially during prolonged and higher intensity exercise tasks. PMID:22429229

  12. Temporal Development of Auroral Acceleration Potentials: High-Altitude Evolutionary Sequences, Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.

    2007-12-01

    The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.

  13. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives.

    PubMed

    Beall, C M; Strohl, K P; Blangero, J; Williams-Blangero, S; Almasy, L A; Decker, M J; Worthman, C M; Goldstein, M C; Vargas, E; Villena, M; Soria, R; Alarcon, A M; Gonzales, C

    1997-12-01

    Newcomers acclimatizing to high altitude and adult male Tibetan high altitude natives have increased ventilation relative to sea level natives at sea level. However, Andean and Rocky Mountain high altitude natives have an intermediate level of ventilation lower than that of newcomers and Tibetan high altitude natives although generally higher than that of sea level natives at sea level. Because the reason for the relative hypoventilation of some high altitude native populations was unknown, a study was designed to describe ventilation from adolescence through old age in samples of Tibetan and Andean high altitude natives and to estimate the relative genetic and environmental influences. This paper compares resting ventilation and hypoxic ventilatory response (HVR) of 320 Tibetans 9-82 years of age and 542 Bolivian Aymara 13-94 years of age, native residents at 3,800-4,065 m. Tibetan resting ventilation was roughly 1.5 times higher and Tibetan HVR was roughly double that of Aymara. Greater duration of hypoxia (older age) was not an important source of variation in resting ventilation or HVR in either sample. That is, contrary to previous studies, neither sample acquired hypoventilation in the age ranges under study. Within populations, greater severity of hypoxia (lower percent of oxygen saturation of arterial hemoglobin) was associated with slightly higher resting ventilation among Tibetans and lower resting ventilation and HVR among Aymara women, although the associations accounted for just 2-7% of the variation. Between populations, the Tibetan sample was more hypoxic and had higher resting ventilation and HVR. Other systematic environmental contrasts did not appear to elevate Tibetan or depress Aymara ventilation. There was more intrapopulation genetic variation in these traits in the Tibetan than the Aymara sample. Thirty-five percent of the Tibetan, but none of the Aymara, resting ventilation variance was due to genetic differences among individuals. Thirty

  14. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    PubMed Central

    Raina, Sunil Kumar; Chander, Vishav; Prasher, Chaman Lal; Raina, Sujeet

    2016-01-01

    Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8) were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9%) as compared to females (8/131; 6%). Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7%) while it was the highest in the age group of 40–49 among females (7/8; 87%). Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations. PMID:26989560

  15. 40 CFR Appendix III to Part 1068 - High-Altitude Counties

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false High-Altitude Counties III Appendix III to Part 1068 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Pt. 1068, App. III Appendix III to Part...

  16. Genomic Analysis of Natural Selection and Phenotypic Variation in High-Altitude Mongolians

    PubMed Central

    Watkins, W. Scott; Witherspoon, David J.; Wu, Wilfred; Qin, Ga; Huff, Chad D.; Jorde, Lynn B.; Ge, Ri-Li

    2013-01-01

    Deedu (DU) Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR), neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1), as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG). Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1) shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments. PMID:23874230

  17. Surveillance for early silicosis in high altitude miners using pulse oximetry.

    PubMed

    Donroe, Joseph A; Maurtua-Neumann, Paola J; Gilman, Robert H; Acosta, Ana Teresa; Cain, Gene; Parker, John E; Carhuaricra, Jaime Carlos Alvarez; Padilla, Juan Jose Retimozo; Mendoza, Daniel; Zimic, Mirko; Moore, David A J

