Sample records for high applied fields

  1. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  2. A Critical Analysis and Assessment of High Power Switches

    DTIC Science & Technology

    1978-09-01

    applications. Because of field-distorting corona discharges in high voltage gas gaps it is difficult to predict the exact break- down strength of a nonuniform ...applied field. The streamer velocity is a/R Vs =E 2 a/R (A-9) i n i - laiR -i e o 411 where S= mobility of electrons E = applied electric field a = length

  3. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  4. Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Cramer, Richard; Speck, James S.

    2017-06-01

    Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.

  5. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  6. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1984-04-19

    In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.

  7. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  8. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    PubMed

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES ...lifetime studies in local electric field experiments. High local electric fields can polarize a positron -electron pair, which may result in an extended

  10. 7 CFR 12.6 - Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provisions of this part shall be made by the agency of USDA to which the person has applied for benefits. All...; (iii) Whether the conservation plan that a person is applying is based on the local NRCS field office... being applied on highly erodible fields in accordance with the schedule specified therein or whether a...

  11. Iron Atoms in Cr-Mn Antiferromagnetic Matrix

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.

    2002-06-01

    The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.

  12. How Students Can Be Supported to Apply Geoscientific Knowledge Learned in the Classroom to Phenomena in the Field: An Example from High School Students in Norway

    ERIC Educational Resources Information Center

    Remmen, Kari Beate; Frøyland, Merethe

    2013-01-01

    Our study explores how students apply geoscientific knowledge learned in the classroom to phenomena in a field setting. This was investigated by collecting video data from an ordinary high school context in Norway involving one teacher and a class of 17 high school students. We analyzed how the students learned rock identification and relative…

  13. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  14. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    NASA Astrophysics Data System (ADS)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  15. Effect of applied magnetic nozzle on an MPD Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Izawa, Yuki; Okawa, Kohei; Hashima, Yoko; Watanabe, Hiroshi; Tanaka, Nozomi

    2012-10-01

    Electric propulsion systems are suitable for long-term mission in space due to its higher specific impulse. An Magneto-Plasma-Dynamic Thruster (MPDT) is one of the promising thrusters of high power electric propulsion systems. It has been reported that the thrust performance of an MPDT can be improved by applying an axial magnetic field on it. In order to investigate the effect of applied field on an MPDT, we have investigated plume plasma parameters and thrust performance in an applied field MPDT. Different types of divergent magnetic nozzle were applied to an MPDT, and thrust was measured using a pendulum type thrust target. Experiments were performed with hydrogen, helium, and argon as propellant gas. Thrust increased with a discharge current up to 6kA and applied magnetic field up to 0.4T. Maximum thrust of 7N was obtained when the peak position of the applied magnetic field was set upstream of the muzzle of the MPDT. The highest thrust performance was obtained with hydrogen gas with divergent magnetic nozzle applied to the MPDT.

  16. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  17. Longitudinal disordering of vortex lattices in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.

    1993-02-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.

  18. High intensity radiated field external environments for civil aircraft operating in the United States of America

    DOT National Transportation Integrated Search

    1998-12-01

    NAWCAD Patuxent River, Maryland, was tasked by the FAA to determine the High Intensity Radiated Field (HIRF) levels for civil aircraft operating in the U.S. The electromagnetic field survey will apply to civil aircraft seeking FAA certification under...

  19. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  20. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  1. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  2. Measuring of the pitch variation of cholesteric liquid crystals under electric field using wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2017-04-01

    We measure the pitch variation of cholesteric liquid crystals (CLCs) according to the applied electric field using a wavelength-swept laser. While the electric field is applied to the CLC, the pitch of the CLC is elongated normal to the direction of electric field. Therefore, the reflection band is shifted to the longer wavelength. When the applied electric field to the CLC cell was over 1.52 V/μm, the reflection band was changed to the longer wavelength of about 75.1 nm. We believe that the dynamic behavior of the CLC can be analyzed if a high-speed wavelength-swept laser is used as an optical source.

  3. Recent developments in novel freezing and thawing technologies applied to foods.

    PubMed

    Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai

    2017-11-22

    This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.

  4. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  5. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  6. Softened Mechanical Properties of Graphene Induced by Electric Field.

    PubMed

    Huang, Peng; Guo, Dan; Xie, Guoxin; Li, Jian

    2017-10-11

    The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.

  7. A novel platform to study magnetized high-velocity collisionless shocks

    DOE PAGES

    Higginson, D. P.; Korneev, Ph; Béard, J.; ...

    2014-12-13

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  8. A novel platform to study magnetized high-velocity collisionless shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Korneev, Ph; Béard, J.

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  9. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  10. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Li, Quan; Coombs, T. A.

    2009-10-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  11. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  12. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  13. Self-diffusion imaging by spin echo in Earth's magnetic field.

    PubMed

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  14. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    PubMed

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  15. Dielectrophoretic systems without embedded electrodes

    DOEpatents

    Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA

    2006-03-21

    Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.

  16. High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.

    2018-01-01

    We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.

  17. Anisotropic physical properties of single-crystal U2Rh2Sn in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Prokeš, K.; Gorbunov, D. I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, A. V.

    2017-05-01

    We report on the crystal and magnetic structures, magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 -related tetragonal crystal structure and orders antiferromagnetically below TN=25 K. The antiferromagnetic structure is characterized by a propagation vector k =(00 1/2 ) . The magnetism in U2Rh2Sn is found to be associated mainly with 5 f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non-negligible magnetic moments also on Rh sites. U moments of 0.50(2) μB are directed along the tetragonal axis while Rh moments of 0.06(4) μB form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above ˜15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field-polarized state. A magnetic phase diagram for the field applied along the c axis is presented.

  18. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  19. High-Speed, High-Power Active Control Coils for HBT-EP

    NASA Astrophysics Data System (ADS)

    Debono, Bryan

    2010-11-01

    We report the performance of a newly installed high-speed, high-power active control system for the application of non-symmetric magnetic fields and the study of rotating MHD and resistive wall modes in the HBTEP tokamak. The new control system consists of an array of 120 modular control coils and 40 solid-state, high-power amplifiers that can apply non-symmetric control fields that are more than 10 times larger than previous studies in HBT-EP and exceed 5% of the equilibrium poloidal field strength. Measurements of the current and field response of the control system are presented as a function of frequency and control coil geometry, and these demonstrate the effectiveness of the system to interact with both growing RWM instabilities and long-wavelength modes rotating with the plasma. We describe a research plan to study the interaction of both kink and tearing mode fluctuations with applied static and rotating magnetic perturbations while systematically changing the plasma rotation with a biased molybdenum electrode inserted into the edge plasma.

  20. Performance of a 100 kW class applied field MPD thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.

    1989-01-01

    Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.

