NASA Technical Reports Server (NTRS)
Budd, P. A.
1981-01-01
The secondary electron emission coefficient was measured for a charged polymer (FEP-Teflon) with normally and obliquely incident primary electrons. Theories of secondary emission are reviewed and the experimental data is compared to these theories. Results were obtained for angles of incidence up to 60 deg in normal electric fields of 1500 V/mm. Additional measurements in the range from 50 to 70 deg were made in regions where the normal and tangential fields were approximately equal. The initial input angles and measured output point of the electron beam could be analyzed with computer simulations in order to determine the field within the chamber. When the field is known, the trajectories can be calculated for impacting electrons having various energies and angles of incidence. There was close agreement between the experimental results and the commonly assumed theoretical model in the presence of normal electric fields for angles of incidence up to 60 deg. High angle results obtained in the presence of tangential electric fields did not agree with the theoretical models.
Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.
2007-12-01
Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for a range of initial wave normal angles. We conclude that whistler-mode waves with highly oblique wave normal angles may be more effective than previously believed at precipitating > 1 MeV electrons, despite the dependence of the scattering coefficients on wave normal direction.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
NASA Astrophysics Data System (ADS)
Long, Roger E.; Matthews, Patricia A.; Graham, Daniel P.
1994-04-01
After a few seconds two-way traveltime, normal-incidence seismic reflection sections are composed mainly of assemblages of short reflections. Very rarely are seen continuous reflections that might correspond to the Moho or a mid-crustal discontinuity. The inferred continuity of these boundaries has traditionally come from refraction seismology. There is now a body of high quality, coincident wide-angle and normal-incidence seismic data that have been recorded with 50-100 m shot spacing and with high frequency sources (e.g. MOBIL, BABEL). The complexity and characteristics of the wide-angle arrivals seen on these data suggest that they do not originate from continuous boundaries. It is suggested that these arrivals are reflections from the same assemblage of short length reflectors that are responsible for normal-incidence reflections. Seismic velocities below the middle crust may (1) change corresponding to normal-incidence reflectivity, or (2) generally increase with depth with localised sills or lens structures of different velocity accounting for the observed reflections. Wide-angle arrivals that have traditionally been identified as reflections from crustal boundaries (e.g. the mid-crust and Moho) and which were considered indicative of a sharp velocity discontinuity from continuous boundaries, may instead result from a concentration of lamellae.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...
Angle-selective all-dielectric Huygens’ metasurfaces
NASA Astrophysics Data System (ADS)
Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.
2017-11-01
We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
Incident flux angle induced crystal texture transformation in nanostructured molybdenum films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Lu, T.-M.; Wang, G.-C.
2012-07-15
Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less
Measurements of normal joint angles by goniometry in calves.
Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S
2014-01-01
The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.
NASA Technical Reports Server (NTRS)
Dugan, Duane W.
1959-01-01
The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-02-01
Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.
NASA Astrophysics Data System (ADS)
Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.
2009-04-01
The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.
Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane
NASA Technical Reports Server (NTRS)
Finch, Thomas W; Briggs, Donald W
1953-01-01
During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance
Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...
2017-09-05
Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less
Wiggs, Janey L.; Auguste, Josette; Allingham, R. Rand; Flor, Jason D.; Pericak-Vance, Margaret A.; Rogers, Kathryn; LaRocque, Karen R.; Graham, Felicia L.; Broomer, Bob; Del Bono, Elizabeth; Haines, Jonathan L.; Hauser, Michael
2005-01-01
Objective: To determine whether mutations in the optineurin gene contribute to susceptibility to adult-onset primary open-angle glaucoma. Methods: The optineurin gene was screened in 86 probands with adult-onset primary open-angle glaucoma and in 80 age-matched control subjects. Exons 4 and 5, containing the recurrent mutations identified in patients with normal-tension glaucoma, were sequenced in all individuals studied, while the remaining exons were screened for DNA sequence variants with denaturing high-performance liquid chromatography. Results: The recurrent mutation, Met98Lys, previously found to be associated with an increased risk of disease was found in 8 (9%) of 86 probands. We also found the Met98Lys mutation in 10% of individuals from a control population of similar age, sex, and ethnicity. Consistent segregation of the mutation with the disease was not demonstrated in any of the 8 families. No other DNA changes altering the amino acid structure of the protein were found. Conclusion: The mutations in the optineurin gene associated with normal-tension glaucoma are not associated with adult-onset primary open-angle glaucoma in this patient population. Clinical Relevance: Genetic abnormalities that render the optic nerve susceptible to degeneration are excellent candidates for genetic factors that could contribute to adult-onset primary open-angle glaucoma. Mutations in optineurin have been associated with normal-tension glaucoma, but are not associated with disease in patients with adult-onset primary open-angle glaucoma. This result may indicate that normal-tension glaucoma is not necessarily part of the phenotypic spectrum of adult open-angle glaucoma. PMID:12912697
Ashnagar, Zinat; Hadian, Mohammad Reza; Olyaei, Gholamreza; Talebian Moghadam, Saeed; Rezasoltani, Asghar; Saeedi, Hassan; Yekaninejad, Mir Saeed; Mahmoodi, Rahimeh
2017-07-01
The aim of this study was to investigate the intratester reliability of digital photographic method for quantifying static lower extremity alignment in individuals with flatfeet and normal feet types. Thirteen females with flexible flatfeet and nine females with normal feet types were recruited from university communities. Reflective markers were attached over the participant's body landmarks. Frontal and sagittal plane photographs were taken while the participants were in a standardized standing position. The markers were removed and after 30 min the same procedure was repeated. Pelvic angle, quadriceps angle, tibiofemoral angle, genu recurvatum, femur length and tibia length were measured from photographs using the Image j software. All measured variables demonstrated good to excellent intratester reliability using digital photography in both flatfeet (ICC: 0.79-0.93) and normal feet type (ICC: 0.84-0.97) groups. The findings of the current study indicate that digital photography is a highly reliable method of measurement for assessing lower extremity alignment in both flatfeet and normal feet type groups. Copyright © 2016. Published by Elsevier Ltd.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Stable high absorption metamaterial for wide-angle incidence of terahertz wave
NASA Astrophysics Data System (ADS)
Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu
2014-04-01
We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio
2017-01-01
We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
NASA Astrophysics Data System (ADS)
Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.
2018-05-01
High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.
NASA Astrophysics Data System (ADS)
Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.
2017-12-01
Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.
Hidden Fermi liquid: Self-consistent theory for the normal state of high-Tc superconductors
NASA Astrophysics Data System (ADS)
Casey, Philip A.
The anomalous "strange metal" properties of the normal, non-superconducting state of the high-Tc cuprate superconductors have been extensively studied for over two decades. The resistivity is robustly T-linear at high temperatures, while at low T it appears to maintain linearity near optimal doping and is T2 at higher doping. The inverse Hall angle is strictly T2 and hence has a distinct scattering lifetime from the resistivity. The transport scattering lifetime is highly anisotropic as directly measured by angle-dependent magnetoresistance (ADMR) and indirectly in more traditional transport experiments. The IR conductivity exhibits a non-integer power-law in frequency, which we take as a defining characteristic of the "strange metal". A phenomenological theory of the transport and spectroscopic properties at a self-consistent and predictive level has been much sought after, yet elusive. Hidden Fermi liquid theory (HFL) explicitly accounts for the effects of Gutzwiller projection in the t-J Hamiltonian, widely believed to contain the essential physics of the high-Tc superconductors. We show this theory to be the first self-consistent description for the normal state of the cuprates based on transparent, fundamental assumptions. Our well-defined formalism also serves as a guide for further experimental confirmation. Chapter 1 reviews the "strange metal" properties and the relevant aspects of competing models. Chapter 2 presents the theoretical foundations of the formalism. Chapters 3 and 4 derive expressions for the entire normal state relating many of the properties, for example: angle-resolved photoemission, IR conductivity, resistivity, Hall angle, and by generalizing the formalism to include the Fermi surface topology---ADMR. Self-consistency is demonstrated with experimental comparisons, including the most recent laser-ARPES and ADMR. Chapter 5 discusses entropy transport, as in the thermal conductivity, thermal Hall conductivity, and consequent metrics of non-Fermi liquid behavior such as the Wiedemann-Franz and Kadowaki-Woods ratios.
[Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma].
Araie, Makoto
2011-03-01
Pathogenesis of open-angle glaucoma involves both pressure-dependent damaging factors and pressure-independent damaging factors. The high prevalence of open-angle glaucoma with normal pressure (normal-tension glaucoma) in Japan implies that treatment of pressure-independent damaging factors in Japanese open-angle glaucoma patients is of importance. In an attempt to investigate the roles of pressure-independent damaging factors in open-angle glaucoma, we carried out basic and clinical studies and obtained the following results. 1. The rate of deterioration of visual field after trabeculectomy in normal tension glaucoma patients with post-operative intraocular pressure (IOP) of 10 mmHg was found to be -0.25 dB/year of mean deviation (MD), suggesting that contribution of pressure-independent damaging factors to the deterioration of MD in open-angle glaucoma is around -0.25 dB/year of mean deviation (MD). 2. Experiments using isolated purified cultured retinal ganglion cells (RGCs) indicated that calcium-channel blockers and some of antiglaucoma drugs showed neuroprotective effects on RGCs at concentrations of 0.01 microM or higher. 3. In mice, damage to RGCs resulted in secondary degeneration of neurons and activation of glial cells in the lateral geniculate nucleous (LGN) and superior colliculus, and these secondary changes in the central nervous system (CNS) due to RGC damage was partly ameliorated by systemic administration of memantine. 4. Mice experimental high IOP glaucoma models could be established using laser irradiation of the limbal area, and the usefulness of Tonolab in IOP measurements of mice eye was confirmed. 5. Monkey experimental high IOP glaucoma models revealed that in the glaucomatous optic nerve head vaso-constrictive reactions to an alpha-1 agonist was abolished, while vasodilative reaction to a prostaglandin FP receptor agonist was retained. 6. In monkeys with experimental high IOP glaucoma, secondary damage to neurons in the LGN and the glial reaction to it were also found, similar to the mice experiments. In living monkeys the glial reaction in the LGN could be observed by means of positron emission tomography. 7. In the LGN of monkeys with experimental high IOP glaucoma, the M-cell system was preferentially damaged in the early stage, while in the later stages both the M- and P-cell systems were damaged. 8. In a single-instituted prospective double-blinded clinical trial, oral administration of nilvadipine at 4 mg/day, a DHP calcium-channel blocker, was found to significantly retard the visual field progression in normal tension glaucoma patients over 3 years, while significantly increasing the choroidal and optic nerve blood flow by about 35%. 9. A multi-instituted prospective double-blinded clinical trial in normal tension glaucoma patients revealed that the rate of MD deterioration under monotherapy with either topical nipradilol or timolol was around -0.05 dB/year, thought to be considerably slower than -0.25 dB/year, the commonly estimated rate of MD deterioration by pressure-independent damaging factors. The current results indicate the possibility of treatment of pressure-independent damaging factors of open-angle glaucoma in Japanese open-angle glaucoma patients with oral nilvadipine and topical anti-glaucoma agents.
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less
Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer
2017-01-01
To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.
NASA Technical Reports Server (NTRS)
Burrows, Dale L; Newman, Ernest E
1954-01-01
An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number of 0.88. The data indicated that, at lower angles of attack, the trim range extended to higher angles of sideslip. The total normal-force and hinge-moment coefficients for both horizontal fins were slightly nonlinear with both angle-of-attack and fin deflection. The effect of Mach number was to reduce the slopes of the hinge-moment coefficient with angle of attack and deflection angle. In general, the effort of increasing the sideslip angle was to reduce the values of the fin normal-force and hinge-moment coefficients.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-03-01
Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
Booth, T N; Wick, C; Clarke, R; Kutz, J W; Medina, M; Gorsage, D; Xi, Y; Isaacson, B
2018-05-01
Cochlear malformations may be be subtle on imaging studies. The purpose of this study was to evaluate the angle and depth of the lateral second interscalar ridge or notch in ears without sensorineural hearing loss (normal ears) and compare them with ears that have a documented incomplete type II partition malformation. The second interscalar ridge notch angle and depth were measured on MR imaging in normal ears by a single experienced neuroradiologist. The images of normal and incomplete partition II malformation ears were then randomly mixed for 2 novice evaluators to measure both the second interscalar ridge notch angle and depth in a blinded manner. For the mixed group, interobserver agreement was calculated, normal and abnormal ear measurements were compared, and receiver operating characteristic curves were generated. The 94 normal ears had a mean second interscalar ridge angle of 80.86° ± 11.4° and depth of 0.54 ± 0.14 mm with the 98th percentile for an angle of 101° and a depth of 0.3 mm. In the mixed group, agreement between the 2 readers was excellent, with significant differences for angle and depth found between normal and incomplete partition type II ears for angle and depth on average ( P < .001). Receiver operating characteristic cutoffs for delineating normal from abnormal ears were similar for both readers (depth, 0.31/0.34 mm; angle, 114°/104°). A measured angle of >114° and a depth of the second interscalar ridge notch of ≤0.31 mm suggest the diagnosis of incomplete partition type II malformation and scala communis. These measurements can be accurately made by novice readers. © 2018 by American Journal of Neuroradiology.
Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong
2016-10-04
The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.
Filament wound data base development, revision 1, appendix A
NASA Technical Reports Server (NTRS)
Sharp, R. Scott; Braddock, William F.
1985-01-01
Data are presented in tabular form for the High Performance Nozzle Increments, Filament Wound Case (FWC) Systems Tunnel Increments, Steel Case Systems Tunnel Increments, FWC Stiffener Rings Increments, Steel Case Stiffener Rings Increments, FWC External Tank (ET) Attach Ring Increments, Steel Case ET Attach Ring Increments, and Data Tape 8. The High Performance Nozzle are also presented in graphical form. The tabular data consist of six-component force and moment coefficients as they vary with angle of attack at a specific Mach number and roll angle. The six coefficients are normal force, pitching moment, side force, yawing moment, axial force, and rolling moment. The graphical data for the High Performance Nozzle Increments consist of a plot of a coefficient increment as a function of angle of attack at a specific Mach number and at a roll angle of 0 deg.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
NASA Technical Reports Server (NTRS)
Micol, John R.
1992-01-01
Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.
Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.
Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng
2010-03-01
ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, T; Moriya, S; Sato, M
2015-06-15
Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
Wang, Yunji; Qiu, Ye; Liu, Henglang; He, Jinlong; Fan, Xiaoping
2017-01-01
Objectives: To quantitatively evaluate palatal bone thickness in adults with different facial types using cone beam computed tomography (CBCT). Methods: The CBCT volumetric data of 123 adults (mean age, 26.8 years) collected between August 2014 and August 2016 was retrospectively studied. The subjects were divided into a low-angle group (39 subjects), a normal-angle group (48 subjects) and a high-angle group (36 subjects) based on facial types assigned by cephalometric radiography. The thickness of the palatal bone was assessed at designated points. A repeated-measure analysis of variance (rm-ANOVA) test was used to test the relationship between facial types and palatal bone thickness. Results: Compared to the low-angle group, the high-angle group had significantly thinner palatal bones (p<0.05), except for the anterior-midline, anterior-medial and middle-midline areas. Conclusion: The safest zone for the placement of microimplants is the anterior part of the paramedian palate. Clinicians should pay special attention to the probability of thinner bone plates and the risk of perforation in high-angle patients. PMID:28917071
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves
NASA Astrophysics Data System (ADS)
Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu
2014-03-01
Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.
Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy
Balakrishna, Nagalla
2017-01-01
Aim To evaluate the configuration of the anterior chamber angle quantitatively and study the morphological changes in the eye with ultrasound biomicroscopy (UBM) in primary angle closure glaucoma (PACG) patients after laser peripheral iridotomy (LPI). Materials and methods A total of 185 eyes of 185 PACG patients post-LPI and 126 eyes of 126 normal subjects were included in this prospective study. All subjects underwent complete ophthalmic evaluation, A-scan biometry, and UBM. The anterior segment and angle parameters were measured quantitatively and compared in both groups using Student’s t-test. Results The PACG patients had shorter axial length, shallower central anterior chamber depth anterior chamber depth (ACD), and anteriorly located lens when compared with normal subjects. Trabecular iris angle (TIA) was significantly narrow (5.73 ± 7.76°) in patients with PACG when compared with normal subjects (23.75 ± 9.38°). The angle opening distance at 500 pm from scleral spur (AOD 500), trabecular-ciliary process distance (TCPD), iris-ciliary process distance (ICPD), and iris-zonule distance (IZD) were significantly shorter in patients with PACG than in normal subjects (p < 0.0001). The iris lens angle (ILA), scleral-iris angle (SIA), and scleral-ciliary process angle (SCPA) were significantly narrower in patients with PACG than in normal subjects (p < 0.0001). The iris-lens contact distance (ILCD) was greater in PACG group than in normal (p = 0.001). Plateau iris was seen in 57/185 (30.8%) of the eyes. Anterior positioned ciliary processes were seen in 130/185 eyes (70.3%) of eyes. Conclusion In PACG patients, persistent apposition angle closure is common even after LPI, which could be due to anterior rotation of ciliary body and plateau iris and overcrowding of anterior segment due to shorter axial length and relative anterior lens position. How to cite this article: Mansoori T, Balakrishna N. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy. J Curr Glaucoma Pract 2017;11(3):86-91. PMID:29151682
Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro
2017-06-01
The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.
Combined pitching and yawing motion of airplanes
NASA Technical Reports Server (NTRS)
Baranoff, A V; Hopf, L
1931-01-01
This report treats the following problems: The beginning of the investigated motions is always a setting of the lateral controls, i.e., the rudder or the ailerons. Now, the first interesting question is how the motion would proceed if these settings were kept unchanged for some time; and particularly, what upward motion would set in, how soon, and for how long, since therein lie the dangers of yawing. Two different motions ensue with a high rate of turn and a steep down slope of flight path in both but a marked difference in angle of attack and consequently different character in the resultant aerodynamic forces: one, the "corkscrew" dive at normal angle, and the other, the "spin" at high angle.
NASA Technical Reports Server (NTRS)
Rainey, A Gerald
1957-01-01
The oscillating air forces on a two-dimensional wing oscillating in pitch about the midchord have been measured at various mean angles of attack and at Mach numbers of 0.35 and 0.7. The magnitudes of normal-force and pitching-moment coefficients were much higher at high angles of attack than at low angles of attack for some conditions. Large regions of negative damping in pitch were found, and it was shown that the effect of increasing the Mach number 0.35 to 0.7 was to decrease the initial angle of attack at which negative damping occurred. Measurements of the aerodynamic damping of a 10-percent-thick and of a 3-percent-thick finite-span wing oscillating in the first bending mode indicate no regions of negative damping for this type of motion over the range of variables covered. The damping measured at high angles of attack was generally larger than that at low angles of attack. (author)
Contact angle distribution of particles at fluid interfaces.
Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F
2015-01-27
Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.
NASA Astrophysics Data System (ADS)
Masita, S.; Zahara, D.; Aboet, A.
2018-03-01
The function of the Eustachian tube plays a significant role in increased risk chronic suppurative otitis media (CSOM). The angle of the Eustachian tube is a predisposing factor for Eustachian tube dysfunction and clearance disorder of the middle ear. The aim of this study was to compare the mean angle of a Eustachian tube of CSOM ears and normal ears. This research was a cross-sectional study consisting of 19 patients of CSOM without cholesteatoma, 19 patients of CSOM with cholesteatoma and 19 patients with normal ears. All patients were examined using CT Temporal, and the angle of the eustachian tube was measured using multiplanar reconstruction technique. The mean angle of Eustachian tube in CSOM patients without cholesteatoma was 32.82° (SD=3.82), in CSOM with cholesteatoma was 27.74° (SD=4.44) and in normal ears was 33.61° (SD=3.83). Based on Kruskal-Wallis test, there was a significant difference in the angle of a Eustachian tube of these three groups (p<0.001). There was a significant difference between the mean angle of the Eustachian tube in CSOM ears and normal ears.
NASA Technical Reports Server (NTRS)
Micol, John R.; Wells, William L.
1993-01-01
Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.
High-resolution echocardiography
NASA Technical Reports Server (NTRS)
Nathan, R.
1979-01-01
High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.
NASA Astrophysics Data System (ADS)
Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong
2017-05-01
Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.
Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.
2013-01-01
This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abushgair, K.
In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of themore » friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.« less
NASA Astrophysics Data System (ADS)
Abushgair, K.
2015-03-01
In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.
NASA Astrophysics Data System (ADS)
Breves, E. A.; Lepore, K.; Dyar, M. D.; Bender, S. C.; Tokar, R. L.; Boucher, T.
2017-11-01
Laser-induced breakdown spectroscopy has become a popular tool for rapid elemental analysis of geological materials. However, quantitative applications of LIBS are plagued by variability in collected spectra that cannot be attributed to differences in geochemical composition. Even under ideal laboratory conditions, variability in LIBS spectra creates a host of difficulties for quantitative analysis. This is only exacerbated during field work, when both the laser-sample distance and the angle of ablation/collection are constantly changing. A primary goal of this study is to use empirical evidence to provide a more accurate assessment of uncertainty in LIBS-derived element predictions. We hope to provide practical guidance regarding the angles of ablation and collection that can be tolerated without substantially increasing prediction uncertainty beyond that which already exists under ideal laboratory conditions. Spectra were collected from ten geochemically diverse samples at angles of ablation and collection ranging from 0° to ± 60°. Ablation and collection angles were changed independently and simultaneously in order to isolate spectral changes caused by differences in ablation angle from those due to differences in collection angle. Most of the variability in atomic and continuum spectra is attributed to changes in the ablation angle, rather than the collection angle. At higher angles, the irradiance of the laser beam is lower and produces smaller, possibly less dense plasmas. Simultaneous changes in the collection angle do not appear to affect the collected spectra, possibly because smaller plasmas are still within the viewing area of the collection optics, even though this area is reduced at higher collection angles. A key observation is that changes in the magnitude of atomic and total emission are < 5% and 10%, respectively, in spectra collected with the configuration that most closely resembles field measurements (VV) at angles < 20°. In addition, variability in atomic and continuum emission is strongly dependent upon sample composition. Denser, more Fe/Mg-rich rocks exhibited much less variability with changes in ablation and collection angles than Si-rich felsic rocks. Elemental compositions of our variable angle data that were predicted using a much larger but conventionally-collected calibration suite show that accuracy generally suffers when the incidence and collection angles are high. Prediction accuracy (for measurements acquired with varying collection and ablation angles) varies from ± 1.28-1.86 wt% for Al2O3, ± 1.25-1.66 wt% for CaO, ± 1.90-2.21 wt% for Fe2O3T, ± 0.76-0.94 wt% for K2O, ± 2.85-3.61 wt% MgO, ± 0.15-0.17 wt% for MnO, ± 0.68-0.78 wt% for Na2O, ± 0.33-0.42 wt% for TiO2, and ± 2.94-4.34 wt% SiO2. The ChemCam team is using lab data acquired under normal incidence and collection angles to predict the compositions of Mars targets at varying angles. Thus, the increased errors noted in this study for high incidence angle measurements are likely similar to additional, unacknowledged errors on ChemCam results for non-normal targets analyzed on Mars. Optimal quantitative analysis of LIBS spectra must include some knowledge of the angle of ablation and collection so the approximate increase in uncertainty introduced by a departure from normal angles can be accurately reported.
NASA Astrophysics Data System (ADS)
Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan
2012-11-01
A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Leem, Jung Woo; Yu, Jae Su
2012-08-27
We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Pilon, Laurent
2017-11-01
This study aims to investigate systematically light transfer through semitransparent windows with absorbing cap-shaped droplets condensed on their backside as encountered in greenhouses, solar desalination plants, photobioreactors and covered raceway ponds. The Monte Carlo ray-tracing method was used to predict the normal-hemispherical transmittance, reflectance, and normal absorptance accounting for reflection and refraction at the air/droplet, droplet/window, and window/air interfaces and absorption in both the droplets and the window. The droplets were monodisperse or polydisperse and arranged either in an ordered hexagonal pattern or randomly distributed on the backside with droplet contact angle θc ranging between 0 and 180° The normal-hemispherical transmittance was found to be independent of the spatial distribution of droplets. However, it decreased with increasing droplet diameter and polydispersity. The normal-hemispherical transmittance featured four distinct optical regimes for semitransparent window supporting nonabsorbing droplets. These optical regimes were defined based on contact angle and critical angle for internal reflection at the droplet/air interface. However, for strongly absorbing droplets, the normal-hemispherical transmittance (i) decreased monotonously with increasing contact angle for θc <90° and (ii) remained constant and independent of droplet absorption index kd, droplet mean diameter dm, and contact angle θc for θc ≥ 90° Analytical expressions for the normal-hemispherical transmittance were provided in the asymptotic cases when (1) the window was absorbing but the droplets were nonabsorbing with any contact angles θc, and (2) the droplets were strongly absorbing with contact angle θc >90° Finally, the spectral normal-hemispherical transmittance of a 3 mm-thick glass window supporting condensed water droplets for wavelength between 0.4 and 5 μm was predicted and discussed in light of the earlier parametric study and asymptotic behavior.
NASA Astrophysics Data System (ADS)
Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.
1995-08-01
A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.
Phetkaew, Thitaporn; Kalpravidh, Marissak; Penchome, Rampaipat; Wangdee, Chalika
2018-02-01
This article aimed to determine and compare the angular values of the pelvic limb in normal and medial patellar luxation (MPL) stifles in Chihuahuas using radiography and computed tomographic (CT) scan, to identify the relationship between pelvic limb angles and severity of MPL. In addition, radiographic and CT images were compared to determine the more suitable method of limb deformity assessment. Sixty hindlimbs of Chihuahuas were divided into normal and grade 1, 2, 3 and 4 MPL groups. The pelvic limb angles in frontal and sagittal planes were evaluated on radiography and CT scan. Femoral and tibial torsion angles (FTA and TTA) were evaluated only by CT scan. All angles were compared among normal and MPL stifles and between radiography and CT scan. Based on the CT scan, the mechanical lateral distal femoral angle (mLDFA), anatomical caudal proximal femoral angle (aCdPFA), and TTA were related to the severity of MPL. The mLDFA and TTA were significantly increased ( p < 0.05) in grade 4 MPL, while the aCdPFA was significantly decreased in grade 2, 3 and 4 MPL groups. There were significant differences of many angles between radiography and CT scan. The angles related to MPL in Chihuahuas are aLDFA, mLDFA, aCdPFA and TTA. Radiography had some limitations for evaluating pelvic limb angles. The caudocranial radiograph is recommended for the assessment of the distal femoral angles, while the craniocaudal radiograph is for the tibial angles. Schattauer GmbH Stuttgart.
Kim, Dong Myung; Seo, Je Hyun; Kim, Seok Hwan; Hwang, Seung-Sik
2007-05-01
To compare the features of localized retinal nerve fiber layer (RNFL) defects between a low-teen intraocular pressure (IOP) group and a high-teen IOP group in normal-tension glaucoma (NTG) patients. Seventy-seven eyes of 77 NTG patients showing localized RNFL defects on RNFL photographs and corresponding visual filed defects at the initial visit to a glaucoma specialist were selected for this study. Patients with range of diurnal IOP within low-teen or high-teen in both eyes were included. All participants completed refraction, diurnal IOP measurement, central corneal thickness (CCT) measurement, stereoscopic disc photography, RNFL photography, and automated perimetry. On RNFL photograph, approximation of the defect to the macula (angle alpha) and width of the defects (angle beta) were measured to represent RNFL defects. The patients were divided into 2 groups according to the level of IOP. A low-teen group had highest IOP of
NASA Astrophysics Data System (ADS)
Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.
2017-12-01
Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe;
Handbook of Supersonic Aerodynamics Volume 1
1950-04-01
Appears in Z10 Publication Remarks •Mlc) *(lc) •Pile) Angle Potential function Helical angle of advance (propellers) Dimensionless Dependent on...heat of- combustion re(lc) N (cap) Nu. o(lc) Net Nozzle Normal (perpendicu- lar to longitudinal axis) ; normal (force) Nusselt ...Concepts ^ Concept Absolute Acceleration, angular Acceleration due to gravity Added; additional Adiabatic Adiabatic wall Advance, helical angle
Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Huang, H.
2015-06-15
A possible origin of a 14 deg y-normal spin n → 0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.
Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence
NASA Astrophysics Data System (ADS)
Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen
2018-05-01
Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
Static and kinetic friction of granite at high normal stress
Byerlee, J.D.
1970-01-01
Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.
NASA Astrophysics Data System (ADS)
Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.
2018-05-01
Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo
2017-12-01
We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.
The cam impinging femur has multiple morphologic abnormalities.
Ellis, Andrew R; Noble, Philip C; Schroder, Steven J; Thompson, Matthew T; Stocks, Gregory W
2011-09-01
This study was performed to establish whether the "cam" impinging femur has a single deformity of the head-neck junction or multiple abnormalities. Average dimensions (anteversion angle, α angle of Notzli, β angle of Beaulé, normalized anterior head offset) were compared between normal and impinging femora. The results demonstrated that impinging femora had wider necks, larger heads, and decreased head-neck ratios. There was no difference in neck-shaft angle or anteversion angle. Forty-six percent of impinging femora had significant posterior head displacement (>2mm), which averaged 1.93 mm for the cam impinging group, and 0.78 mm for the normal group. In conclusion, surgical treatment limited to localized recontouring of the head-neck profile may fail to address significant components of the underlying abnormality. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seely, John F., E-mail: seelyjf@gmail.com; Feldman, Uri; Henins, Albert
2016-05-15
A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating tomore » selected angles, the spectrometer can operate with high resolution up to 50 keV.« less
NASA Technical Reports Server (NTRS)
Debevoise, J. M.; Mcginnis, R. F.
1972-01-01
The test was a conventional stability and control test except for two aspects. One was the very high angles of attack at which the delta wing configurations were tested (up to 60 degrees) at Mach numbers of 3 and 4.96. The other was the installation of the orbiter and twin boosters in a manner that caused the support system to induce normal forces and side forces on the aft portion of the boosters at all Mach numbers; i.e., the support and the booster bodies were close together, side by side.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
Effect of foot shape on the three-dimensional position of foot bones.
Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J
2006-12-01
To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.
Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.
2013-01-01
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.
The radiation of sound from a propeller at angle of attack
NASA Technical Reports Server (NTRS)
Mani, Ramani
1990-01-01
The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the propeller axis is at an angle of attack to the freestream is examined. The measured noise field is distinctly non axially symmetric under such conditions with far field sound pressure levels both diminished and increased relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric sound field based on the unsteady (once per rev) loading experienced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propellers. A new mechanism is proposed; namely, that at angle of attack, there is a non axially symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers with a large number of blades. A calculation of this effect to first order in the crossflow Mach number (component of freestream Mach number normal to the propeller axis) is carried out and shows much better agreement with measured noise data on the angle of attack effect.
Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai
2016-12-01
Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy at 0° to -30° (R2 = 0.835, RMSE = 0.366). As it is possible to monitor plant N status over a wide range of angles using portable spectrometers, viewing angles of as much as 0° to -30° are common. Consequently, we developed a united model across angles of 0° to -30° to reduce the effects of viewing angle on LNC prediction in wheat. The proposed combined NDRE/FWBI parameter, designated the wide-angle-adaptability nitrogen index (WANI), is superior for estimating LNC in wheat on a regional scale in China and Canada.
Laser radar cross-section estimation from high-resolution image data.
Osche, G R; Seeber, K N; Lok, Y F; Young, D S
1992-05-10
A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.
Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data
Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan
2017-01-01
In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517
Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.
Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan
2017-02-28
In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.
Investigation of normal shock inlets for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Martin, A. W.
1977-01-01
Concepts are investigated for obtaining both low cowl drag and good inlet performance at high angles of attack. The effect of a canard on inlet performance for a kidney shaped inlet in each of two vertical locations is discussed along with a sharp lip two dimensional inlet on a canardless forebody.
High-angle faults control the geometry and morphology of the Corinth Rift
NASA Astrophysics Data System (ADS)
Bell, R. E.; Duclaux, G.; Nixon, C.; Gawthorpe, R.; McNeill, L. C.
2016-12-01
Slip along low-angle normal faults is mechanically difficult, and the existence of low angle detachment faults presents one of most important paradoxes in structural geology. Only a few examples of young continental rifts where low-angle faults may be a mechanism for accommodating strain have been described in the literature, and an important example is the Gulf of Corinth, central Greece. Here, microseismicity, the geometry of onshore faults and deep seismic reflection images have been used to argue for the presence of <30o dipping faults. However, new and reinterpreted data calls into question whether low-angle faults have been influential in controlling rift geometry. We seek to definitively test whether slip on a mature low-angle normal fault can reproduce the long-term geometry and morphology of the Corinth Rift, which involves i) significant uplift of the southern margin, ii) long-term uplift to subsidence ratios across south coast faults of 1 -2, and iii) a northern margin that does not undergo significant long-term uplift. We use PyLith, an open-source finite-element code for quasi-static viscoelastic simulations of crustal deformation and model the uplift and subsidence fields associated with the following fault geometries: i) planar faults with dips of 45-60° that sole onto a 10° detachment at a depth of 6 to 8 km, ii) 45-60° faults, which change to a dip angle of 25-45° at a depth of 3 km and continue to a brittle-ductile transition at 10 km and iii) planar faults which dip 45-60° to the brittle-ductile transition at a depth of 10 km. We show that models involving low-angle detachments, shallower than 8 km produce very minor coseismic uplift of the southern margin and post-seismic relaxation results in the southern margin experiencing net subsidence over many seismic cycles, incompatible with geological observations. Models involving planar faults produce long-term displacement fields involving uplifted southern margin with uplift to subsidence ratios of c. 1:2 and subsidence of the northern margin, compatible with geological observations. We propose that low-angle detachment faults cannot have controlled the long-term geometry of the Corinth rift, and that the rift should no longer be used as an example of low-angle normal faulting.
Normalization of multidirectional red and NIR reflectances with the SAVI
NASA Technical Reports Server (NTRS)
Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.