    2008-01-01

    Two cross-sectional studies in a high altitude region of Perú evaluated the role of pulse oximetry for detection of silicosis in high-altitude miners. In study one, exercise pulse oximetry and chest radiographs were used to evaluate 343 silica-exposed miners and 141 unexposed subjects for evidence of silicosis. Study 2 investigated the association between exercise oxygen saturation and silicosis in 32 non-silicotic and 65 silicotic miners. In study one, age (Odds Ratio [OR] 1.10, 95% Cofidence Interval (CI) 1.07-1.12) and resting oxygen saturation (OR 0.95, 95%CI 0.90-0.99) were associated with silicosis. In study two, years of mining employment (OR 1.14, 95%CI 1.05-1.23) and exercise oxygen saturation at 30% maximum heart rate (OR 0.86, 95%CI 0.75-0.99) were associated with silicosis. Hypoxemia at rest and with exercise is associated with silicosis in high altitude miners. Pulse oximetry should be further investigated as a screening tool for silicosis at high altitudes. PMID:18686718

  18. REMOTE SENSING OF SEAGRASS WITH AVIRIS AND HIGH ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    On May 15,2002 AVIRlS (Advanced VisuaJ/lnfrared Imaging Spectrometer) data and high altitude aerial photographs were acquired tor coastal .waters from Cape Lookout to Oregon Inlet, North Carolina. The study encompasses extensive areas of seagrass, federally protected submersed, r...

  19. On the HEMP (high-altitude electromagnetic pulse) response of protective relays

    SciTech Connect

    Thomas, D.E.; Wiggins, C.M.; Barnes, P.R.; Oak Ridge National Lab., TN )

    1990-01-01

    An assessment of the susceptibility of protective relays to the transients produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms responsible for coupling of HEMP to relay terminals are examined. The predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse. 11 refs., 16 figs.

  20. On the HEMP environment for protective relays. [High-altitude electromagnetic pulse

    SciTech Connect

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M. ); Barnes, P.R. )

    1994-01-01

    An assessment of the transient environment for protective relays produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms for coupling of HEMP to relay terminals are used to develop estimates of possible HEMP threats to relays. These predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse strength.

  1. System for beaming power from earth to a high altitude platform

    DOEpatents

    Friedman, Herbert W.; Porter, Terry J.

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  2. Morphology of the internal organs in the adaptation of animals to high-altitude conditions

    NASA Technical Reports Server (NTRS)

    Rakhimov, Y. A.; Belkin, V. S.; Usmanov, M. U.

    1975-01-01

    Disruption of metabolic processes in the walls of the blood vessels as well as changes in the functional activity of the endocrine glands play an important role in the process of an animal's accommodation to a combination of stress factors. Preliminary training of animals for stays at high-altitude markedly reduces the severity of the morphological picture.

  3. Iron chelation and related properties of Podophyllum hexandrum, a possible role in radioprotection.

    PubMed

    Kumar, I P; Goel, H C

    2000-10-01

    Aqueous extract of Podophyllum species has been reported to render significant protection against radiation induced mortality, cytogenetic damage and cell death. In view of this, present study was undertaken to investigate its antioxidant properties. Chelation, oxidation and reduction of Fe2+ and Fe3+ were measured using chelating agents 2-2' bipiridyl and potassium thiocyanate respectively. Podophyllum extract, in a dose dependent manner, chelated Fe2+ more efficiently than Fe3+ and also modulated Fe2+/Fe3+ ratio. Homogenate of mouse liver was used to measure TBARS for estimating lipid peroxidation. Podophyllum extract also inhibited lipid peroxidation in a dose dependent manner and maximum inhibition (92%) was achieved at 1000 micrograms/ml concentration. These results demonstrates that Podophyllum exhibits antioxidant properties as seen through chelation and modulation of redox state of iron ions and these may primarily contribute towards its radioprotective manifestation.

  4. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Boyd, Iain; Haas, Brian L.

    1994-01-01

    Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

  5. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Boyd, Iain; Haas, Brian L.

    1994-01-01

    Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration - dissociation - recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

  6. Analysis on high-altitude earth Orbit Satellite Determination

    NASA Astrophysics Data System (ADS)

    He, J.; Hou, Y. W.; Yang, L.