  1. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  2. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  3. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  4. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    PubMed

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  5. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    NASA Astrophysics Data System (ADS)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  6. Strong flux pinning at 4.2 K in SmBa2Cu3O y coated conductors with BaHfO3 nanorods controlled by low growth temperature

    NASA Astrophysics Data System (ADS)

    Miura, S.; Tsuchiya, Y.; Yoshida, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ibi, A.; Izumi, T.

    2017-08-01

    In order to apply REBa2Cu3O y (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (J c) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3O y (SmBCO) films on metallic substrates. The corresponding minimum J c value of the films at 40 K under an applied 3 T field was 5.2 MA cm-2, which is over ten times higher than that of a fully optimized Nb-Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m-3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the F p for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.

  7. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  8. Field-Induced-Gap Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas

    1990-01-01

    Semimetals become semiconductors under applied magnetic fields. New detectors require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor detectors. Magnetic fields for detectors provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. Detector material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber detector having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.

  9. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    PubMed

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  10. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  11. Study of electric field distorted by space charges under positive lightning impulse voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  12. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  13. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  14. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  15. Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading

    DOE PAGES

    Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...

    2017-04-08

    The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less

  16. Becoming an Independent Field: Societal Pressures, State, and Professions

    ERIC Educational Resources Information Center

    Hashem, Mazen

    2007-01-01

    This paper inquires about the conditions that enable the rise of new applied undergraduate fields in American universities and colleges. After identifying high-growth fields since 1950, the paper traces their professional development from an embryonic stage until universities and colleges started offering bachelor's degrees in those fields. The…

  17. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  18. Transport properties of kA class QMG current limiting elements

    NASA Astrophysics Data System (ADS)

    Morita, M.; Miura, O.; Ito, D.

    2001-09-01

    In order to estimate the feasibility of a resistive type fault current limiter made of QMG, transport properties of QMG current limiting elements which can transport about 1 kA continuously in a superconducting state were studied. QMG is a rare earth based bulk superconductor that has high Jc properties and relatively high electrical resistivity in a normal state. Because of these properties, QMG is a promising bulk material for superconducting fault current limiter applications. A bar-shaped sample in which the cross-section and the effective length were 2.2×0.8 mm2 and 30 mm, respectively, was prepared. Bypass resistance of 7 mΩ was connected in parallel with the sample. A field assist mechanism that can apply a magnetic field of about 0.9 T to the sample was installed. A half cycle of AC current up to about 3 kA was applied to the samples at 77 K. In the case when applied current ( I) was less than 1000 A in a self-field, flux flow voltage was less than 0.5 mV. The n-value was about 6. In the applied field of 0.9 T, a rapid increase of voltage (quench) was observed around I=1820 A. The quench phenomena reproduced without degradation in the case of I>1820 A. From these results, it was found that QMG fault current elements can endure the thermal shock of the quench by the optimization of bypass resistance and the applied field.

  19. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  20. Physical-Mechanisms Based Reliability Analysis For Emerging Technologies

    DTIC Science & Technology

    2017-05-05

    irradiation is great- ly enhanced by biasing the...devices during irradiation and/or applying high field stress be- fore irradiation . The resulting defect energy distributions were evaluated after... irradiation and/or high field stress via low-frequency noise measurements. Significant increases were observed in acceptor densities for defects with

  1. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  2. Magnetic stirling cycles: A new application for magnetic materials

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1977-01-01

    The elements of the cycle are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.

  3. Influence of Frequency-Dependent Dielectric Loss on Electrorheology of Surface Modified ZnO Nanofluids

    NASA Astrophysics Data System (ADS)

    Zaid, H. M.; Adil, M.; Lee, KC; Latiff, N. R. A.

    2018-05-01

    The shear dependent viscosity change in dielectric nanofluids under the applied electric field, provide potentials for prospect applications especially in enhanced oil recovery. When nanofluids are activated by an applied electric field, it behaves as a non-Newtonian fluid under electrorheological effect (ER) by creating the chains of nanoparticles. In this research, the effect of dielectric loss on the electrorheological characteristic of dielectric nanofluids (NFs) was studied, corresponding to the applied frequency of 167 and 18.8 MHz. For this purpose, electrorheological characteristics of ZnO (55.7 and 117.1 nm) nanofluids with various nanoparticles (NPs) concentration (0.1, 0.05, 0.01 wt. %) were measured. The measurement was done via solenoid based EM transmitter under salt water as a propagation medium. The result shows that the applied electric field caused an apparent increase on the relative viscosity of ZnO NFs due to electrorheological effect. However, the relative viscosity shows a higher increment at 167 MHz due to the greater dielectric loss, compared to 18.8 MHz. The high dielectric loss allows the dipole moments to rotationally polarize at the interfaces of nanoparticles, which create stronger chains that align with the applied electric field. Additionally, the relative viscosity demonstrated an increment with the increase in particle size of ZnO nanoparticles from 55.7 to 117.1 nm. While the viscosity of nanofluid also indicated the high dependence on particle loading.

  4. Magnetic losses of commercial REBCO coated conductors in the low frequency range

    NASA Astrophysics Data System (ADS)

    De Marzi, G.; Iannone, G.; Gambardella, U.

    2018-05-01

    We have investigated the frequency dependence of the magnetic losses of different 2 G commercial REBCO coated-conductor tapes in the low frequency range ∼1–10 mHz of applied magnetic field at 5 and 77 K. We explored high field range, well above the penetration field, with fields applied perpendicularly to the flat surface. We found that the in-field hysteresis losses increase with increasing frequencies in all the investigated high-temperature superconductor (HTS) tapes, following a power-law dependence. An electromagnetic 2D finite element method model, based on H-formulation, has also been implemented, in which the frequency dependence of the hysteretic loss is computed taking into account the measured power-law E(J) characteristic for the electric field, and the experimental J c(B). Experimental and numerical findings are in very good agreement, so an extrapolation to higher ramp rate values is possible, thus providing a useful basis for the assessment of the hysteresis losses in fusion and accelerator HTS magnets.

  5. Electrohydrodynamic Flows in Electrochemical Systems

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    2005-01-01

    Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.

  6. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.

    PubMed

    Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart

    2011-06-01

    The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.

  7. Dynamics of magnetic single domain particles embedded in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Usadel, K. D.; Usadel, C.

    2015-12-01

    Kinetic equations for magnetic nano particles dispersed in a viscous liquid are developed and analyzed numerically. Depending on the amplitude of an applied oscillatory magnetic field, the particles orient their time averaged anisotropy axis perpendicular to the applied field for low magnetic field amplitudes and nearly parallel to the direction of the field for high amplitudes. The transition between these regions takes place in a narrow field interval. In the low field region, the magnetic moment is locked to some crystal axis and the energy absorption in an oscillatory driving field is dominated by viscous losses associated with particle rotation in the liquid. In the opposite limit, the magnetic moment rotates within the particle while its easy axis being nearly parallel to the external field direction oscillates. The kinetic equations are generalized to include thermal fluctuations. This leads to a significant increase of the power absorption in the low and intermediate field regions with a pronounced absorption peak as function of particle size. In the high field region, on the other hand, the inclusion of thermal fluctuations reduces the power absorption. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.