1992-01-01
Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.
View Angle Effects on MODIS Snow Mapping in Forests
NASA Technical Reports Server (NTRS)
Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.
2012-01-01
Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.
ECRH launching scenario in FFHR-d1
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei
2016-10-01
ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.
Overlap junctions for high coherence superconducting qubits
NASA Astrophysics Data System (ADS)
Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.
2017-07-01
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.
Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.
Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C
2018-05-30
High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.
Anolik, Rachel A; Allori, Alexander C; Pourtaheri, Navid; Rogers, Gary F; Marcus, Jeffrey R
2016-05-01
The purpose of this study was to evaluate the utility of a previously validated interfrontal angle for classification of severity of metopic synostosis and as an aid to operative decision-making. An expert panel was asked to study 30 cases ranging from minor to severe metopic synostosis. Based on computed tomographic images of the skull and clinical photographs, they classified the severity of trigonocephaly (1 = normal, 2 = mild, 3 = moderate, and 4 = severe) and management (0 = nonoperative and 1 = operative). The severity scores and management reported by experts were then pooled and matched with the interfrontal angle computed from each respective computed tomographic scan. A threshold was identified at which most experts agree on operative management. Expert severity scores were higher for more acute interfrontal angles. There was a high concordance at the extremes of classifications, severe (4) and normal (1) (p < 0.0001); however, between interfrontal angles of 114.3 and 136.1 degrees, there exists a "gray zone," with severe discordance in expert rankings. An operative threshold of 118.2 degrees was identified, with the interfrontal angle able to predict the expert panel's decision to proceed with surgery 87.6 percent of the time. The interfrontal angle has been previously validated as a simple, accurate, and reproducible means for diagnosing trigonocephaly, but must be obtained from computed tomographic data. In this article, the authors demonstrate that the interfrontal angle can be used to further characterize the severity of trigonocephaly. It also correlated with expert decision-making for operative versus nonoperative management. This tool may be used as an adjunct to clinical decision-making when the decision to proceed with surgery may not be straightforward. Diagnostic, V.
Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
Saito, Akira; Akima, Hiroshi
2013-12-01
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
Fault stability under conditions of variable normal stress
Dieterich, J.H.; Linker, M.F.
1992-01-01
The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors
Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun
2015-01-01
As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105
Light transfer through windows with external condensation
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Li, Shaoling; Pilon, Laurent
2018-03-01
This study investigates systematically light transfer through windows supporting cap-shaped droplets on their external face. The presence of such droplets may have negative effects on the conversion efficiency of solar cells, distorts image quality of lenses, or hinders visibility through windows and windshields. Here, the directional-hemispherical transmittance was predicted by the Monte Carlo ray-tracing method. The droplets were monodisperse or polydisperse randomly distributed on the outside face of optically smooth windows. For nonabsorbing droplets, the diameter and size distribution did not have a significant effect on the window directional-hemispherical transmittance. The latter was nearly independent of contact angle for incident angle θi ≤ 30°. However, the directional-hemispherical transmittance decreased monotonously with increasing incident angle and droplet contact angle for contact angle θc ≤ 70° to reach a minimum at a contact angle θc,min beyond which it increased with increasing contact angle before reaching a plateau at large contact angles. This was attributed to total internal reflection at the back window/air and droplet/air interfaces. For absorbing droplets, the normal-hemispherical transmittance decreased significantly with increasing droplet contact angle, mean diameter, polydispersity, and projected surface area coverage due to strong absorption within the droplets. Moreover, the normal-hemispherical transmittance decreased with increasing contact angle for θc< 90° and remained constant and independent of the droplets' absorption index, mean diameter, and contact angle for θc ≥ 90°. Finally, Analytical expressions for the upper and lower bounds of the normal-hemispherical transmittance as a function of droplet contact angle, optical properties, and projected surface area coverage were derived.
Gill, Simone V; Hung, Ya-Ching
2014-01-01
Little is known about how obesity relates to motor planning and skills during functional tasks. We collected 3-D kinematics and kinetics as normal weight (n=10) and overweight/obese (n=12) children walked on flat ground and as they crossed low, medium, and high obstacles. We investigated if motor planning and motor skill impairments were evident during obstacle crossing. Baseline conditions showed no group differences (all ps>.05). Increased toe clearance was found on low obstacles (p=.01) for the overweight/obese group and on high obstacles (p=.01) for the normal weight group. With the crossing leg, the overweight/obese group had larger hip abduction angles (p=.01) and medial ground reaction forces (p=.006) on high obstacles and high anterior ground reaction forces on low obstacles (p=.001). With the trailing leg, overweight/obese children had higher vertical ground reaction forces on high obstacles (p=.005) and higher knee angles (p=.01) and anterior acceleration in the center of mass (p=.01) on low obstacles. These findings suggest that differences in motor planning and skills in overweight/obese children may be more apparent during functional activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
NASA Technical Reports Server (NTRS)
Suit, W. T.
1977-01-01
Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.
NASA Astrophysics Data System (ADS)
Molla, Aslam Ali; Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit
2016-07-01
The black hole X-ray binary H1743-322 has been observed almost during every X-ray mission since the inception of X-ray astronomy. Like other black hole candidates H1743-322 is highly variable. Using a self consistent accretion flow model (TCAF), we study spectral evolution during its 2010 & 2011 outbursts by keeping model normalization fixed to a value (14.5). As model normalization depends only on mass, distance and inclination angle of the black hole so, it should be a constant. This constant allows us to calculate mass of the black hole if we keep it frozen. The only uncertainty in mass and normalization measurements comes from the uncertainty of distance and inclination angle. Here we present spectral analysis of H1743-322 during 2010 and 2011 outburst and conclude that the mass of the black hole is within a range of 9 - 13 M_Sun.
2007-03-01
front of a large area blackbody as background. The viewing angle , defined as the angle between surface normal and camera line of sight, was varied by...and polarization angle were derived from the Stokes parameters. The dependence of these polarization characteristics on viewing angle was investigated
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics in neonatal foals.
Kasper, C A; Clayton, H M; Wright, A K; Skuba, E V; Petrie, L
1995-07-01
Thirteen clinically normal Belgian-type foals were used to study the effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics. Seven foals (treatment group) received 2 doses of oxytetracycline (3 g, IV). The first dose was given when foals were 4 days old; the second dose was given 24 hours later. Six foals (control group) received 2 doses of saline (0.9% NaCl) solution (15 ml, IV) at equivalent time periods. All foals were videotaped at a walk twice: immediately prior to the first treatment and 24 hours after the second treatment. The tapes were digitized, and metacarpophalangeal joint angle was measured along the palmar surface of the limb during 3 strides. The angular data were normalized for time, and data from the 3 strides were averaged to describe a representative stride. Repeated measures ANOVA was used to test for differences between groups and within groups over time. Values for stride duration, stance phase percentage, and minimum metacarpophalangeal joint angle obtained before treatment were not significantly different from values obtained after treatment. Maximum metacarpophalangeal joint angle, which occurred during the stance phase of the stride, and range of joint motion were significantly increased for foals in the treatment group, compared with foals in the control group.
Fingert, John H.; Robin, Alan L.; Scheetz, Todd E.; Kwon, Young H.; Liebmann, Jeffrey M.; Ritch, Robert; Alward, Wallace L.M.
2016-01-01
Purpose To investigate the role of TANK-binding kinase 1 (TBK1) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. Methods In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas—juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)—using a quantitative polymerase chain reaction assay. Results No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. Conclusions TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma. PMID:27881886
Fingert, John H; Robin, Alan L; Scheetz, Todd E; Kwon, Young H; Liebmann, Jeffrey M; Ritch, Robert; Alward, Wallace L M
2016-08-01
To investigate the role of TANK-binding kinase 1 ( TBK1 ) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas-juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)-using a quantitative polymerase chain reaction assay. No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma.
Forebody tangential blowing for control at high angles of attack
NASA Technical Reports Server (NTRS)
Kroo, I.; Rock, S.; Roberts, L.
1991-01-01
A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.
Analysis of using the tongue deviation angle as a warning sign of a stroke
2012-01-01
Background The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. Methods In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. Results The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student’s t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians “A” and “B” examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. Conclusions In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke. PMID:22908956
Analysis of using the tongue deviation angle as a warning sign of a stroke.
Wei, Ching-Chuan; Huang, Shu-Wen; Hsu, Sheng-Lin; Chen, Hsing-Chung; Chen, Jong-Shin; Liang, Hsinying
2012-08-21
The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student's t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians "A" and "B" examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke.
Kumar, Addepalli U.; Jonnadula, Ganesh B.; Garudadri, Chandrasekhar; Rao, Harsha L.; Senthil, Sirisha; Papas, Eric B.; Sankaridurg, Padmaja; Khanna, Rohit C.
2013-01-01
Purpose To compare the diagnostic performance of glaucoma specialists and experienced optometrists in gonioscopy and optic disc assessment. Methods This study was done to validate the diagnostic performance of two experienced optometrists for using their skills of detecting glaucoma using gonioscopy and optic disc assessment in a major epidemiological study, the L V Prasad Eye Institute Glaucoma Epidemiology and Molecular Genetics Study (LVPEI-GLEAMS). Gonioscopic findings for 150 eyes were categorized as 0, 1 and 2 for open angle, primary angle closure suspect (PACS) and primary angle closure (PAC) respectively. Optic disc findings for 200 eyes were categorized as 0, 1 and 2 for normal, suspects and glaucomatous respectively. Weighted kappa (κ) and diagnostic accuracy parameters were calculated. Two optometrists (#1 and #2) participated in the study. Results Agreement between glaucoma specialists and optometrist for interpretation of gonioscopy to discriminate PACS and PAC from open angles and for interpretation of optic disc to discriminate glaucomatous and suspicious discs from normal, the kappa (κ) was 0.92 and 0.84 and 0.90 and 0.89 for optometrists #1 and #2 respectively. Sensitivities and specificities were above 90% for gonioscopy. Optic disc evaluation had specificities greater than 95% to discriminate normal from glaucomatous discs while the sensitivities were 83% and 93% for optometrists #1 and #2 respectively. Conclusion Agreement between optometrists and glaucoma specialists, in diagnostic performance of gonioscopy and optic assessment was excellent with high sensitivity and specificity. Hence, we conclude that the experienced optometrists can detect glaucoma accurately in the LVPEI-GLEAMS.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
Optic Nerve Sheath Tethering in Adduction Occurs in Esotropia and Hypertropia, But Not in Exotropia
Suh, Soh Youn; Clark, Robert A.; Demer, Joseph L.
2018-01-01
Purpose Repetitive strain to the optic nerve (ON) due to tethering in adduction has been recently proposed as an intraocular pressure-independent mechanism of optic neuropathy in primary open-angle glaucoma. Since strabismus may alter adduction, we investigated whether gaze-related ON straightening and associated globe translation differ in horizontal and vertical strabismus. Methods High-resolution orbital magnetic resonance imaging was obtained in 2-mm thick quasi-coronal planes using surface coils in 25 subjects (49 orbits) with esotropia (ET, 19 ± 3.6Δ SEM), 11 (15 orbits) with exotropia (XT, 33.7 ± 7.3Δ), 7 (12 orbits) with hypertropia (HT, 14.6 ± 3.2Δ), and 31 normal controls (62 orbits) in target-controlled central gaze, and in maximum attainable abduction and adduction. Area centroids were used to determine ON path sinuosity and globe positions. Results Adduction angles achieved in ET (30.6° ± 0.9°) and HT (27.2° ± 2.3°) did not significantly differ from normal (28.3° ± 0.7°), but significantly less adduction was achieved in XT (19.0° ± 2.5°, P = 0.005). ON sheath tethering in adduction occurred in ET and HT similarly to normal, but did not in XT. The globe translated significantly less than normal, nasally in adduction in XT and temporally in abduction in ET and HT (P < 0.02, for all). Globe retraction did not occur during abduction or adduction in any group. Conclusions Similar to normal subjects, the ON and sheath become tethered without globe retraction in ET and HT. In XT, adduction tethering does not occur, possibly due to limited adduction angle. Thus, therapeutic limitation of adduction could be considered as a possible treatment for ON sheath tethering.
Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces
NASA Astrophysics Data System (ADS)
Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.
2017-12-01
Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for such surfaces. This analysis yielded a continuum of contact angles (real above, and imaginary below, zero degrees) that can be used to investigate relationships with properties such surface roughness and porosity. It should be noted these are preliminary, unreplicated results and further research will be needed to verify them and refine the approach.
75 FR 80735 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
..., Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington, 98057-3356; telephone (425) 227... from stalling, limits the angle of attack at which the airplane can be flown during normal low speed... limit impacts the stall speed determination, the stall characteristics, the stall warning demonstration...
76 FR 17022 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... Directorate, Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington 98057-3356; telephone..., limits the angle of attack at which the airplane can be flown during normal low speed operation, and... the stall speed determination, the stall characteristics, the stall warning demonstration, and the...
NASA Technical Reports Server (NTRS)
Hemsch, M. J.; Nielsen, J. N.
1982-01-01
A method has been developed for estimating the nonlinear aerodynamic characteristics of missile wing and control surfaces. The method is based on the following assumption: if a fin on a body has the same normal-force coefficient as a wing alone composed of two of the same fins joined together at their root chords, then the other force and moment coefficients of the fin and the wing alone are the same including the nonlinearities. The method can be used for deflected fins at arbitrary bank angles and at high angles of attack. In the paper, a full derivation of the method is given, its accuracy demonstrated and its use in extending missile data bases is shown.
Balsdon, Megan E R; Bushey, Kristen M; Dombroski, Colin E; LeBel, Marie-Eve; Jenkyn, Thomas R
2016-10-01
The structure of the medial longitudinal arch (MLA) affects the foot's overall function and its ability to dissipate plantar pressure forces. Previous research on the MLA includes measuring the calcaneal-first metatarsal angle using a static sagittal plane radiograph, a dynamic height-to-length ratio using marker clusters with a multisegment foot model, and a contained angle using single point markers with a multisegment foot model. The objective of this study was to use biplane fluoroscopy to measure a contained MLA angle between foot types: pes planus (low arch), pes cavus (high arch), and normal arch. Fifteen participants completed the study, five from each foot type. Markerless fluoroscopic radiostereometric analysis (fRSA) was used with a three-dimensional model of the foot bones and manually matching those bones to a pair of two-dimensional radiographic images during midstance of gait. Statistically significant differences were found between barefoot arch angles of the normal and pes cavus foot types (p = 0.036), as well as between the pes cavus and pes planus foot types (p = 0.004). Dynamic walking also resulted in a statistically significant finding compared to the static standing trials (p = 0.014). These results support the classification of individuals following a physical assessment by a foot specialist for those with pes cavus and planus foot types. The differences between static and dynamic kinematic measurements were also supported using this novel method.
NASA Astrophysics Data System (ADS)
Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng
2018-02-01
Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.
Occurrence and Magnitude of High Reflectance Materials on the Moon
NASA Astrophysics Data System (ADS)
Nuno, R. G.; Boyd, A. K.; Robinson, M. S.
2013-12-01
We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high reflectance of its ray system may be due to both composition and maturity. Some relatively small isolated features exhibit high reflectance, such as the Compton-Belkovich Volcanic Complex (0.24) and rilles in the floor of Compton crater (0.27). Features associated with pure anorthosite [4] are also found to have high reflectance values, such as occurrences in Mare Orientale (0.22). Since the photometric normalization accounted for topography up to the 300-m horizontal spatial scale, uncertainties remain for steep crater walls. We are currently reducing these uncertainties for selected craters with high resolution (15 meter baseline) stereo-based NAC DTMs. References: [1] Robinson et al. (2010), Space Sci. Rev. [2] Boyd et al. (2013) AGU, this conference. [3] Scholten et al. (2012) JGR. [4] Ohtake et al. (2009) Nature.
47 CFR 25.205 - Minimum angle of antenna elevation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...
47 CFR 25.205 - Minimum angle of antenna elevation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...
47 CFR 25.205 - Minimum angle of antenna elevation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...
47 CFR 25.205 - Minimum angle of antenna elevation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...
Modified cuspal relationships of mandibular molar teeth in children with Down's syndrome
PERETZ, BENJAMIN; SHAPIRA, JOSEPH; FARBSTEIN, HANNA; ARIELI, ELIAHU; SMITH, PATRICIA
1998-01-01
A total of 50 permanent mandibular 1st molars of 26 children with Down's syndrome (DS) were examined from dental casts and 59 permanent mandibular 1st molars of normal children were examined from 33 individuals. The following measurements were performed on both right and left molars (teeth 46 and 36 respectively): (a) the intercusp distances (mb-db, mb-d, mb-dl, db-ml, db-d, db-dl, db-ml, d-dl, d-ml, dl-ml); (b) the db-mb-ml, mb-db-ml, mb-ml-db, d-mb-dl, mb-d-dl, mb-dl-d angles; (c) the area of the pentagon formed by connecting the cusp tips. All intercusp distances were significantly smaller in the DS group. Stepwise logistic regression, applied to all the intercusp distances, was used to design a multivariate probability model for DS and normals. A model based on 2 distances only, mb-dl and mb-db, proved sufficient to discriminate between the teeth of DS and the normal population. The model for tooth 36 for example was as follows: formula here A similar model for tooth 46 was also created, as well as a model which incorporated both teeth. With respect to the angles, significant differences between DS and normals were found in 3 out of the 6 angles which were measured: the d-mb-dl angle was smaller than in normals, the mb-d-dl angle was higher, and the mb-dl-d angle was smaller. The dl cusp was located closer to the centre of the tooth. The change in size occurs at an early stage, while the change in shape occurs in a later stage of tooth formation in the DS population. PMID:10029186
Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets
NASA Astrophysics Data System (ADS)
Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping
2018-03-01
Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.
Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai
2018-04-25
An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.
An Investigation of Convergent-Divergent Diffusers at Mach Number 1.85
NASA Technical Reports Server (NTRS)
Wyatt, Demarquis D; Hunczak, Henry R
1947-01-01
An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
Lee, Ji-Hoon; Lee, Jung Jin; Lim, Young Jin; Kundu, Sudarshan; Kang, Shin-Woong; Lee, Seung Hee
2013-11-04
Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.
Ripple formation on Si surfaces during plasma etching in Cl2
NASA Astrophysics Data System (ADS)
Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2018-05-01
Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.
System for determining the angle of impact of an object on a structure
NASA Technical Reports Server (NTRS)
Prosser, William H. (Inventor); Gorman, Michael R. (Inventor)
1993-01-01
A method for determining the angle of impact of an object on a thin-walled structure which determines the angle of impact through analysis of the acoustic waves which result when an object impacts a structure is presented. Transducers are placed on and in the surface of the structure which sense the wave caused in the structure by impact. The waves are recorded and saved for analysis. For source motion normal to the surface, the antisymmetric mode has a large amplitude while that of the symmetric mode is very small. As the source angle increases with respect to the surface normal, the symmetric mode amplitude increases while the antisymmetric mode amplitude decreases. Thus, the angle of impact is determined by measuring the relative amplitudes of these two lowest order modes.
A novel procedure to assess anismus using three-dimensional dynamic anal ultrasonography.
Murad-Regadas, S M; Regadas, F S P; Rodrigues, L V; Souza, M H L P; Lima, D M R; Silva, F R S; Filho, F S P R
2007-02-01
This study aimed to determine the value of three-dimensional (3D) dynamic endosonography in the assessment of anismus. Sixty-one women submitted to anorectal manometry were enrolled including 40 healthy women and 21 patients with anismus diagnosed by manometry. Patients were submitted to 3D endosonography. Images were acquired at rest and during straining and analysed in axial and midline longitudinal planes. Sphincter integrity was quantified. The angle between the internal edge of the puborectalis with a vertical line according to the anal canal axis was calculated at rest and during straining. The angle increased in 39 of the 40 normal individuals and decreased in all patients with anismus during straining compared with the angle at rest (88.36 degrees ) and straining (98.65 degrees ) in normal individuals. In the anismus group, the angle decreased at rest (90.91 degrees ) and straining (84.89 degrees ). The difference between angle sizes in normal and anismus patients during straining was statistically significant (P < 0.5). Three-dimensional endosonography is a useful method to assess patients with anismus confirming the anorectal manometric results.
Pang, Dachling; Li, Veetai
2005-11-01
This is Part II of a study on atlantoaxial rotatory fixation (AARF) that aims to introduce a new diagnostic paradigm and a new classification of this condition based on motion analysis of C1C2 rotation using computed tomographic (CT) imaging. This phase of the study is possible because Part I succeeded in defining physiological C1C2 axial rotation with CT data from 21 normal children, displayed in a highly concordant composite motion curve, which is used as the normal template for the present study. AARF is defined as flagrant departure from normal motion dynamics as delineated by abnormal motion curves. The new classification is predicated on the graded amount of pathological stickiness in the restricted rotation. Forty children age 1.5 to 14 years with painful "cock-robin" necks resulting from minor trauma or otolaryngological procedures were subjected to 3 CT examinations: 1) in the presenting (P) position; 2) with the nose pointing up (P0 position); and 3) with the head forcefully turned to the opposite side as much as the patient could tolerate (P_ position). The angles made by C1 and C2 and the separation angle C1C2 degrees (C1 minus C2 degrees) were obtained as described in Part I. The test motion curve was generated by plotting C1 against C1C2 angles, and all motion curves were analyzed in the context of the normal template. Five distinct groups with highly characteristic motion curves could be identified. Group 1 (n = 5) patients showed essentially unaltered ("locked") C1C2 coupled configurations regardless of corrective counterrotation, with curves that are horizontal lines in the upper two quadrants of the template. Group 2 (n = 7) patients had reduction of the C1C2 separation angle with forced correction, but C1 could not be made to cross C2. Their curves slope downward from right to left in the upper quadrants but never traverse the x axis. Group 3 (n = 9) patients showed C1C2 crossover, but only when the head was cranked far to the opposite side. Their motion curves traverse the x axis left of C1 = -20 degrees. Groups 1, 2, and 3 motion dynamics are respectively classified as Types I, II, and III AARF in descending degree of pathological stickiness, which is in essence a resistance against closure of the C1C2 angle to counterrotation. Group 4 (n = 14) patients had normal dynamics, and Group 5 (n = 5) patients showed motion curve features between normal and Type III AARF, designated as belonging to the diagnostic gray zone, an uncertain group that may or may not revert to normal dynamics with only comfort measures. AARF can be reliably diagnosed with a simple and practical CT protocol and construction of a three-point motion curve superimposed on a reusable normal template. The type of AARF, reflective of the severity of pathological stickiness of rotation, can be identified readily by the shape of the motion curve. This system of classification is useful in selecting the best regimen of management.
Sherrid, Mark V; Kushner, Josef; Yang, Georgiana; Ro, Richard
2017-04-01
Three competing theories about the mechanism of mitral coaptation in normal subjects were evaluated by color Doppler and vector flow mapping (VFM): (1) beginning of ventricular (LV) ejection, (2) "breaking of the jet" of diastolic LV inflow, and (3) returning diastolic vortices impacting the leaflets on their LV surfaces. We analyzed 80 color Doppler frames and 320 VFM measurements. In all 20 normal subjects, coaptation occurred before LV ejection, 78±16 ms before onset. On color Doppler frames the larger anterior, and smaller posterior vortices circle back and, in all cases, strike the ventricular surfaces of the leaflets. On the first closing-begins frame, for the first time, vortex velocity normal to the ventricular surface of the anterior leaflet (AML) is greater than that in the mitral orifice, and the angle of attack of LV vortical flow onto the AML is twice as high as the angle of flow onto the valve in orifice. Thus, at the moment coaptation begins, vortical flow strikes the mitral leaflet with higher velocity, and higher angle of attack than orifice flow, and thus with greater force. According to the "breaking of the jet" theory, one would expect to see de novo LV flow perpendicular to the leaflets beginning after transmitral flow terminates. Instead, the returning continuous LV vortical flow that impacts the valve builds continuously after the P-wave. Late diastolic vortices strike the ventricular surfaces of the mitral leaflets and contribute to valve coaptation, permitted by concomitant decline in transmitral flow. © 2017, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.
2014-12-01
The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L~3.5-4. In the region between, 90°-minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2
Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal
NASA Astrophysics Data System (ADS)
Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.
2018-02-01
PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
Xie, Zuo-ping; Zhao, Bo-wen; Yuan, Hua; Hua, Qi-qi; Jin, She-hong; Shen, Xiao-yan; Han, Xin-hong; Zhou, Jia-mei; Fang, Min; Chen, Jin-hong
2013-01-01
Background: To establish the reference range of the angle between ascending aorta and main pulmonary artery of fetus in the second and third trimester using spatiotemporal image correlation (STIC), and to investigate the value of this angle in prenatal screening of conotruncal defects (CTDs). Materials and Methods: Volume images of 311 normal fetuses along with 20 fetuses with congenital heart diseases were recruited in this cross-sectional study. An offline analysis of acquired volume datasets was carried out with multiplanar mode. The angle between aorta and pulmonary artery was measured by navigating the pivot point and rotating axes and the reference range was established. The images of ascending aorta and main pulmonary artery in fetuses with congenital heart diseases were observed by rotating the axes within the normal angle reference range. Results: The angle between ascending aorta and main pulmonary artery of the normal fetus (range: 59.1˚~97.0˚, mean ± SD: 78.0˚ ± 9.7˚) was negatively correlated with gestational age (r = -0.52; p<0.01). By rotating the normal angle range corresponding to gestational age, the fetuses with CTD could not display views of their left ventricular long axis and main pulmonary trunk correctly. Conclusion: The left ventricular long axis and main pulmonary trunk views can be displayed using STIC so that the echocardiographic protocol of the cardiovascular joint could be standardized. The reference range of the angle between ascending aorta and main pulmonary artery is clinically useful in prenatal screening of CTD and provides a reliable quantitative standard to estimate the spatial relationship of the large arteries of fetus. PMID:24520485
Grating angle magnification enhanced angular sensor and scanner
NASA Technical Reports Server (NTRS)
Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)
2009-01-01
An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.
Three Dimensional Solution of Pneumatic Active Control of Forebody Vortex Asymmetry
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; SharafEl-Din, Hazem H.; Liu, C. H.
1995-01-01
Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle range of 67.5 approaches minus 67.5 degrees is used for both normal and tangential ports of injection. The effective axial length of injection is varied from 0.03 to 0.05. The computational solver uses the implicit, upwind, flux difference splitting finite volume scheme, and the grid consists of 161 x 55 x 65 points in the wrap around, normal and axial directions, respectively. The results show that tangential injection is more effective than normal injection.
Method to fabricate a tilted logpile photonic crystal
Williams, John D.; Sweatt, William C.
2010-10-26
A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.
Ju, Young-Ho; Park, Euyhyun; Park, Sangheon; Jung, Kwangjin; Lee, Kijeong; Im, Gi Jung
2014-03-01
The extent of inferior displacement of the mastoid tegmen is related to the severity of congenital aural atresia (CAA). To analyze anatomic variations observed on high-resolution temporal bone computed tomography (TBCT) in patients with CAA, the extent of inferior displacement of the mastoid tegmen and the size of the incudo-stapedial (IS) joint angle were compared with surgical parameters for atresiaplasty, such as Jahrsdoerfer score and hearing acuity. Sixty-one patients with unilateral CAA underwent high-resolution TBCT and hearing tests. We evaluated TBCTs in terms of Jahrsdoerfer criteria and analyzed the relationships among the inferior displacement of the mastoid tegmen, size of the IS joint angle, hearing acuity, and the Jahrsdoerfer score on the atretic side. IS joint angle on the atretic side was found to be 120.6 ± 11°, which was significantly greater than the corresponding value of 103.4 ± 5.4° on the normal side. Cholesteatoma occurred significantly more often in CAA patients with narrow external auditory canals (EACs) (9/27; 33.3%), compared with CAA patients with no EAC opening (2/34; 5.9%). There was a significant relation between the extent of inferior displacement of the mastoid tegmen (28.9% in the atretic side and 17.3% in the normal side) and the Jahrsdoerfer score (p < 0.0001).
1977-11-01
0 . 0786 .144 .118 .118 .182 .298 .391 .449 .486 .508 30o 0 .0907 .193 .195 .233 .316 .443 .542 . 624 .663 .687 -200 0 .1008 .220 .275 .335 .443 .580...coefficient as measured on 52 splitter plate at Mm = 3.0. 13 Constructed normal-force curves for wings T36, T31, 53 and T32. 14 Lateral position of center of...00. [ 11 * LIST OF ILLUSTRATIONS (Concluded) Figures Page 52 Canard vortex location and afterbody vortex clouds 142 at start of tail section for
NASA Technical Reports Server (NTRS)
Whitcomb, Richard T.
1940-01-01
An investigation of the characteristics of a wing with an aspect ratio of 9.0 and an NACA 65-210 airfoil section has been made at Mach number up to 0.925. The wing tested has a taper ratio of 2.5:1.0, no twist, dihedral, or sweepback, and 20-percent - chord 37.5-percent-semispan plain ailerons. The results showed that serious changes in the normal-force characteristics occurred when the Mach number was increased above 0.74 at angles of attack between 4 deg. and 10 deg. and above 0.80 at 0 deg. angle of attack.Because of small outboard shifts in the lateral center of load, the bending moment at the root for conditions corresponding to a 3g pull-out at an altitude of 35,000 feet increased by approximately 5% when the Much number was increased beyond 0.83 the negative pitching moments for the high angles of attack increased, whereas those for the low angles of attack decreased with a resulting large increase in the negative slope of the pitching-moment curves. A large increase occurred in the values of the drag coefficients for the range of lift coefficients needed for level flight at an altitude of 35,000 feet when the Mach number was increased beyond a value of 0.80. The wakes at a station 2.82 root chords behind the wing quarter-chord line extended approximately a chord above the wing chord line for the angles of attack required to recover from high-speed dives at high Mach numbers.
Proximo-distal patellar position in three small dog breeds with medial patellar luxation.
Wangdee, C; Theyse, L F H; Hazewinkel, H A W
2015-01-01
Medial patellar luxation is thought to be associated with a high proximal position of the patella in the trochlear groove. To determine whether the ratio of patellar ligament length and patellar length (L:P) is influenced by the stifle angle (75°, 96°, 113°, 130°, and 148°) in small dog breeds and to compare the L:P ratio in dogs of three small dog breeds with and without medial patellar luxation. A mediolateral radiograph of the stifle joint was used to measure the L:P ratio in the stifle joints of dogs of three small breeds with and without medial patellar luxation. The L:P ratio was evaluated at five stifle angles (75°, 96°, 113°, 130°, and 148°) in 14 cadavers (26 stifle joints) of small dog breeds in order to identify the best stifle angle to measure the L:P ratio. Then the mean ± SD L:P ratio was calculated for normal stifles and stifles with medial patellar luxation grades 1, 2, and 3 in 194 Pomeranians, 74 Chihuahuas, and 41 Toy or Standard Poodles. The L:P ratio was the same for all five stifle angles in the cadavers (p = 0.195). It was also not significantly different in the three breeds (p = 0.135), in normal and medial patellar luxation-affected stifles overall (p = 0.354), and in normal and medial patellar luxation-affected joints within each breed (p = 0.19). We conclude that a proximo-distal patellar position is not associated with medial patellar luxation in Pomeranians, Chihuahuas, and Toy or Standard Poodles. Thus a longer patellar ligament length does not play a role in the pathophysiology of medial patellar luxation in these small dog breeds.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Souders, S. W.
1975-01-01
Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.
Effect of local magnetic field disturbances on inertial measurement units accuracy.
Robert-Lachaine, Xavier; Mecheri, Hakim; Larue, Christian; Plamondon, André
2017-09-01
Inertial measurement units (IMUs), a practical motion analysis technology for field acquisition, have magnetometers to improve segment orientation estimation. However, sensitivity to magnetic disturbances can affect their accuracy. The objective of this study was to determine the joint angles accuracy of IMUs under different timing of magnetic disturbances of various durations and to evaluate a few correction methods. Kinematics from 12 individuals were obtained simultaneously with an Xsens system where an Optotrak cluster acting as the reference system was affixed to each IMU. A handling task was executed under normal laboratory conditions and imposed magnetic disturbances. Joint angle RMSE was used to conduct a three-way repeated measures analysis of variance in order to contrast the following disturbance factors: duration (0, 30, 60, 120 and 240 s), timing (during the disturbance, directly after it and a 30-second delay after it) and axis (X, Y and Z). The highest joint angle RMSE was observed on rotations about the Y longitudinal axis and during the longer disturbances. It stayed high directly after a disturbance, but returned close to baseline after a 30-second delay. When magnetic disturbances are experienced, waiting 30 s in a normal condition is recommended as a way to restore the IMUs' initial accuracy. The correction methods performed modestly or poorly in the reduction of joint angle RMSE. Copyright © 2017 Elsevier Ltd. All rights reserved.
Normal and Tangential Momentum Accommodation for Earth Satellite Conditions
NASA Technical Reports Server (NTRS)
Knechtel, Earl D.; Pitts, William C.
1973-01-01
Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.
Influence of mandibular morphology on the hyoid bone in atypical deglutition: a correlational study.
Machado, Almiro J; Crespo, Agrício N
2011-11-01
evaluate the possible correlation with the radiographic position of the hyoid bone and mandibular angle in lateral radiographs of children with atypical deglutition. This was an observational study using cephalometric analysis of lateral teleradiographs for the distances of H-MP (hyoid to mandibular plane). Spearman's correlation analysis was performed with MA (mandibular angle) in two groups: the experimental group with atypical deglutition and the control group normal deglutition. Both groups included subjects in mixed dentition stage. there was a significant moderate negative correlation between MA (mandibular angle) and hyoid bone (H-MP) in the normal group (R = -0.406, p = 0.021). However, there was no significant correlation between the MA and H-MP (R = 0.029, p = 0.83) in the group with atypical deglutition. there is a moderate negative correlation between the position of the hyoid bone and mandibular angle in the group of normal swallowing and there is no correlation between variables H-MP and MA in the group of atypical swallowing.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.