    2016-02-01

    The difference is introduced between approx circular apogee orbit and approx circular perigee one by error transmitting at first. Then the characteristic of secant compensation is analysed when radar tracking object with high elevation. And two kinds of orbit force be pressed to, their perturbation influence and their earth-core angles are explained. And then the series of emulation results are shown including error data emulated with Monte Carlo method, the influence of the velocity increment from the ejecting force of spring while satellite-rocket separating and their perturbation influence and the length of influence of the data arc. Then decision analysis of Wald method and Bayesian statistics rule and the results from the two rule are introduced. So the suitable orbit determination decision is put forward from the decision method. Finally the result is tested reasonable and feasible via the real data. In the end it is useful to reference to make orbit decision in short injection of circular orbit far from the earth for calculating concurrently precise and timely.

  7. Nighttime chemistry at a high altitude site above Hong Kong

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Tham, Yee Jun; Zha, Qiaozhi; Xue, Likun; Poon, Steven; Wang, Zhe; Blake, Donald R.; Tsui, Wilson; Parrish, David D.; Wang, Tao

    2016-03-01

    Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime.

  8. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.

    1993-01-01

    In this grant period, the focus has been on enhancement and application of the direct simulation Monte Carlo (DSMC) particle method for computing hypersonic flows of re-entry vehicles. Enhancement efforts dealt with modeling gas-gas interactions for thermal non-equilibrium relaxation processes and gas-surface interactions for prediction of vehicle surface temperatures. Both are important for application to problems of engineering interest. The code was employed in a parametric study to improve future applications, and in simulations of aeropass maneuvers in support of the Magellan mission. Detailed comparisons between continuum models for internal energy relaxation and DSMC models reveals that several discrepancies exist. These include definitions of relaxation parameters and the methodologies for implementing them in DSMC codes. These issues were clarified and all differences were rectified in a paper (Appendix A) submitted to Physics of Fluids A, featuring several key figures in the DSMC community as co-authors and B. Haas as first author. This material will be presented at the Fluid Dynamics meeting of the American Physical Society on November 21, 1993. The aerodynamics of space vehicles in highly rarefied flows are very sensitive to the vehicle surface temperatures. Rather than require prescribed temperature estimates for spacecraft as is typically done in DSMC methods, a new technique was developed which couples the dynamic surface heat transfer characteristics into the DSMC flow simulation code to compute surface temperatures directly. This model, when applied to thin planar bodies such as solar panels, was described in AIAA Paper No. 93-2765 (Appendix B) and was presented at the Thermophysics Conference in July 1993. The paper has been submitted to the Journal of Thermophysics and Heat Transfer. Application of the DSMC method to problems of practical interest requires a trade off between solution accuracy and computational expense and limitations. A

  9. High intraocular pressure in four vitrectomized eyes with intravitreal C3F8 without high altitude travel

    PubMed Central

    Brosh, K; Strassman, I; Seelenfreund, M

    2014-01-01

    Importance It is well known that altitude ascent with intravitreal gas can cause expansion of gas and intraocular pressure (IOP) elevation. According to Boyle's law, the gas bubble will not expand unless a higher altitude than the gas insertion site has been reached. We report four cases in which intravitreal gas was injected at an altitude of 790 m (Jerusalem). All four cases developed high IOP even though they did not reach a higher altitude in their post-operative period. Observations A report of four patients following vitrectomy with 12% mixture of perfluoropropane and air are presented. All four patients arrived with ocular pain following the ascent by car of 765–1100 m to Jerusalem where the vitrectomy and gas insertion was conducted. Upon examination, all four patients had high IOP (30–55 mm Hg). IOP was well controlled with IOP-lowering medications. None of the patients suffered from long-term complications. Conclusions and Relevance Caution should be taken with altitude changes in patients with intravitreal gas even if there was no ascent from the altitude in which the vitrectomy was performed. PMID:24788015

  10. Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias

    2014-12-01

    SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.