  8. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  9. Time-dependent low field microwave absorption in the high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Iqbal, Z.

    1990-11-01

    It is observed that the hysteresis in the applied magnetic field position and the intensity at the peak of the low field non-resonant microwave absorption (recorded in an EPR experiment with a modulation amplitude of ∼ 10 G) in the superconducting state of the cuprate superconductors, is time-dependent after the removal of a DC magnetic field sizably greater than the lower critical field. This intrinsic time-dependence, which we attribute to flux creep, is reported here for two copper oxide-based high temperature superconductors.

  10. USA Track & Field Coaching Manual. USA Track & Field.

    ERIC Educational Resources Information Center

    USA Track and Field, Inc., Indianapolis, IN.

    This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…

  11. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Guevremont, Roger; Purves, Randy W.

    1999-02-01

    The focusing of ions at atmospheric pressure and room temperature in a high-field asymmetric waveform ion mobility spectrometer (FAIMS) has been investigated. FAIMS operates with the application of a high-voltage, high-frequency asymmetric waveform across parallel plates. This establishes conditions wherein an ion migrates towards one of the plates because of a difference in the ion mobility at the low and high electric field conditions during application of the waveform. The migration can be stopped by applying a dc compensation voltage (CV) which serves to create a "balanced" condition wherein the ion experiences no net transverse motion. This method has also been called "transverse field compensation ion mobility spectrometry" and "field ion spectrometry®." If this experiment is conducted using a device with cylindrical geometry, rather than with flat plates, an ion focusing region can exist in the annular space between the two concentric cylinders. Ion trajectory modeling showed that the behavior of the ions in the cylindrical geometry FAIMS analyzer was unlike any previously described atmospheric pressure ion optics system. The ions appeared to be trapped, or focused by being caught between two opposing forces. Requirements for establishing this focus for a given ion were identified: the applied waveform must be asymmetric, the electric field must be sufficiently high that the mobility of the ion deviates from its low-field value during the high-voltage portion of the asymmetric waveform, and finally, the electric field must be nonuniform in space (e.g., cylindrical or spherical geometry). Experimental observations with a prototype FAIMS device, which was designed to measure the radial distribution of ions in the FAIMS analyzer region, have confirmed the results of ion trajectory modeling.

  12. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  13. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  14. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  15. The YBa2Cu3O7- anomalous second peak and irreversible magnetic field in the magnetization hysteresis cycles

    NASA Astrophysics Data System (ADS)

    Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.

    2004-05-01

    The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.

  16. Electric field induced sheeting and breakup of dielectric liquid jets

    NASA Astrophysics Data System (ADS)

    Khoshnevis, Ahmad; Tsai, Scott S. H.; Esmaeilzadeh, Esmaeil

    2014-01-01

    We report experimental observations of the controlled deformation of a dielectric liquid jet subjected to a local high-voltage electrostatic field in the direction normal to the jet. The jet deforms to the shape of an elliptic cylinder upon application of a normal electrostatic field. As the applied electric field strength is increased, the elliptic cylindrical jet deforms permanently into a flat sheet, and eventually breaks-up into droplets. We interpret this observation—the stretch of the jet is in the normal direction to the applied electric field—qualitatively using the Taylor-Melcher leaky dielectric theory, and develop a simple scaling model that predicts the critical electric field strength for the jet-to-sheet transition. Our model shows a good agreement with experimental results, and has a form that is consistent with the classical drop deformation criterion in the Taylor-Melcher theory. Finally, we statistically analyze the resultant droplets from sheet breakup, and find that increasing the applied electric field strength improves droplet uniformity and reduces droplet size.

  17. Does deficit irrigation of field crops increase water use efficiency

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation is often proposed as a method to stretch limited irrigation water supply and increase water use efficiency. A field study of field crops in the high plains shows that water use efficiency, in terms of irrigation water applied, often increases with deficit irrigation. However, in t...

  18. Supporting the STEM Pipeline: Linking Applied STEM Course-Taking in High School to Declaring a STEM Major in College

    ERIC Educational Resources Information Center

    Gottfried, Michael A.; Bozick, Robert

    2016-01-01

    Recently, through the support from the Obama administration, the traditional STEM curricula (science, technology, engineering, and mathematics) in high schools are being updated with integrated, applied STEM courses (e.g., technology and engineering) in order to enhance the "real world" applicability of scientific fields and ultimately…

  19. Damping in high-temperature superconducting levitation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less

  20. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  1. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo

    2013-12-02

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less

  2. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.

    PubMed Central

    Rubinstein, J T; Spelman, F A

    1988-01-01

    The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274

  3. Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Horvath, Thomas J.

    2002-01-01

    A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.

  4. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  5. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu; Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time ofmore » Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.« less

  6. Formation of Organized Protein Thin Films with External Electric Field.

    PubMed

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  7. Method for producing solid or hollow spherical particles of chosen chemical composition and of uniform size

    DOEpatents

    Hendricks, Charles D.

    1988-01-01

    A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.

  8. Imaging nanoparticle flow using magneto-motive optical Doppler tomography.

    PubMed

    Kim, Jeehyun; Oh, Junghwan; Milner, Thomas E; Nelson, J Stuart

    2007-01-24

    We introduce a novel approach for imaging solutions of superparamagnetic iron oxide (SPIO) nanoparticles using magneto-motive optical Doppler tomography (MM-ODT). MM-ODT combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect nanoparticles flowing through a microfluidic channel. A solenoid with a cone-shaped ferrite core extensively increased the magnetic field strength (B(max) = 1 T, [Formula: see text]) at the tip of the core and also focused the magnetic field in microfluidic channels containing nanoparticle solutions. Nanoparticle contrast was demonstrated in a microfluidic channel filled with an SPIO solution by imaging the Doppler frequency shift which was observed independently of the nanoparticle flow rate and direction. Results suggest that MM-ODT may be applied to image Doppler shift of SPIO nanoparticles in microfluidic flows with high contrast.

  9. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  10. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  11. Acoustic Methods Remove Bubbles From Liquids

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Elleman, D. D.; Wang, T. G.

    1983-01-01

    Two acoustic methods applied to molten glass or other viscous liquids to remove bubbles. Bubbles are either absorbed or brought to surface by applying high-intensity Sonic field at resonant frequency. Sonic oscillation increases surface area of bubbles and causes them to dissipate.