2017-12-01
Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.
Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges
NASA Astrophysics Data System (ADS)
Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.
2017-12-01
Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.; Brooks, C. W., Jr.
1983-01-01
Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).
Influence of incident angle on the decoding in laser polarization encoding guidance
NASA Astrophysics Data System (ADS)
Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan
2009-07-01
Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.
Marine forearc extension in the Hikurangi Margin: New insights from high-resolution 3D seismic data
NASA Astrophysics Data System (ADS)
Böttner, Christoph; Gross, Felix; Geersen, Jacob; Mountjoy, Joshu; Crutchley, Gareth; Krastel, Sebastian
2017-04-01
In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (<15 m) and dip at high (> 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
NASA Astrophysics Data System (ADS)
Haines, Samuel; Marone, Chris; Saffer, Demian
2014-12-01
The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.
Slope angle estimation method based on sparse subspace clustering for probe safe landing
NASA Astrophysics Data System (ADS)
Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui
2018-06-01
To avoid planetary probes landing on steep slopes where they may slip or tip over, a new method of slope angle estimation based on sparse subspace clustering is proposed to improve accuracy. First, a coordinate system is defined and established to describe the measured data of light detection and ranging (LIDAR). Second, this data is processed and expressed with a sparse representation. Third, on this basis, the data is made to cluster to determine which subspace it belongs to. Fourth, eliminating outliers in subspace, the correct data points are used for the fitting planes. Finally, the vectors normal to the planes are obtained using the plane model, and the angle between the normal vectors is obtained through calculation. Based on the geometric relationship, this angle is equal in value to the slope angle. The proposed method was tested in a series of experiments. The experimental results show that this method can effectively estimate the slope angle, can overcome the influence of noise and obtain an exact slope angle. Compared with other methods, this method can minimize the measuring errors and further improve the estimation accuracy of the slope angle.
Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells
NASA Astrophysics Data System (ADS)
Vázquez-Guardado, Abraham; Boroumand, Javaneh; Franklin, Daniel; Chanda, Debashis
2018-03-01
Backscattering from nanostructured surfaces greatly diminishes the efficacy of light trapping solar cells. While the analytical design of broadband, angle-independent antireflection coatings on nanostructured surfaces proved inefficient, numerical optimization proves a viable alternative. Here, we numerically design and experimentally verify the performance of single and bilayer antireflection coatings on a 2D hexagonal diffractive light trapping pattern on crystalline silicon substrates. Three well-known antireflection coatings, aluminum oxide, silicon nitride, and silicon oxide, which also double as high-quality surface passivation materials, are studied in the 400-1000 nm band. By varying thickness and conformity, the optimal parameters that minimize the broadband total reflectance (specular and scattering) from the nanostructured surface are obtained. The design results in a single-layer antireflection coating with normal-angle wavelength-integrated reflectance below 4% and a bilayer antireflection coating demonstrating reflection down to 1.5%. We show experimentally an angle-averaged reflectance of ˜5.2 % up to 60° incident angle from the optimized bilayer antireflection-coated nanostructured surface, paving the path toward practical implementation of the light trapping solar cells.
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
Descriptive Quantitative Analysis of Rearfoot Alignment Radiographic Parameters.
Meyr, Andrew J; Wagoner, Matthew R
2015-01-01
Although the radiographic parameters of the transverse talocalcaneal angle (tTCA), calcaneocuboid angle (CCA), talar head uncovering (THU), calcaneal inclination angle (CIA), talar declination angle (TDA), lateral talar-first metatarsal angle (lTFA), and lateral talocalcaneal angle (lTCA) form the basis of the preoperative evaluation and procedure selection for pes planovalgus deformity, the so-called normal values of these measurements are not well-established. The objectives of the present study were to retrospectively evaluate the descriptive statistics of these radiographic parameters (tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA) in a large population, and, second, to determine an objective basis for defining "normal" versus "abnormal" measurements. As a secondary outcome, the relationship of these variables to the body mass index was assessed. Anteroposterior and lateral foot radiographs from 250 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated. The results revealed a mean measurement of 24.12°, 13.20°, 74.32%, 16.41°, 26.64°, 8.37°, and 43.41° for the tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA, respectively. These were generally in line with the reported historical normal values. Descriptive statistical analysis demonstrated that the tTCA, THU, and TDA met the standards to be considered normally distributed but that the CCA, CIA, lTFA, and lTCA demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, only the CIA (R = -0.2428) and lTCA (R = -0.2449) demonstrated substantial correlation with the body mass index. No differentiations in deformity progression were observed when the radiographic parameters were plotted against each other to lead to a quantitative basis for defining "normal" versus "abnormal" measurements. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein
2018-04-01
In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., <111>, <110>, and <100> parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, <111> and <100> were the most and the least favored orientations for the formation of mechanical twins, respectively. The <110> orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.
The origin of large local uplift in extensional regions
King, G.; Ellis, M.
1990-01-01
Large localized uplift is commonly observed in continental regions undergoing extension. These observations can be modelled by planar, high-angle normal faulting of an elastic upper crust overlying an inviscid lower crust. Isostasy provides the necessary driving force. The model quantifies the role of flexural rigidity, density variations in the crust, and erosion and deposition of sediment.
Metasurface Enabled Wide-Angle Fourier Lens.
Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo
2018-06-01
Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
Been, Ella; Kalichman, Leonid
2014-01-01
Lumbar lordosis is a key postural component that has interested both clinicians and researchers for many years. Despite its wide use in assessing postural abnormalities, there remain many unanswered questions regarding lumbar lordosis measurements. Therefore, in this article we reviewed different factors associated with the lordosis angle based on existing literature and determined normal values of lordosis. We reviewed more than 120 articles that measure and describe the different factors associated with the lumbar lordosis angle. Because of a variety of factors influencing the evaluation of lumbar lordosis such as how to position the patient and the number of vertebrae included in the calculation, we recommend establishing a uniform method of evaluating the lordosis angle. Based on our review, it seems that the optimal position for radiologic measurement of lordosis is standing with arms supported while shoulders are flexed at a 30° angle. There is evidence that many factors, such as age, gender, body mass index, ethnicity, and sport, may affect the lordosis angle, making it difficult to determine uniform normal values. Normal lordosis should be determined based on the specific characteristics of each individual; we therefore presented normal lordosis values for different groups/populations. There is also evidence that the lumbar lordosis angle is positively and significantly associated with spondylolysis and isthmic spondylolisthesis. However, no association has been found with other spinal degenerative features. Inconclusive evidence exists for association between lordosis and low back pain. Additional studies are needed to evaluate these associations. The optimal lordotic range remains unknown and may be related to a variety of individual factors such as weight, activity, muscular strength, and flexibility of the spine and lower extremities. Copyright © 2014 Elsevier Inc. All rights reserved.
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
Design and fabrication of nosecone for WB-57F aircraft fitted with APQ-102A side looking radar
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and testing of a nose cone which included a radome for a NASA WB-57F high altitude natural resources mapping aircraft was reviewed. The plane was fitted with a APQ-102A side looking radar operating at 9.6 GHz. The radar is directed normally to the direction of the flight and downward by a changeable angle, and it is assumed that the axis of the plane will not deviate from this direction by more than + or - 6 deg. The radome is required to subtend an angle of 160 deg centered 30 deg below the left horizon.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.
Contact angle change during evaporation of near-critical liquids
NASA Astrophysics Data System (ADS)
Nikolayev, Vadim; Hegseth, John; Beysens, Daniel
1998-03-01
An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling".
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
The nuclear high excitation outflow cone in NGC 1365
NASA Astrophysics Data System (ADS)
Per Lindblad, Olof; Hjelm, Maja; Jörsäter, Steven; Kristen, Helmuth
The morphology and kinematics of the high excitation outflow cone in the nuclear region of the Seyfert 1.5 galaxy NGC 1365 is investigated. An empirical model based on ground-based [OIII] emission line data consists of a somewhat hollow double cone with its apex at the Seyfert nucleus. The cone axis is well aligned in space with the normal to the symmetry plane of the galaxy and the position angle of its projection on the sky coincides closely with that of a jet-like radio feature. The opening angle of the cone is 100° and the orientation such that the line of sight to the Seyfert 1.5 nucleus falls inside the cone. The outflow velocities within the cone are accelerated and fall off towards the edge.
1995-03-24
Outlined with gold stripes are the hinged nose strakes, modifications made to NASA's F-18 HARV (High Alpha Research Vehicle) at the Dryden Flight Research Center, Edwards, California. Actuated Nose Strakes for Enhanced Rolling (ANSER) were installed to fly the third and final phase in the HARV flight test project. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Early wind tunnel tests indicated that the strakes would be as effective in yaw control at high angles of attack as rudders are at lower angles. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.
Zhao, Dan; Liu, Wei; Cai, Ailu; Li, Jingyu; Chen, Lizhu; Wang, Bing
2013-02-01
The purpose of this study was to investigate the effectiveness for quantitative evaluation of cerebellar vermis using three-dimensional (3D) ultrasound and to establish a nomogram for Chinese fetal vermis measurements during gestation. Sonographic examinations were performed in normal fetuses and in cases suspected of the diagnosis of vermian rotation. 3D median planes were obtained with both OMNIVIEW and tomographic ultrasound imaging. Measurements of the cerebellar vermis were highly correlated between two-dimensional and 3D median planes. The diameter of the cerebellar vermis follows growth approximately predicted by the quadratic regression equation. The normal vermis was almost parallel to the brain stem, with the average angle degree to be <2° in normal fetuses. The average angle degree of the 9 cases of vermian rotation was >5°. Three-dimensional median planes are obtained more easily than two-dimensional ones, and allow accurate measurements of the cerebellar vermis. The 3D approach may enable rapid assessment of fetal cerebral anatomy in standard examination. Measurements of cerebellar vermis may provide a quantitative index for prenatal diagnosis of posterior fossa malformations. © 2012 John Wiley & Sons, Ltd.
TAP score: torsion angle propensity normalization applied to local protein structure evaluation
Tosatto, Silvio CE; Battistutta, Roberto
2007-01-01
Background Experimentally determined protein structures may contain errors and require validation. Conformational criteria based on the Ramachandran plot are mainly used to distinguish between distorted and adequately refined models. While the readily available criteria are sufficient to detect totally wrong structures, establishing the more subtle differences between plausible structures remains more challenging. Results A new criterion, called TAP score, measuring local sequence to structure fitness based on torsion angle propensities normalized against the global minimum and maximum is introduced. It is shown to be more accurate than previous methods at estimating the validity of a protein model in terms of commonly used experimental quality parameters on two test sets representing the full PDB database and a subset of obsolete PDB structures. Highly selective TAP thresholds are derived to recognize over 90% of the top experimental structures in the absence of experimental information. Both a web server and an executable version of the TAP score are available at . Conclusion A novel procedure for energy normalization (TAP) has significantly improved the possibility to recognize the best experimental structures. It will allow the user to more reliably isolate problematic structures in the context of automated experimental structure determination. PMID:17504537
NASA Technical Reports Server (NTRS)
Perkins, S. C., Jr.; Mendenhall, M. R.
1980-01-01
A correlation method to predict pressures induced on an infinite plate by a jet exhausting normal to the plate into a subsonic free stream was extended to jets exhausting at angles to the plate and to jets exhausting normal to the surface of a body revolution. The complete method consisted of an analytical method which models the blockage and entrainment properties of the jet and an empirical correlation which accounts for viscous effects. For the flat plate case, the method was applicable to jet velocity ratios up to ten, jet inclination angles up to 45 deg from the normal, and radial distances up to five diameters from the jet. For the body of revolution case, the method was applicable to a body at zero degrees angle of attack, jet velocity ratios 1.96 and 3.43, circumferential angles around the body up to 25 deg from the jet, axial distances up to seven diameters from the jet, and jet-to-body diameter ratios less than 0.1.
Theory and tests of a thermal ion detector sensitive only at Near-normal incidence
NASA Technical Reports Server (NTRS)
Robinson, J. W.
1981-01-01
Measurements of thermal ions are influenced by factors such as spacecraft potential, velocity, angle of attack, and sheath size. A theory is presented for the response of an instrument which accepts ions only within a small angle of incidence from normal. Although a more general theory is available and forms the basis of this one, the small angle restriction allows a simpler formulation which does not depend on sheath size. Furthermore, practical instruments are easily designed around this restriction. Laboratory tests verify that such instruments respond as expected and they illustrate how design details influence perturbations from the ideal response characteristics.
Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C
2014-09-01
To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.
Dornacher, Daniel; Trubrich, Angela; Guelke, Joachim; Reichel, Heiko; Kappe, Thomas
2017-08-01
Regarding TT-TG in knee realignment surgery, two aspects have to be considered: first, there might be flaws in using absolute values for TT-TG, ignoring the knee size of the individual. Second, in high-grade trochlear dysplasia with a dome-shaped trochlea, measurement of TT-TG has proven to lack precision and reliability. The purpose of this examination was to establish a knee rotation angle, independent of the size of the individual knee and unaffected by a dysplastic trochlea. A total of 114 consecutive MRI scans of knee joints were analysed by two observers, retrospectively. Of these, 59 were obtained from patients with trochlear dysplasia, and another 55 were obtained from patients presenting with a different pathology of the knee joint. Trochlear dysplasia was classified into low grade and high grade. TT-TG was measured according to the method described by Schoettle et al. In addition, a modified knee rotation angle was assessed. Interobserver reliability of the knee rotation angle and its correlation with TT-TG was calculated. The knee rotation angle showed good correlation with TT-TG in the readings of observer 1 and observer 2. Interobserver correlation of the parameter showed excellent values for the scans with normal trochlea, low-grade and high-grade trochlear dysplasia, respectively. All calculations were statistically significant (p < 0.05). The knee rotation angle might meet the requirements for precise diagnostics in knee realignment surgery. Unlike TT-TG, this parameter seems not to be affected by a dysplastic trochlea. In addition, the dimensionless parameter is independent of the knee size of the individual. II.
Valgus-varus motion of the knee in normal level walking and stair climbing.
Yu, B; Stuart, M J; Kienbacher, T; Growney, E S; An, K-N
1997-07-01
OBJECTIVE: The knee valgus-varus moment and the knee angles were compared between normal level walking and stair climbing. DESIGN: Ten healthy subjects were tested for ascent, descent, and level walking. BACKGROUND: An understanding of the normal valgus-varus motion of the knee during stair climbing is needed to apply biomechanical analysis of stair climbing as a evaluation tool for knee osteoarthritis patients. METHODS: A motion analysis system, three force plates, and a flight of stairs were used to collect kinematic and kinetic data. The knee angles and moments were calculated from the collected kinematic and kinetic data. RESULTS: The knee varus angle for the maximum knee valgus moments in stair climbing was significantly greater than that in level walking. The knee valgus moment was significantly correlated to ground reaction forces and knee valgus-varus angle during stair climbing and level walking. CONCLUSIONS: There is a coupling between the knee valgus-varus motion and flexion-extension motion. Ground reaction forces are the major contributors to the within-subject variation in the knee valgus-varus moment during stair climbing and level walking. The knee valgus-varus angle is a major contributor to the between-subject variation in the knee valgus moment during stair climbing and level walking.
Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G
2018-05-23
The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.
2018-01-01
The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430
Gao, Yongchang; Chen, Zhenxian; Zhang, Zhifeng; Chen, Shibin; Jin, Zhongmin
2018-06-12
Steep inclination and excessive anteversion angles of acetabular cups could result in adverse edge-loading. This, in turn, increases contact pressure and impingement risk for traditional artificial hip joints. However, the influence of high inclination and anteversion angles on both the kinematics and contact mechanics of dual mobility hip implants has rarely been examined. This study focuses on investigating both the kinematics and contact mechanics of a dual mobility hip implant under different inclination and anteversion angles using a dynamic explicit finite element method developed in a previous study. The results showed that an inclination angle of both the back shell and liner ranging from 30° to 70° had little influence on the maximum contact pressure and the accumulated sliding distance of inner and outer surfaces of the liner under normal walking gait. The same results were obtained for an anteversion angle of the liner varying between -20° and +20°. However, when the anteversion angle of the liner was beyond this range, the contact between the femoral neck and the inner rim of the liner occurred. Consequently, this caused a relative rotation at the outer articulation. This suggests that both inclination and modest anteversion angles have little influence on the kinematics and contact mechanics of dual mobility hip implants. However, too excessive anteversion angle could result in a rotation for this kind of hip implant at both articulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Stress analysis of the mandible by 3D FEA in normal human being under three loading conditions].
Sun, Jian; Zhang, Fu-qiang; Wang, Dong-wei; Yu, Jia; Wang, Cheng-tao
2004-02-01
The condition and character of stress distribution in the mandibular in normal human being during centric, protrusive, laterotrusive occlusion were analysed. The three-dimensional finite element model of the mandibular was developed by helica CT scanning and CAD/CAM software, and three-dimensional finite element stress analysis was done by ANSYS software. Three-dimensional finite element model of the mandibular was generated. Under these three occlusal conditions, the stress of various regions in the mandible were distributed unequally, and the stress feature was different;while the stress of corresponding region in bilateral mandibular was in symmetric distribution. The stress value of condyle neck, the posterior surface of coronoid process and mandibular angle were high. The material properties of mandible were closely correlated to the value of stress. Stress distribution were similar according to the three different loading patterns, but had different effects on TMJ joint. The concentrated areas of stress were in the condyle neck, the posterior surface of coronoid process and mandibular angle.
Lipid-glass adhesion in giga-sealed patch-clamped membranes.
Opsahl, L R; Webb, W W
1994-01-01
Adhesion between patch-clamped lipid membranes and glass micropipettes is measured by high contrast video imaging of the mechanical response to the application of suction pressure across the patch. The free patch of membrane reversibly alters both its contact angle and radius of curvature on pressure changes. The assumption that an adhesive force between the membrane and the pipette can sustain normal tension up to a maximum Ta at the edge of the free patch accounts for the observed mechanical responses. When the normal component of the pressure-induced membrane tension exceeds Ta membrane at the contact point between the free patch and the lipid-glass interface is pulled away from the pipette wall, resulting in a decreased radius of curvature for the patch and an increased contact angle. Measurements of the membrane radius of curvature as a function of the suction pressure and pipette radius determine line adhesion tensions Ta which range from 0.5 to 4.0 dyn/cm. Similar behavior of patch-clamped cell membranes implies similar adhesion mechanics.
Wettability and impact dynamics of water droplets on rice ( Oryza sativa L.) leaves
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon
2014-03-01
We investigated the wettability and impact dynamics of water droplets on rice leaves at various leaf inclination angles and orientations. Contact angle, contact angle hysteresis (CAH), and roll-off angle ( α roll) of water droplets were measured quantitatively. Results showed that droplet motion exhibited less resistance along the longitudinal direction. Impact dynamic parameters, such as impact behaviors, maximum spreading factor, contact distance, and contact time were also investigated. Three different impact behaviors were categorized based on the normal component of Weber number irrespective of the inclination angle of the rice leaf. The asymmetric impact behavior induced by the tangential Weber number was also identified. Variation in the maximum spreading factor according to the normal Weber number was measured and compared with theoretical value obtained according to scaling law to show the wettability of the rice leaves. The contact distance of the impacting droplets depended on the inclination angle of the leaves. Along the longitudinal direction of rice leaves, contact distance was farther than that along the transverse direction. This result is consistent with the smaller values of CAH and α roll along the longitudinal direction.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Moragues, Lluis; Azañón, Jose Miguel; Roldán, Francisco J.; Pérez-Peña, Jose Vicente
2017-04-01
Mallorca forms part of the external thrust belt of the Betics. However, presently, it is surrounded by thin crust of the Valencia Trough and the Algero-balearic basin and is disconnected from the Internal Betic domains. The main tectonic structures described in the island correspond to thrusts that structured the Tramuntana and Llevant Serres during the Late Oligocene to Middle Miocene. Meanwhile, normal faults with NW-SE transport determined the development of Serravallian to Tortonian basins. Here we present a preliminary tectonic model for Mallorca after revising the contacts between supposed thrusts in Tramuntana and Serres de Llevant. This analysis shows the existence of important low-angle extensional faults with SW-NE transport, older than the high-angle NW-SE directed extensional system. Extensional deformation is more pervasive towards the Serres de Llevant where normal faults represent most of the contacts between units. This extensional gradient is favored by ENE-WSW strike-slip transfer faults, and probably, by the faults that bound the southeastern margin of Mallorca. These faults produced the extensional collapse of Mallorca during the Late Langhian-Serravallian, dismembering the external from the internal zones, which now occupy a more westerly position in the core of the Betics.
A validated computational model for the design of surface textures in full-film lubricated sliding
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2016-11-01
Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
De Silva, Sonali S; Payne, Geoffrey S; Thomas, Valerie; Carter, Paul G; Ind, Thomas E J; deSouza, Nandita M
2009-02-01
The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated concentrations of choline-containing metabolites increased from pre-invasive to invasive cervical cancer. Concurrent metabolite depletion occurs in normal tissue adjacent to cancer tissue. Copyright (c) 2008 John Wiley & Sons, Ltd.
Wang, Chu; Hill, Kevin; Yoshizumi, Terry
2016-01-01
Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.
Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M
2012-07-01
Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.
Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.
2012-01-01
Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953
NASA Astrophysics Data System (ADS)
Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.
2015-08-01
During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.
Effects of Shock and Turbulence Properties on Electron Acceleration
NASA Astrophysics Data System (ADS)
Qin, G.; Kong, F.-J.; Zhang, L.-H.
2018-06-01
Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.
The Influence of Backrest Inclination on Buttock Pressure
Park, Un Jin
2011-01-01
Objective To assess the effects of backrest inclination of a wheelchair on buttock pressures in spinal cord injured (SCI) patients and normal subjects. Method The participants were 22 healthy subjects and 22 SCI patients. Buttock pressures of the participants were measured by a Tekscan® pressure sensing mat and software while they were sitting in a reclining wheelchair. Buttock pressures were recorded for 90°, 100°, 110°, 120° and 130° seat-to-back angles at the ischial tuberosity (IT) and sacrococcygeal (SC) areas. Recordings were made at each angle over four seconds at a sampling rate of 10 Hz. Results The side-to-side buttock pressure differences in the IT area for the SCI patients was significantly greater than for the normal subjects. There was no significant difference between the SCI patients and the normal subjects in the buttock pressure change pattern of the IT area. Significant increases in pressure on the SC area were found as backrest inclination angle was changed to 90°, 100° and 110° in the normal subjects, but no significant differences were found in the SCI patients. Conclusion Most of the SCI patients have freeform posture in wheelchairs, and this leads to an uneven distribution of buttock pressure. In the SCI patients, the peak pressure in the IT area reduced as the backrest angle was increased, but peak pressure at the SC area remained relatively unchanged. To reduce buttock pressure and prevent pressure ulcers and enhance ulcer healing, it can be helpful for tetraplegic patients, to have wheelchair seat-to-back angles above 120°. PMID:22506220
Formation events of shoreline sand waves on a gravel beach
NASA Astrophysics Data System (ADS)
Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie
2018-06-01
Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.
Formation events of shoreline sand waves on a gravel beach
NASA Astrophysics Data System (ADS)
Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie
2018-05-01
Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.
Ko, Seung-Nam
2017-01-01
Posterior cruciate ligament (PCL) reconstruction for patients with PCL insufficiency has been associated with postoperative improvements in proprioceptive function due to mechanoreceptor regeneration. However, it is unclear whether reconstructed PCL or contralateral normal knees have better proprioceptive function outcomes. This meta-analysis was designed to compare the proprioceptive function of reconstructed PCL or contralateral normal knees in patients with PCL insufficiency. All studies that compared proprioceptive function, as assessed with threshold to detect passive movement (TTDPM) or joint position sense (JPS) in PCL reconstructed or contralateral normal knees were included. JPS was calculated by reproducing passive positioning (RPP). Five studies met the inclusion/exclusion criteria for the meta-analysis. The proprioceptive function, defined as TTDPM (95% CI: 0.25 to 0.51°; P<0.00001) and RPP (95% CI: 0.19 to 0.45°; P<0.00001), was significantly different between the reconstructed PCL and contralateral normal knees. The mean difference in angle of error between the reconstructed PCL and contralateral normal knees was 0.06° greater in TTDPM than by RPP. In addition, results from subgroup analyses, based on the starting angles and the moving directions of the knee, that evaluated TTDPM at 15° flexion to 45° extension, TTDPM at 45° flexion to 110° flexion, RPP in flexion, and RPP in extension demonstrated that mean angles of error were significantly greater, by 0.38° (P = 0.0001), 0.36° (P = 0.02), 0.36° (P<0.00001), and 0.23° (P = 0.04), respectively, in reconstructed PCL than in contralateral normal knees. The proprioceptive function of PCL reconstructed knees was decreased, compared with contralateral normal knees, as determined by both TTDPM and RPP. In addition, the amount of loss of proprioception was greater in TTDPM than in RPP, even with minute differences. Results from subgroup analysis, that evaluated the mean angles of error in moving directions through RPP, suggested that the moving direction of flexion has a significantly greater mean for angles of error than the moving direction of extension. Although the level of differences between various parameters were statistically significant, further studies are needed to determine whether the small differences (>1°) of the loss of proprioception are clinically relevant. PMID:28922423
NASA Astrophysics Data System (ADS)
Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo
2004-05-01
The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .
Quantifying phalangeal curvature: an empirical comparison of alternative methods.
Stern, J T; Jungers, W L; Susman, R L
1995-05-01
It has been generally assumed and theoretically argued that the curvature of finger and toe bones seen in some nonhuman primates is associated with cheiridial use in an arboreal setting. Assessment of such curvature in fossil primates has been used to infer the positional behavior of these animals. Several methods of quantifying curvature of bones have been proposed. The measure most commonly applied to phalanges is that of included angle, but this has come under some criticism. We consider various other approaches for quantifying phalangeal curvature, demonstrating that some are equivalent to use of included angle, but that one--normalized curvature moment arm (NCMA)--represents a true alternative. A comparison of NCMA to included angle, both calculated on manual and pedal proximal phalanges of humans, apes, some monkeys, and the Hadar fossils, revealed that these two different measures of curvature are highly correlated and result in very similar distributional patterns.
Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water
NASA Astrophysics Data System (ADS)
Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan
2010-05-01
To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.
Effects of strain on Goos-Hänchen shifts of monolayer phosphorene
NASA Astrophysics Data System (ADS)
Li, Kaihui; Cheng, Fang
2018-03-01
We investigate the Goos-Hänchen(GH) shift for ballistic electrons (i) reflected from a step-like inhomogeneity of strain, and (ii) transmitted through a monolayer phosphoresce junction consisting of a positive strained region and two normal regions (or a normal region and two negative strained regions). Refraction occurs at the interface between the unstrained/positive-strain(negative-strain/unstrained), in analogy with optical refraction. The critical angle is different for different strengths and directions of the strains. The critical angles for electrons tunneling through unstrained/positive-strain junction can even decrease to zero when the positive strain exceeds a critical value. For the monolayer phosphorene junction consisting of a positive strain region and two normal regions (or a normal region and two negative strain regions), we find that the GH shifts resonantly depends on the middle region width. The resonant values and the plus-minus sign of the displacement can be controlled by the incident angle, incident energy and the strain. These properties will be useful for the applications in phosphorene-based electronic devices.
Bito, Haruhiko; Takeuchi, Ryohei; Kumagai, Ken; Aratake, Masato; Saito, Izumi; Hayashi, Riku; Sasaki, Yohei; Aota, Yoichi; Saito, Tomoyuki
2009-04-01
Obtaining a correct postoperative limb alignment is an important factor in achieving a successful clinical outcome after an opening-wedge high tibial osteotomy (OWHTO). To better predict some of the aspects that impact upon the clinical outcomes following this procedure, including postoperative correction loss and over correction, we examined the changes in the frontal plane of the lower limb in a cohort of patients who had undergone OWHTO using radiography. Forty-two knees from 33 patients (23 cases of osteoarthritis and 10 of osteonecrosis) underwent a valgus realignment OWHTO procedure and were radiographically assessed for changes that occurred pre- and post-surgery. The mean femorotibial angle (FTA) was found to be 182.1 +/- 2.0 degrees (12 +/- 2.0 anatomical varus angulation) preoperatively and 169.6 +/- 2.4 degrees (10.4 +/- 2.4 anatomical valgus angulation) postoperatively. These measurements thus revealed significant changes in the weight bearing line ratio (WBL), femoral axis angle (FA), tibial axis angle (TA), tibia plateau angle (TP), tibia vara angle (TV) and talar tilt angle (TT) following OWHTO. In contrast, no significant change was found in the weight bearing line angle (WBLA) after these treatments. To assess the relationship between the correction angle and these indexes, 42 knees were divided into the following three groups according to the postoperative FTA; a normal correction group (168 degrees < or = FTA < or = 172 degrees ), an over-correction group (FTA < 168 degrees ), and an under-correction group (FTA > 172 degrees ). There were significant differences in the delta angle [DA; calculated as (pre FTA - post FTA) - (pre TV - post TV)] among each group of patients. Our results thus indicate a negative correlation between the DA and preoperative TA (R(2) = 0.148, p < 0.05). Hence, given that the correction errors in our patients appear to negatively correlate with the preoperative TA, postoperative malalignments are likely to be predictable prior to surgery.
Lee, Si Hyung; Kim, Gyu Ah; Lee, Wonseok; Bae, Hyoung Won; Seong, Gong Je; Kim, Chan Yun
2017-11-01
To assess the associations between vascular and metabolic comorbidities and the prevalence of open-angle glaucoma (OAG) with low-teen and high-teen intraocular pressure (IOP) in Korea. Cross-sectional data from the Korean National Health and Nutrition Examination Survey from 2008 to 2012 were analysed. Participants diagnosed with OAG with normal IOP were further classified into low-teen IOP (IOP ≤ 15 mmHg) and high-teen IOP (15 mmHg < IOP ≤ 21 mmHg) groups. Using multiple logistic regression analyses, the associations between vascular and metabolic comorbidities and the prevalence of glaucoma were investigated for the low- and high-teen IOP groups. The prevalences of hypertension, hyperlipidemia, ischaemic heart disease, stroke and metabolic syndrome were significantly higher among subjects with low-teen OAG compared with normal subjects, while only the prevalences of hypertension and stroke were higher among subjects with high-teen OAG compared with normal subjects. In multivariate logistic regression models adjusted for confounding factors, low-teen OAG was significantly associated with hypertension (OR, 1.68; 95% CI, 1.30-2.18), hyperlipidemia (OR, 1.49; 95% CI, 1.07-2.08), ischaemic heart disease (OR, 1.83; 95% CI, 1.07-3.11), stroke (OR, 1.91; 95% CI, 1.12-3.25) and metabolic syndrome (OR, 1.46; 95% CI, 1.12-1.90). High-teen OAG was only associated with stroke (OR, 2.58; 95% CI, 1.20-5.53). Various vascular and metabolic comorbidities were significantly associated with low-teen OAG, but not with high-teen OAG. These data support the hypothesis that vascular factors play a more significant role in the pathogenesis of OAG with low-teen baseline IOP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
The change in color matches with retinal angle of incidence of the colorimeter beams.
Alpern, M; Kitahara, H; Fielder, G H
1987-01-01
Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry
Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected thatmore » the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.« less
Xu, Anxiu; Deng, Feng; Wang, Fenfen; Zhang, Xiangfeng; Zhang, Yi
2015-10-01
To study the influence of nasolabial angle alteration on facial profile attractiveness and investigate the perception differences in profile attractiveness among laypeople. A young Chinese female with normal hard and soft tissue cephalometric values was chosen as a research object. Profile photograph was taken in a natural head position. Photoshop software was chosen to rotate the nose tip and upper lip, thus changing the degree and direction of nasolabial angle. A total of 33 different profile pictures were achieved. Thirty-three professional orthodontists and 64 non-professionals were chosen to score these 33 pictures. When the upper lip position was fixed, the profile was considerably attractive because the angle of nasal tip was not changed or altered. When the nasal tip rotation angle was fixed, profiles with a retroclined upper lip were considered significantly attractive by the layperson and professional groups. Regardless of the direction of the nasal tip rotation, the respondents considered the profile with a retroclined upper lip highly attractive. The soft tissue profile with a retroclined upper lip looks considerably attractive in Chinese female populations. Therefore, during an orthodontic treatment, appropriate retraction of the incisor is recommended to improve soft tissue profile attractiveness.
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-22
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
Electron scattering by highly polar molecules. III - CsCl
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Srivastava, S. K.
1981-01-01
Utilizing a crossed electron-beam-molecular-beam scattering geometry, relative values of differential electron scattering cross sections for cesium chloride at 5 and 20 eV electron impact energies and at scattering angles between 10 and 120 deg have been measured. These relative cross sections have been normalized to the cross section at 15 deg scattering angle calculated by the hybrid S-matrix technique. In the angular range between 0 and 10 deg and between 120 and 180 deg extrapolations have been made to obtain integral and momentum transfer cross sections. An energy-loss spectrum is also presented which gives various spectral features lying between the 4 and 10 eV regions in CsCl.
NASA Astrophysics Data System (ADS)
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-01
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings
NASA Astrophysics Data System (ADS)
Doxastakis, Manolis; Suh, Hyo Seon; Chen, Xuanxuan; Rincon Delgadillo, Paulina A.; Wan, Lingshu; Williamson, Lance; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Chen, Wei; Ferrier, Nicola; Ramirez-Hernandez, Abelardo; de Pablo, Juan J.; Gronheid, Roel; Nealey, Paul
2015-03-01
Grazing-Incidence Small Angle X-ray Scattering (GISAXS) offers the ability to probe large sample areas, providing three-dimensional structural information at high detail in a thin film geometry. In this study we exploit the application of GISAXS to structures formed at one step of the LiNe (Liu-Nealey) flow using chemical patterns for directed self-assembly of block copolymer films. Experiments conducted at the Argonne National Laboratory provided scattering patterns probing film characteristics at both parallel and normal directions to the surface. We demonstrate the application of new computational methods to construct models based on scattering measured. Such analysis allows for extraction of structural characteristics at unprecedented detail.
Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons
NASA Astrophysics Data System (ADS)
Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya
2015-08-01
Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.
Ku, Judy Y; Nongpiur, Monisha E; Park, Judy; Narayanaswamy, Arun K; Perera, Shamira A; Tun, Tin A; Kumar, Rajesh S; Baskaran, Mani; Aung, Tin
2014-12-01
To qualitatively analyze anterior chamber structures imaged by ultrasound biomicroscopy (UBM) in primary angle-closure patients. Subjects diagnosed as primary angle-closure suspect (PACS), primary angle-closure glaucoma (PACG), and previous acute primary angle closure (APAC) were recruited prospectively along with a group of normal controls. UBM was performed under standardized dark room conditions and qualitative assessment was carried out using a set of reference photographs of standard UBM images to categorize the various anatomic features related to angle configuration. These included overall and basal iris thicknesses, iris convexity, iris angulation, ciliary body size, and ciliary sulcus. A total of 60 PACS, 114 PACG, 41 APAC, and 33 normal controls were included. Patients were predominantly older Chinese females. After controlling the confounding effect of age and sex, eyes with overall thicker irides [medium odds ratio (OR) 3.58, thick OR 2.84] when compared with thin irides have a significantly higher likelihood of having PACS/PACG/APAC versus controls. Thicker basal iris component (medium OR 4.13, thick OR 3.39) also have higher likelihood of having angle closure when compared with thin basal iris thickness. Subjects with basal iris insertion, mild iris angulation, and large ciliary body have a higher OR of having angle closure. In contrast, the presence/absence of a ciliary sulcus did not influence the likelihood of angle closure. Eyes with thicker overall and basal iris thicknesses are more likely to have angle closure than controls. Other features that increase the likelihood of angle closure include basal iris insertion, mild iris angulation, and large ciliary body.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-03-27
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
Nacelle Aerodynamic and Inertial Loads (NAIL) project
NASA Technical Reports Server (NTRS)
1982-01-01
A flight test survey of pressures measured on wing, pylon, and nacelle surfaces and of the operating loads on Boeing 747/Pratt & Whitney JT9D-7A nacelles was made to provide information on airflow patterns surrounding the propulsion system installations and to clarify processes responsible for inservice deterioration of fuel economy. Airloads at takeoff rotation were found to be larger than at any other normal service condition because of the combined effects of high angle of attack and high engine airflow. Inertial loads were smaller than previous estimates indicated. A procedure is given for estimating inlet airloads at low speeds and high angles of attack for any underwing high bypass ratio turbofan installation approximately resembling the one tested. Flight procedure modifications are suggested that may result in better fuel economy retention in service. Pressures were recorded on the core cowls and pylons of both engine installations and on adjacent wing surfaces for use in development of computer codes for analysis of installed propulsion system aerodynamic drag interference effects.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-01
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
NASA Astrophysics Data System (ADS)
Lee, J.; Blackburn, T.; Johnston, S. M.
2016-12-01
Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.
Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann
2013-01-01
Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502
Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control
NASA Astrophysics Data System (ADS)
Sperber, E.; Fu, B.; Eke, F. O.
2016-06-01
This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.
Parikh, Rajul S; Parikh, Shefali R; Kumar, Rajesh S; Prabakaran, S; Babu, J Gansesh; Thomas, Ravi
2008-07-01
To evaluate the diagnostic ability of scanning laser polarimetry (GDx variable corneal compensator [VCC]) for early glaucoma in Asian Indian eyes. Cross-sectional observational study. Two groups of patients (early glaucoma and normal) who satisfied the inclusion and exclusion criteria were included. Early glaucoma was diagnosed in presence of open angles, characteristic glaucomatous optic disc changes correlating with the visual field (VF) on automated perimetry (VF defect fulfilling at least 2 of 3 Anderson and Patella's criteria with mean deviation >or= -6 decibels). Normal subjects had visual acuity >or= 20/30 and intraocular pressure < 22 mmHg, with a normal optic disc and fields and no ocular abnormality. All patients underwent complete ophthalmic evaluation, including VF examination (24-2/30-2 Swedish interactive threshold algorithm standard program) and imaging with GDx VCC. Sensitivity, specificity, positive predictive value and negative predictive value, area under the receiving operating characteristic curve, and likelihood ratios (LRs) were calculated for various GDx VCC parameters. Seventy-four eyes (74 patients) with early glaucoma and 104 eyes (104 normal subjects) were enrolled. TSNIT Std Dev (temporal-superior-nasal-inferior-temporal standard deviation) had the best combination of sensitivity and specificity-61.3 and 95.2, respectively-followed by nerve fiber index score > 50 (sensitivity, 52.7%; specificity, 99%). Nerve fiber index score > 50 had positive and negative predictive values of 74.3% and 97.6%, respectively, for an assumed glaucoma prevalence of 5%. Nerve fiber index score > 50 had a positive LR (+LR) of 54.8 for early glaucoma. GDx VCC has moderate sensitivity, with high specificity, in the diagnosis of early glaucoma. The high +LR for the nerve fiber index score can provide valuable diagnostic information for individual patients.
Copy Number Variations of TBK1 in Australian Patients With Primary Open-Angle Glaucoma
AWADALLA, MONA S.; FINGERT, JOHN H.; ROOS, BENJAMIN E.; CHEN, SIMON; HOLMES, RICHARD; GRAHAM, STUART L.; CHEHADE, MARK; GALANOPOLOUS, ANNA; RIDGE, BRONWYN; SOUZEAU, EMMANUELLE; ZHOU, TIGER; SIGGS, OWEN M.; HEWITT, ALEX W.; MACKEY, DAVID A.; BURDON, KATHRYN P.; CRAIG, JAMIE E.
2015-01-01
PURPOSE To investigate the presence of TBK1 copy number variations in a large, well-characterized Australian cohort of patients with glaucoma comprising both normal-tension glaucoma and high-tension glaucoma cases. DESIGN A retrospective cohort study. METHODS DNA samples from patients with normal-tension glaucoma and high-tension glaucoma and unaffected controls were screened for TBK1 copy number variations using real-time quantitative polymerase chain reaction. Samples with additional copies of the TBK1 gene were further tested using custom comparative genomic hybridization arrays. RESULTS Four out of 334 normal-tension glaucoma cases (1.2%) were found to carry TBK1 copy number variations using quantitative polymerase chain reaction. One extra dose of the TBK1 gene (duplication) was detected in 3 normal-tension glaucoma patients, while 2 extra doses of the gene (triplication) were detected in a fourth normal-tension glaucoma patient. The results were further confirmed by custom comparative genomic hybridization arrays. Further, the TBK1 copy number variation segregated with normal-tension glaucoma in the family members of the probands, showing an autosomal dominant pattern of inheritance. No TBK1 copy number variations were detected in 1045 Australian patients with high-tension glaucoma or in 254 unaffected controls. CONCLUSION We report the presence of TBK1 copy number variations in our Australian normal-tension glaucoma cohort, including the first example of more than 1 extra copy of this gene in glaucoma patients (gene triplication). These results confirm TBK1 to be an important cause of normal-tension glaucoma, but do not suggest common involvement in high-tension glaucoma. PMID:25284765
Kinematics of reflections in subsurface offset and angle-domain image gathers
NASA Astrophysics Data System (ADS)
Dafni, Raanan; Symes, William W.
2018-05-01
Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.
Normal Q-angle in an adult Nigerian population.
Omololu, Bade B; Ogunlade, Olusegun S; Gopaldasani, Vinod K
2009-08-01
The Q-angle has been studied among the adult Caucasian population with the establishment of reference values. Scientists are beginning to accept the concept of different human races. Physical variability exists between various African ethnic groups and Caucasians as exemplified by differences in anatomic features such as a flat nose compared with a pointed nose, wide rather than narrow faces, and straight rather than curly hair. Therefore, we cannot assume the same Q-angle values will be applicable to Africans and Caucasians. We established a baseline reference value for normal Q-angles among asymptomatic Nigerian adults. The Q-angles of the left and right knees were measured using a goniometer in 477 Nigerian adults (354 males; 123 females) in the supine and standing positions. The mean Q-angles for men were 10.7 degrees +/- 2.2 degrees in the supine position and 12.3 degrees +/- 2.2 degrees in the standing position in the right knee. The left knee Q-angles in men were 10.5 degrees +/- 2.6 degrees in the supine position and 11.7 degrees +/- 2.8 degrees in the standing position. In women, the mean Q-angles for the right knee were 21 degrees +/- 4.8 degrees in the supine position and 22.8 degrees +/- 4.7 degrees in the standing position. The mean Q-angles for the left knee in women were 20.9 degrees +/- 4.6 degrees in the supine position and 22.7 degrees +/- 4.6 degrees in the standing position. We observed a difference in Q-angles in the supine and standing positions for all participants. The Q-angle in adult Nigerian men is comparable to that of adult Caucasian men, but the Q-angle of Nigerian women is greater than that of their Caucasian counterparts.
{l_angle}110{r_angle} dendrite growth in aluminum feathery grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, S.; Rappaz, M.; Jarry, P.
1998-11-01
Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). Themore » [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.« less
NASA Technical Reports Server (NTRS)
Bracalente, E. M.; Sweet, J. L.
1984-01-01
The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.
Lee-side flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Miller, D. S.; Wood, R. M.
1985-01-01
An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Snyder, K; Liu, C
Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas weremore » the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.« less
The anterior inferior iliac spine: size, position, and location. An anthropometric and sex survey.
Amar, Eyal; Druckmann, Ido; Flusser, Gideon; Safran, Marc R; Salai, Moshe; Rath, Ehud
2013-05-01
The purpose of this study was to investigate and describe the size, location, and position of the anterior inferior iliac spine (AIIS) in normal individuals. We reviewed 50 computed tomography (CT) scans of 50 patients without hip pain or pathologic features. Mean patient height was 169.8 cm (women, 163 cm; men, 176.8 cm) and mean weight was 69.6 kg (women, 63.8 kg; men, 75.4 kg). We used all scans to measure both the left and right AIIS for the anatomic description of 100 AIISs. We measured AIIS dimensions, specifically length, width, and height. We also measured vertical, horizontal, and straight distances between the most anteroinferior prominence of the AIIS and the acetabular rim. We normalized AIIS size and distances from the acetabular rim according to the patient's height and body mass index (BMI). We also assessed the version of the AIIS using 2 angles. The first angle was the angle between the AIIS midaxis line and a plumb line, and the second angle was calculated as the angle subtended by the AIIS midaxis line and the ilium midaxis line. There were no significant differences between the AIIS in men and women in all measurements (except the width of the AIIS) when normalized to the patient's height and BMI. There were no significant differences in AIIS dimensions when comparing side-to-side differences in the entire study population. In quantifying AIIS dimensional size, distance from the anterior acetabular rim, and version, this study found no significant difference in all measurements normalized to patient size (height and BMI) between the left and right sides, and no significant sex difference was found in AIIS measurements, except the width of the AIIS. Morphologic variations that deviate from these normal values may help the clinician identify cases of subspinal impingement. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Amodio, John; Rivera, Rafael; Pinkney, Lynne; Strubel, Naomi; Fefferman, Nancy
2006-08-01
The arterial vascularity of the hip has been investigated in normal infants using duplex Doppler sonography. This study addressed the differences in hip vascularity in infants with respect to gender and acetabular morphology. To determine whether there is a relationship between the resistive index of the vessels of the femoral chondroepiphysis and the alpha angle in normal infant hips and in those with developmental dysplasia of the hip. We studied 76 hips (38 patients) with gray-scale and power Doppler US. The patients were referred because of a possible abnormal clinical hip examination or had risk factors for developmental dysplasia of the hip. The infants ranged in age from 1 day to 6 weeks. There were 13 boys and 25 girls. Gray-scale images were initially performed in the coronal and transverse planes to evaluate acetabular morphology, alpha angle and position of the femoral chondroepiphysis relative to the acetabulum. The hips were then examined with power Doppler US, in both sagittal and transverse planes, to identify arterial vessels within the femoral epiphysis. Resistive indices were then recorded from the spectral analysis in each vessel identified. Each examination was performed by one of five pediatric radiologists. Mixed model regression was used to assess the relationship between resistive index and alpha angle, age and gender. Of the 76 hips, 34 had an alpha angle of 60 degrees or greater and were classified as normal, 26 had an alpha angle between 50 degrees and 59 degrees and were classified as immature, and 13 had an alpha angle of less than 50 degrees and were either subluxed or dislocated at the time of examination. At least two vessels were documented in each femoral epiphysis except in three hips, in which no vessels could be documented because of technical factors. There was a statistically significant linear relationship between the alpha angle and resistive index, such that the resistive index tended to rise with increasing alpha angle (P=0.0022). In addition, female infants had a significantly higher average resistive index than the average resistive index in male infants with the same alpha angle (P=0.0005). There is a direct linear relationship between alpha angle and resistive index in the infant hip. Female infants have a higher average resistive index than male infants. We believe that these results might serve as a model for predicting an infant hip at risk of ischemia. In addition, the fact that lower resistive indices of the femoral epiphysis are associated with acetabular dysplasia might help explain the documented low incidence of avascular necrosis in untreated hip dysplasia.
Watanabe, K; Akima, H
2011-12-01
The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (P<0.05). The present results suggest that the neuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.
Knee Joint Kinematics and Kinetics During a Lateral False-Step Maneuver
Golden, Grace M.; Pavol, Michael J.; Hoffman, Mark A.
2009-01-01
Abstract Context: Cutting maneuvers have been implicated as a mechanism of noncontact anterior cruciate ligament (ACL) injuries in collegiate female basketball players. Objective: To investigate knee kinematics and kinetics during running when the width of a single step, relative to the path of travel, was manipulated, a lateral false-step maneuver. Design: Crossover design. Setting: University biomechanics laboratory. Patients or Other Participants: Thirteen female collegiate basketball athletes (age = 19.7 ± 1.1 years, height = 172.3 ± 8.3 cm, mass = 71.8 ± 8.7 kg). Intervention(s): Three conditions: normal straight-ahead running, lateral false step of width 20% of body height, and lateral false step of width 35% of body height. Main Outcome Measure(s): Peak angles and internal moments for knee flexion, extension, abduction, adduction, internal rotation, and external rotation. Results: Differences were noted among conditions in peak knee angles (flexion [P < .01], extension [P = .02], abduction [P < .01], and internal rotation [P < .01]) and peak internal knee moments (abduction [P < .01], adduction [P < .01], and internal rotation [P = .03]). The lateral false step of width 35% of body height was associated with larger peak flexion, abduction, and internal rotation angles and larger peak abduction, adduction, and internal rotation moments than normal running. Peak flexion and internal rotation angles were also larger for the lateral false step of width 20% of body height than for normal running, whereas peak extension angle was smaller. Peak internal rotation angle increased progressively with increasing step width. Conclusions: Performing a lateral false-step maneuver resulted in changes in knee kinematics and kinetics compared with normal running. The differences observed for lateral false steps were consistent with proposed mechanisms of ACL loading, suggesting that lateral false steps represent a hitherto neglected mechanism of noncontact ACL injury. PMID:19771289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The impact of etching kinetics and etching chemistries on surface roughening was investigated by etching thermal silicon dioxide and low-k dielectric coral materials in C{sub 4}F{sub 8}/Ar plasma beams in an inductive coupled plasma beam reactor. The etching kinetics, especially the angular etching yield curves, were measured by changing the plasma pressure and the feed gas composition which influence the effective neutral-to-ion flux ratio during etching. At low neutral-to-ion flux ratios, the angular etching yield curves are sputteringlike, with a peak around 60 deg. -70 deg. off-normal angles; the surface at grazing ion incidence angles becomes roughened due to ionmore » scattering related ion-channeling effects. At high neutral-to-ion flux ratios, ion enhanced etching dominates and surface roughening at grazing angles is mainly caused by the local fluorocarbon deposition induced micromasking mechanism. Interestingly, the etched surfaces at grazing angles remain smooth for both films at intermediate neutral-to-ion flux ratio regime. Furthermore, the oxygen addition broadens the region over which the etching without roughening can be performed.« less
Contact angle change during evaporation of near-critical liquids
NASA Astrophysics Data System (ADS)
Nikolayev, Vadim; Hegseth, John; Beysens, Daniel
1998-11-01
An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling". We report the preliminary results of the numerical simulation of the liquid evaporation by the Boundary Element method.
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.
2012-01-01
A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.
Herrington, Lee; Bendix, Katie; Cornwell, Catherine; Fielden, Nicola; Hankey, Karen
2008-08-01
The purpose of the study was to assess the effect of structural differentiation or sensitising manoeuvres on responses of normal subjects to standard neurodynamic tests of straight leg raise (SLR) and slump test. Eighty-eight (39 males and 49 females) asymptomatic subjects were examined (aged 18-39 mean age 21.9+/-4.1 years). Knee flexion angle was measured using a goniometer during the slump test in two conditions cervical flexion and extension. Hip flexion angle was measured using a goniometer during SLR test in two conditions; ankle dorsi-flexion and neutral. The change in knee flexion, following addition of the structural differentiating manoeuvre to the slump test, was a significant increase in knee flexion angle for both males (change in knee angle; 6.6+/-4.7 degrees /18.7+/-17.5%, p<0.01) and females (change in knee angle 5.4+/-5.8 degrees /17.6+/-23.7%, p<0.01), though showed no difference between sides (p>0.05). During the SLR test, a significant reduction in hip flexion occurred following structural differentiation for both groups (change in hip angle; males = 9.5+/-8.3 degrees /21.5+/-18.8%, p<0.01; females = 15.2+/-9.5 degrees /25.9+/-13.9%, p<0.01), though showed no difference between sides (p>0.05). Structural differentiating manoeuvres have a significant effect on test response in terms of range of movement even in normal asymptomatic individuals. These responses should be taken into account during the assessment clinical reasoning process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B
Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-06-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
NASA Technical Reports Server (NTRS)
Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.;
2000-01-01
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
McNabb, Ryan P.; Challa, Pratap; Kuo, Anthony N.; Izatt, Joseph A.
2015-01-01
Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic. PMID:25909021
Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.
2003-01-01
The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.
NASA Technical Reports Server (NTRS)
Brown, G. S.; Curry, W. J.
1977-01-01
The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.
Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes
NASA Technical Reports Server (NTRS)
Papell, S. Stephen
1960-01-01
A study was made to determine the effect of coolant injection angularity on gaseous film-cooling effectiveness. In the correlation of experimental data an effective injection angle was defined by a vector summation of the coolant and mainstream gas flows. The cosine of this angle was used as a parameter to empirically develop a corrective term to qualify a correlating equation presented in Technical Note D-130 that was limited to tangential injection of the coolant. Data were also obtained for coolant injection through rows of holes normal to the test plate. The slot correlating equation was adapted to fit these data by the definition of an effective slot height. An additional corrective term was then determined to correlate these data.
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1996-01-01
The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.
Zhu, Pei-hua; Huang, Jing-yuan; Ye, Meng; Zheng, Zhe-lan
2014-09-01
To evaluate the left ventricular twist characteristics in patients with type 2 diabetes by using two-dimensional speckle tracking imaging (STI). Ninety-three patients with type 2 diabetes admitted in Zhejiang Hospital from May 2012 to September 2013 were enrolled. According to left ventricular ejection fraction (LVEF), patients were divided into two groups: normal left ventricular systolic function group (group A, LVEF≥0.50, n=46) and abnormal left ventricular systolic function group (group B, LVEF <0.50, n=47). Forty-six healthy subjects were selected as normal controls. STI was applied to quantitatively analyze the left ventricular twist. Correlation of the peak of left ventricular twist angle (Peaktw), aortic valve closure time twist angle (AVCtw), and mitral valve opening time twist angle (MVOtw) with LVEF, Tei index, E/A, and E/e was evaluated. Consistency check for STI was conducted to assess its stability and reliability. The Peaktw, AVCtw, and MVOtw in group A were significantly elevated than those in normal controls (P<0.05). The Peaktw, AVCtw, and MVOtw in group B was lower than those in normal controls and group A (P<0.05). In diabetic patients, the Peaktw, AVCtw, MVOtw were positively correlated with LVEF (r=0.968, 0.966, 0.938;P<0.05) and E/A (r=0.798, 0.790, 0.788; P<0.05), and were negatively correlated with Tei index (r=-0.834, -0.811, -0.797; P<0.05) and E/e (r=-0.823, -0.805, -0.771; P<0.05). The agreement between measurers and within measurers of Peaktw was satisfactory (between measurers: R=0.957, bias=-0.1, 95% consistency limit=-2.8-2.7; within measurer: R=0.964, bias=-0.2, 95% consistency limits=-2.7-2.2). STI can be used for early recognition of abnormal changes of cardiac function in type 2 diabetic mellitus patients, with high stability and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.
Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Sumit Kumar; Yadav, Achla Bharti
2016-11-01
Beta angle utilizes three skeletal landmarks - point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. The present study was designed to evaluate the correlation of Beta angle with point A-Nasion-point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit's appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit's appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology.
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Achla Bharti
2016-01-01
Introduction Beta angle utilizes three skeletal landmarks – point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. Aim The present study was designed to evaluate the correlation of Beta angle with point A–Nasion–point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit’s appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Materials and Methods Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit’s appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Results Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Conclusion Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology. PMID:28050509
Solar cell angle of incidence corrections
NASA Technical Reports Server (NTRS)
Burger, Dale R.; Mueller, Robert L.
1995-01-01
Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.
Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.
2016-01-01
A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872
Maddocks, Matthew; Kon, Samantha S C; Jones, Sarah E; Canavan, Jane L; Nolan, Claire M; Higginson, Irene J; Gao, Wei; Polkey, Michael I; Man, William D-C
2015-12-01
Bioelectrical impedance analysis (BIA) provides a simple method to assess changes in body composition. Raw BIA variables such as phase angle provide direct information on cellular mass and integrity, without the assumptions inherent in estimating body compartments, e.g. fat-free mass (FFM). Phase angle is a strong functional and prognostic marker in many disease states, but data in COPD are lacking. Our aims were to describe the measurement of phase angle in patients with stable COPD and determine the construct and discriminate validity of phase angle by assessing its relationship with established markers of function, disease severity and prognosis. 502 outpatients with stable COPD were studied. Phase angle and FFM by BIA, quadriceps strength (QMVC), 4-m gait speed (4MGS), 5 sit-to-stand time (5STS), incremental shuttle walk (ISW), and composite prognostic indices (ADO, iBODE) were measured. Patients were stratified into normal and low phase angle and FFM index. Phase angle correlated positively with FFM and functional outcomes (r = 0.35-0.66, p < 0.001) and negatively with prognostic indices (r = -0.35 to -0.48, p < 0.001). In regression models, phase angle was independently associated with ISW, ADO and iBODE whereas FFM was removed. One hundred and seventy patients (33.9% [95% CI, 29.9-38.1]) had a low phase angle. Phenotypic characteristics included lower QMVC, ISW, and 4MGS, higher 5STS, ADO and iBODE scores, and more exacerbations and hospital days in past year. The proportion of patients to have died was significantly higher in patients with low phase angle compared to those with normal phase angle (8.2% versus 3.6%, p = 0.02). Phase angle relates to markers of function, disease severity and prognosis in patients with COPD. As a directly measured variable, phase angle offers more useful information than fat-free mass indices. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Kinematic properties of the helicopter in coordinated turns
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Jeske, J. A.
1981-01-01
A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.
Midline shift and lateral guidance angle in adults with unilateral posterior crossbite.
Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano
2008-06-01
Unilateral posterior crossbite is a malocclusion that, if not corrected during infancy, typically causes permanent asymmetry. Our aims in this study were to evaluate various occlusal parameters in a group of adults with uncorrected unilateral posterior crossbite and to compare findings with those obtained in a group of normal subjects. Midline shift at maximum intercuspation, midline shift at maximum aperture, and lateral guidance angle in the frontal plane were assessed in 25 adults (ages, 17-26 years; mean, 19.6 years) with crossbites. Midline shift at maximum intercuspation was zero (ie, centric midline) in 36% of the crossbite subjects; the remaining subjects had a shift toward the crossbite side. Midline shift at maximum aperture had no association with crossbite side. Lateral guidance angle was lower on the crossbite side than on the noncrossbite side. No parameter studied showed significant differences with respect to the normal subjects. Adults with unilateral posterior crossbite have adaptations that compensate for the crossbite and maintain normal function.
Chen, Pei; Wang, Kai; Kuang, Qirong; Zhou, Sumei; Wang, Dazheng; Liu, Xingxun
2016-06-01
Regulating the starch gastrointestinal digestion rate by control of its aggregation structure is an effective way, but the mechanism is still not clear. Multi-scale structure of waxy and normal wheat starches were studied by confocal laser scanning and scanning electron microscopes, as well as wide-angle and small-angle X-ray techniques in this study. In vitro digestion kinetics of those two starches and structure-digestion relationship were also discussed. Both waxy and normal starches show A-type diffraction pattern, but waxy variety shows a slightly higher crystallinity. Small-angle X-ray scattering results show that waxy wheat starch has higher scattering peak intensity (Imax) and a larger crystallinity lamellar repeat distance (Lp) compared with the normal wheat starch. We suggested that the higher digestion rate of waxy starch at initial stage is mainly due to more small-size particles, but the higher crystallinity and the larger crystalline lamellar size limit the digestion extent. Copyright © 2016 Elsevier B.V. All rights reserved.
[Descriptive analysis of pelvic asymmetry in an asymptomatic population].
Barbosa, A C; Bonifácio, D N; Lopes, I P; Martins, F L M; Barbosa, M C S A; Barbosa, A C
2014-01-01
Pelvic tilt is clinically assessed based on its relationship with spinal conditions, but there is little evidence from the asymptomatic-population for comparison purposes. To analyze an asymptomatic population focusing,on pelvic asymmetries using photogrammetry. 92 subjects (18-35 years old) underwent marking of the anterior and posterior iliac spines and were photographed. Alcimage software was used to measure the pelvic tilt angle. Other tests included: the Kolmogorov normality test, t test, Wilcoxon test, and Pearson coefficient to measure the correlation. 11.96% of males had anteversion and 34.78% normality; 38.04% of females had anteversion and 15.22% normality. Angles between iliacs for bilateral tilt showed no difference, but a difference was seen with the predominance of one side. For unilateral tilt a difference between illacs was seen. Good correlation of predominance versus anteversion was observed, and correlation was poor for side angles. The rest showed a weak or non-significant correlation. Tilt cannot be used individually to characterize pelvic dysfunction or pathology.
Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity
NASA Astrophysics Data System (ADS)
Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.
2013-10-01
Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Angular dependence of source-target-detector in active mode standoff infrared detection
NASA Astrophysics Data System (ADS)
Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.
2013-06-01
Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.
NASA Astrophysics Data System (ADS)
Wang, Feng; Wang, Zhengping; Shi, Jinhui
2014-10-01
A high-Q Fano resonance and giant extrinsic chirality have been demonstrated in an ultrathin Babinet-inverted metasurface composed of asymmetrical split ring apertures (ASRAs) perforated through a metal plate based on the full-wave simulations. The performance of the Fano resonance at normal incidence strongly depends on the asymmetry of the ASRA. The quality factor is larger than 1000 and the local field enhancement is an order of 104. For oblique incidence, giant extrinsic chirality can be achieved in the Babinet-inverted metasurface. It reveals a cross-polarization transmission band with a ripple-free peak and also a spectrum split for large angles of incidence. The electromagnetic response of the metasurface can be easily tuned via angles of incidence and asymmetry. The proposed ASRA metasurface is of importance to develop many metamaterial-based devices, such as filters and circular polarizers.
Models for Electromagnetic Scattering from the Sea at Extremely Low Grazing Angles
1987-12-31
34 wedgy " rather than a "wavy" surface. this author found such a surface to have the expected k-minus-four spectrum. but with a spectral scale factor that...zero grazing angle across the top of the wedge (Fig. 19b. correspond- ing to the normal wedgy sea of our low-angle model.) We see that the polarization
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.
2017-01-01
The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.
Design and Calibration of the ARL Mach 3 High Reynolds Number Facility
1975-01-01
degrees Rankine. Test rhombus determinations included lateral and longitudinal Mach number distributions and flow angularity measurements. A...43 3. THE TUNNEL EMPTY MACH NUMBER DISTRIBUTION 45 4. THE CENTERLINE RMS MACH NUMBER 46 5. FLOW ANGULARITY MEASUREMENTS 46 6. BLOCKAGE TESTS... Angularity Wedge Scale Drawing of Flow Angularity Cone Normalized Surface Pressure Difference versus Angle of Attack at xp/xr = - 0.690 for po
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew
2015-06-01
The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.
Shapes of strong shock fronts in an inhomogeneous solar wind
NASA Technical Reports Server (NTRS)
Heinemann, M. A.; Siscoe, G. L.
1974-01-01
The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.
Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges
2017-01-01
Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects. PMID:29215571
Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad
2017-12-07
Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.
Grigg, Josephine; Haakonssen, Eric; Rathbone, Evelyne; Orr, Robin; Keogh, Justin W L
2017-11-13
The aim of this study was to quantify the validity and intra-tester reliability of a novel method of kinematic measurement. The measurement target was the joint angles of an athlete performing a BMX Supercross (SX) gate start action through the first 1.2 s of movement in situ on a BMX SX ramp using a standard gate start procedure. The method employed GoPro® Hero 4 Silver (GoPro Inc., USA) cameras capturing data at 120 fps 720 p on a 'normal' lens setting. Kinovea 0.8.15 (Kinovea.org, France) was used for analysis. Tracking data was exported and angles computed in Matlab (Mathworks®, USA). The gold standard 3D method for joint angle measurement could not safely be employed in this environment, so a rigid angle was used. Validity was measured to be within 2°. Intra-tester reliability was measured by the same tester performing the analysis twice with an average of 55 days between analyses. Intra-tester reliability was high, with an absolute error <6° and <9 frames (0.075 s) across all angles and time points for key positions, respectively. The methodology is valid within 2° and reliable within 6° for the calculation of joint angles in the first ~1.25 s.
Heel and toe driving on fuel cell vehicle
Choi, Tayoung; Chen, Dongmei
2012-12-11
A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.
Destroying coherence in high-temperature superconductors with current flow
Kaminski, A.; Rosenkranz, S.; Norman, M. R.; ...
2016-09-13
Here, the loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, the sharp peaks in the angle resolved photoemission spectra are completely suppressed. Since the resistance onset is a signature of phase fluctuations, this impliesmore » that the loss of single-particle coherence is connected with the loss of long-range phase coherence.« less
Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2017-01-01
High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.
Facile characterization of ripple domains on exfoliated graphene.
Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Hwang, In Rok; Park, Bae Ho; Choi, Taekjib; Park, Jeong Young; Salmeron, Miquel
2012-07-01
Ripples in graphene monolayers deposited on SiO(2)/Si wafer substrates were recently shown to give rise to friction anisotropy. High friction appears when the AFM tip slides in a direction perpendicular to the ripple crests and low friction when parallel. The direction of the ripple crest is, however, hard to determine as it is not visible in topographic images and requires elaborate measurements of friction as a function of angle. Here we report a simple method to characterize ripple crests by measuring the cantilever torsion signal while scanning in the non-conventional longitudinal direction (i.e., along the cantilever axis, as opposed to the usual friction measurement). The longitudinal torsion signal provides a much clearer ripple domain contrast than the conventional friction signal, while both signals show respective rotation angle dependences that can be explained using the torsion component of the normal reaction force exerted by the graphene ripples. We can also determine the ripple direction by comparing the contrast in torsion images obtained in longitudinal and lateral scans without sample rotation or complicated normalization.
Huang, P-Y; Lin, C-F; Kuo, L-C; Liao, J-C
2011-12-01
This study evaluates foot pressure and center of pressure (COP) patterns in individuals with ankle instability during running and lateral shuffling. Eleven participants with ankle instability (AI) and 11 normal subjects (Normal) performed running and lateral shuffling tasks. The outcome measures were foot progression angle, peak pressure, and displacement of COP during stance phase. During running, the foot progression angle, that is, the angle of foot abduction, was lower in the AI group (Normal: 13.46° ± 4.45°; AI: 8.78° ± 3.91°), and the 1st metatarsal contact pressure (Normal: 0.76 ± 0.47 N/cm(2)·kg; AI: 1.05 ± 0.70 N/cm(2)·kg) and the 3rd metatarsal peak pressure were higher in the AI (Normal: 0.96 ± 0.60 N/cm(2)·kg; AI: 1.54 ± 0.68 N/cm(2)·kg). The medial-lateral (M-L) COP in the late-stance phase of running for the AI group transferred faster from lateral to medial foot than the Normal group. For lateral shuffling, the AI group had greater peak pressure at the 1st (Normal: 0.76 ± 0.67 N/cm(2)·kg; AI: 1.49 ± 1.04 N/cm(2)·kg), 2nd (Normal: 0.57 ± 0.39 N/cm(2)·kg; AI: 0.87 ± 0.68 N/cm(2)·kg), 3rd (Normal: 0.70 ± 0.54 N/cm(2)·kg; AI: 1.42 ± 0.87 N/cm(2)·kg), and 4th (Normal: 0.52 ± 0.38 N/cm(2)·kg; AI: 1.12 ± 0.78 N/cm(2)·kg) metatarsal areas than the Normal group. The M-L COP located more laterally from the early to mid-stance phase in the AI compared with the Normal group. The findings suggest that COP displacement during lateral shuffle may be a factor in ankle instability while the foot progression angle during running may be a compensatory strategy. © 2011 John Wiley & Sons A/S.