  11. Widespread signals of convergent adaptation to high altitude in Asia and america.

    PubMed

    Foll, Matthieu; Gaggiotti, Oscar E; Daub, Josephine T; Vatsiou, Alexandra; Excoffier, Laurent

    2014-10-01

    Living at high altitude is one of the most difficult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some of the genetic bases of adaptations in Tibetan, Andean, and Ethiopian populations, relatively little evidence of convergent evolution to altitude in different continents has accumulated. This lack of evidence can be due to truly different evolutionary responses, but it can also be due to the low power of former studies that have mainly focused on populations from a single geographical region or performed separate analyses on multiple pairs of populations to avoid problems linked to shared histories between some populations. We introduce here a hierarchical Bayesian method to detect local adaptation that can deal with complex demographic histories. Our method can identify selection occurring at different scales, as well as convergent adaptation in different regions. We apply our approach to the analysis of a large SNP data set from low- and high-altitude human populations from America and Asia. The simultaneous analysis of these two geographic areas allows us to identify several candidate genome regions for altitudinal selection, and we show that convergent evolution among continents has been quite common. In addition to identifying several genes and biological processes involved in high-altitude adaptation, we identify two specific biological pathways that could have evolved in both continents to counter toxic effects induced by hypoxia.

  12. Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective.

    PubMed

    Gu, Peng; Liu, Wei; Yao, Yong-fang; Ni, Qing-yong; Zhang, Ming-wang; Li, Di-yan; Xu, Huai-liang

    2016-01-01

    Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk') in ATP6 and beta-structure tendencies (Pβ), Pk', and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals.

  13. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    PubMed Central

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  14. Ground-high altitude joint detection of ozone and nitrogen oxides in urban areas of Beijing.

    PubMed

    Chen, Pengfei; Zhang, Qiang; Quan, Jiannong; Gao, Yang; Zhao, Delong; Meng, Junwang

    2013-04-01

    Based on observational data of ozone (O3) and nitrogen oxide (NO(x)) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011, the temporal and spatial characteristics of mixing ratios were analyzed. The major findings include: urban O3 mixing ratios are low and NO(x) mixing ratios are always high near the road in November. Vertical variations of the gases are significantly different in and above the planetary boundary layer. The mixing ratio of O3 is negatively correlated with that of NO(x) and they are positively correlated with air temperature, which is the main factor directly causing vertical variation of O3 and NO(x) mixing ratios at 600-2100 m altitude. The NO(x) mixing ratios elevated during the heating period, while the O3 mixing ratios decreased: these phenomena are more significant at high altitudes compared to lower altitudes. During November, air masses in the urban areas of Beijing are brought by northwesterly winds, which transport O3 and NO(x) at low mixing ratios. Due to Beijing's natural geographical location, northwest air currents are beneficial to the dilution and dispersion of pollutants, which can result in lower O3 and NO(x) background values in the Beijing urban area.

  15. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    USGS Publications Warehouse

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawam, J.Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  16. Adaptability and stability of conilon coffee in areas of high altitude.

    PubMed

    Barbosa, D H G S; Rodrigues, W P; Vieira, H D; Partelli, F L; Viana, A P

    2014-09-26

    In view of the predicted models of global climate change and differences in prices and production costs, there is increased interest in Coffea canephora cultivation in areas of high altitude. However, this species is sensitive to low temperatures, where genotypes vary regarding adaptation/tolerance mechanisms, demonstrating genotype x environment interaction. The aim of this study was to evaluate the stability and adaptability of C. canephora varieties in high-altitude areas. The experiments were carried out in February 2004, in Bom Jesus do Itabapoana, Rio de Janeiro State, Brazil, at an altitude of 725 m. Four clonal varieties (EMCAPA 8111, EMCAPA 8121, EMCAPA 8131, and EMCAPA 8151) and five harvests (2006 to 2010) were used. The experimental design was randomized blocks with four treatments and six plots, with 12 plants in each plot and spaced 2.5 x 1.2 m. Adaptability and stability parameters were determined using methods based on nonparametric analysis and analysis of variance. The results showed that the EMCAPA 8131 had the best performance according to stability and adaptability parameters and may be promising for high-altitude regions.

  17. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.