  12. On the prediction of far field computational aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Korkan, Kenneth D.

    1990-01-01

    A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.

  13. High-frequency magnetodielectric response in yttrium iron garnet at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming

    2018-05-01

    Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.

  14. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr 2 IrO 4 : Raman scattering studies

    DOE PAGES

    Gim, Y.; Sethi, A.; Zhao, Q.; ...

    2016-01-11

    A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less

  15. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  16. Proof of principle experiments for helicon discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Briefi, Stefan; Fantz, Ursel

    2013-09-01

    In order to reduce the amount of power required for generating CW hydrogen discharges with high electron densities and a high degree of dissociation via RF coupling, the helicon concept is investigated. For this purpose a small laboratory experiment (length of the discharge vessel 40 cm, diameter 10 cm) has been built up. The RF generator has a maximum power of 600 W (frequency 13.56 MHz) and a Nagoya type III antenna is applied. As water cooling was avoided in constructing the experiment for simplicity, the induction coils can only generate a rather low magnetic field up to 14 mT. The performed investigations cover a variation of the RF power and the magnetic field in a pressure range between 0.3 and 10 Pa. Around a magnetic field of 3 mT the low field peak which is typical for helicon discharges could be observed. As the high density mode of helicon discharges has not yet been reached, a different RF generator (2 MHz, 2 KW) and water cooled induction coils will be applied in a next step in order to increase the available power and the magnetic field.

  17. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  18. Compositions for directed alignment of conjugated polymers

    DOEpatents

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong

    2016-04-19

    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  19. Magnetic phase transitions and ferromagnetic short-range correlations in single-crystal Tb5Si2.2Ge1.8

    NASA Astrophysics Data System (ADS)

    Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.

    2008-07-01

    Magnetic phase transitions in a Tb5Si2.2Ge1.8 single crystal have been studied as a function of temperature and magnetic field. Magnetic-field dependencies of the critical temperatures are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ˜70K . Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a and b axes (but not along the c axis) between 1.8 and 70 K in fields below 70 kOe. Strong anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed.

  20. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  1. Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Motomura, Taisei; Ando, Akira; Kasashima, Yuji; Kikunaga, Kazuya; Uesugi, Fumihiko; Hara, Shiro

    2014-10-01

    A high density argon plasma produced in a compact helicon source is transported by a convergent magnetic field to the central region of a substrate located downstream of the source. The magnetic field converging near the source exit is applied by a solenoid and further converged by installing a permanent magnet (PM) behind the substrate, which is located downstream of the source exit. Then a higher plasma density above 5 × 1012 cm-3 can be obtained in 0.2 Pa argon near the substrate, compared with the case without the PM. As no noticeable changes in the radially integrated density near the substrate and the power transfer efficiency are detected when testing the source with and without the PM, it can be deduced that the convergent field provided by the PM plays a role in constricting the plasma rather than in improving the plasma production. Furthermore it is applied to physical ion etching of silicon and aluminum substrates; then high etching rates of 6.5 µm min-1 and 8 µm min-1 are obtained, respectively.

  2. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.« less

  3. Qualifying the Sunpower M87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kim; Breon, Susan

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment uses a superfluid helium dewar to cool a large superconducting magnet. The outer vapor-cooled shields of the dewar are to be held at 80 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87 have been qualified for operation in a magnetic environment similar to the AMs-02 magnetic environment. Although there was no noticeable performance degradation at field levels that were comparable to AMs-02 field levels, there appears to be a small performance degradation at higher field levels. It was theorized that there were three possible issues related to these performance losses at high magnetic fields: i) induced piston rubbing on the cylinder wall due to forces and torques on the linear motor due to the applied magnetic fields; ii) Magnetic hysteretic and/or eddy current damping of the balancer due to its motion in the applied magnetic fields; iii) Inductance losses in motor due to the applied magnetic field. The experiments conducted at the Massachusetts Institute of Technology (MIT) cyclotron facility in June 2002 were designed to test these. Tests were performed over a range of field levels that were lower, comparable, and higher than the field levels that the cryocoolers will experience in the AMs-02 operating environment. This paper describes the experiments and the inferences derived from them.

  4. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  5. Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2011-02-01

    We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.

  6. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  7. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  8. High Reynolds number turbulence model of rotating shear flows

    NASA Astrophysics Data System (ADS)

    Masuda, S.; Ariga, I.; Koyama, H. S.

    1983-09-01

    A Reynolds stress closure model for rotating turbulent shear flows is developed. Special attention is paid to keeping the model constants independent of rotation. First, general forms of the model of a Reynolds stress equation and a dissipation rate equation are derived, the only restrictions of which are high Reynolds number and incompressibility. The model equations are then applied to two-dimensional equilibrium boundary layers and the effects of Coriolis acceleration on turbulence structures are discussed. Comparisons with the experimental data and with previous results in other external force fields show that there exists a very close analogy between centrifugal, buoyancy and Coriolis force fields. Finally, the model is applied to predict the two-dimensional boundary layers on rotating plane walls. Comparisons with existing data confirmed its capability of predicting mean and turbulent quantities without employing any empirical relations in rotating fields.

  9. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  10. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy.more » Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.« less

  11. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  12. 100 MHz high-speed strain monitor using fiber Bragg grating and optical filter applied for magnetostriction measurements of cobaltite at magnetic fields beyond 100 T

    NASA Astrophysics Data System (ADS)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2018-05-01

    High-speed 100 MHz strain monitor using fiber Bragg grating (FBG) and an optical filter has been devised for the magnetostriction measurements under ultrahigh magnetic fields. The longitudinal magnetostriction of LaCoO 3 has been measured at room temperature, 115, 7 and 4.2 K up to the maximum magnetic field of 150 T. The field-induced lattice elongations are observed, which are attributed to the spin-state crossover from the low-spin ground state to excited spin-states.

  13. Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields

    NASA Astrophysics Data System (ADS)

    Wetzel, M.; Herman, C.

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.

  14. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  15. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  16. Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates

    NASA Astrophysics Data System (ADS)

    Karpus, John Francis

    In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.

  17. High-field magnetization and magnetic phase diagram of α -Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Gitgeatpong, G.; Suewattana, M.; Zhang, Shiwei; Miyake, A.; Tokunaga, M.; Chanlert, P.; Kurita, N.; Tanaka, H.; Sato, T. J.; Zhao, Y.; Matan, K.

    2017-06-01

    High-field magnetization of the spin-1 /2 antiferromagnet α -Cu2V2O7 was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the a axis), two distinct transitions were observed at Hc 1=6.5 T and Hc 2=18.0 T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for Hc 1

  18. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming

    2017-08-01

    High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.

  19. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.

  20. Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields.

    PubMed

    Lapin, Norman A; Krzykawska-Serda, Martyna; Ware, Matthew J; Curley, Steven A; Corr, Stuart J

    Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987-989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.