Kanehisa, H; Muraoka, Y; Kawakami, Y; Fukunaga, T
2003-02-01
The thickness, fascicle angles of pennation, and fascicle length of the vastus lateralis (VL) and medial gastrocnemius (MG) muscles in highly trained soccer players and swimmers of both genders were determined from ulrasonograms to investigate whether the fascicle arrangements of the lower limb muscles in the athletes could be related to the requirements of the events, i. e., intensive muscular activities in the water versus on the ground. In comparisons between the two events, the soccer players tended to show shorter fascicles and greater fascicle angles, and the swimmers thicker muscles and longer fascicles, especially in VL. In both events, the males showed thicker muscles and greater fascicle angles than the females. In both VL and MG, the thickness, fascicle length and fascicle angle were related to each other in a right-angled triangle model, and so, most of the event- and/or gender-related differences observed in the fascicle angle depended on the difference in muscle thickness relative to fascicle length. The present data cannot answer the question of whether the athletes had muscles suited to their respective sports prior to beginning their sports or whether the muscles adapted specifically to the competitive and/or training styles. However, it might be assumed that the lower limb muscles for swimmers are suitable to perform rapid, powerful kick movements during competitive swims by having greater thickness and longer fascicle, i. e., priorities in both force production and shortening velocity, but those for soccer players do not show architectural profiles which can be related to intensive activity on the ground, except that the thickness values exceed the normal range.
NASA Astrophysics Data System (ADS)
Freeman, A. J.; Yu, Jaejun
1990-04-01
For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.
NASA Technical Reports Server (NTRS)
Freeman, A. J.; Yu, Jaejun
1990-01-01
For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.
Asymmetrically pressing nasal splint for crooked nose deformity.
Tugrul, Selahattin; Dogan, Remzi; Kocak, Ilker; Ozturan, Orhan
2015-01-01
Correcting crooked nose deformity is one of the most difficult procedure in rhinoplastic surgery. For that reason, the authors have been designed an asymmetrically pressing nasal splint. In this prospective study, the aim was to compare the effects of applying asymmetrically pressing nasal splint and normal symmetrically splint on the crooked nose. This study included 129 patients who were operated on for crooked nose deformity. Patients were divided into 2 groups. Normal symmetrically pressing nasal splint was applied to groups 1a (I type) and 1b (C type). Asymmetrically pressing nasal splint was applied to groups 2a (I type) and 2b (C type). All groups were compared according to deflection angle from the midline, the percentage of postoperative improvement, patient satisfaction with visual analog scale, and complication rate. I-type noses in both groups at postoperative angle values were reduced, and C-type noses in both groups at postoperative angle values were increased significantly compared with preoperative values. I-type noses of group 2 at postoperative angle values compared with group 1 were reduced, and C-type noses were increased in group 2 significantly. Patient satisfaction rate in group 2 were significantly better than in group 1. The closeness ratios to the ideal angles in group 1 were in "good" and "moderate" levels, whereas in group 2, it was in "excellent" level. There was no significant difference in complication rate in both groups. Asymmetrically pressing splint (novel design) showed increasing success rate clearly in crooked nose surgery than in normal splints.
Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan
2014-10-01
Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.
Flight validation of a pulsed smoke flow visualization system
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Dorsett, Kenneth M.
1993-01-01
A flow visualization scheme, designed to measure vortex fluid dynamics on research aircraft, was validated in flight. Strake vortex trajectories and axial core velocities were determined using pulsed smoke, high-speed video images, and semiautomated image edge detection hardware and software. Smoke was pulsed by using a fast-acting three-way valve. After being redesigned because of repeatedly jamming in flight, the valve shuttle operated flawlessly during the last two tests. A 25-percent scale, Gothic strake was used to generate vortex over the wing of a GA-7 Cougar and was operated at a local angle of attack of 22 degrees and Reynolds number of approximately 7.8 x 10(exp 5)/ft. Maximum axial velocities measured in the vortex core were between 1.75 and 1.95 times the freestream velocity. Analysis of the pulsed smoke system's affect on forebody vortices indicates that the system may reorient the forebody vortex system; however, blowing momentum coefficients normally used will have no appreciable affect on the leading-edge extension vortex system. It is recommended that a similar pulsed smoke system be installed on the F/A-18 High Angle Research Vehicle and that this approach be used to analyze vortex core dynamics during the remainder of its high-angle-of-attack research flights.
Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition.
Barkana, Yaniv; Dorairaj, Syril K; Gerber, Yariv; Liebmann, Jeffrey M; Ritch, Robert
2007-10-01
To assess the agreement between findings obtained at dark-room gonioscopy and ultrasound biomicroscopy (UBM) in the diagnosis of iridotrabecular apposition in light and dark conditions. We enrolled patients with appositional angle closure at dark-room gonioscopy performed using a 1-mm slitlamp beam that did not cross the pupil. Ultrasound biomicroscopic images were acquired in normal room light and subsequently with all room lights off. Images were evaluated for the presence or absence of iris-cornea contact. The angle opening distance at 500 microm was calculated. Iridotrabecular apposition in at least 1 angle quadrant was demonstrated in all 18 eyes at dark-room gonioscopy, 17 eyes (94%) at dark-room UBM, and only 10 eyes (56%) at UBM in room light. Of 18 superior angles that were appositionally closed at dark-room gonioscopy, apposition was demonstrated on UBM images in 16 (89%) in a dark room but only 6 (33%) in room light. Angle opening distance was less during dark-room gonioscopy in all but the nasal quadrant. We found high agreement between gonioscopy and UBM when both are performed in a completely dark room. Our findings support the recommendation that, in routine clinical practice, gonioscopy be performed in a dark room to avoid misdiagnosis of treatable iridotrabecular apposition.
Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming
2017-01-05
The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.
Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming
2017-01-01
The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumane, V; Rhome, R; Yuan, Y
2015-06-15
Purpose: To study the influence of dimensions of the tandem and ring applicator on bladder D2cc, rectum D2cc and sigmoid D2cc in HDR treatment planning for cervical cancer. Methods: 53 plans from 13 patients treated at our institution with the tandem and ring applicator were retrospectively reviewed. Prescription doses were one of the following: 8 Gy x 3, 7 Gy x 4 and 5.5 Gy x 5. Doses to the D2ccs of the bladder, rectum and the sigmoid were recorded. These doses were normalized to their relative prescriptions doses. Correlations between the normalized bladder D2cc, rectum D2cc and sigmoid D2ccmore » were investigated and linear regression models were developed to study the dependence of these doses on the ring diameter and the applicator angle. Results: Normalized doses to the D2cc of the bladder, rectum and sigmoid showed statistically significant correlation (P < 0.05) to the applicator angle. Significant correlation was also noted for the normalized D2cc of the rectum and the sigmoid with the ring diameter. The normalized bladder D2cc was found to decrease with applicator angle on an average by 22.65% ± 4.43% while the same for the rectum and sigmoid were found to increase on an average by 14.43% ± 1.65% and 14.01% ± 1.42% respectively. Both the rectum and sigmoid D2cc reduced with increasing ring diameter by 12.93% ± 1.95% and 11.27% ± 1.79%. No correlation was observed between the normalized bladder D2cc and the ring diameter. Conclusion: Preliminary regression models developed in this study can potentially aid in the choice of the appropriate applicator angle and ring diameter for tandem and ring implant so as to optimize doses to the bladder, rectum and sigmoid.« less
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng
2017-08-01
We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.
Controlled alignment of carbon nanofibers in a large-scale synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.
2002-06-01
Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.
Solar Cell Angle of Incidence Corrections
NASA Technical Reports Server (NTRS)
Burger, Dale R.; Mueller, Robert L.
1995-01-01
The Mars Pathfinder mission has three different solar arrays each of which sees changes in incidence angle during normal operation. When solar array angle of incidence effects was researched little published data was found. The small amount of-published data created a need to obtain and evaluate such data. The donation of the needed data, which was taken in the fall of 1994, was a major factor in the preparation of this paper.
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.
2012-01-01
Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.
Yoshimoto, Minoru; Kobirata, Satoshi; Aizawa, Hideo; Kurosawa, Shigeru
2007-06-19
We investigated the effects of the longitudinal wave on the immersion angle dependence of the resonant-frequency shift, deltaF, of the quartz crystal microbalance, QCM. In order to study exactly the effects, we employed the three types of cells: normal cell, cell with the glass beads and cell with sponge. The longitudinal wave exists in the normal cell. On the other hand, both the cell with the glass beads and the cell with sponge eliminate the longitudinal wave. As results, we have found that the tendencies of deltaF are the same in the three types of cells. That is, we conclude that the longitudinal wave does not have effects on the immersion angle dependence of deltaF.
Combined mode I stress intensity factors of slanted cracks
NASA Astrophysics Data System (ADS)
Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad
2017-08-01
The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.
Bending wavefunctions for linear molecules
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-01-01
The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.
Joint Task Force Two, Test 4.1; B 52 Aircraft Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Department 9210
1968-10-01
This volume contains plots of the aircraft position track in the target area. There are also plots of the aircraft altitude above the terrain, normal accelerations, roll angle, pitch angle & slant range from the navigation check points and the targets.
The angle of shoulder slope in normal males as a factor in shoulder-harness design.
DOT National Transportation Integrated Search
1965-03-01
In order to establish criteria for more comfortable shoulder-harness design, this study was conducted to determine the angle of slope of the top of the shoulders where poorly fitting shoulder harness may produce discomfort and, occasionally, function...
Axicon based conical resonators with high power copper vapor laser.
Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim
2010-07-01
We report for the first time the performance of axicon based conical resonators (ABCRs) in a copper vapor laser, with novel results. The unstable conical resonator comprising of conical mirror (reflecting axicon) with axicon angle approximately pi/18, cone angle approximately 160 degrees, and a convex mirror of 60 cm radius of curvature was effective in reducing the average beam divergence to approximately 0.15 mrad (approximately 25 fold reduction compared to standard multimode plane-plane cavity) with output power of approximately 31 W. Extraction efficiency of approximately 50%-60% and beam divergence of <1 mrad was achieved in other stable ABCR configurations using flat and concave mirrors with the axicon. This is a significant improvement compared to 4-5 mrad normally observed in conventional stable resonators in copper vapor lasers. The conical resonators with copper vapor laser provide high misalignment tolerance beta approximately 4-5 mrad where beta is the tilt angle of the conical mirror from optimum position responsible for approximately 20% decline in laser power. The depth of focus d was approximately three times larger in case of conical resonator as compared to that of standard spherical unstable resonator under similar beam divergence and focusing conditions.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Huang, Wei; Gao, Yubo; Qi, Yafei; Hypervelocity Impact Research Center Team
2015-06-01
Laboratory-scaled oblique water entry experiments for the trajectory stability in the water column have been performed with four different nosed-projectiles at a range of velocities from 20m /s to 250 m /s . The slender projectiles are designed with flat, ogival, hemi-sperical, truncated-ogival noses to make comparisons on the trajectory deviation when they are launched at vertical and oblique impact angles (0°~25°). Two high-speed cameras that are positioned orthogonal to each other and normal to the column are employed to capture the entire process of projectiles' penetration. From the experimental results, the sequential images in two planes are presented to compare the trajectory deviation of different impact tests and the 3D trajectory models are extracted based on the location recorded by cameras. Considering the effect influenced by the impact velocities and noses of projectiles, it merited concluded that trajectory deviation is affected from most by impact angle, and least by impact velocities. Additionally, ogival projectiles tend to be more sensitive to oblique angle and experienced the largest attitude changing. National Natural Science Foundation of China (NO.: 11372088).
Precision controllability of the YF-17 airplane
NASA Technical Reports Server (NTRS)
Sisk, T. R.; Mataeny, N. W.
1980-01-01
A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.
NASA Astrophysics Data System (ADS)
Coburn, Craig A.; Logie, Gordon S. J.
2018-01-01
Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael
2014-08-01
Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nonlinear time-series-based adaptive control applications
NASA Technical Reports Server (NTRS)
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.
Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas
2017-03-23
First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p < 0.05) compared to room lighting 'ON'. There does not appear to be significant diurnal variation in AS-OCT parameters in normal individuals, but lighting conditions need to be strictly controlled since variation in lighting led to significant variability in AS-OCT parameters. No changes in ACA parameters were noted by varying the angle-of-incidence, which gives confidence in being able to perform longitudinal studies in approximately the same area (plus/minus 5° of original scan location).
Effect of Grain Misorientation Angle on Twinning Propagation in Ti-15Mo Alloy
NASA Astrophysics Data System (ADS)
Im, Y.-D.; Lee, Y.-K.; Song, K. H.
2018-07-01
This study was carried out to evaluate the effect of grain misorientation angle distribution on the deformation behavior and twinning of Ti-15Mo alloy. Cold rolling exhibited a significant texture with grains oriented along the {111}//normal direction, which correlate with a higher fraction of low-angle boundaries. This material showed a lower yield strength and higher elongation than those of the hot rolled material. The twinning propagation mainly occurred between neighboring grains with a low-angle relation. Consequently, the texture development was correlated with low-angle boundaries and affected by the increase in the twinning density, which increased the strain hardening rate.
Aerodynamic side-force alleviator means
NASA Technical Reports Server (NTRS)
Rao, D. M. (Inventor)
1980-01-01
An apparatus for alleviating high angle of attack side force on slender pointed cylindrical forebodies such as fighter aircraft, missiles and the like is described. A symmetrical pair of helical separation trips was employed to disrupt the leeside vortices normally attained. The symmetrical pair of trips starts at either a common point or at space points on the upper surface of the forebody and extends along separate helical paths along the circumference of the forebody.
On the definition of albedo and application to irregular particles
NASA Technical Reports Server (NTRS)
Hanner, M. S.; Giese, R. H.; Weiss, K.; Zerull, R.
1981-01-01
The various definitions of albedo used in planetary astronomy are reviewed. In particular, the Bond albedo, which refers only to the reflected and refracted components, is not applicable to small particles or highly irregular particles, where diffraction is not restricted to a well-defined lobe at small scattering angles. Measured scattering functions for irregular particles are presented in a normalized form and are applied to the case of zodiacal light.
Vos, F I; De Jong-Pleij, E A P; Ribbert, L S M; Tromp, E; Bilardo, C M
2012-06-01
To assess the feasibility of nasal bone length (NBL), prenasal thickness (PT) and frontomaxillary facial (FMF) angle measurements performed on the same three-dimensional (3D) multiplanar-corrected profile view in healthy second- and third-trimester fetuses, to create reference ranges and to review published measurement techniques. 3D volumes of 219 healthy second- and third-trimester fetuses were retrospectively analyzed. The quality of images and measurability of the markers were assessed with 5-point and 3-point scoring systems, respectively. Measurements of NBL (with care to exclude the frontal bone), PT and FMF were obtained in the exact mid-sagittal plane. Reference ranges were constructed based on measurements from images with high-quality (4 or 5 points) and high measurability (2 or 3 points) scores and compared with those in the most relevant published literature. A high-quality score was assigned to 111 images. Among these, a high measurability score was significantly more often achieved for NBL (98.2%) and PT (97.3%) than for the FMF angle (26.1%) (P < 0.001). Both NBL (NBL = - 6.927 + (0.83 × GA) - (0.01 × GA(2))) and PT (PT = (0.212 × GA) - 0.873) (where GA = gestational age) showed growth with gestation, with less pronounced growth for NBL after 28 weeks. Our reference range for the NBL showed a systematically smaller length than those in other two-dimensional (2D) ultrasound-based publications. The FMF angle measurements that we obtained did not show a significant change with GA. NBL and PT are easily measured using 3D ultrasound whereas FMF angle measurement is more challenging. When it is measured in the exact mid-sagittal plane and care is taken to exclude the frontal bone, measurements of the NBL are systematically smaller than those in previous 2D ultrasound-based publications. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Yingchun; Wu, Wei; Li, Bo
2018-05-01
Jointed rock masses during underground excavation are commonly located under the constant normal stiffness (CNS) condition. This paper presents an analytical formulation to predict the shear behaviour of rough rock joints under the CNS condition. The dilatancy and deterioration of two-order asperities are quantified by considering the variation of normal stress. We separately consider the dilation angles of waviness and unevenness, which decrease to zero as the normal stress approaches the transitional stress. The sinusoidal function naturally yields the decay of dilation angle as a function of relative normal stress. We assume that the magnitude of transitional stress is proportionate to the square root of asperity geometric area. The comparison between the analytical prediction and experimental data shows the reliability of the analytical model. All the parameters involved in the analytical model possess explicit physical meanings and are measurable from laboratory tests. The proposed model is potentially practicable for assessing the stability of underground structures at various field scales.
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
Ferreira, Jânio A.; Botelho, Ricardo V.
2015-01-01
Background: Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain's line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. Methods: We evaluated the CLV in a sample of CVJM, BI, CM patients and a control group of normal subjects and correlated their data with craniocervical angular craniometry. Results: A total of 97 subjects were studied: 32 normal subjects, 41 CM patients, 9 basilar invagination type 1 (BI1) patients, and 15 basilar invagination type 2 (BI2) patients. The mean CLV violation in the groups were: The control group, 0.16 ± 0.45 cm; the CM group, 0.32 ± 0.48 cm; the BI1 group, 1.35 ± 0.5 cm; and the BI2 group, 1.98 ± 0.18 cm. There was strong correlation between CLV and Boogard's angle (R = 0.82, P = 0.000) and the clivus canal angle (R = 0.7, P = 0.000). Conclusions: CM's CLV is discrete and similar to the normal subjects. BI1 and BI2 presented with at least of 0.95 cm CLV and these violations were strongly correlated with a primary cranial angulation (clivus horizontalization) and an acute clivus canal angle (a secondary craniocervical angle). PMID:26229733
Ferreira, Jânio A; Botelho, Ricardo V
2015-01-01
Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain's line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. We evaluated the CLV in a sample of CVJM, BI, CM patients and a control group of normal subjects and correlated their data with craniocervical angular craniometry. A total of 97 subjects were studied: 32 normal subjects, 41 CM patients, 9 basilar invagination type 1 (BI1) patients, and 15 basilar invagination type 2 (BI2) patients. The mean CLV violation in the groups were: The control group, 0.16 ± 0.45 cm; the CM group, 0.32 ± 0.48 cm; the BI1 group, 1.35 ± 0.5 cm; and the BI2 group, 1.98 ± 0.18 cm. There was strong correlation between CLV and Boogard's angle (R = 0.82, P = 0.000) and the clivus canal angle (R = 0.7, P = 0.000). CM's CLV is discrete and similar to the normal subjects. BI1 and BI2 presented with at least of 0.95 cm CLV and these violations were strongly correlated with a primary cranial angulation (clivus horizontalization) and an acute clivus canal angle (a secondary craniocervical angle).
Vergence-dependent adaptation of the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Lewis, Richard F.; Clendaniel, Richard A.; Zee, David S.; Shelhamer, M. J. (Principal Investigator)
2003-01-01
The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.
Light refraction in the Swiss-cheese model
NASA Astrophysics Data System (ADS)
Csapó, Adelinda; Bene, Gyula
2012-08-01
We investigate light propagation in the Swiss-cheese model. On both sides of Swiss-cheese sphere surfaces, observers resting in the flat Friedmann-Robertson-Walker (FRW) space and the Schwarzschild space respectively, see the same light ray enclosing different angles with the normal. We examine light refraction at each crossing of the boundary surfaces, showing that the angle of refraction is larger than the angle of incidence for both directions of the light.
Choi, Seyoung; Lee, Minsun; Kwon, Byongan
2014-01-01
Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is slightly greater than the normal range by being located in the lowest end of spine considering that the compensation for pelvic tilt, in other words, pelvic limb is not much causes an excess of lumbar lordosis angle. The meaning of this study based on these results is to prove that PSA is one of the important factors that fundamentally determine lumbar curvature. And this is because it is definitely required to have a study on the guideline for appropriate posture and life habit to the maintenance and management of ideal PSA before the end of growth phase and also the exercise therapy and adjustment for the control of PSA.
Imaging performance of a normal incidence soft X-ray telescope
NASA Technical Reports Server (NTRS)
Henry, J. P.; Spiller, E.; Weisskopf, M.
1982-01-01
Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.
Comparison of the calculation QRS angle for bundle branch block detection
NASA Astrophysics Data System (ADS)
Goeirmanto, L.; Mengko, R.; Rajab, T. L.
2016-04-01
QRS angle represent condition of blood circulation in the heart. Normally QRS angle is between -30 until 90 degree. Left Axis Defiation (LAD) and Right Axis Defiation (RAD) are abnormality conditions that lead to Bundle Branch Block. QRS angle is calculated using common method from physicians and compared to mathematical method using difference amplitudos and difference areas. We analyzed the standard 12 lead electrocardiogram data from MITBIH physiobank database. All methods using lead I and lead avF produce similar QRS angle and right QRS axis quadrant. QRS angle from mathematical method using difference areas is close to common method from physician. Mathematical method using difference areas can be used as a trigger for detecting heart condition.
Direct normal irradiance related definitions and applications: The circumsolar issue
Blanc, P.; Espinar, B.; Geuder, N.; ...
2014-10-21
The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “ Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. Thus, thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5° half-angle of today’s pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR).« less
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime
NASA Astrophysics Data System (ADS)
Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.
2018-05-01
The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2011-12-01
This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle
The human heart: application of the golden ratio and angle.
Henein, Michael Y; Zhao, Ying; Nicoll, Rachel; Sun, Lin; Khir, Ashraf W; Franklin, Karl; Lindqvist, Per
2011-08-04
The golden ratio, or golden mean, of 1.618 is a proportion known since antiquity to be the most aesthetically pleasing and has been used repeatedly in art and architecture. Both the golden ratio and the allied golden angle of 137.5° have been found within the proportions and angles of the human body and plants. In the human heart we found many applications of the golden ratio and angle, in addition to those previously described. In healthy hearts, vertical and transverse dimensions accord with the golden ratio, irrespective of different absolute dimensions due to ethnicity. In mild heart failure, the ratio of 1.618 was maintained but in end-stage heart failure the ratio significantly reduced. Similarly, in healthy ventricles mitral annulus dimensions accorded with the golden ratio, while in dilated cardiomyopathy and mitral regurgitation patients the ratio had significantly reduced. In healthy patients, both the angles between the mid-luminal axes of the pulmonary trunk and the ascending aorta continuation and between the outflow tract axis and continuation of the inflow tract axis of the right ventricle approximate to the golden angle, although in severe pulmonary hypertension, the angle is significantly increased. Hence the overall cardiac and ventricular dimensions in a normal heart are consistent with the golden ratio and angle, representing optimum pump structure and function efficiency, whereas there is significant deviation in the disease state. These findings could have anatomical, functional and prognostic value as markers of early deviation from normality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Feng, Qiang; Jiang, Chongmin; Zhou, Yu; Huang, Yun; Zhang, Ming
2017-01-01
Non-specific back pain has become a public health problem affecting adolescent health. To examine the relationships between abnormalities in spinal morphology and non-specific back pain among adolescents. Cross-sectional study. Junior and senior high schools. Participants were screened using a questionnaire regarding back pain. Students in the pain group (n= 273, 121 boys and 152 girls) reported experiencing upper and/or lower back pain within the previous month, and those who did not report pain were assigned to the group without pain (n= 127, 63 boys and 64 girls). Participants who had experienced acute upper and/or lower back injuries within the previous month or received a definitive diagnose of disease were excluded. The SpinalMouse® was used to measure the thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacrum/hip angle (SA), and incline angle (INA) in both the standing position and sitting position. The SpinalMouse® also was used to measure the sacral, thoracic, and lumbar range of motion (ROM) in the fully flexed position and fully extended position in the sagittal plane. The thoracic and lumbar ROM in left/right lateral flexion was recorded. The Matthiass test was used to assess changes in the measured angles upon loading. Among junior high school students, 47.0% of boys and 53% of girls had an abnormal TKA. Among senior high school students, 52.6% of boys and 46.99% of girls had an abnormal TKA. The incidence of LLA abnormality was significantly higher among junior high boys than girls (p< 0.05), as was the incidence of hypolordosis (p< 0.05). Significantly fewer senior high boys than girls had a normal LLA value (p< 0.05). An excessive TKA (p< 0.05, odds ratio = 1.236) and limited lumbar ROM (p< 0.01, odds ratio = 0.975) were correlated with back pain in adolescents. The incidences of TKA and LLA abnormality are high among Chinese adolescents, and an excessive TKA and insufficient total lumbar ROM may be risk factors for non-specific back pain in adolescents.
Abelin-Genevois, K; Idjerouidene, A; Roussouly, P; Vital, J M; Garin, C
2014-07-01
To describe the normal cervical sagittal alignment of the pediatric spine in a normal population and to identify the changes during growth period. We randomly selected in PACS database 150 full-spine standing views. Exclusion criteria were: age >18 years, spinal deformity and any disease affecting the spine (medical charts reviewing). For cervical alignment we measured: OC-angle according to Mc Gregor, C1C7 angle, upper cervical angle, inferior cervical angle and C7 tilt. Spino pelvic parameters were analyzed: T1 tilt, thoracic kyphosis, lumbar lordosis, pelvic incidence, sacral slope and pelvic tilt. We compared two age subgroups (juvenile and adolescent). Differences between age groups and gender were tested using Student's t test. Correlations between sagittal spinal parameters were evaluated using Pearson's test. Cervical spine shape was correlated to cranio cervical orientation to maintain horizontal gaze (r = 0.60) and to thoracic kyphosis (r = -0.46). Cervical spine alignment was significantly different between the two age groups except for the global C1C7 cervical lordosis, which remained stable. A significant gender difference was found for all the cervical sagittal angles (p < 0.01) whereas no differences were demonstrated for the spino pelvic parameters, except the lumbar lordosis (p = 0.047). This study is the first to report the cervical spinal alignment in a normal pediatric Caucasian population. Even though cervical lordosis is the common shape, our results showed variability in cervical sagittal alignment. Cervical spine is a junctional area that adjusts its alignment to the head position and to the underlying spinal alignment.
Incidence angle normalization of radar backscatter data
USDA-ARS?s Scientific Manuscript database
NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...
Bettinger, J.M.; Tomasso, J.R.; Isely, J.J.
2005-01-01
Mortality and physiological responses of adult striped bass Morone saxatilis angled from Lake Murray, South Carolina, and held in live-release tubes were evaluated during the spring and summer of 2003. To estimate mortality, we attached external ultrasonic transmitters to 59 striped bass (mean total length [TL] = 585 mm). Striped bass were caught with angling gear, tagged, and immediately released or held in live-release tubes for 2, 4, or 6 h prior to release. No mortality of striped bass was observed during spring. Overall mortality during summer was 83%. Mortality of summer-caught striped bass was not related to tube residence time, fish TL, depth of capture, or surface water temperature. To characterize physiological stress, we measured the plasma cortisol, glucose, lactate, and osmolality levels of 62 additional striped bass (mean TL = 563 mm) that were angled and immediately released or angled and held in live-release tubes. Plasma cortisol, glucose, lactate, and osmolality were positively related to tube residence time. When the hematological characteristics were considered only in relation to tube residence time, responses indicative of physiological stress continued for about 150 min, after which blood chemistry began to return to normal. Live-release tubes appear to be useful for keeping striped bass alive when they are angled from cool water, but they are not effective for striped bass angled from warm water. The high summer mortality of striped bass suggests a need for restrictive fishing regulations during the summer for the Lake Murray striped bass fishery. ?? Copyright by the American Fisheries Society 2005.
Zhang, Ye; Li, Si Zhen; Li, Lei; He, Ming Guang; Thomas, Ravi; Wang, Ning Li
2014-04-24
To estimate and compare the change in iris cross-sectional area (IA) and iris volume (IV) following physiologic and pharmacologic pupil dilation in primary angle closure suspects (PACS) and normal subjects. Anterior segment-optical coherence tomography (AS-OCT) measurements in light, dark, and following pharmacologic dilation were obtained on 186 PACS and 224 normal subjects examined during the 5-year follow-up of the Handan Eye Study. Iris cross-sectional area, IV, and other biometric parameters calculated using the Zhongshan angle assessment program in the right eyes of all subjects were analyzed. The mean IA and IV decreased in dark compared with light and after pharmacologic dilation in both PACS and normal eyes. This change was statistically significant in normal eyes: light versus pharmacologic dilation for IA (P = 0.038) and for IV, both light versus dark (P = 0.031) and light versus pharmacologic dilation (P = 0.012). A longer axial length (P = 0.028) and a greater change in pupil diameter (PD) (P < 0.001) were associated with a larger decrease of IA for the light to dark comparison. A diagnosis of normal eyes (P = 0.011), larger PD in dark (P = 0.001), and a larger change in PD (P = 0.001) were associated with a larger decrease of IV from light to dark. The differences in iris behavior between PACS and normal rural Chinese subjects following physiologic or pharmacologic pupillary dilation may help provide insights into the pathogenesis of angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Decker, Derek E.; Toeppen, John S.
1994-01-01
Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.
[Effect of BMI and WHR on lumbar lordosis and sacrum slant angle in middle and elderly women].
Guo, Jin-Ming; Zhang, Guo-Quan; Alimujiang
2008-01-01
To investigate the effect of body mass index (BMI) and waist hip ratio (WHR) on lumbar lordosis and sacrum slant angle in the patients with low back pain, and to discuss the theory of low back pain induced by obesity. The Roland Disability Questionnaire (RDQ) was answered by 98 middle and elderly women with low back pain, whose body height, body weight, waist circumference, and hip circumference were measured and used to calculate their MBI and WHR. According to BMI, all the cases were divided into normal, overweight and obesity groups. These cases were also divided into noncentral and central obesity groups according to WHR. The lateral X-ray films of the lumbar spine were studied by measuring LCI, Cobb angle, and SSA. The data of all groups were analyzed statistically. LCI, Cobb angle, SSA and RDQ scores in the overweight and obesity groups are significantly higher than those in the normal group. LCI, Cobb angle, SSA, and RDQ scores in the central obesity group are significantly higher than those in the noncentral obesity group. BMI exceeding 24 kg/m2 or WHR exceeding 0.85 may increase the measurements of Cobb angle, SSA and RDQ scores. Low back pain may occur because of overweight, obesity, or central obesity. The anatomy foundation of the increasing lumbar lordosis and sacrum slant angle may be the one of reasons of low back pain in obese person.
Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material
NASA Technical Reports Server (NTRS)
Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce
2002-01-01
The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.
Lin, Hung-Pin; Chen, Delphic; Kuo, Jui-Chao
2015-01-01
In this study, the grain boundary character and texture of 50% and 90% cold-rolled FePd alloy was investigated during recrystallization at 700 °C. Electron backscatter diffraction (EBSD) measurements were performed on the rolling direction to normal direction section. Kernel average misorientation (KAM) calculated from EBSD measurements was employed to determine the recrystallization fraction. The Avrami exponent n of recrystallization is 1.9 and 4.9 for 50% and 90% cold rolling, respectively. The new formation of texture reveals random texture during the recrystallization process. As annealing time increased, the number of high angle boundary (HAGB) and coincidence site lattice (CSL) increased with consumption of low angle boundary (LAGB). In addition, possible transformations between different grain boundaries are observed here.
NASA Astrophysics Data System (ADS)
George, D. S.; Onischenko, A.; Holmes, A. S.
2004-03-01
Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.
Neutrino masses and mixing from S4 flavor twisting
NASA Astrophysics Data System (ADS)
Ishimori, Hajime; Shimizu, Yusuke; Tanimoto, Morimitsu; Watanabe, Atsushi
2011-02-01
We discuss a neutrino mass model based on the S4 discrete symmetry where the symmetry breaking is triggered by the boundary conditions of the bulk right-handed neutrino in the fifth spacial dimension. The three generations of the left-handed lepton doublets and the right-handed neutrinos are assigned to be the triplets of S4. The magnitudes of the lepton mixing angles, especially the reactor angle, are related to the neutrino mass patterns, and the model will be tested in future neutrino experiments, e.g., an early discovery of the reactor angle favors the normal hierarchy. For the inverted hierarchy, the lepton mixing is predicted to be almost the tribimaximal mixing. The size of the extra dimension has a connection to the possible mass spectrum; a small (large) volume corresponds to the normal (inverted) mass hierarchy.
Xenon Sputter Yield Measurements for Ion Thruster Materials
NASA Technical Reports Server (NTRS)
Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.
2003-01-01
In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame.
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15–25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200). PMID:29420569
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15-25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200).
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Jorgensen, Leland H
1956-01-01
Effects of Reynolds number and angle of attack on the pressure distribution and normal-force characteristics of a body of revolution consisting of a fineness ratio 3 ogival nose tangent to a cylindrical afterbody 7 diameters long have been determined. The test Mach number was 1.98 and the angle-of-attack range from 0 degree to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10(6) and 0.45 x 10(6). The experimental results are compared with theory.
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.
1976-01-01
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.
Small angle scattering polarization biopsy: a comparative analysis of various skin diseases
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Alonova, M. V.; Yermolenko, S. B.; Ivashko, P. V.; Reshetnikova, E. M.; Galkina, E. M.; Utz, S. R.
2013-12-01
An approach to differentiation of the morphological features of normal and pathological human epidermis on the base of statistical analysis of the local polarization states of laser light forward scattered by in-vitro tissue samples is discussed. The eccentricity and the azimuth angle of local polarization ellipses retrieved for various positions of the focused laser beam on the tissue surface, and the coefficient of collimated transmittance are considered as the diagnostic parameters for differentiation. The experimental data obtained with the psoriasis, discoid lupus erythematosus, alopecia, lichen planus, scabies, demodex, and normal skin samples are presented.
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female "Jari" Workers.
Pal, Amitava; Dhara, Prakash C
2017-01-01
The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the "Jari" (golden thread) workers. This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers.
Nordez, Antoine; Cornu, Christophe; McNair, Peter
2006-08-01
The aim of this study was to assess the effects of static stretching on hamstring passive stiffness calculated using different data reduction methods. Subjects performed a maximal range of motion test, five cyclic stretching repetitions and a static stretching intervention that involved five 30-s static stretches. A computerised dynamometer allowed the measurement of torque and range of motion during passive knee extension. Stiffness was then calculated as the slope of the torque-angle relationship fitted using a second-order polynomial, a fourth-order polynomial, and an exponential model. The second-order polynomial and exponential models allowed the calculation of stiffness indices normalized to knee angle and passive torque, respectively. Prior to static stretching, stiffness levels were significantly different across the models. After stretching, while knee maximal joint range of motion increased, stiffness was shown to decrease. Stiffness decreased more at the extended knee joint angle, and the magnitude of change depended upon the model used. After stretching, the stiffness indices also varied according to the model used to fit data. Thus, the stiffness index normalized to knee angle was found to decrease whereas the stiffness index normalized to passive torque increased after static stretching. Stretching has significant effects on stiffness, but the findings highlight the need to carefully assess the effect of different models when analyzing such data.