    PubMed

    Hawkes, L A; Balachandran, S; Batbayar, N; Butler, P J; Chua, B; Douglas, D C; Frappell, P B; Hou, Y; Milsom, W K; Newman, S H; Prosser, D J; Sathiyaselvam, P; Scott, G R; Takekawa, J Y; Natsagdorj, T; Wikelski, M; Witt, M J; Yan, B; Bishop, C M

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  18. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  19. Effect of high altitude and exercise on microvascular parameters in acclimatized subjects.

    PubMed

    Bauer, Andreas; Demetz, Florian; Bruegger, Dirk; Schmoelz, Martin; Schroepfer, Sebastian; Martignoni, André; Baschnegger, Heiko; Hoelzl, Josef; Thiel, Manfred; Choukér, Alexander; Peter, Klaus; Gamble, John; Christ, Frank

    2006-02-01

    The role of microvascular fluid shifts in the adaptation to hypobaric hypoxia and its contribution to the pathophysiology of AMS (acute mountain sickness) is unresolved. In a systematic prospective study, we investigated the effects of hypobaric hypoxia and physical exercise alone, and in combination, on microvascular fluid exchange and related factors. We used computer-assisted VCP (venous congestion plethysmography) on the calves of ten altitude-acclimatized volunteers. We investigated the effects of: (i) actively climbing to an altitude of 3196 m, (ii) airlifting these subjects to the same altitude, and (iii) exercise at low altitude. CFC (capillary filtration capacity), Pvi (isovolumetric venous pressure) and Qa (calf blood flow) were assessed before and after each procedure and then repeated after an overnight rest. Measurements of CFC showed no evidence of increased microvascular permeability after any of the procedures. Pvi was significantly decreased (P<0.001) from 20.3+/-4.4 to 8.9+/-4.3 mmHg after active ascent, and was still significantly lower (P=0.009) after overnight rest at high altitude (13.6+/-5.9 mmHg). No such changes were observed after the passive ascent (16.7+/-4.0 mmHg at baseline; 17.3+/-4.5 mmHg after passive ascent; and 19.9+/-5.3 mmHg after overnight rest) or after exercise at low altitude. After the active ascent, Qa was significantly increased. We also found a significant correlation between Qa, Pvi and the number of circulating white blood cells. In conclusion, we found evidence to support the hypothesis that increased microvascular permeability associated with AMS does not occur in acclimatized subjects. We also observed that the microvascular equilibrium pressure (Pvi) fell in inverse relation to the increase in Qa, especially in hypoxic exercise. We hypothesize that this inverse relationship reflects the haemodynamic changes at the microvascular interface, possibly attributable to the flow-induced increases in endothelial surface

  20. Fifty fertile years: anthropologists' studies of reproduction in high altitude natives.

    PubMed

    Vitzthum, Virginia J

    2013-01-01

    Early European colonists of the Andes had difficulties in reproducing, a fact that underpins the hypothesis that reproduction is impaired amongst all humans at high altitudes. Yet a 16th century missionary wrote, "… the Indians are healthiest and where they multiply the most prolifically is in these same cold air-tempers, … [yet most children of the Spaniards] when born in such regions do not survive." These observations suggest that humans at high altitudes are subjected to strong natural selection from hypoxia, cold and limited food sources and, furthermore, that human populations can and have adapted, and continue to adapt, to these conditions. Informed by multiple approaches and theoretical frameworks, anthropologists have investigated to what extent and precisely how high altitude environments impact human reproductive functioning and fertility. Analyses of the proximate determinants of natural fertility suggest that behaviors (breast/infant feeding practices in the Andes, and marriage practices and religious celibacy in the Himalaya) are major determinants of fertility in high altitude populations. Furthermore, data from Project REPA (Reproduction and Ecology in Provincía Aroma), a longitudinal study in rural Bolivia, demonstrate that fecundity is not impaired in this indigenous altiplano population, and that the risk for early pregnancy loss (EPL) is not elevated by environmental hypoxia but does vary seasonally with the agricultural cycle (contra to the assumption that EPLs are due almost entirely to genetically flawed concepti). This review discusses these and other findings that reveal the complex and dynamic adaptations of human reproductive functioning in high altitude environments.