  1. Tensor Minkowski Functionals for random fields on the sphere

    NASA Astrophysics Data System (ADS)

    Chingangbam, Pravabati; Yogendran, K. P.; Joby, P. K.; Ganesan, Vidhya; Appleby, Stephen; Park, Changbom

    2017-12-01

    We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We outline a method to compute the tensor-valued Minkowski Functionals numerically for any random field on the sphere. Then we obtain analytic expressions for the ensemble expectation values of the matrix elements for isotropic Gaussian and Rayleigh fields. The results hold on flat as well as any curved space with affine connection. We elucidate the way in which the matrix elements encode information about the Gaussian nature and statistical isotropy (or departure from isotropy) of the field. Finally, we apply the method to maps of the Galactic foreground emissions from the 2015 PLANCK data and demonstrate their high level of statistical anisotropy and departure from Gaussianity.

  2. Highly anisotropic magneto-transport and field orientation dependent oscillations in aligned carbon nanotube/epoxy composites

    NASA Astrophysics Data System (ADS)

    Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.

    2017-12-01

    Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.

  3. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Cun; He, An; Yong, Huadong

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less

  4. Method for formation of high quality back contact with screen-printed local back surface field

    DOEpatents

    Rohatgi, Ajeet; Meemongkolkiat, Vichai

    2010-11-30

    A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.

  5. Strain manipulation of Majorana fermions in graphene armchair nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing

    2018-01-01

    Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.

  6. Isolating Flow-field Discontinuities while Preserving Monotonicity and High-order Accuracy on Cartesian Meshes

    DTIC Science & Technology

    2017-01-09

    2017 Distribution A – Approved for public release; Distribution Unlimited. PA Clearance 17030 Introduction • Filtering schemes offer a less...dissipative alternative to the standard artificial dissipation operators when applied to high- order spatial/temporal schemes • Limiting Fact: Filters impart...systems require a preconditioned dual-time framework to be solved efficiently • Limiting Fact: Filtering cannot be applied only at the physical- time

  7. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  8. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.

    PubMed

    Zhou, Hao; White, Lee R; Tilton, Robert D

    2005-05-01

    Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.

  9. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  10. Online low-field NMR spectroscopy for process control of an industrial lithiation reaction-automated data analysis.

    PubMed

    Kern, Simon; Meyer, Klas; Guhl, Svetlana; Gräßer, Patrick; Paul, Andrea; King, Rudibert; Maiwald, Michael

    2018-05-01

    Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for enabling closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (indirect hard modeling-IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union's Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analyzed by IHM with low calibration effort, compared to a multivariate PLS-R (partial least squares regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. Graphical abstract NMR sensor module for monitoring of the aromatic coupling of 1-fluoro-2-nitrobenzene (FNB) with aniline to 2-nitrodiphenylamine (NDPA) using lithium-bis(trimethylsilyl) amide (Li-HMDS) in continuous operation. Online 43.5 MHz low-field NMR (LF) was compared to 500 MHz high-field NMR spectroscopy (HF) as reference method.

  11. Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection

    NASA Astrophysics Data System (ADS)

    Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming

    2007-08-01

    In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.

  12. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  13. Full range line-field parallel swept source imaging utilizing digital refocusing

    NASA Astrophysics Data System (ADS)

    Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-12-01

    We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.

  14. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1973-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.

  15. Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field

    DTIC Science & Technology

    2006-09-30

    Pacific (ITCZ 10ºN, 95ºW), 3) Bering Sea coastal shelf, 4) Ionian Sea, 5) Carr Inlet, Puget Sound , Washington, and 6) Haro Strait, Washington/BC...Southern Resident Killer Whale ( Puget Sound ). In coastal and inland waterways, anthropogenic noise is often present. These signals are usually...Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field Jeffrey A. Nystuen Applied Physics Laboratory University of

  16. Removal of phenol by activated alumina bed in pulsed high-voltage electric field.

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  17. A Sinusoidal Applied Electric Potential can Induce a Long-Range, Steady Electrophoretic Force

    NASA Astrophysics Data System (ADS)

    Amrei, Seyyed Hashemi; Ristenpart, William D.; Miller, Greg R.

    2017-11-01

    We use the standard electrokinetic model to numerically investigate the electric field in aqueous solutions between parallel electrodes under AC polarization. In contrast to prior work, we invoke no simplifying assumptions regarding the applied voltage, frequency, or mismatch in ionic mobilities. We find that the nonlinear electromigration terms significantly contribute to the overall shape of the electric potential vs. time, which at sufficiently high applied potentials develops multi-modal peaks. More surprisingly, we find that electrolytes with non-equal mobilities yield an electric field with non-zero time average at large distances from the electrodes. Our calculations indicate this long-range electric field suffices to levitate colloidal particles many microns away from the electrode against the gravitational field, in accord with experimental observations of such behavior (Woehl et al., PRX, 2015). Moreover, the results indicate that particles will aggregate laterally near electrodes in some electrolytes but separate in others, helping explain a longstanding but not well understood phenomenon.

  18. HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.

    PubMed

    Claerhout, S; De Cauwer, B; Reheul, D

    2014-01-01

    Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more sensitive to cycloxydim, topramezone and nicosulfuron (resp. 5.3%, 5.9% and 12.3%). Populations from the conventional crop rotation system showed intermediate sensitivity levels. Contrary to foliar-applied herbicides, the effectiveness of soil-applied herbicides was not affected by cropping system. Integrated weed management may be necessary to preserve herbicide efficacy on the long term.

  19. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    PubMed Central

    Zhang, Shaohui; Hua, Yumei; Deng, Liangwei

    2016-01-01

    The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003) compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils. PMID:27058548

  20. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGES

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  1. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    NASA Astrophysics Data System (ADS)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  2. GOCO05c: A New Combined Gravity Field Model Based on Full Normal Equations and Regionally Varying Weighting

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Pail, R.; Gruber, T.

    2017-05-01

    GOCO05c is a gravity field model computed as a combined solution of a satellite-only model and a global data set of gravity anomalies. It is resolved up to degree and order 720. It is the first model applying regionally varying weighting. Since this causes strong correlations among all gravity field parameters, the resulting full normal equation system with a size of 2 TB had to be solved rigorously by applying high-performance computing. GOCO05c is the first combined gravity field model independent of EGM2008 that contains GOCE data of the whole mission period. The performance of GOCO05c is externally validated by GNSS-levelling comparisons, orbit tests, and computation of the mean dynamic topography, achieving at least the quality of existing high-resolution models. Results show that the additional GOCE information is highly beneficial in insufficiently observed areas, and that due to the weighting scheme of individual data the spectral and spatial consistency of the model is significantly improved. Due to usage of fill-in data in specific regions, the model cannot be used for physical interpretations in these regions.