Measurement of sternal curvature angle on patients with pectus excavatum.
Lee, Cory; Zavala-Garcia, Abraham; Teekappanavar, Neha; Lee, Catherine; Idowu, Olajire; Kim, Sunghoon
2017-01-01
Pectus excavatum (PE) is a chest deformity characterized by marked sternal depression. The objective of this study was to quantify the sternal curvature observed in patients diagnosed with PE using the sternal curvature angle (SCA). A retrospective review of lateral chest X-rays of patients with PE from 2006 to 2013 was performed. The SCA was measured in a manner similar to the method of Cobb's angle is used to measure spinal curvature. SCA and Haller index were calculated from the chest X-rays for all patients. Lateral chest X-rays of 202 PE and 196 normal control patients were analyzed. The mean SCA ± SD of PE patients was 40.56° ± 12.88° compared to 22.02° ± 7.65° for normal patients. The difference was statistically significant with a p value of <0.0001. No significant concordance between SCA and Haller index measurements in the PE group was found (Kendall τ = -0.00015, p value = 0.9975). The difference in sternal curvature as measured by the sternal curvature angle between the pectus excavatum and normal patients was statistically significant. Our data suggest that sternal depression evident in PE patients is not a simple linear depression of the sternum but due to curvature in the sternal body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartigan, P.; Liao, A. S.; Foster, J.
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less
Martinez, D.; Hartigan, P.; Frank, A.; ...
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less
2013-12-24
channel flow using explicit filtering and dynamic mixed models, Physics of Fluids, (08 2012): 0. doi : 10.1063/1.4745007 Satbir Singh, Donghyun You...08 2013): 0. doi : 10.1016/j.ijheatfluidflow.2013.02.008 TOTAL: 2 Received Paper TOTAL: Number of Papers published in non peer-reviewed journals...coordinate xi Cartesian coordinates y Wall-normal coordinate z Cross-stream coordinate Greek Symbols α Angle of attack δ Dirac delta function; boundary
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
[Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].
Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo
2015-03-01
To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.
Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.
Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon
2016-11-01
The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado
Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.
2018-04-24
The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.
2014-03-15
Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined by a series of points of contact, with the boat structure, by straight lines at 45 degree angles... the line defined by a series of points of contact with the boat structure, by straight lines at 45 degree angles to the horizontal and contained in a vertical plane normal to the outside edge of the boat...
Buldt, Andrew K; Levinger, Pazit; Murley, George S; Menz, Hylton B; Nester, Christopher J; Landorf, Karl B
2015-06-01
Variations in foot posture are associated with the development of some lower limb injuries. However, the mechanisms underlying this relationship are unclear. The objective of this study was to compare foot kinematics between normal, pes cavus and pes planus foot posture groups using a multi-segment foot model. Ninety-seven healthy adults, aged 18-47 were classified as either normal (n=37), pes cavus (n=30) or pes planus (n=30) based on normative data for the Foot Posture Index, Arch Index and normalised navicular height. A five segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux during barefoot walking at a self-selected speed. Angle at heel contact, peak angle, time to peak angle and range of motion was measured for each segment. One way ANOVAs with post-hoc analyses of mean differences were used to compare foot posture groups. The pes cavus group demonstrated a distinctive pattern of motion compared to the normal and pes planus foot posture groups. Effect sizes of significant mean differences were large and comparable to similar studies. Three key differences in overall foot function were observed between the groups: (i) altered frontal and transverse plane angles of the rearfoot in the pes cavus foot; (ii) Less midfoot motion in the pes cavus foot during initial contact and midstance; and (iii) reduced midfoot frontal plane ROM in the pes planus foot during pre-swing. These findings indicate that foot posture does influence motion of the foot. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.
2014-12-01
The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L˜3.5-4. In the region between, 90° minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90° minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, but this mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.
Xu, Zhihong; Chen, Dongyang; Shi, Dongquan; Dai, Jin; Yao, Yao; Jiang, Qing
2016-03-01
Hypoplasia of the lateral femoral condyle has been reported in discoid lateral meniscus patients, but associated imaging findings in the axial plane have not been characterized. In this study, we aimed to identify differences in the lateral femoral condyle between patients with discoid lateral meniscus and those with normal menisci using axial MRI images. Twenty-three patients (24 knees) with complete discoid lateral meniscus, 43 (45 knees) with incomplete discoid lateral meniscus, and 50 with normal menisci (50 knees) were enrolled and distributed into three groups. Two new angles, posterior lateral condylar angle (PLCA) and posterior medial condylar angle (PMCA), were measured on axial MRI images; the posterior condylar angle (PCA) was also measured. Differences between the three groups in the PLCA, PMCA, PCA, and PLCA/PMCA were analysed. The predictive value of PLCA and PLCA/PMCA for complete discoid lateral meniscus was assessed. In the complete discoid lateral meniscus group, PLCA and PLCA/PMCA were significantly smaller compared with the normal meniscus group and the incomplete discoid lateral meniscus group (P < 0.001). A significantly larger PCA was identified in the complete discoid lateral meniscus group compared with the incomplete discoid lateral meniscus group (P < 0.05) and normal meniscus group (P < 0.05). Both PLCA and PLCA/PMCA showed excellent predictive value for complete discoid lateral meniscus. Hypoplasia of the posterior lateral femoral condyle is typically seen in patients with complete discoid lateral meniscus. PLCA and PLCA/PMCA can be measured from axial MRI images and used as excellent predictive parameters for complete discoid lateral meniscus. Diagnostic study, Level III.
3-D phononic crystals with ultra-wide band gaps
Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit
2017-01-01
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812
L.D.V. measurements of unsteady flow fields in radial turbine
NASA Astrophysics Data System (ADS)
Tabakoff, W.; Pasin, M.
1992-07-01
Detailed measurements of an unsteady flow field within the inlet guide vanes (IGV) and the rotor of a radial inflow turbine were performed using a three component Laser Doppler Velocimeter (LDV) system together with a rotary encoder. The mean velocity, the flow angle and the turbulence contours for IGV passages are presented at four blade-to-blade planes for different rotor positions to give three dimensional, unsteady behavior of the IGV flow field. These results are compared with the measurements obtained in the same passage in the absence of the rotor. The flow field of the IGV passage was found to be affected by the presence of the rotor. The ratio of the tangential normal stresses to the radial normal stresses at the exit of the IGV was found to be more than doubled when compared to the case without the rotor. The rotor flow field measurements are presented as relative mean velocity and turbulence stress contours at various cross section planes throughout the rotor. The cross flow and turbulence stress levels were found to be influenced by the incidence angle. Transportation of the high turbulence fluid by the cross flow was observed downstream in the rotor blade passages.
3-D phononic crystals with ultra-wide band gaps.
Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit
2017-02-24
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.
A broadband high-transmission gradient phase discontinuity metasurface
NASA Astrophysics Data System (ADS)
Liu, Yahong; Liu, Congcong; Song, Kun; Li, Meize; Zhao, Xiaopeng
2018-03-01
Metasurfaces have attracted significant attention due to the control of the electromagnetic waves that they enable. In this paper, we demonstrate a high-transmission gradient phase discontinuity metasurface composed of metallic rods and cylindrical dielectric resonators operating at a broadband microwave frequency from 8 GHz to 9.8 GHz, with a fractional bandwidth of 20.2%. The proposed gradient phase discontinuity metasurface can achieve complete 2π transmission phase coverage with π/4 phase intervals by varying the geometric parameters of the dielectric resonators and metallic rods. It is shown that the proposed metasurface can refract a normally incident plane wave to an angle of 30°. The broadband metasurface is flexible, and the refracted angle can be adjusted easily by varying the lattice constant. Besides the broadband anomalous refraction, we also demonstrate the metasurface can produce an interesting vortex and wave-focusing in the wide frequency range from 8 GHz to 9.8 GHz. Finally, we demonstrate that the present metasurface can tailor interference wavefronts to plane wavefronts.
Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei
2016-01-01
Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723
Preparation of high porosity xerogels by chemical surface modification.
Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey
1996-01-01
This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.
Passive and active floating torque during swimming.
Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James
2004-10-01
The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.
NASA Astrophysics Data System (ADS)
Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej
2017-10-01
High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.
Simulation of the Focal Spot of the Accelerator Bremsstrahlung Radiation
NASA Astrophysics Data System (ADS)
Sorokin, V.; Bespalov, V.
2016-06-01
Testing of thick-walled objects by bremsstrahlung radiation (BR) is primarily performed via high-energy quanta. The testing parameters are specified by the focal spot size of the high-energy bremsstrahlung radiation. In determining the focal spot size, the high- energy BR portion cannot be experimentally separated from the low-energy BR to use high- energy quanta only. The patterns of BR focal spot formation have been investigated via statistical modeling of the radiation transfer in the target material. The distributions of BR quanta emitted by the target for different energies and emission angles under normal distribution of the accelerated electrons bombarding the target have been obtained, and the ratio of the distribution parameters has been determined.
Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.
1998-01-01
Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Martini, M; Schulz, M; Röhrig, A; Nadal, J; Messing-Jünger, M
2015-10-01
Frontoorbital advancement (FOA) in patients with non-syndromic craniosynostosis mainly addresses the aesthetic and functional correction of the frontoorbital region. To help define the operative strategy and any follow-up assessments after surgical correction, objective parameters describing the critical regions of skull deformity are essential. Based on 3D morphometric analysis, new parameters for the documentation of changes of the frontoorbital bandeau were developed in a prospective study. In a prospective series, 13 children with non-syndromic craniosynostosis (seven metopic, four unilateral coronal, and two bilateral coronal) treated with frontoorbital advancement, underwent detailed morphometric and volumetric evaluation using a 3D light optical scan system (3D-Shape, Erlangen, Germany). Measurements were obtained preoperatively and at 3, 6 and 12 months postoperatively with newly developed parameters generated by cephalometric analysis software (Onyx Ceph, Image Instruments, Chemnitz, Germany). In most patients, frontoorbital advancement resulted in stable long-term results without growth inhibition and with normalization or improvement of ongoing skull development. The mean frontal angle was 145° and the frontoparietal angle 137-140°. The cephalic index was normalized or markedly improved. Head circumference and head height increased significantly (p = 0.001 and p = 0.002, respectively). These changes were confirmed in all postoperative measurements. During the 12-month follow-up period all angle parameters proved to be stable and no major impairment of normal skull growth was observed after FOA. The frontoorbital angle is a useful parameter in evaluating long-term outcome. The frontoparietal angle is important for the stability of the frontoparietal region, in which a certain growth inhibition may be observed postoperatively. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Nakamura, N; Inaba, Y; Aota, Y; Oba, M; Machida, J; N Aida; Kurosawa, K; Saito, T
2016-12-01
To determine the normal values and usefulness of the C1/4 space available for spinal cord (SAC) ratio and C1 inclination angle, which are new radiological parameters for assessing atlantoaxial instability in children with Down syndrome. We recruited 272 children with Down syndrome (including 14 who underwent surgical treatment), and 141 children in the control group. All were aged between two and 11 years. The C1/4 SAC ratio, C1 inclination angle, atlas-dens interval (ADI), and SAC were measured in those with Down syndrome, and the C1/4 SAC ratio and C1 inclination angle were measured in the control group. The mean C1/4 SAC ratio in those requiring surgery with Down syndrome, those with Down syndrome not requiring surgery and controls were 0.63 (standard deviation (sd) 0.1), 1.15 (sd 0.13) and 1.29 (sd 0.14), respectively, and the mean C1 inclination angles were -3.1° (sd 10.7°), 15.8° (sd 7.3) and 17.2° (sd 7.3), in these three groups, respectively. The mean ADI and SAC in those with Down syndrome requiring surgery and those with Down syndrome not requiring surgery were 9.8 mm (sd 2.8) and 4.3 mm (sd 1.0), and 11.1 mm (sd 2.6) and 18.5 mm (sd 2.4), respectively. The normal values of the C1/4 SAC ratio and the C1 inclination angle were found to be about 1.2° and 15º, respectively. Cite this article: Bone Joint J 2016;98-B:1704-10. ©2016 The British Editorial Society of Bone & Joint Surgery.
Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi
2017-06-01
Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.
NASA Astrophysics Data System (ADS)
Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh
2018-03-01
A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.
Responses of Cells in the Midbrain Near-Response Area in Monkeys with Strabismus
Das, Vallabh E.
2012-01-01
Purpose. To investigate whether neuronal activity within the supraoculomotor area (SOA—monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus. Methods. Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing. Results. Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals. Conclusions. SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different. PMID:22562519
Shi, Jun; Zheng, Yong-Ping; Huang, Qing-Hua; Chen, Xin
2008-03-01
The aim of this study is to demonstrate the feasibility of using the continuous signals about the thickness and pennation angle changes of muscles detected in real-time from ultrasound images, named as sonomyography (SMG), to characterize muscles under isometric contraction, along with synchronized surface electromyography (EMG) and generated torque signals. The right biceps brachii muscles of seven normal young adult subjects were tested. We observed that exponential functions could well represent the relationships between the normalized EMG root-mean-square (RMS) and the torque, the RMS and the muscle deformation SMG, and the RMS and the pennation angle SMG for the data of the contraction phase, with exponent coefficients of 0.0341 +/- 0.0148 (Mean SD), 0.0619 +/- 0.0273, and 0.0266 +/- 0.0076, respectively. In addition, the preliminary results also demonstrated linear relationships between the normalized torque and the muscle deformation as well as the pennation angle with the ratios of 9 .79 +/- 3.01 and 2.02 +/- 0.53, respectively. The overall mean R2 for the regressions was approximately 0.9 and the overall mean relative root mean square error (RRMSE) smaller than 15%. The potential values of SMG together with EMG to provide a more comprehensive assessment for the muscle functions should be further investigated with more subjects and more muscle groups.
NASA Astrophysics Data System (ADS)
Liu, Binbin; Bruni, Stefano; Vollebregt, Edwin
2016-09-01
A novel approach is proposed in this paper to deal with non-Hertzian normal contact in wheel-rail interface, extending the widely used Kik-Piotrowski method. The new approach is able to consider the effect of the yaw angle of the wheelset against the rail on the shape of the contact patch and on pressure distribution. Furthermore, the method considers the variation of profile curvature across the contact patch, enhancing the correspondence to CONTACT for highly non-Hertzian contact conditions. The simulation results show that the proposed method can provide more accurate estimation than the original algorithm compared to Kalker's CONTACT, and that the influence of yaw on the contact results is significant under certain circumstances.
F-18 HARV yaw rate expansion flight #125 with Inverted Recovery
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's Dryden Flight Research Center, Edwards, CA, used an F-18 Hornet fighter aircraft as its High Angle-of-Attack (Alpha) Research Vehicle (HARV) in a three-phased flight research program lasting from April 1987 until September 1996. The aircraft completed 385 research flights and demonstrated stabilized flight at angles of attack between 65 and 70 degrees using thrust vectoring vanes, a research flight control system, and (eventually) forebody strakes (hinged structures on the forward side of the fuselage to provide control by interacting with vortices, generated at high angles of attack, to create side forces). This combination of technologies provided carefree handling of a fighter aircraft in a part of the flight regime that was otherwise very dangerous. Flight research with the HARV increased our understanding of flight at high angles of attack (angle of the wings with respect to the direction in which the aircraft was heading), enabling designers of U.S. fighter aircraft to design airplanes that will fly safely in portions of the flight envelope that pilots previously had to avoid. Flight 125 with the HARV involved yaw rate expansion up to 50 degrees per second (moving the nose to the left or right at that rate). NASA research pilot Ed Schneider was the pilot, and the purpose of the flight was to look at the spin characteristics of the HARV. The sequence in this particular video clip includes the first and second maneuvers in the flight. On the first maneuver, the pilot attempted to achieve a yaw rate of 40 degrees per second and actually went to 47 degrees. The spin was oscillatory in pitch (up and down) and roll (rotating around the longitudinal axis). Recovery was normal. On the second maneuver of the flight in which Schneider tried to achieve a yaw rate of 40 degrees per second, the aircraft overshot to 54 degrees per second during an oscillatory spin. In the course of the recovery, the aircraft rolled after a large sideslip buildup. Moderate aft stick application to attain a positive angle of attack resulted in an easy recovery.
Hood, A S; Morrison, J D
2002-01-01
We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347
Superolateral Hoffa's Fat Pad Edema in Collegiate Volleyball Players.
Mehta, Kaushal; Wissman, Robert; England, Eric; Dʼheurle, Albert; Newton, Keith; Kenter, Keith
2015-01-01
Superolateral Hoffa's fat pad (SHFP) edema is a previously described magnetic resonance (MR) finding located between the patellar tendon and the lateral femoral condyle. The purpose of our study was to determine the prevalence and clinical significance of SHFP edema in female collegiate volleyball players. Sixteen female collegiate volleyball players were consented for bilateral knee evaluations which consisted of history, physical examination and MR imaging. Each MR study was reviewed for the presence of SHFP edema, and 6 patellar maltracking measurements were done. These were tibial tuberosity-trochlear groove distance, patellar translation, lateral patellofemoral angle, trochlear depth, trochlear sulcus angle, and lateral trochlear inclination angle. A total of 16 athletes, 32 knees (16 girls; age range, 18-22 years; mean, 19.9) were enrolled in the study. Sixteen knees (50%) in 8 athletes had SHFP edema, with 100% bilaterality; 16 knees in 8 athletes had no evidence of SHFP edema (50%). Functional outcomes and physical examination findings were within normal limits for all athletes with no difference noted between SHFP edema-positive and -negative individuals. There was a statistically significant difference in the tibial tuberosity-trochlear groove distance, patellar translation, and patellofemoral angle (P value of < 0.001, 0.03 and 0.01, respectively) between the SHFP edema-positive and -negative individuals. Elite female volleyball athletes have a very high prevalence of SHFP edema, which is always bilateral. Although the exact etiology of SHFP edema remains inconclusive, it could potentially be a sensitive indicator of subtle patellar maltracking which cannot be distinguished by history and physical examination findings. Given the very high prevalence of SHFP edema and this being an asymptomatic finding, there is likely little clinical significance of this in majority of high-performance athletes.
Ream, Justin M; Doshi, Ankur; Lala, Shailee V; Kim, Sooah; Rusinek, Henry; Chandarana, Hersh
2015-06-01
The purpose of this article was to assess the feasibility of golden-angle radial acquisition with compress sensing reconstruction (Golden-angle RAdial Sparse Parallel [GRASP]) for acquiring high temporal resolution data for pharmacokinetic modeling while maintaining high image quality in patients with Crohn disease terminal ileitis. Fourteen patients with biopsy-proven Crohn terminal ileitis were scanned using both contrast-enhanced GRASP and Cartesian breath-hold (volume-interpolated breath-hold examination [VIBE]) acquisitions. GRASP data were reconstructed with 2.4-second temporal resolution and fitted to the generalized kinetic model using an individualized arterial input function to derive the volume transfer coefficient (K(trans)) and interstitial volume (v(e)). Reconstructions, including data from the entire GRASP acquisition and Cartesian VIBE acquisitions, were rated for image quality, artifact, and detection of typical Crohn ileitis features. Inflamed loops of ileum had significantly higher K(trans) (3.36 ± 2.49 vs 0.86 ± 0.49 min(-1), p < 0.005) and v(e) (0.53 ± 0.15 vs 0.20 ± 0.11, p < 0.005) compared with normal bowel loops. There were no significant differences between GRASP and Cartesian VIBE for overall image quality (p = 0.180) or detection of Crohn ileitis features, although streak artifact was worse with the GRASP acquisition (p = 0.001). High temporal resolution data for pharmacokinetic modeling and high spatial resolution data for morphologic image analysis can be achieved in the same acquisition using GRASP.
Electron scattering by highly polar molecules. II - LiF
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Srivastavas, S. K.; Trajmar, S.
1978-01-01
The crossed electron-beam - molecular-beam scattering technique has been used to measure relative values of differential 'elastic' scattering cross sections at electron impact energies of 5.4 and 20 eV for the angular range from 20 to 130 deg. The absolute values of these cross sections have been obtained by normalization to the classical perturbation theory of Dickinson (1977) at a scattering angle of 40 deg. These differential cross sections have then been used to calculate the integral and momentum-transfer cross sections. An energy-loss spectrum at 100 eV electron impact energy and 15 deg scattering angle has also been obtained. Two weak features at the energy losses of 6.74 and 8.82 eV appear. Their energy positions are compared with the recent calculations of Kahn et al. (1974).
1983-05-01
longitudinal changes in arch width between lateral incisors, canines and second premolars or deciduous second molars at four stages of dental eruption in 22 male... dental arch or skeletal widths. Also, he made no attempt to divide his sample into normal and malocclusion groups. -J 7 Warren (1959) studying twenty...buccal crossbite of the posterior teeth Many clinicians believe that this problem is highly correlated with tfte type or classification of malocclusion
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1976-01-01
Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollick, S. A.; Ghose, D.
Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
Total dural irradiation: RapidArc versus static-field IMRT: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Paul J., E-mail: paulj.kelly@hse.ie; Mannarino, Edward; Lewis, John Henry
2012-07-01
The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45more » Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc was selected as the optimal solution. Individualized collimator angle solutions should be considered by RapidArc dosimetrists for OARs dose reduction. RapidArc should be considered as a treatment modality for tumors that extensively involve in the skull, dura, or scalp.« less
Su, Yanling; Chen, Wei; Zhang, Tao; Wu, Xingwang; Wu, Zhanpo; Zhang, Yingze
2013-09-24
Controversy exits over the role of Böhler's angle in assessing the injury severity of displaced intra-articular calcaneal fractures and predicting the functional outcome following internal fixation. This study aims to investigate whether a correlation exists between Böhler's angle and the injury severity of displaced calcaneal fractures, and between surgical improvement of Böhler's angle and functional outcome. Patients treated operatively for unilateral closed displaced intra-articular calcaneal fractures from January 1, 2004 to March 31, 2008 were identified. The Böhler's angles of both calcaneus were measured, and the measurement of the uninjured foot was used as its normal control. The difference in the value of Böhler's angle measured preoperatively or postoperatively between the angle of the injured foot and that of the contralateral calcaneus were calculated, respectively. The change in Böhler's angle by ratio was calculated by dividing the difference value of Böhler's angle between bilateral calcaneus by its normal control. The injury severity was assessed according to Sanders classification. The functional outcomes were assessed using American Orthopaedic Foot & Ankle Society hindfoot scores. 274 patients were included into the study with a mean follow-up duration of 71 months. According to Sanders classification, the fracture pattern included 105 type II, 121 type III and 48 type IV fractures. According to American Orthopaedic Foot & Ankle Society hindfoot scoring system, the excellent, good, fair and poor results were achieved in 104, 132, 27, and 11 patients, respectively. The preoperative Böhler's angle, difference value of Böhler's angle between bilateral calcaneus, and change in Böhler's angle by ratio each has a significant correlation with Sanders classification (rs=-0.178, P=0.003; rs=-0.174, P=0.004; rs=-0.172, P=0.005, respectively), however, is not correlated with functional outcome individually. The three postoperative measurements were all found to have a significant correlation with American Orthopaedic Foot & Ankle Society hindfoot scores (rs=0.223, P<0.001; rs=0.224, P<0.001; rs=0.220, P<0.001, respectively). However, these correlations were all weak to low. There was a significant correlation between preoperative Böhler's angle and the injury severity of displaced intra-articular calcaneal fractures, but only postoperative Böhler's angle parameters were found to have a significant correlation with the functional recovery.
Oblique angle deposition-induced anisotropy in Co2FeAl films
NASA Astrophysics Data System (ADS)
Zhou, W.; Brock, J.; Khan, M.; Eid, K. F.
2018-06-01
A series of Co2FeAl Heusler alloy films, fabricated on Si/SiO2 substrates by magnetron sputtering-oblique angle deposition technique, have been investigated by magnetization and transport measurements. The morphology and magnetic anisotropy of the films strongly depended on the deposition angle. While the film deposited at zero degree (i.e. normal incidence) did not show any anisotropy, the films deposited at higher angles showed unusually strong in-plane anisotropy that increased with deposition angle. The enhanced anisotropy was well-reflected in the direction-dependent magnetization and the coercivity of the films that increased dramatically from 30 Oe to 490 Oe. In a similar vein, the electrical resistivity of the films also increased drastically, especially for deposition angles larger than 60°. These anisotropic effects and their relation to the morphology of the films are discussed.
Trojan dynamics well approximated by a new Hamiltonian normal form
NASA Astrophysics Data System (ADS)
Páez, Rocío Isabel; Locatelli, Ugo
2015-10-01
We revisit a classical perturbative approach to the Hamiltonian related to the motions of Trojan bodies, in the framework of the planar circular restricted three-body problem, by introducing a number of key new ideas in the formulation. In some sense, we adapt the approach of Garfinkel to the context of the normal form theory and its modern techniques. First, we make use of Delaunay variables for a physically accurate representation of the system. Therefore, we introduce a novel manipulation of the variables so as to respect the natural behaviour of the model. We develop a normalization procedure over the fast angle which exploits the fact that singularities in this model are essentially related to the slow angle. Thus, we produce a new normal form, i.e. an integrable approximation to the Hamiltonian. We emphasize some practical examples of the applicability of our normalizing scheme, e.g. the estimation of the stable libration region. Finally, we compare the level curves produced by our normal form with surfaces of section provided by the integration of the non-normalized Hamiltonian, with very good agreement. Further precision tests are also provided. In addition, we give a step-by-step description of the algorithm, allowing for extensions to more complicated models.
Photon Doppler velocimetry measurements of transverse surface velocities
NASA Astrophysics Data System (ADS)
Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.
2018-06-01
The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.
Optical and structural properties of cadmium telluride films grown by glancing angle deposition
NASA Astrophysics Data System (ADS)
Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini
2013-08-01
Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.
Bai, Fang; Reinheimer, Renata; Durantini, Diego; Kellogg, Elizabeth A; Schmidt, Robert J
2012-07-24
In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.
Do the angle and length of the eustachian tube influence the development of chronic otitis media?
Dinç, Aykut Erdem; Damar, Murat; Uğur, Mehmet Birol; Öz, Ibrahim Ilker; Eliçora, Sultan Şevik; Bişkin, Sultan; Tutar, Hakan
2015-09-01
To compare the eustachian tube (ET) angle (ETa) and length (ETl) of ears with and without chronic otitis media (COM), and to determine the relationship between ET anatomy and the development of COM. A retrospective case-control study. The study group comprised 125 patients (age range, 8-79 years; 64 males and 61 females) with 124 normal ears and 126 diseased ears, including ears with chronic suppurative otitis media (CSOM) with central perforation, intratympanic tympanosclerosis (ITTS), cholesteatoma, and a tympanic membrane with retraction pockets (TMRP). ET angle and length were measured using computed tomography employing the multiplanar reconstruction technique. The ETa was significantly more horizontal in diseased versus normal ears of all study groups (P = .030), and there was no group difference in ETl (P = .160). ETl was shorter in CSOM versus ITTS ears and normal ears (P = .007 and P = .003, respectively) and in cholesteatoma versus TMRP ears (P = .014). In the unilateral COM group, there were no significant differences in the ETa or ETl of diseased versus contralateral normal ears (P = .155 and P = .710, respectively). The ETa was significantly more horizontal in childhood-onset diseased versus normal ears (P = .027), and there was no group difference in ETl (P = .732). The ETa (P = .002) and ETl (P < .001) were significantly greater in males than females. A more horizontal ETa and shorter ETl could be contributory (though not significantly) etiological factors in the development of COM. 3b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Almeida, Rafael V.
The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene. Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries. Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region. A key finding of this dissertation is that the magnitude of crustal extension in this region has been overestimated. The pre-extensional width was increased by a factor of two across Lake Mead, through a combination of high-angle normal faulting and strike-slip deformation. Data from the transect across the Beaver Dam Mountains suggest substantially less extension, with the difference accommodated for the most part by displacement on the intervening Las Vegas Valley Shear Zone. The Colorado Plateau-Basin and Range transition zone may be a long-lived tectonic boundary where this assumption may be especially ill-suited.
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
NASA Astrophysics Data System (ADS)
Hogan, Matthew John
A positron emission tomography system designed to perform high resolution imaging of small volumes has been characterized. Two large area planar detectors, used to detect the annihilation gamma rays, formed a large aperture stationary positron camera. The detectors were multiwire proportional chambers coupled to high density lead stack converters. Detector efficiency was 8%. The coincidence resolving time was 500 nsec. The maximum system sensitivity was 60 cps/(mu)Ci for a solid angle of acceptance of 0.74(pi) St. The maximum useful coincidence count rate was 1500 cps and was limited by electronic dead time. Image reconstruction was done by performing a 3-dimensional deconvolution using Fourier transform methods. Noise propagation during reconstruction was minimized by choosing a 'minimum norm' reconstructed image. In the stationary detector system (with a limited angle of acceptance for coincident events) statistical uncertainty in the data limited reconstruction in the direction normal to the detector surfaces. Data from a rotated phantom showed that detector rotation will correct this problem. Resolution was 4 mm in planes parallel to the detectors and (TURN)15 mm in the normal direction. Compton scattering of gamma rays within a source distribution was investigated using both simulated and measured data. Attenuation due to scatter was as high as 60%. For small volume imaging the Compton background was identified and an approximate correction was performed. A semiquantitative blood flow measurement to bone in the leg of a cat using the ('18)F('-) ion was performed. The results were comparable to investigations using more conventional techniques. Qualitative scans using ('18)F labelled deoxy -D-glucose to assess brain glucose metabolism in a rhesus monkey were also performed.
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis
2014-10-01
In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low We number impacts (We<˜80) since for high impact velocities, inertia dominates significantly over capillary forces in the initial phase of spreading. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro
2017-04-01
Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female “Jari” Workers
Pal, Amitava; Dhara, Prakash C.
2017-01-01
Aims: The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the “Jari” (golden thread) workers. Settings and Design: This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. Materials and Methods: The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. Results and Conclusions: The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers. PMID:29618913
Petrovic, Igor; Hip, Ivan; Fredlund, Murray D
2016-09-01
The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Artificial phototropism based on a photo-thermo-responsive hydrogel
NASA Astrophysics Data System (ADS)
Gopalakrishna, Hamsini
Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
Leeward flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
A survey was made of the parameters affecting the development of the leeward symmetric separated flow over slender delta wings immersed in a supersonic stream. The parameters included Mach number, Reynolds number, angle of attack, leading-edge sweep angle, and body cross-sectional shape, such that subsonic and supersonic leading-edge flows are encountered. It was seen that the boundaries between the various flow regimes existing about the leeward surface may conveniently be represented on a diagram with the components of angle of attack and Mach number normal to the leading edge as governing parameters.
Investigation of angular dependence on photonic bandgap for 1-D photonic crystal
NASA Astrophysics Data System (ADS)
Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.
2018-05-01
In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.
Jarrín, E; Jarrín, I; Arnalich-Montiel, F
2015-08-01
We describe a simplified method to detect anterior lenticonus. Three eyes of 2 patients with anterior lenticonus, plus 16 eyes from 16 healthy controls underwent Scheimpflug imaging of their anterior segment with Pentacam. The anterior capsule apex angle was manually identified and automatically measured by AutoCAD. The mean angle was 173.06° (SD: 1.91) in healthy subjects, and 158.33° (SD: 3.05) in anterior lenticonus eyes. The angle obtained from patients was more than 3 SD steeper than those from healthy subjects. The apical angle calculation method seems to discriminate well between normal eyes and eyes suspected of having anterior lenticonus. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Ifesanya, J U; Adeyemi, A T; Otuyemi, O D
2014-09-01
Conjoint analysis of orthodontic patients using the Subspinale (A-point) Nasion-Supramentale (B point) (ANB) angle and the Wits appraisal is popular in many practices. This study aimed to present reference values for the Wits appraisal among Nigerians using three horizontal reference planes namely the bisected occlusal plane (BOP), the functional occlusal plane (FOP) and the maxillomandibular angle bisector (MM° bisector) plane. It also assessed the relationship of the Wits appraisal with the ANB angle and its interaction with clinical measures of sagittal skeletal relations among subjects with malocclusion. One hundred participants with normal occlusion and 120 with malocclusion were recruited in the study. Cephalometric radiographs were taken for all participants. Each radiograph was manually traced on a 0.003 matted cellulose acetate tracing paper using a sharpened 2H pencil. The Wits appraisal and ANB angle were determined. Data was analyzed using SPSS version 19. The mean age was 20.7 ± 4.9 years for those with normal occlusion and 18.8 ± 6.5 years in the malocclusion group. There were 91 (41.4%) males and 129 (58.6%) females. Mean values for the Wits appraisal using the BOP as reference, was--1.27 ± 2.91mm, with the FOP, it was -3.54 ± 3.24mm, while with the MM° bisector plane, it was--.75? ± .94mm. The ANB angle showed highest correlation with the MM'°bisector plane Wits value(P< 0 .001). CCONCLUSION: hen the clinical and angular cephalometric findings are at variance, the ANB angle is best moderated by the MM'° isector plane Wits appraisal.