  3. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    NASA Astrophysics Data System (ADS)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  4. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  5. A gradiometric version of contactless inductive flow tomography: theory and first applications

    PubMed Central

    Wondrak, Thomas; Stefani, Frank

    2016-01-01

    The contactless inductive flow tomography (CIFT) is a measurement technique that allows reconstructing the flow of electrically conducting fluids by measuring the flow-induced perturbations of one or various applied magnetic fields and solving the underlying inverse problem. One of the most promising application fields of CIFT is the continuous casting of steel, for which the online monitoring of the flow in the mould would be highly desirable. In previous experiments at a small-scale model of continuous casting, CIFT has been applied to various industrially relevant problems, including the sudden changes of flow structures in case of argon injection and the influence of a magnetic stirrer at the submerged entry nozzle. The application of CIFT in the presence of electromagnetic brakes, which are widely used to stabilize the flow in the mould, has turned out to be more challenging due to the extreme dynamic range between the strong applied brake field and the weak flow-induced perturbations of the measuring field. In this paper, we present a gradiometric version of CIFT, relying on gradiometric field measurements, that is capable to overcome those problems and which seems, therefore, a promising candidate for applying CIFT in the steel casting industry. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185963

  6. A Guided Inquiry Activity for Teaching Ligand Field Theory

    ERIC Educational Resources Information Center

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  7. Synthesis of Moored Observations Collected During the IWISE 2011 Field Program in the South China Sea

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work

  8. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles.

    PubMed

    Novelli, Andréa; Vieira, Bruna Horvath; Braun, Andréa Simone; Mendes, Lucas Bueno; Daam, Michiel Adriaan; Espíndola, Evaldo Luiz Gaeta

    2016-02-01

    Edge-of-field waterbodies in tropical agroecosystems have been reported to be especially prone to pesticide contamination through runoff resulting from intensive irrigation practices and tropical rainfall. In the present study, the effects of runoff from an experimental agricultural field applied with Vertimec(®) 18EC (active ingredient: abamectin) on zebrafish were evaluated. To this end, the experimental field was applied with the Vertimec(®) 18EC dose recommended for strawberry crop in Brazil, whereas another field was treated with water only to serve as control. No effects of runoff water from either plot were recorded on survival. Water from the treated field led to increased growth and gill alterations. In general, these alterations were of the first and second degree, including proliferation of cells between the secondary lamellae, dilation at the lamellar apex, detachment of the respiratory epithelium and aneurism. These results confirm the high toxic potential of Vertimec(®) 18EC and provide evidence that environmental risks are likely to occur in areas subject to runoff containing this pesticide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  10. Experimental study of the formation of field-reversed configurations employing high-order multipole fields

    NASA Astrophysics Data System (ADS)

    Slough, J. T.; Hoffman, A. L.

    1990-04-01

    A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough Bθ at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall Bθ (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez≤3 V/cm, and Eθ≤20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.

  11. In-channel electrochemical detection in the middle of microchannel under high electric field.

    PubMed

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  12. Superconductivity in an almost localized Fermi liquid of quasiparticles with spin-dependent masses and effective-field induced by electron correlations

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Jan; Spałek, Jozef

    2009-06-01

    Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.

  13. Nonlinear optical transmittance of semiconductors in the presence of high-intensity radiation fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Han, F. W.; Duan, Y. F.; Huang, F.; Liu, J. L.

    2018-04-01

    We developed a systematic theoretical study of nonlinear optical properties of semiconductors. The eight-band kṡp model and the energy-balance equation are employed to calculate the transmission and optical absorption coefficients in the presence of both the linear one-photon absorption and the nonlinear two-photon absorption (TPA) processes. A substantial reduction of the optical transmittance far below the band-gap can be observed under relatively high-intensity radiation fields due to the nonlinear TPA. The TPA-induced optical transmittance decreases with increasing intensity of the radiation fields. Our theoretical results are in line with those observed experimentally. The theoretical approach can be applied to understand the nonlinear optical properties of semiconductors under high-field conditions.

  14. Silicon Photomultiplier Performance in High ELectric Field

    NASA Astrophysics Data System (ADS)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to distinguish these ratios relies on the high sensitivity to single photons. To achieve a similar sensitivity to dark matter interactions as LUX, the new SiPM devices need to operate in the same conditions without any loss in sensitivity to single photons. Knowing that this new type of technology operates in high electric field without issues, could save hundreds of thousands of dollars and valuable space.

  15. Commensurability effects in the critical forces of a superconducting film with Kagomé pinning array at submatching fields

    NASA Astrophysics Data System (ADS)

    Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.

    2017-09-01

    Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.

  16. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

    PubMed Central

    Zeng, Rong; Wang, Bo; Niu, Ben; Yu, Zhanqing

    2012-01-01

    The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics. PMID:23112663

  17. Electro-aerodynamic field aided needleless electrospinning.

    PubMed

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-08

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  18. Electro-aerodynamic field aided needleless electrospinning

    NASA Astrophysics Data System (ADS)

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-01

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h‑1), by 350% in comparison to the setup without auxiliary field (1.0 g h‑1), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10–30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  19. URu2Si2 under intense magnetic fields: From hidden order to spin-density wave

    NASA Astrophysics Data System (ADS)

    Knafo, W.; Aoki, D.; Scheerer, G. W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Regnault, L.-P.; Flouquet, J.

    2018-05-01

    A review of recent state-of-the-art pulsed field experiments performed on URu2Si2 under a magnetic field applied along its easy magnetic axis c is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neutron diffraction experiments are presented, permitting to emphasize the relationship between Fermi surface reconstructions, the destruction of the hidden-order and the appearance of a spin-density wave state in a high magnetic field.

  20. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation

    NASA Astrophysics Data System (ADS)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak

    2018-02-01

    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  1. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  2. High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.

    PubMed

    Hayashi, Rikimaru

    2002-03-25

    A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.

  3. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  4. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    PubMed

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  5. Molecular modeling: An open invitation for applied mathematics

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  6. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  7. Identification of high shears and compressive discontinuities in the inner heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, A.; Perri, S.

    2014-04-01

    Two techniques, the Partial Variance of Increments (PVI) and the Local Intermittency Measure (LIM), have been applied and compared using MESSENGER magnetic field data in the solar wind at a heliocentric distance of about 0.3 AU. The spatial properties of the turbulent field at different scales, spanning the whole inertial range of magnetic turbulence down toward the proton scales have been studied. LIM and PVI methodologies allow us to identify portions of an entire time series where magnetic energy is mostly accumulated, and regions of intermittent bursts in the magnetic field vector increments, respectively. A statistical analysis has revealed thatmore » at small time scales and for high level of the threshold, the bursts present in the PVI and the LIM series correspond to regions of high shear stress and high magnetic field compressibility.« less

  8. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  9. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  10. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.