Le Jeune, Caroline; Chebli, Fayçal; Leon, Lorette; Anthoine, Emmanuelle; Weber, Michel; Péchereau, Alain; Lebranchu, Pierre
2018-01-01
Abnormal torsion could be associated with cyclovertical strabismus, but torsion measurements are not reliable in children. To assess an objective fundus torsion evaluation in a paediatric population, we used Non-Mydriatic Fundus photography (NMFP) in healthy and cyclovertical strabismus patients to evaluate the disc-foveal angle over time and observers. We used a retrospective set of NMFP including 24 A or V-pattern strabismus and 27 age-matched normal children (mean age 6.4 and 6.7 years respectively), taken during 2 distinct follow-up consultations (separated by 251 and 479 days respectively). Each disc-foveal angle measurement (from which the ocular torsion can be assessed) was performed by 5 different observers, using graphical software and based on reproducible fundus anatomical marks. Statistical analysis was performed with a multivariate ANOVA using group, time and observers as factors, in addition to intraclass coefficient correlation (ICC) to assess measurement reproducibility. A significant difference of disc-foveal angle measures was observed between groups (p<0,001): 18.73° (SD = 6.42), -3,25° (SD = 5.51) and 6,89° (SD = 4,41) respectively for V-pattern, A- pattern and normal subjects. Neither observers (F = 0,2028 p = 0,9369) nor time between 1st and 2nd NMFP (F = 0,6312 p = 0,4271) seem to influence the measure of disc-foveal angle. The evaluation of disc-foveal angle was very reproducible between observers (ICC>0,97). Abnormal amount of objective torsion could be associated with alphabet-pattern strabismus. Disc-foveal angle evaluation by NMFP in a children population appears as a non-invasive, reliable and reproducible method.
Denize, Erin Stewart; McDonald, Fraser; Sherriff, Martyn
2014-01-01
Objective To evaluate the relative importance of bilabial prominence in relation to other facial profile parameters in a normal population. Methods Profile stimulus images of 38 individuals (28 female and 10 male; ages 19-25 years) were shown to an unrelated group of first-year students (n = 42; ages 18-24 years). The images were individually viewed on a 17-inch monitor. The observers received standardized instructions before viewing. A six-question questionnaire was completed using a Likert-type scale. The responses were analyzed by ordered logistic regression to identify associations between profile characteristics and observer preferences. The Bayesian Information Criterion was used to select variables that explained observer preferences most accurately. Results Nasal, bilabial, and chin prominences; the nasofrontal angle; and lip curls had the greatest effect on overall profile attractiveness perceptions. The lip-chin-throat angle and upper lip curl had the greatest effect on forehead prominence perceptions. The bilabial prominence, nasolabial angle (particularly the lower component), and mentolabial angle had the greatest effect on nasal prominence perceptions. The bilabial prominence, nasolabial angle, chin prominence, and submental length had the greatest effect on lip prominence perceptions. The bilabial prominence, nasolabial angle, mentolabial angle, and submental length had the greatest effect on chin prominence perceptions. Conclusions More prominent lips, within normal limits, may be considered more attractive in the profile view. Profile parameters have a greater influence on their neighboring aesthetic units but indirectly influence related profile parameters, endorsing the importance of achieving an aesthetic balance between relative prominences of all aesthetic units of the facial profile. PMID:25133133
1989-08-01
horizontal plane is defined as a plane normal to the geocentric position vector. Inertial Azimuth Heading Angle entries are the angles measured east of north...0CATICN: Enter the areas or locations that are to be staffed with redical perscnel, i.e., Vandenberg AFB Hospital, PMIC; or offshore boats, etc. NUMB
Graphene-Based Polymer Nanocomposites
2015-03-31
Raman band I(δ) X - ray scattering intensity in the azimuthal scan I(r) Raman band intensity within laser spot I(ω...Krenchel orientation factor Θ Angle between the incident and the scattering X - ray θ Angle between the surface normal of graphene and sample λ...Wavelength of laser or X - ray λ2/λ4 Parameter in orientation distribution function µ Molecular dipole moment
Hiroaki Ishii; Ken-Ichi Yoshimura; Akira Mori
2009-01-01
The branching pattern of A. amabilis was regular (normal shoot-length distribution, less variable branching angle and bifurcation ratio), whereas that of T. heterophylla was more plastic (positively skewed shoot-length distribution, more variable branching angle and bifurcation ratio). The two species had similar shoot...
Chung, Gu-Young; Choi, Geun-Seok; Shin, Ki-Young; Park, Joon-Soo
2016-01-01
[Purpose] The improvements in gait of the patients with lower limb disease who used a temporomandibular joint (TMJ) exerciser were verified. [Subjects and Methods] Eleven subjects were included. Their mean age was 53.2 years. The lower limb joint angles before and after using the TMJ exerciser were measured using a gait analyzer. Before the gait experiment, the TMJ exerciser setting process and one-leg stance balance test (OLST) were repeated until the balance maintenance time improved. [Results] Because of the OLST, the mean change in the body center point after the subjects used the exerciser improved from 5.76 mm to 4.20 mm. When the TMJ exerciser was used, the joint angle range of the subjects approached that of the normal individuals. [Conclusion] According to the gait experiments, the angles of the subjects’ hips, knees, and ankle joints approached to those of the normal individuals after the subjects used the TMJ exerciser; however, the results did not completely match. The changes in the hip, knee, and ankle joint angles were statistically significant, which confirm the usefulness of the TMJ exerciser. PMID:27313377
Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner.
Gordon, H R; Brown, J W; Evans, R H
1988-03-01
For improved analysis of Coastal Zone Color Scanner (CZCS) imagery, the radiance reflected from a planeparallel atmosphere and flat sea surface in the absence of aerosols (Rayleigh radiance) has been computed with an exact multiple scattering code, i.e., including polarization. The results indicate that the single scattering approximation normally used to compute this radiance can cause errors of up to 5% for small and moderate solar zenith angles. At large solar zenith angles, such as encountered in the analysis of high-latitude imagery, the errors can become much larger, e.g.,>10% in the blue band. The single scattering error also varies along individual scan lines. Comparison with multiple scattering computations using scalar transfer theory, i.e., ignoring polarization, show that scalar theory can yield errors of approximately the same magnitude as single scattering when compared with exact computations at small to moderate values of the solar zenith angle. The exact computations can be easily incorporated into CZCS processing algorithms, and, for application to future instruments with higher radiometric sensitivity, a scheme is developed with which the effect of variations in the surface pressure could be easily and accurately included in the exact computation of the Rayleigh radiance. Direct application of these computations to CZCS imagery indicates that accurate atmospheric corrections can be made with solar zenith angles at least as large as 65 degrees and probably up to at least 70 degrees with a more sensitive instrument. This suggests that the new Rayleigh radiance algorithm should produce more consistent pigment retrievals, particularly at high latitudes.
Wostyn, Peter; Killer, Hanspeter Esriel; De Deyn, Peter Paul
2017-07-01
The underlying pathophysiology of primary open-angle glaucoma remains unclear, but the lamina cribrosa seems to be the primary site of injury, and raised intraocular pressure is a major risk factor. In recent years, a decreased intracranial pressure, leading to an abnormally high trans-lamina cribrosa pressure difference, has gained interest as a new risk factor for glaucoma. New research now lends support to the hypothesis that a paravascular transport system is present in the eye analogous to the recently discovered 'glymphatic system' in the brain, which is a functional waste clearance pathway that promotes elimination of interstitial solutes, including β-amyloid, from the brain along paravascular channels. Given that β-amyloid has been reported to increase by chronic elevation of intraocular pressure in glaucomatous animal models and to cause retinal ganglion cell death, the discovery of a paravascular clearance system in the eye may provide powerful new insights into the pathophysiology of primary open-angle glaucoma. In this review, we provide a new conceptual framework for understanding the pathogenesis of primary open-angle glaucoma, present supporting preliminary data from our own post-mortem study and hypothesize that the disease may result from restriction of normal glymphatic flow at the level of the lamina cribrosa owing to a low intracranial pressure and/or a high trans-lamina cribrosa pressure gradient. If confirmed, this viewpoint could offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Study of role of meniscus and viscous forces during liquid-mediated contacts separation
NASA Astrophysics Data System (ADS)
Dhital, Prabin
Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
Clear water radiances for atmospheric correction of coastal zone color scanner imagery
NASA Technical Reports Server (NTRS)
Gordon, H. R.; Clark, D. K.
1981-01-01
The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.
Effect of heliotropism on the bidirectional reflectance of irrigated cotton
NASA Technical Reports Server (NTRS)
Schutt, J. B.; Kimes, D. S.; Newcomb, W. W.
1985-01-01
The dynamic behavior of cotton leaves is described using gyroscopic coordinates. Angular movements represented as pitching, rolling, and yawing are used to follow the movement of leaf normals and their instantaneous relationships to the sun on an individual basis. A sensitivity analysis establishes that the angle between a leaf normal and the sun is most affected by changes in pitch and roll. Plots of the phase angle gamma averaged by quadrant show the pronounced heliotropic behavior of cotton leaves. Plots of pitch versus roll averaged by quadrant demonstrate the differential behavior of cotton leaves relative to the position of the sun. These results are used to interpret sections taken from bidirectional reflectance curves obtained using 0.57-0.69 micron band in terms of the evolution of gamma from sunrise until noon. The measured and experimental values of gamma are in reasonable agreement. Forescattered and backscattered exitances are observed to have distinct leaf normal directions.
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
Huijing, P A; van Lookeren Campagne, A A; Koper, J F
1989-01-01
Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.
Low speed aerodynamic characteristics of the GD/C B-18E3 booster
NASA Technical Reports Server (NTRS)
Carter, W. V.; Gallaher, W. H.
1972-01-01
A 0.02 scale model of the B-18E3 space shuttle booster was tested in a low speed wind tunnel to evaluate the low speed aerodynamic charactersitics. The basic configuration, including build-up, was tested at a Mach number of 0.201 and Reynolds number per foot of 1.39 million. The normal angle-of-attack range was -4 to +24 degrees in 2 degree increments, at sideslip angles of 0 and 5 degrees. Some lateral data were obtained at the sideslip angle range of -6 to 10 degrees at angles-of attack of 0, 10, and 15 degrees. Data were obtained for canard, split elevon, and split rudder deflections.
Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V
2011-02-28
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.
Linear wide angle sun sensor for spinning satellites
NASA Astrophysics Data System (ADS)
Philip, M. P.; Kalakrishnan, B.; Jain, Y. K.
1983-08-01
A concept is developed which overcomes the defects of the nonlinearity of response and limitation in range exhibited by the V-slit, N-slit, and crossed slit sun sensors normally used for sun elevation angle measurements on spinning spacecraft. Two versions of sensors based on this concept which give a linear output and have a range of nearly + or - 90 deg of elevation angle are examined. Results are presented for the application of the twin slit version of the sun sensor in the three Indian satellites, Rohini, Apple, and Bhaskara II, which was successfully used for spin rate control and spin axis orientation control corrections as well as for sun elevation angle and spin period measurements.
NASA Technical Reports Server (NTRS)
Schroeder, L. C.; Jones, W. L.; Boggs, D. H.; Halberstam, I. M.; Dome, G.; Pierson, W. J.; Wentz, F. J.
1982-01-01
The Seasat-A Satellite Scatterometer (SASS) ocean normalized radar cross section (NRCS) dependence on the 19.5-m neutral stability wind vector may be specified as a function of radar incidence angle, the angle between wind direction and radar azimuth, and the neutral stability wind speed expressed in m/sec at a height of 19.5 m. An account is given of the development of models both expressing this relationship and providing the basis of inversion of NRCS to SASS winds, from initially aircraft scatterometer measurement-based forms to three Seasat field-validation experiments which furnish model NRCS versus surface windspeed data for comparison with SASS data.
Application of phase angle for evaluation of the nutrition status of patients with anorexia nervosa.
Małecka-Massalska, Teresa; Popiołek, Joanna; Teter, Mariusz; Homa-Mlak, Iwona; Dec, Mariola; Makarewicz, Agata; Karakuła-Juchnowicz, Hanna
2017-12-30
The evaluation of the nutrition status of patients has been the subject of interest of many scientific disciplines. Any deviation from normal values is a serious clinical problem. There are multiple nutrition status evaluation methods used including diet history, scales and questionnaires, physical examination, anthropometric measurements, biochemical measurements, function tests, as well as bioelectric impedance analysis or adipometry. Phase angle, obtained by means of bioelectric impedance analysis, is another parameter that is being more and more frequently applied in nutrition status monitoring. It is proportional to body cell mass. Its direct correlation with the cellular nutrition status has been documented. High phase angle values signify well-being, while low phase angle values indicate poor condition of cells. The purpose of this paper was to review the current state of knowledge about the application of phase angle in evaluation and monitoring of the nutrition status of patients with anorexia nervosa on the basis of available literature. It was proven that the phase angle values in patients with anorexia nervosa are much lower compared to healthy people. Detailed observations showed phase angle value increase in the course of treatment. The relevance of the commonly used body mass index (BMI) has been questioned due to significant degree of generalization in the nutrition status evaluation. Thus, there is a need for new, objective parameters for nutrition status evaluation, which will assist in the treatment and monitoring of patients in a more meaningful and reliable way. The existing independent studies equivocally confirm the usefulness of phase angle in the evaluation of nutrition status of patients with anorexia nervosa and its broader application in clinical practice is only a matter of time. However, these are merely attempts and they have not yet found wider application in clinical practice in the treatment of anorexia nervosa.
NASA Astrophysics Data System (ADS)
Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.
1992-02-01
An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.
Tyan, R C; Sun, P C; Scherer, A; Fainman, Y
1996-05-15
We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.
Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals.
Ozaki, Ryotaro; Moritake, Hiroshi
2012-03-12
The chiral smectic C phase of ferroelectric liquid crystals (FLCs) has a self-assembling helical structure which is regarded as a one-dimensional pseudo-photonic crystal. It is well known that a stopband of a FLC can be tuned in wavelength domain by changing temperature or electric field. We here have demonstrated an FLC stopband with independently tunable wavelength and bandwidth by controlling temperature and incident angle. At highly oblique incidence, the stopband does not have polarization dependence. Furthermore, the bandwidth at highly oblique incidence is much wider than that at normal incidence. The mechanism of the tunable stopband is clarified by considering the reflection at oblique incidence.
Laugharne, Edward; Bali, Navi; Purushothamdas, Sanjay; Almallah, Faris; Kundra, Rik
2016-01-01
Purpose The purpose of this study was to investigate the impact of varying knee flexion and quadriceps activity on patellofemoral indices measured on magnetic resonance imaging (MRI). Materials and Methods MRI of the knee was performed in 20 patients for indications other than patellar or patellofemoral pathology. Axial and sagittal sequences were performed in full extension of the knee with the quadriceps relaxed, full extension of the knee with the quadriceps contracted, 30° flexion of the knee with the quadriceps relaxed, and 30° flexion with the quadriceps contracted. Bisect offset, patella tilt angle, Insall-Salvati ratio and Caton-Deschamps index were measured. Results With the knee flexed to 30° and quadriceps relaxed, the mean values of patellar tilt angle, bisect offset, Insall-Salvati ratio and Caton-Deschamps index were all within normal limits. With the knee extended and quadriceps contracted, the mean patellar tilt angle (normal value, <15°) was 14.6° and the bisect offset (normal value, <65%) was 65%, while the Caton-Deschamps index was 1.34 (normal range, 0.6 to 1.3). With the knee extended and quadriceps relaxed, the mean Caton-Deschamps index was 1.31. Conclusions MRI scanning of the knee in extension with the quadriceps contracted leads to elevated patellofemoral indices. MRI taken with the knee in 30° of flexion allows more reliable assessment of the patellofemoral joint and minimises the confounding effect of quadriceps contraction. PMID:27894177
Scoliosis convexity and organ anatomy are related.
Schlösser, Tom P C; Semple, Tom; Carr, Siobhán B; Padley, Simon; Loebinger, Michael R; Hogg, Claire; Castelein, René M
2017-06-01
Primary ciliary dyskinesia (PCD) is a respiratory syndrome in which 'random' organ orientation can occur; with approximately 46% of patients developing situs inversus totalis at organogenesis. The aim of this study was to explore the relationship between organ anatomy and curve convexity by studying the prevalence and convexity of idiopathic scoliosis in PCD patients with and without situs inversus. Chest radiographs of PCD patients were systematically screened for existence of significant lateral spinal deviation using the Cobb angle. Positive values represented right-sided convexity. Curve convexity and Cobb angles were compared between PCD patients with situs inversus and normal anatomy. A total of 198 PCD patients were screened. The prevalence of scoliosis (Cobb >10°) and significant spinal asymmetry (Cobb 5-10°) was 8 and 23%, respectively. Curve convexity and Cobb angle were significantly different within both groups between situs inversus patients and patients with normal anatomy (P ≤ 0.009). Moreover, curve convexity correlated significantly with organ orientation (P < 0.001; ϕ = 0.882): In 16 PCD patients with scoliosis (8 situs inversus and 8 normal anatomy), except for one case, matching of curve convexity and orientation of organ anatomy was observed: convexity of the curve was opposite to organ orientation. This study supports our hypothesis on the correlation between organ anatomy and curve convexity in scoliosis: the convexity of the thoracic curve is predominantly to the right in PCD patients that were 'randomized' to normal organ anatomy and to the left in patients with situs inversus totalis.
An approach to detect afterslips in giant earthquakes in the normal-mode frequency band
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu
2012-08-01
An approach to detect afterslips in the source process of giant earthquakes is presented in the normal-mode frequency band (0.3-2.0 mHz). The method is designed to avoid a potential systematic bias problem in the determination of earthquake moment by a typical normal-mode approach. The source of bias is the uncertainties in Q (modal attenuation parameter) which varies by up to about ±10 per cent among published studies. A choice of Q values within this range affects amplitudes in synthetic seismograms significantly if a long time-series of about 5-7 d is used for analysis. We present an alternative time-domain approach that can reduce this problem by focusing on a shorter time span with a length of about 1 d. Application of this technique to four recent giant earthquakes is presented: (1) the Tohoku, Japan, earthquake of 2011 March 11, (2) the 2010 Maule, Chile earthquake, (3) the 2004 Sumatra-Andaman earthquake and (4) the Solomon earthquake of 2007 April 1. The Global Centroid Moment Tensor (GCMT) solution for the Tohoku earthquake explains the normal-mode frequency band quite well. The analysis for the 2010 Chile earthquake indicates that the moment is about 7-10 per cent higher than the moment determined by its GCMT solution but further analysis shows that there is little evidence of afterslip; the deviation in moment can be explained by an increase of the dip angle from 18° in the GCMT solution to 19°. This may be a simple trade-off problem between the moment and dip angle but it may also be due to a deeper centroid in the normal-mode frequency band data, as a deeper source could have steeper dip angle due to changes in geometry of the Benioff zone. For the 2004 Sumatra-Andaman earthquake, the five point-source solution by Tsai et al. explains most of the signals but a sixth point-source with long duration improves the fit to the normal-mode frequency band data. The 2007 Solomon earthquake shows that the high-frequency part of our analysis (above 1 mHz) is compatible with the GCMT solution but the low-frequency part requires afterslip to explain the increasing amplitude ratios towards lower frequency. The required slip has the moment about 19 per cent of the GCMT solution and the rise time of 260 s. The total moment of these earthquakes are 5.31 × 1022 N m (Tohoku), (1.86-1.96) × 1022 N m (Chile), 1.33 × 1023 N m (Sumatra) and 1.86 × 1021 N m (Solomon). The moment magnitudes are 9.08, 8.78-8.79, 9.35 and 8.11, respectively, using Kanamori's original formula between the moment and the moment magnitude. However, the trade-off problem between the moment and dip angle can modify these estimates for moment up to about 40-50 per cent and the corresponding magnitude ±0.1.
Effect of static foot posture on the dynamic stiffness of foot joints during walking.
Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J
2018-05-01
The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.
Characterization of Dilatant Shear Bands in Castlegate Sandstone Using Micro-Computed Tomography
NASA Astrophysics Data System (ADS)
Rosenthal, R. E.; Issen, K. A.; Richards, M. C.; Ingraham, M. D.
2016-12-01
Deformation bands in granular rock are thin tabular zones of localized shear and/or volumetric strain, which affect permeability and can impact fluid flow, extraction and storage. The present work characterizes dilatant shear bands formed in Castlegate sandstone (a high porosity reservoir analog) during true triaxial laboratory testing (Ingraham et al., 2013a) at low mean stresses. X-ray micro-computed tomography (micro-CT) scans produced 3-dimensional voxel files containing density information of tested specimens. Micro-CT data were thresholded to extract the least dense voxels, corresponding to pore space and localized dilation. Plane fits were determined by a custom algorithm that calculated the angle between the band normal and maximum compression direction. For tests at the same mean stress, the band angle is lower when intermediate principal stress approaches minimum compression and higher when it approaches maximum compression. Micro-CT band angles were compared to angles from the specimen jackets (Ingraham et al., 2013a), and band angles from plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b). For non-axisymmetric stress states (three unique principal stresses), one primary dilatant shear band formed in each specimen. Occasionally, secondary bands traversing part of the specimen were also identified. The principal band angles from the micro-CT scans were on average within 3 degrees of the jacket angles and within 9 degrees of AE angles. For axisymmetric stress states (intermediate principal stress equal to maximum or minimum compression) micro-CT results reveal multiple conjugate and/or parallel bands. Each jacket angle correlated to a micro-CT angle within 4 degrees. Micro-CT results also reveal that, regardless of stress state, each band is comprised of a network of interconnected pore space pathways meandering between grain clusters, as opposed to an opening fracture/joint. Ingraham MD, KA Issen, DJ Holcomb, 2013a, J. Geophys. Res. Solid Earth, Vol. 118, pp. 536-552, doi:10.1002/jgrb.50084. Ingraham MD, KA Issen, DJ Holcomb, 2013b, Acta Geotech., Vol. 8, Iss. 6, pp. 645-663, DOI: 10.1007/s11440-013-0275-y.
Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading
Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.
2013-01-01
Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987
The natural alpha angle of the femoral head-neck junction.
Gollwitzer, H; Suren, C; Strüwind, C; Gottschling, H; Schröder, M; Gerdesmeyer, L; Prodinger, P M; Burgkart, R
2018-05-01
Aims Asphericity of the femoral head-neck junction is common in cam-type femoroacetabular impingement (FAI) and usually quantified using the alpha angle on radiographs or MRI. The aim of this study was to determine the natural alpha angle in a large cohort of patients by continuous circumferential analysis with CT. Methods CT scans of 1312 femurs of 656 patients were analyzed in this cross-sectional study. There were 362 men and 294 women. Their mean age was 61.2 years (18 to 93). All scans had been performed for reasons other than hip disease. Digital circumferential analysis allowed continuous determination of the alpha angle around the entire head-neck junction. All statistical tests were conducted two-sided; a p-value < 0.05 was considered statistically significant. Results The mean maximum alpha angle for the cohort was 59.0° (sd 9.4). The maximum was located anterosuperiorly at 01:36 on the clock face, with two additional maxima of asphericity at the posterior and inferior head-neck junction. The mean alpha angle was significantly larger in men (59.4°, sd 8.0) compared with women (53.5°, sd 7.4°; p = 0.0005), and in Caucasians (60.7°, sd 9.0°) compared with Africans (56.3°, sd 8.0; p = 0.007) and Asians (50.8°, sd 7.2; p = 0.0005). The alpha angle showed a weak positive correlation with age (p < 0.05). If measured at commonly used planes of the radially reconstructed CT or MRI, the alpha angle was largely underestimated; measurement at the 01:30 and 02:00 positions showed a mean underestimation of 4° and 6°, respectively. Conclusion This study provides important data on the normal alpha angle dependent on age, gender, and ethnic origin. The normal alpha angle in men is > 55°, and this should be borne in mind when making a diagnosis of cam-type morphology. Cite this article: Bone Joint J 2018;100-B:570-8.
X-ray polarimeter with a transmission multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamoto, Shunji; Murakami, Hiroshi; Shishido, Youich
2010-02-15
We fabricated a novel x-ray polarimeter with a transmission multilayer and measured its performance with synchrotron radiation. A self standing multilayer with seven Mo/Si bilayers was installed with an incident angle of 45 deg. in front of a back-illuminated CCD. The multilayer can be rotated around the normal direction of the CCD keeping an incident angle of 45 deg. This polarimeter can be easily installed along the optical axis of x-ray optics. By using the CCD as a photon counting detector with a moderate energy resolution, the polarization of photons in a designed energy band can be measured along withmore » the image. At high photon energies, where the multilayer is transparent, the polarimeter can be used for imaging and spectroscopic observations. We confirmed a modulation factor of 45% with 45% and 17% transmission for P- and S-polarization, respectively.« less
Second harmonic generation of off axial vortex beam in the case of walk-off effect
NASA Astrophysics Data System (ADS)
Chen, Shunyi; Ding, Panfeng; Pu, Jixiong
2016-07-01
Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.
High voltage plasma sheath analysis related to TSS-1
NASA Technical Reports Server (NTRS)
Sheldon, John W.
1991-01-01
On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the space shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an emf will be created, driving electrons down the tether to the orbiter, out through an electron gun into the ionosphere and back into the positive biased satellite. Instrumentation on the satellite will measure electron flow to the surface at several locations, but these detectors have a limited range of acceptance angle. The problem addressed herein is the determination of the electron current distribution over the satellite surface and the angle of incidence of the incoming electrons relative to the surface normal.
NASA Technical Reports Server (NTRS)
Bamber, M J; Zimmerman, C H
1933-01-01
Tests were made with the spinning balance in a 5-foot wind tunnel to study the effect of stabilizer location upon the pitching and yawing moments given by the tail surfaces in spinning attitudes. The tests revealed that the horizontal surfaces, when in a normal location, seriously reduced the effectiveness of the fin and rudder, particularly at angles of attack of 50 degrees or more. The tests also revealed that a more forward or more rearward location gave no consistent or decided improvement; that a lower location greatly increased the shielding so that the yawing moment from the combination was in general less than that given by the bare fuselage; and that a higher location decreased the shielding and gave a favorable interference effect, particularly at the high angles of attack. Additional results regarding the stabilizer and the elevator are given.
Collisional damping rates for electron plasma waves reassessed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Brunner, S.; Berger, R. L.
Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less
Collisional damping rates for electron plasma waves reassessed
Banks, J. W.; Brunner, S.; Berger, R. L.; ...
2017-10-13
Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less
Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.
Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L
2014-05-01
High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
LSAH: a fast and efficient local surface feature for point cloud registration
NASA Astrophysics Data System (ADS)
Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi
2018-04-01
Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.
NASA Astrophysics Data System (ADS)
Kavehpour, H. Pirouz; Shirazi, Elika T.; Alizadeh-Birjandi, Elaheh
2016-11-01
Ice adhesion and excessive accumulation on exposed structures and equipment are well known to cause serious problems in cold-climate regions; therefore, the development of coatings that can resist icing can solve many challenges in various areas of industry. This work was inspired by nature and ice-resistivity and superhydrophobicity of plants leaves. Kale is an example of a plant that can be harvested in winter. It shows superhydrophobic behavior, which is normally known as an advantage for cleaning the leaves, but we were able to show that its surface structure and high contact angle of water drops on kale leaves could delay the ice formation process making it a good candidate for an ice-repellent coating. We have performed in-depth experimental analyses on how different plants can prevent icing, and contact angle measurements and scanning electron microscopy (SEM) of the leaves were taken to further mimic their surface morphology.
Park, Howard Y; Matsumoto, Hiroko; Feinberg, Nicholas; Roye, David P; Kanj, Wajdi W; Betz, Randal R; Cahill, Patrick J; Glotzbecker, Michael P; Luhmann, Scott J; Garg, Sumeet; Sawyer, Jeffrey R; Smith, John T; Flynn, John M; Vitale, Michael G
2017-09-01
The Classification for Early-onset Scoliosis (C-EOS) was developed by a consortium of early-onset scoliosis (EOS) surgeons. This study aims to examine if the C-EOS classification correlates with the speed (failure/unit time) of proximal anchor failure in EOS surgery patients. A total of 106 EOS patients were retrospectively queried from an EOS database. All patients were treated with vertical expandable prosthetic titanium rib and experienced proximal anchor failure. Patients were classified by the C-EOS, which includes a term for etiology [C: Congenital (54.2%), M: Neuromuscular (32.3%), S: Syndromic (8.3%), I: Idiopathic (5.2%)], major curve angle [1: ≤20 degrees (0%), 2: 21 to 50 degrees (15.6%), 3: 51 to 90 degrees (66.7%), 4: >90 degrees (17.7%)], and kyphosis ["-": ≤20 (13.5%), "N": 21 to 50 (42.7%), "+": >50 (43.8%)]. Outcome was measured by time and number of lengthenings to failure. Analyzing C-EOS classes with >3 subjects, survival analysis demonstrates that the C-EOS discriminates low, medium, and high speed of failure. The low speed of failure group consisted of congenital/51-90/hypokyphosis (C3-) class. The medium-speed group consisted of congenital/51-90/normal and hyperkyphosis (C3N, C3+), and neuromuscular/51-90/hyperkyphosis (M3+) classes. The high-speed group consisted of neuromuscular/51-90/normal kyphosis (M3N), and neuromuscular/>90/normal and hyperkyphosis (M4N, M4+) classes. Significant differences were found in time (P<0.05) and number of expansions (P<0.05) before failure between congenital and neuromuscular classes.As isolated variables, neuromuscular etiology experienced a significantly faster time to failure compared with patients with idiopathic (P<0.001) and congenital (P=0.026) etiology. Patients with a major curve angle >90 degrees demonstrated significantly faster speed of failure compared with patients with major curve angle 21 to 50 degrees (P=0.011). The ability of the C-EOS to discriminate the speeds of failure of the various classification subgroups supports its validity and demonstrates its potential use in guiding decision making. Further experience with the C-EOS may allow more tailored treatment, and perhaps better outcomes of patients with EOS. Level III.
Park, Howard Y.; Matsumoto, Hiroko; Feinberg, Nicholas; Roye, David P.; Kanj, Wajdi W.; Betz, Randal R.; Cahill, Patrick J.; Glotzbecker, Michael P.; Luhmann, Scott J.; Garg, Sumeet; Sawyer, Jeffrey R.; Smith, John T.; Flynn, John M.; Vitale, Michael G.
2017-01-01
Background The Classification for Early-onset Scoliosis (C-EOS) was developed by a consortium of early-onset scoliosis (EOS) surgeons. This study aims to examine if the C-EOS classification correlates with the speed (failure/unit time) of proximal anchor failure in EOS surgery patients. Methods A total of 106 EOS patients were retrospectively queried from an EOS database. All patients were treated with vertical expandable prosthetic titanium rib and experienced proximal anchor failure. Patients were classified by the C-EOS, which includes a term for etiology [C: Congenital (54.2%), M: Neuromuscular (32.3%), S: Syndromic (8.3%), I: Idiopathic (5.2%)], major curve angle [1: ≤20 degrees (0%), 2: 21 to 50 degrees (15.6%), 3: 51 to 90 degrees (66.7%), 4: >90 degrees (17.7%)], and kyphosis [“−”: ≤20 (13.5%), “N”: 21 to 50 (42.7%), “+”: >50 (43.8%)]. Outcome was measured by time and number of lengthenings to failure. Results Analyzing C-EOS classes with >3 subjects, survival analysis demonstrates that the C-EOS discriminates low, medium, and high speed of failure. The low speed of failure group consisted of congenital/51-90/hypokyphosis (C3−) class. The medium-speed group consisted of congenital/51-90/normal and hyperkyphosis (C3N, C3+), and neuromuscular/51-90/hyperkyphosis (M3+) classes. The high-speed group consisted of neuromuscular/51-90/normal kyphosis (M3N), and neuromuscular/>90/normal and hyperkyphosis (M4N, M4+) classes. Significant differences were found in time (P < 0.05) and number of expansions (P < 0.05) before failure between congenital and neuromuscular classes. As isolated variables, neuromuscular etiology experienced a significantly faster time to failure compared with patients with idiopathic (P < 0.001) and congenital (P = 0.026) etiology. Patients with a major curve angle >90 degrees demonstrated significantly faster speed of failure compared with patients with major curve angle 21 to 50 degrees (P = 0.011). Conclusions The ability of the C-EOS to discriminate the speeds of failure of the various classification subgroups supports its validity and demonstrates its potential use in guiding decision making. Further experience with the C-EOS may allow more tailored treatment, and perhaps better outcomes of patients with EOS. Level of Evidence Level III. PMID:26566066
Preliminary test results from a telescope of Hughes pixel arrays at FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, J.G.; Arens, J.; Vezie, D.
1992-09-01
In December of 1991 three silicon hybrid pixel detectors each having 2.56 [times] 2.56 pixels 30 [mu]m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45[degrees]. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 [mu]m in two dimensions.« less
Preliminary test results from a telescope of Hughes pixel arrays at FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, J.G.; Arens, J.; Vezie, D.
1992-09-01
In December of 1991 three silicon hybrid pixel detectors each having 2.56 {times} 2.56 pixels 30 {mu}m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45{degrees}. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 {mu}m in two dimensions.« less
What was Glaucoma Called Before the 20th Century?
Leffler, Christopher T.; Schwartz, Stephen G.; Giliberti, Francesca M.; Young, Matthew T.; Bermudez, Dennis
2015-01-01
Glaucoma involves a characteristic optic neuropathy, often with elevated intraocular pressure. Before 1850, poor vision with a normal eye appearance, as occurs in primary open-angle glaucoma, was termed amaurosis, gutta serena, or black cataract. Few observers noted palpable hardness of the eye in amaurosis. On the other hand, angle-closure glaucoma can produce a green or gray pupil, and therefore was called, variously, glaucoma (derived from the Greek for glaucous, a nonspecific term connoting blue, green, or light gray) and viriditate oculi. Angle closure, with palpable hardness of the eye, mydriasis, and anterior prominence of the lens, was described in greater detail in the 18th and 19th centuries. The introduction of the ophthalmoscope in 1850 permitted the visualization of the excavated optic neuropathy in eyes with a normal or with a dilated greenish-gray pupil. Physicians developed a better appreciation of the role of intraocular pressure in both conditions, which became subsumed under the rubric “glaucoma”. PMID:26483611
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Zare, Moslem; Asgari, Reza
2018-06-01
The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.
Distal femoral rotational axes in Indian knees.
Mullaji, Arun B; Sharma, Amit K; Marawar, Satyajit V; Kohli, Anirudh F; Singh, Dharmendra P
2009-08-01
To measure the angular relationships of distal femoral rotational axes in 100 normal Indian knees. 42 men and 8 women aged 26 to 40 (mean, 31) years, with 100 normal non-arthritic knees were recruited. Anatomic landmarks were measured using computed tomography. They included the posterior condylar axis, the transepicondylar axis, the anteroposterior axis (Whiteside's line), the posterior condylar angle (PCA), the Whiteside-epicondylar angle (W-EP), and the Whiteside-posterior condylar angle (W-PC). The mean PCA, W-EP, and W-PC were 5, 90.8, and 95.8 degrees, respectively. The mean femorotibial alignment was 179.6 degrees. The differences between the left and right sides were significant only for the WEP and W-PC. Only the PCA and W-EP were weakly correlated (r=0.338, p=0.001). There are differences in distal femoral rotational axes among Indian, Caucasian, and Japanese knees. Our data can be used to evaluate changes in those axes in ageing or arthritic patients.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide
2014-05-01
The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.
Cui, Shan-shan; Zou, Yan-hong; Li, Qian; Li, Li-na; Zhang, Ning; Liu, Xi-pu
2014-12-01
To assess the agreement between gonioscopy and ultrasound biomicroscopy (UBM) in detecting angle closure in Chinese patients with shallow anterior chamber. An observational comparative study of the two different examination methods was conducted. Patients with normal intraocular pressure and temporal peripheral anterior chamber depth less than a quarter of corneal thickness based on slit lamp examination were included in this study from December 2007 to May 2009 in the outpatient clinic of First Hospital of Tsinghua University. Gonioscopy was performed with a Goldman goniolens in dark room first and followed by full beam light and indentation. If the filtering trabecular meshwork was invisible or any peripheral anterior synechia was found, that quadrant of the angle was considered closed. UBM was first undertaken in a darkened room then repeated with normal room lighting. If iridotrabecular apposition was showed, that quadrant of the angle was considered closed. The status of angle closure of each quadrant with different methods was recorded. 85 eyes of 46 patients were included in this study. The agreement between gonioscopy and UBM was poor (Κ<0.4) with Kappa analysis in both dark and light conditions in each quadrant. The accordance of agreement between gonioscopy and UBM was hardly affected by age or sex, while in dark condition, eyes with deeper anterior chamber (P=0.005) or plateau iris configuration tended to produce different results (P=0.075) in the 2 methods. Gonioscopy and UBM are both indispensable methods for detecting angle closure, neither can completely replace the other.
Nasal valve evaluation in the Mexican-Hispanic (mestizo) nose.
Jasso-Ramírez, Elizabeth; Sánchez Y Béjar, Fernando; Arcaute Aizpuru, Fernando; Maulen Radován, Irene E; de la Garza Hesles, Héctor
2018-04-01
Our aim in this study was to determine the angle of the internal nasal valve in Mexican patients with the "mestizo nose" feature and without nasal obstructive symptoms. The work was prospective, comparative, and observational in nature and included patients >14 years of age who were seen in the Otolaryngology Department at the Los Angeles Lomas Hospital between April and May 2016. The angle of the internal nasal valve was measured in 30 patients without obstructive symptoms. Endoscopic examination was performed with a 0° endoscope framed with tape at a 13-mm distance from the endoscope's tip, and digital photographs of the internal nasal valve were taken. The measurement of the angle of the internal nasal valve was made in sexagesimal degrees using Golden Ratio v3.1 (2012) software. Statistical analysis was performed using Excel v15.13.3. The angles of the internal nasal valve of the patients were (mean ± standard deviation) 24.07 ± 4.8° for the right nasal cavity and 25.07 ± 5.0° for the left nasal cavity, wider than the angle reported in the normal Caucasian nose established in the literature. According to our results, the Mexican-Hispanic mestizo nose has a wider angle in the internal nasal valve than that considered normal in the literature (10°-15°). We believe it is necessary to undertake a second study and add an airflow resistance measurement with a rhinomanometry procedure so we can compare the results with those in the Caucasian population. © 2018 ARS-AAOA, LLC.
Chung, Kyu Sung; Choi, Choong Hyeok; Bae, Tae Soo; Ha, Jeong Ku; Jun, Dal Jae; Wang, Joon Ho; Kim, Jin Goo
2018-04-01
To compare tibiofemoral contact mechanics after fixation for medial meniscus posterior root radial tears (MMPRTs). Seven fresh knees from mature pigs were used. Each knee was tested under 5 conditions: normal knee, MMPRT, pullout fixation with simple sutures, fixation with modified Mason-Allen sutures, and all-inside fixation using Fastfix 360. The peak contact pressure and contact surface area were evaluated using a capacitive sensor positioned between the meniscus and tibial plateau, under a 1,000-N compression force, at different flexion angles (0°, 30°, 60°, and 90°). The peak contact pressure was significantly higher in MMPRTs than in normal knees (P = .018). Although the peak contact pressure decreased significantly after fixation at all flexion angles (P = .031), it never recovered to the values noted in the normal meniscus. No difference was observed among fixation groups (P = .054). The contact surface area was significantly lower in MMPRTs than in the normal meniscus (P = .018) and increased significantly after fixation at all flexion angles (P = .018) but did not recover to within normal limits. For all flexion angles except 60°, the contact surface area was significantly higher for fixation with Mason-Allen sutures than for fixation with simple sutures or all-inside fixation (P = .027). At 90° of flexion, the contact surface area was significantly better for fixation with simple sutures than for all-inside fixation (P = .031). The peak contact pressure and contact surface area improved significantly after fixation, regardless of the fixation method, but did not recover to the levels noted in the normal meniscus after any type of fixation. Among the fixation methods evaluated in this time 0 study, fixation using modified Mason-Allen sutures provided a superior contact surface area compared with that noted after fixation using simple sutures or all-inside fixation, except at 60° of flexion. However, this study had insufficient power to accurately detect the differences between the outcomes of various fixation methods. Our results in a porcine model suggest that fixation can restore tibiofemoral contact mechanics in MMPRT and that fixation with a locking mechanism leads to superior biomechanical properties. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Comparison of radiographic and anatomic femoral varus angle measurements in normal dogs.
Swiderski, Jennifer K; Radecki, Steven V; Park, Richard D; Palmer, Ross H
2008-01-01
To determine if the clinically practiced method of radiographic femoral varus angle (R-FVA) measurement is repeatable, reproducible, and accurate. Radiographic and anatomic study. ANIMALS/SAMPLE POPULATION: Normal Walker hound cadavers (n=5) and femora (n=10). Cadavers were held in dorsally-recumbent and torso-elevated positions as 3 craniocaudal radiographs were made of each femur, by each of 2 different technicians. Femora were then harvested for direct measurement of anatomic femoral varus angle (A-FVA). R-FVA was measured on each radiograph by each of 3 examiners on 3 separate occasions. Intra-observer (repeatability) and inter-observer (reproducibility) variance in R-FVA measurement and the strength of relationship between R-FVA and A-FVA (accuracy) were determined. Mean (+/-SD) A-FVA was 5.2+/-2.1 degrees (range, 2.4-8.2 degrees). Mean (+/-SD) R-FVA was 5.8+/-1.0 degrees (range, 2.7-9.6 degrees). Intra-observer variance (range: 11-16%) and inter-observer variance (16%) were acceptable. The strength of relationship between measured R-FVA and A-FVA (maximum adjusted R(2)<0) was unacceptably low regardless of observer, patient position, or radiographic technician. R-FVA measurement was repeatable and reproducible, but not statistically accurate in predicting A-FVA in these 5 normal Walker hounds. The detected inaccuracy may be real or the result of a selection bias for normal dogs obscuring the true relationship. R-FVA may not be an accurate method of femoral varus measurement in dogs with A-FVA<10 degrees. Using Slocum's criteria for distal femoral osteotomy (R-FVA>10 degrees), the procedure would not have been erroneously performed in any of the normal dogs of this study.
Two stage ear/microtia reconstruction using costal cartilage.
Balaji, S M
2015-01-01
Reconstruction of Grade III microtia is a challenging entity in maxillofacial esthetic rehabilitation. Several advocacies and philosophies exist in this field. The aim of the manuscript is to present a single South Indian Experience with Ear reconstruction among South Indian Population. Retrospective analysis of unilateral Grade III microtia reconstruction was performed. Using a set of predefined inclusion and exclusion criteria, the population was selected. Outcome measures in terms of the ear size, auriculocephalic angle, and the conchal depth were measured in the reconstructed and normal side. Descriptive statistics is presented. Twenty-four patients formed the study group and had undergone the classical two-stage reconstruction in a similar fashion. The mean ear size in normal side was 65.8 ± 2.8 mm whereas on the reconstructed side, it was 61.3 ± 5.8 mm. The center's technique achieved above 75% similarity as that of the other normal ear. The mean auriculocephalic angle was 44.6 ± 5.2° whereas for the surgically reconstructed ear, it was 41.9 ± 2.6°. Overall, in these patients, we achieved a 79.94% similarity of auriculocephalic angle in the reconstructed ear as compared to the normal auricle. The conchal depth was 19.2 ± 2.1 mm and 16.6 ± 1.9 mm for normal and reconstructed ear, respectively. In terms of conchal depth, the present study group showed an achievement of 82.88% of accuracy even after a prolonged follow-up. The center employs a classic two stage reconstruction with a customized prosthesis that helps to avoid the loss of projection geometry and minimizes adhesion, infection, and early loss of structural stability.
NASA Technical Reports Server (NTRS)
Michal, David H.
1950-01-01
An investigation of the static and dynamic longitudinal stability characteristics of 1/3.7 scale rocket-powered model of the Bell MX-776A has been made for a Mach number range from 0.8 to 1.6. Two models were tested with all control surfaces at 0 degree deflection and centers of gravity located 1/4 and 1/2 body diameters, respectively, ahead of the equivalent design location. Both models were stable about the trim conditions but did not trim at 0 degree angle of attack because of slight constructional asymmetries. The results indicated that the variation of lift and pitching moment was not linear with angle of attack. Both lift-curve slope and pitching-moment-curve slope were of the smallest magnitude near 0 degree angle of attack. In general, an increase in angle of attack was accompanied by a rearward movement of the aerodynamic center as the rear wing moved out of the downwash from the forward surfaces. This characteristic was more pronounced in the transonic region. The dynamic stability in the form of total damping factor varied with normal-force coefficient but was greatest for both models at a Mach number of approximately 1.25. The damping factor was greater at the lower trim normal-force coefficients except at a Mach number of 1.0. At that speed the damping factor was of about the same magnitude for both models. The drag coefficient increased with trim normal-force coefficient and was largest in the transonic region.
Farci, Roberta; Napoli, Pietro Emanuele; Fossarello, Maurizio
2017-07-03
To describe a case of acute angle-closure glaucoma secondary to intermittent mydriasis related to Pourfour du Petit Syndrome caused by tracheal deviation. A 70-year-old Caucasian woman visited the Emergency Room of the University Eye Clinic complaining of blurring of vision and difficulty to move superior eyelid in her right eye. Examination revealed reactive mydriasis, and upper lid retraction on the right side. The rest of the ophthalmological examination was normal, and a cranial computed tomography (CT) did not identify any abnormalities. A cervical CT showed the presence of an accentuated lateral right convex deviation of the trachea, attributable to a fibrothorax. A right Pourfour du Petit syndrome was suspected. Although the mydriasis had in the meantime vanished, the patient was admitted to the Neurological Clinic. Five days later she suffered acute pain in her right eye. Ophthalmological examination of the right eye revealed conjunctival hyperemia, marked corneal edema, reduced depth of anterior chamber, permanent mydriasis. As assessed by Goldmann applanation tonometry, intraocular pressure (IOP) was 48 mm Hg. Fundus examination was normal in both eyes. Gonioscopy revealed angle closure in all quadrants. Slit lamp examination of the contralateral eye was normal; IOP was 10 mm Hg. After hypotensive medical therapy, iridotomy with YAG laser was performed. Thereafter, IOP stabilized at 12 mm Hg. This is the first report in the literature of a case of acute angle-closure glaucoma secondary to mydriasis related to Pourfour du Petit Syndrome caused by tracheal deviation.
Effects of short malunion of the clavicle on in vivo scapular kinematics.
Kim, DooSup; Lee, DongWoo; Jang, YoungHwan; Yeom, JunSeop; Banks, Scott A
2017-09-01
Short malunion of the clavicle after fracture can change scapular kinematics and alter clinical outcome. However, the effects of malunion on kinematics and outcomes remains poorly understood because there have been no in vivo studies measuring changes during active motion with malunion. This study aimed to measure and to compare in vivo 3-dimensional (3D) scapular kinematics between normal shoulders and shoulders with short malunion using 3D-2-dimensional model image registration techniques. Fifteen patients with clavicle fracture who had been treated conservatively were enrolled in this study. In these patients, the angle of scapular upward rotation, posterior tilting, and external rotation were compared between shoulders with short malunion and contralateral, normal shoulders. A 3D-2-dimensional model image registration technique was used to determine the 3D orientation of the scapula. Scapular upward rotation increased following increase of the arm elevation angle and also showed a significant difference by arm elevation in both groups (P = .04). Posterior tilting of the scapula gradually increased as the arm abduction angle increased, and this varied significantly between groups (P = .01). Shoulders with short malunion also showed a more internally rotated position than the contralateral, normal shoulders between 100° and the maximum abduction angle (P = .04). Our results suggest that clavicle shortening of >10% greatly affects scapular kinematics in vivo. Further studies will be needed to determine the clinical implications of short malunion of the clavicle. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Gatt, Alfred; Chockalingam, Nachiappan
2012-06-01
Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka
2004-12-01
To evaluate and compare the findings and changes of the anterior chamber angle configuration with indentation ultrasound biomicroscopy (UBM) gonioscopy in relative pupillary block (RPB), peripheral anterior synechia (PAS), and plateau iris configuration (PIC). This study included 73 eyes of 52 patients with RPB (n = 26), PAS (n = 21), or PIC (n = 26). First, a conventional UBM scan was performed using a normal size standard eye cup before indentation. Then, for indentation UBM gonioscopy, scans were performed using a new eye cup that we designed. For evaluation of the angle, angle opening distance 500 and angle recess area were recorded and evaluated with regard to the effect of expansion on the anterior chamber angle. Indentation UBM gonioscopy showed the characteristic images in each of the eyes. The angle of all examined eyes was significantly widened with indentation (P < 0.01). The angle changes in eyes with RPB were significantly greater than in eyes with PAS or PIC (P < 0.01). Indentation UBM gonioscopy is a very useful method for observing the angle and diagnosis of RPB, PAS, and PIC.
NASA Technical Reports Server (NTRS)
Pierson, W. J.
1982-01-01
The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.
From Order to Chaos in Earth Satellite Orbits
NASA Astrophysics Data System (ADS)
Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.
2016-11-01
We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.
Are metastable, precrystallisation, density-fluctuations a universal phenomena?
Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J
2003-01-01
In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.
Open-angle glaucoma in Filipino and white Americans: a comparative study.
Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Hee, Michael R; Singh, Kuldev; Lin, Shan C
2014-01-01
To compare the frequency of open-angle glaucoma (OAG) subtypes between Filipino and white Americans in a general ophthalmology clinic population. In this retrospective cross-sectional epidemiologic study with prospective sampling, medical charts of 1113 patients aged 40 years or older (513 Filipinos, 600 whites) seen in 2008 were randomly sampled from 2 private comprehensive ophthalmology clinics. Glaucoma was diagnosed based on optic nerve appearance, visual field defects, and other ocular findings using the International Society of Geographical and Epidemiological Ophthalmology (ISGEO) scheme. The normal-tension subtype of OAG [normal-tension glaucoma (NTG)] was defined by intraocular pressure ≤21 mm Hg as determined by review of medical records. NTG comprised a greater proportion of all glaucomatous disease in Filipino subjects [Filipino (F) vs. white (W): 46.7% vs. 26.8%; P=0.02]. Filipinos were more commonly diagnosed with OAG and NTG than whites (F vs. W: OAG, 11.9% vs. 8.2%; NTG, 6.8% vs. 2.5%; P=0.04, 0.001, respectively). There was no significant difference in central corneal thickness between Filipino and white subjects with NTG (P=0.66). Both OAG and NTG may be more common in Filipino Americans than in white Americans with the propensity for NTG being particularly high in the former relative to the latter group.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Lin, J.
2017-12-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending, normal fault characteristics, and geodynamic modeling. It was observed that most of the normal faults were initiated along the outer-rise region and grew toward the trench axis with strikes that are mostly subparallel to the local trend of the trench axis. The average trench relief is more than 5 km in the southern region while only about 2 km in the northern and central regions. Fault throws were measured to be significantly greater in the southern region (maximum 320 m) than the northern and central regions (maximum 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading along the trench axis. The "apparent" slab-pull dip angle of the subducting plate, calculated from the ratio of the inverted vertical loading versus horizontal tensional force, was significantly larger in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which is consistent with the seismologically determined dip angle within the shallow part of the subducting slab. This result suggests that the differences in the plate flexure and normal faulting characteristics along the Mariana Trench might be influenced, at least in part, by significant variations in the dip angle within the shallow part of the subducting plate. Normal faults were modeled to penetrate to a maximum depth of 15, 14, and 25 km in the upper mantle for the northern, central, and southern regions, respectively, which is consistent with the depths of available relocated normal faulting earthquakes in the central region. We calculated that the average reduction of the effective elastic plate thickness Te due to normal faulting is 31% in the southern region, which is almost twice that in both the northern and central regions ( 16%). Furthermore, model results revealed that the stress reduction associated with individual normal faults could also decrease Te locally.
Angle Kappa Measurements: Normal Values in Healthy Iranian Population Obtained With the Orbscan II
Gharaee, Hamid; Shafiee, Masoud; Hoseini, Rafie; Abrishami, Mojtaba; Abrishami, Yalda; Abrishami, Mostafa
2014-01-01
Background: The angle kappa is important in proper centration of corneal ablation in keratorefractive surgery. Orbscan II device is widely used preoperatively in photoablation surgeries and can be used to measure the angle kappa. Objectives: This study aimed to determine the mean angle kappa and its intercepts in healthy young Iranian adults. Patients and Methods: In this cross-sectional study, orthotropic patients (age range, 18-35 years) who were referred to the Khatam Eye Hospital (Mashhad, Iran) were included. Exclusion criteria were as follows: history of any eye deviation or strabismus with or without orthoptic or surgical treatment; any intraocular, corneal, or keratorefractive surgery; contact lens use; any corneal anomaly; any ophthalmic or systemic drug consumption; and hyperopic spherical refraction > + 3.00 diopters (D), spherical refraction > -5.00 D, or cylindrical refraction > 2.00 D. All of the parameters were measured by the same operator through an Orbscan II device. Results: A total of 977 healthy participants who aged 18 to 45 years were included consecutively. The study population consisted of 614 females and 363 males. The average angle kappa was 5.00º ± 1.36º at 240.21º ± 97.17º in males and 4.97º ± 1.30º at 244.22º ± 94.39º in females (P = 0.63). The average horizontal (x-axis) angle kappa was -0.02º ± 0.49º, with a mean of -0.02º ± 0.50º in males and -0.02º ± 0.49º in females (P = 0.93). The average vertical (y-axis) angle kappa was -0.09º ± 0.32º, with a mean of -0.09º ± 0.33º in males and -0.09º ± 0.32º in females (P = 0.74). Conclusions: By using the normal angle kappa determined in this study, pseudodeviations can be identified more precisely in those who might undergo keratorefractive surgery. PMID:25763261
Proximal and distal alignment of normal canine femurs: A morphometric analysis.
Kara, Mehmet Erkut; Sevil-Kilimci, Figen; Dilek, Ömer Gürkan; Onar, Vedat
2018-05-01
Many researchers are interested in femoral conformation because most orthopaedic problems of the long bones occur in the femur and its joints. The neck-shaft (NSA) and the anteversion (AVA) angles are good predictors for understanding the orientation of the proximal end of the femur. The varus (aLDFA) and procurvatum (CDFA) angles have also been used to understand the orientation of the distal end of the femur. The purposes of this study were to investigate the relationship between the proximal and distal angles of the femur and to compare the distal femoral angles in male and female dogs in order to investigate the sexual dimorphism. The measurements of normal CDFAs, which have not been previously reported, may also provide a database of canine distal femoral morphology. A total of 75 cleaned healthy femora from different breeds or mixed breed of dogs were used. The three-dimensional images were reconstructed from computed tomographic images. The AVA, NSA, aLDFA and CDFA were measured on the 3D images. The correlation coefficients were calculated among the measured angles. The distal femoral angles were also compared between male and female femora. The 95% confidence intervals of the AVA and the NSA were calculated to be 24.22°-29.50° and 144.97°-147.50°, respectively. The 95% confidence intervals of the aLDFA and the CDFA for all studied dogs were 92.62°-94.08° and 89.09°-91.94°, respectively. The NSA showed no correlation with either the aLDFA or CDFA. There was a weak inverse correlation between the AVA and CDFA and a weak positive correlation between the AVA and aLDFA. The differences in the aLDFA and CDFA measurements between male and female dog were not significant. In conclusion, femoral version, regardless of the plane, might have little influence on distal femoral morphology in normal dogs. Besides this, there is no evidence of a sexual dimorphism in the varus and procurvatum angles of the dog distal femur. The data from this study may be used in both orthopaedic studies and for clinical applications related to the distal femur of dogs. Copyright © 2018 Elsevier GmbH. All rights reserved.
Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor
2011-05-01
moment M 2 cn section normal force Mtip hover tip Mach number r radial coordinate, ft R blade radius, ft !c corrected shaft angle, positive aft, deg...s geometric shaft angle, positive aft, deg µ advance ratio Presented at the American...nine radial stations. These data, in combination with other measured parameters (structural loads, control positions, and rotor shaft moments), have
NASA Technical Reports Server (NTRS)
Steenken, William G.; Williams, John G.; Yuhas, Andrew J.; Walsh, Kevin R.
1997-01-01
The F404-GE-400-powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the quality of inlet airflow during departed flight maneuvers, that is, during flight outside the normal maneuvering envelope where control surfaces have little or no effectiveness. Six nose-left and six nose-right departures were initiated at Mach numbers between 0.3 and 0.4 at an altitude of 35 kft. The entry yaw rates were approximately 40 to 90 deg/sec. Engine surges were encountered during three of the nose-left and one of the nose-right departures. Time-variant inlet-total-pressure distortion levels at the engine face did not significantly exceed those at maximum angle-of-attack and sideslip maneuvers during controlled flight. Surges caused by inlet distortion levels resulted from a combination of high levels of inlet distortion and rapid changes in aircraft position. These rapid changes indicate a combination of engine support and gyroscopic loads being applied to the engine structure that impact the aerodynamic stability of the compressor through changes in the rotor-to-case clearances. This document presents the slides from an oral presentation.
Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.
2005-12-01
Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.
46 CFR 35.20-40 - Maneuvering characteristics-T/OC.
Code of Federal Regulations, 2011 CFR
2011-10-01
... degrees with maximum rudder angle and constant power settings. (2) The time and distance to stop the... for the normal load and normal ballast condition for: (1) Calm weather—wind 10 knots or less, calm sea... conditions, upon which the maneuvering information is based, are varied: (1) Calm weather—wind 10 knots or...
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
Brightness discrimination and contrast sensitivity in chronic glaucoma--a clinical study.
Teoh, S L; Allan, D; Dutton, G N; Foulds, W S
1990-04-01
The visual acuity, the difference in sensitivity of the two eyes to light (brightness ratio), and contrast sensitivity were assessed in 28 patients with chronic open angle glaucoma and compared with those of 41 normal controls of similar ages and visual acuity. The results obtained were related to the results of Tübingen visual field analysis in patients with glaucoma. Twenty-four of the 28 glaucoma patients (86%) had a significant disparity in brightness ratio between the two eyes. This was found to match the frequency of visual field loss. Moreover, there was a significant relationship between the interocular differences in brightness sense and the difference in the degree of visual field loss between the two eyes. Of the glaucoma patients 39% had sum contrast sensitivities outside the normal range for age-matched normal controls. No significant correlation was found between the interocular difference in brightness sense and the visual acuity or the interocular difference in sum contrast sensitivity. It is concluded that, in the presence of a normal visual acuity, the brightness ratio test warrants evaluation as a potential screening test for chronic open angle glaucoma.
Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.
Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik
2017-10-01
The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.
Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers
Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik
2017-01-01
The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320
Vascular loop in the cerebellopontine angle causing pulsatile tinnitus and headache: a case report
Ramly, NA; Roslenda, AR; Suraya, A; Asma, A
2014-01-01
Tinnitus is a common disorder, it can be classified as pulsatile and non-pulsatile or objective and subjective. Pulsatile tinnitus is less common than non-pulsatile and can be due to vascular tumour such as glomus or vascular abnormality. We presented an interesting case of a 30 year-old Malay lady with a two-year history of pulsatile tinnitus which was worsening in three months duration. It was associated with intermittent headache. Clinical examination and tuning fork test were unremarkable. Apart from mild hearing loss at high frequency on the left ear, the pure tone audiogram (PTA) was otherwise normal. In view of the patient’s young age with no risk factor for high frequency loss, a magnetic resonance imaging (MRI) was performed to look for any abnormality in the cerebellopontine angle. It revealed a single vessel looping around the left vestibulocochlear and facial nerves at the cisternal portion, likely a branch of the anteroinferior cerebellar artery (AICA). Literature review on the pathophysiology and treatment option in this condition is discussed. PMID:26417253
Role of target thickness in proton acceleration from near-critical mass-limited plasmas
NASA Astrophysics Data System (ADS)
Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik
2017-07-01
The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.
Yang, Jiajia; Ogasa, Takashi; Ohta, Yasuyuki; Abe, Koji; Wu, Jinglong
2010-01-01
There is a need to differentiate between patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from normal-aged controls (NC) in the field of clinical drug discovery. In this study, we developed a tactile angle discrimination system and examined whether the ability to discriminate tactile angle differed between patients with MCI and AD and the NC group. Thirty-seven subjects were divided into three groups: NC individuals (n=14); MCI patients (n=10); and probable AD patients (n=13). All subjects were asked to differentiate the relative sizes of the reference angle (60°) and one of eight comparison angles by passive touch. The accuracy of angle discrimination was measured and the discrimination threshold was calculated. We discovered that there were significant differences in the angle discrimination thresholds of AD patients compared to the NC group. Interestingly, we also found that ability to discriminate tactile angle of MCI patients were significantly lower than that of the NC group. This is the first study to report that patients with MCI and AD have substantial performance deficits in tactile angle discrimination compared to the NC individuals. This finding may provide a monitor and therapeutic approach in AD diagnosis and treatment.
Aqueous Humor Levels of TGF-β2 and TNF-α in Indonesian Eyes With Acute Primary Angle Closure.
Artini, Widya; Gondhowiardjo, Tjahjono Darminto; Supiandi, Edi S; Tin, Aung
2012-01-01
To measure aqueous humor levels of TGF-β2 and TNF-α in Indonesian eyes with acute primary angle closure (APAC) and to investigate their relationship to response to treatment. A prospective observational study. On presentation, aqueous humor samples were taken from APAC eyes by paracentesis. All APAC eyes then underwent laser peripheral iridotomy (LPI). Two weeks following LPI, trabeculectomy was performed if the intraocular pressure (IOP) was still high. Alternatively, phacoemulsification was performed in cases of normal IOP. Aqueous humor samples were taken again at the time of both surgical procedures. Age-matched cataract patients were included as a control group. Cytokine samples were measured by enzyme-linked immunosorbent assay (ELISA). Forty-three Indonesian APAC subjects were recruited in this study. The mean presenting IOP was 56.4 ± 0.52 mmHg and 53% underwent trabeculectomy. Comparison of the APAC eyes to the control group showed there was a significant difference in the mean levels of TGF-β2 (2007.7 ± 827.2 pg/mL vs 466.1 ± 219.3 pg/mL, p < 0.001) and TNF-α (0.714 ± 0.33 pg/mL vs 0.228 ± 0.16 pg/mL, p < 0.001). There was no significant difference in the presented TGF-β2 and TNF-α levels between the trabeculectomy and phacoemulsification groups (p:0.391 and p:0.494). Between presentation and surgery in the trabeculectomy subgroup, both cytokine levels appeared to be significantly different (p < 0.035 and p < 0.038). This study showed the aqueous humor levels of TGF-β2 and TNF-α appeared high at presentation but decreased subsequently, with no difference detected between groups with persistently high IOP and those with normalized IOP.
NASA Astrophysics Data System (ADS)
Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.
2013-10-01
A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.
Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.
Mirbagheri, M M; AliBiglou, L; Thajchayapong, M; Lilaonitkul, T; Rymer, W Z
2006-01-01
We studied the neuromuscular mechanical properties of the elbow and ankle joints in chronic, hemiparetic stroke patients and healthy subjects. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joint at different joint angles. The experiments were performed for both spastic (stroke) and contralateral (control) sides of stroke patients and one side of healthy (normal) subjects. We found reflex stiffness gain (GR) was significantly larger in the stroke than the control side for both elbow and ankle joints. GR was also strongly position dependent in both joints. However, the modulation of GR with position was slightly different in two joints. GR was also larger in the control than the normal joints but the differences were significant only for the ankle joint. Intrinsic stiffness gain (K) was also significantly larger in the stroke than the control joint at elbow extended positions and at ankle dorsiflexed positions. Modulation of K with the ankle angle was similar for stroke, control and normal groups. In contrast, the position dependency of the elbow was different. K was larger in the control than normal ankle whereas it was lower in the control than normal elbow. However, the differences were not significant for any joint. The findings demonstrate that both reflex and intrinsic stiffness gain increase abnormally in both upper and lower extremities. However, the major contribution of intrinsic and reflex stiffness to the abnormalities is at the end of ROM and at the middle ROM, respectively. The results also demonstrate that the neuromuscular properties of the contralateral limb are not normal suggesting that it may not be used as a suitable control at least for the ankle study.
Addendum to "Compact Perturbative Expressions for Neutrino Oscillations in Matter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.
2018-01-19
In this paper we rewrite the neutrino mixing angles and mass squared differences in matter given, in our original paper, in a notation that is more conventional for the reader. Replacing the usual neutrino mixing angles and mass squared differences in the expressions for the vacuum oscillation probabilities with these matter mixing angles and mass squared differences gives an excellent approximation to the oscillation probabilities in matter. Comparisons for T2K, NOvA, T2HKK and DUNE are also given for neutrinos and anti-neutrinos, disappearance and appearance channels, normal ordering and inverted ordering.
Bilateral acute angle closure glaucoma after hyperopic LASIK correction
Osman, Essam A.; Alsaleh, Ahmed A.; Al Turki, Turki; AL Obeidan, Saleh A.
2009-01-01
Acute angle closure glaucoma is unexpected complication following laser in situ keratomileusis (LASIK). We are reporting a 49-years-old lady that was presented to the emergency department with acute glaucoma in both eyes soon after LASIK correction. Diagnosis was made on detailed clinical history and examination, slit lamp examination, intraocular pressure measurement and gonioscopy. Laser iridotomy in both eyes succeeded in controlling the attack and normalizing the intraocular pressure (IOP) more than 6 months of follow-up. Prophylactic laser iridotomy is essential for narrow angle patients before LASIK surgery if refractive laser surgery is indicated. PMID:23960863
Edge effects in angle-ply composite laminates
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1977-01-01
This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.
Cowan, Lisa A; Khine, Kay T; Chopra, Vikas; Fazio, Doreen T; Francis, Brian A
2015-01-01
To illustrate 3 cases of chronic open-angle glaucoma secondary to the neodymium-yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis procedure for symptomatic vitreous floaters. Observational case series. Location of the study was the Doheny Eye Institute. Three eyes of 2 patients who developed chronic open-angle glaucoma after Nd:YAG vitreolysis for symptomatic floaters presenting with very high intraocular pressure (IOP >40 mm Hg) were selected. The time from the laser treatment to the onset of elevated pressure ranges from 1 week to 8 months. There was no associated inflammation, steroid use, or other identifiable cause of chronic IOP elevation. All eyes were treated initially with glaucoma medication, followed by selective laser trabeculoplasty (SLT) and eventually glaucoma surgery (Trabectome) in 2 eyes for disease management. In all eyes, intraocular pressures were eventually stabilized within a normal pressure range from 18 to 38 months following Nd:YAG vitreolysis. At the latest follow-up post surgery, all eyes had intraocular pressures of 22 mm Hg or less with or without medications. Secondary open-angle glaucoma is a complication of Nd:YAG vitreolysis for symptomatic floaters that may present with an increase in intraocular pressure immediately, or many months after the surgery. Furthermore this complication may be permanent and require chronic medical therapy or glaucoma surgery. Copyright © 2015 Elsevier Inc. All rights reserved.
Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.
1977-01-01
This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Runckel, Jack F.; Reid, Charles F, Jr.
1961-01-01
Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beilis, I. I.
A model was developed of vacuum arc cathode spot motion in a magnetic field that obliquely intercepts the cathode surface. The model takes into account a force under an electric field caused by retrograde spot motion across the normal component of the magnetic field, producing a drift velocity component in the direction of the acute angle between the magnetic field and the cathode surface. The relationship between velocity of the retrograde direction and drift velocity of the cathode spot motion to the acute angle was developed. The dependencies of the drift angle θ on the acute angle φ, magnetic fieldmore » strength B, and arc current I were calculated. It was found that the calculated θ increased with φ, B, and I in accordance with Robson's measurements.« less
NASA Technical Reports Server (NTRS)
Esparza, V.
1976-01-01
Separation data were obtained at a Mach number of 0.6 and three incidence angles of 4 deg, 6 deg, and 9 deg. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0 deg, 2 deg, and 4 deg while varying orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 deg and 10 deg and horizontal stabilizer deflections of -1 deg and +5 deg. Photographs of tested configurations are shown.
Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region
NASA Astrophysics Data System (ADS)
Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run
2018-01-01
The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.