  11. 34 CFR 403.160 - What activities does the Secretary support under the Comprehensive Career Guidance and Counseling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION STATE VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM What Kinds of Activities Does the... emerging fields in high-technology areas and fields experiencing skill shortages; (v) Develop mid-career... all educational levels to help students develop the skills described in paragraph (b)(1) of this...

  12. Higher Learning: Impacts of a High-Altitude Adventure-Based Field School on College Student Development

    ERIC Educational Resources Information Center

    Harper, Nevin J.; Webster, Anthony L.

    2017-01-01

    Student learning can be enhanced through applied experience of theoretical knowledge. The purpose of this study was to identify and articulate personal and educational impacts experienced by students during a mentally and physically challenging international adventure-based field school. Nineteen students and two faculty members participated in a…

  13. Applying Threshold Concepts Theory to an Unsettled Field: An Exploratory Study in Criminal Justice Education

    ERIC Educational Resources Information Center

    Wimshurst, Kerry

    2011-01-01

    Criminal justice education is a relatively new program in higher education in many countries, and its curriculum and parameters remain unsettled. An exploratory study investigated whether threshold concepts theory provided a useful lens by which to explore student understandings of this multidisciplinary field. Eight high-performing final-year…

  14. Cotton NDVI response to applied N at different soil EC levels

    USDA-ARS?s Scientific Manuscript database

    Many fields in the southeastern Coastal Plain are highly variable in soil physical properties and are irregular in shape. These two conditions may make it difficult to determine the ‘best’ area in the field to place nitrogen (N) -rich strips for normalized difference vegetative index (NDVI) -based s...

  15. A broadband microwave Corbino spectrometer at ³He temperatures and high magnetic fields.

    PubMed

    Liu, Wei; Pan, LiDong; Armitage, N P

    2014-09-01

    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK-6 K and at applied magnetic fields up to 8 T. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8-9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature, and field range for thin superconducting films and highly resistive graphene samples.

  16. A broadband microwave Corbino spectrometer at 3He temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Pan, LiDong; Armitage, N. P.

    2014-09-01

    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK-6 K and at applied magnetic fields up to 8 T. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8-9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature, and field range for thin superconducting films and highly resistive graphene samples.

  17. Texturing by cooling a metallic melt in a magnetic field.

    PubMed

    Tournier, Robert F; Beaugnon, Eric

    2009-02-01

    Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.

  18. Magnetostriction measurement of a giant magnetoresistance film on a practical substrate covered by a shield layer

    NASA Astrophysics Data System (ADS)

    Okita, Kazuhiko; Ishiyama, Kazushi; Miura, Hideo

    2012-04-01

    Magnetostriction constant of a magnetic thin film is conventionally measured by detecting the deformation of a coupon sample that consists of the magnetic film deposited on a thin glass substrate (e.g., cover glass of size 10 mm × 25 mm) under an applied field using a laser beam [A. C. Tam and H. Schroeder, J. Appl. Phys. 64, 5422 (1988)]. This method, however, cannot be applied to films deposited on actual large-size substrates (wafers) with diameter from 3 to 6 in. or more. In a previous paper [Okita et al., J. Phys.: Conf. Ser. 200, 112008 (2010)], the authors presented a method for measuring magnetostriction of a magnetic thin film deposited on an actual substrate by detecting the change of magnetic anisotropy field, Hk, under mechanical bending of the substrate. It was validated that the method is very effective for measuring the magnetostriction constant of a free layer on the actual substrate. However, since a Ni-Fe shield layer usually covers a magnetic head used for a hard disk drive, this shield layer disturbs the effective measurement of R-H curve under minor loop. Therefore, a high magnetic field that can saturate the magnetic material in the shield layer should be applied to the head in order to measure the magnetostriction constant of a pinned layer under the shield layer. In this paper, this method was applied to the measurement of the magnetostriction constant of a pinned layer under the shield layer by using a high magnetic field up to 320 kA/m (4 kOe).

  19. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE PAGES

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; ...

    2017-12-19

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  20. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  1. RMP Enhanced Transport and Rotation Screening in DIII-D Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V; Joseph, I; Moyer, R

    The application of resonant magnetic perturbations (RMP) to DIII-D plasmas at low collisionality has achieved ELM suppression, primarily due to a pedestal density reduction. The mechanism of the enhanced particle transport is investigated in 3D MHD simulations with the NIMROD code. The simulations apply realistic vacuum fields from the DIII-D I-coils, C-coils and measure intrinsic error fields to an EFIT reconstructed DIII-D equilibrium, and allow the plasma to respond to the applied fields while the fields are fixed at the boundary, which lies in the vacuum region. A non-rotating plasma amplifies the resonant components of the applied fields by factorsmore » of 2-5. The poloidal velocity forms E x B convection cells crossing the separatrix, which push particles into the vacuum region and reduce the pedestal density. Low toroidal rotation at the separatrix reduces the resonant field amplitudes, but does not strongly affect the particle pumpout. At higher separatrix rotation, the poloidal E x B velocity is reduced by half, while the enhanced particle transport is entirely eliminated. A high collisionality DIII-D equilibrium with an experimentally measured rotation profile serves as the starting point for a simulation with odd parity I-coil fields that can ultimately be compared with experimental results. All of the NIMROD results are compared with analytic error field theory.« less

  2. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  3. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    PubMed

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  4. Flexible electronic control system based on FPGA for liquid-crystal microlens

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Xin, Zhaowei; Li, Dapeng; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Traditional imaging based on common optical lens can only be used to collect intensity information of incident beams, but actually lightwave also carries other mode information about targets and environment, including: spectrum, wavefront, and depth of target, and so on. It is very important to acquire those information mentioned for efficiently detecting and identifying targets in complex background. There is a urgent need to develop new high-performance optical imaging components. The liquid-crystal microlens (LCMs) only by applying spatial electrical field to change optical performance, have demonstrated remarkable advantages comparing conventional lenses, and therefore show a widely application prospect. Because the physical properties of the spatial electric fields between electrode plates in LCMs are directly related to the light-field performances of LCMs, the quality of voltage signal applied to LCMs needs high requirements. In this paper, we design and achieve a new type of digital voltage equipment with a wide adjustable voltage range and high precise voltage to effectively drive and adjust LCMs. More importantly, the device primarily based on field-programmable gate array(FPGA) can generate flexible and stable voltage signals to cooperate with the various functions of LCMs. Our experiments show that through the electronic control system, the LCMs already realize several significant functions including: electrically swing focus, wavefront imaging, electrically tunable spectral imaging and light-field imaging.

  5. Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriani, A.B., E-mail: absuriani@yahoo.com; Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900; Dalila, A.R.

    Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the coremore » of the sea urchin-like CNFs was composed of Fe{sub 3}C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe{sub 3}C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm{sup −1} at current density of 1 and 10 μA cm{sup −2}, respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters.« less

  6. Influence of the magnetic field profile on ITER conductor testing

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.; ten Kate, H. H. J.

    2006-08-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally soldered wire, averaging the transverse conduit surface potentials initiated in the joints.

  7. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    PubMed Central

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117

  8. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  9. Free-solution electrophoretic separations of DNA–drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength

    PubMed Central

    Albrecht, Jennifer Coyne; Kerby, Matthew B.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Wang, Xiaoxiao; Barron, Annelise E.

    2012-01-01

    Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of Free-Solution Conjugate Electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. Single-stranded DNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE’s ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with pHEA-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags. PMID:21500207

  10. Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2O4 nanoparticles.

    PubMed

    Ortega, D; Kuznetsov, M V; Morozov, Yu G; Belousova, O V; Parkin, I P

    2013-12-28

    This article reports on the magnetic properties of interacting uncoated nickel ferrite (NiFe2O4) nanoparticles synthesized through an aerosol levitation-jet technique. A comprehensive set of samples with different compositions of background gas and metal precursors, as well as applied electric field intensities, has been studied. Nanoparticles prepared under a field of 210 kV m(-1) show moderately high-field irreversibility and shifted hysteresis loops after field-cooling, also exhibiting a joint temperature decrease of the exchange field and coercivity. The appearance of memory effects has been checked using the genuine ZFC protocol and the observed behavior cannot be fully explained in terms of thermal relaxation. Although dipolar interactions prevail, exchange interactions occur to a certain extent within a narrow range of applied fields. The origin of the slow dynamics in the system is found to be given by the interplay of the distribution of energy barriers due to size dispersion and the cooperative dynamics associated with frustrated interactions.

  11. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleggia, M.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin; Kasama, T.

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) imagesmore » for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.« less

  12. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  13. Magnetic Stirling cycles - A new application for magnetic materials

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1977-01-01

    There is the prospect of a fundamental new application for magnetic materials as the working substance in thermodynamic cycles. Recuperative cycles which use a rare-earth ferromagnetic material near its Curie point in the field of a superconducting magnet appear feasible for applications from below 20 K to above room temperature. The elements of the cycle, advanced in an earlier paper, are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. Results are presented for J = 7/2 and g = 2. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.

  14. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3

    NASA Astrophysics Data System (ADS)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .

  15. Spectral features and voltage effects in high-field electroluminescence of AlN filamentary nanocrystals

    NASA Astrophysics Data System (ADS)

    Weinstein, I. A.; Vokhmintsev, A. S.; Chaikin, D. V.; Afonin, Yu. D.

    2016-11-01

    The high-field electroluminescence (EL) spectra for Al-rich AlN nanowhiskers varying applied voltage were studied. The observed 2.70 eV emission, which can be considered as superposition of two Gaussian bands in 2.75 and 2.53 eV, was analyzed. It was shown that Fowler-Nordheim effect took place in EL mechanism with participation of capturing levels of ON- and VN-centers when AlN nanowhiskers were exposed to an external field of 2.5 ÷ 10 V/μm. Obtained results and made conclusions are in a good agreement with independent electron field emission measurements for different one-dimensional AlN nanostructures.

  16. High intensity positron source at HFR: Basic concept, scoring and design optimisation

    NASA Astrophysics Data System (ADS)

    Zeman, A.; Tuček, K.; Debarberis, L.; Hogenbirk, A.

    2012-01-01

    Recent applications of positron beam techniques in various fields of research have led to an increasing demand for high intensity positron sources required for advanced applications, particularly in materials science. Considerable efforts are being made worldwide to design and set-up high intensity positron sources and beam systems that are based on several principles. Such positron sources could be used in fundamental and applied research experiments, as well as in industrial applications, especially in the field of condensed matter characterisation at the nanometre scale. Phenomena involving positrons are also important in other applied science fields such as medicine, biology, physics, energy, etc. However, such studies are often limited due to the relative lack of suitable positron sources. Results from the recently completed Exploratory Research Project called "HIPOS" are discussed in this paper, which describes the principles behind such a powerful very high intensity positron beam experimental facility that is based on a reactor source. Details of a proposed concept that uses nuclear reactions [(n, γ) and (γ, pair)] within a designed positron generator at the High Flux Reactor (HFR) in Petten are also discussed. The HIPOS source has been designed to produce slow positrons with intensity of the order of 10 10 e +/s.

  17. Efficient use of animal manure on cropland--economic analysis.

    PubMed

    Araji, A A; Abdo, Z O; Joyce, P

    2001-09-01

    Manure contains all the macro- and microelements needed for plant growth; however, it represents one of the most underutilized resources in the US. The major problem with the use of manure on cropland is the direct effect of its composition on application cost. This cost is a function of the mineralization process of organic matter. The mineralization process is influenced by the properties of the manure, properties of the soil, moisture, and temperature. This study evaluates the simultaneous effect of these variables on the optimal use of manure on cropland. The results show that the properties of manure and soil significantly affect the mineralization of organic nitrogen and thus the optimal quantity of manure required to satisfy the nutrient requirement of crops in a given rotation system. Manure application costs range from a low of 18% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 125% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its application cost to the cost of commercial fertilizer, ranges from a high of 35 km (22 miles) for chicken manure applied to one type of soil, to a low of 1 km (0.62 miles) for cow manure applied to another type of soil. For rotation system 2, manure application costs range from a low of 37% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 136% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its cost to the cost of commercial fertilizer, ranges from a high of 20 km (12.5 miles) for chicken manure applied to one type of soil, to a low of 0 km (0 miles) for cow manure applied to another type of soil.

  18. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less

  19. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE PAGES

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  20. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  1. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  2. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  3. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  4. A survey of propulsion options for cargo and piloted missions to Mars.

    PubMed

    Sankaran, K; Cassady, L; Kodys, A D; Choueiri, E Y

    2004-05-01

    In this paper, high-power electric propulsion options are surveyed in the context of cargo and piloted missions to Mars. A low-thrust trajectory optimization program (raptor) is utilized to analyze this mission. Candidate thrusters are chosen based upon demonstrated performance in the laboratory. Hall, self-field magnetoplasmadynamic (MPDT), self-field lithium Lorentz force accelerator (LiLFA), arcjet, and applied-field LiLFA systems are considered for this mission. In this first phase of the study, all thrusters are assumed to operate at a single power level (regardless of the efficiency-power curve), and the thruster specific mass and power plant specific mass are taken to be the same for all systems. Under these assumptions, for a 7.5 MW, 60 mT payload, piloted mission, the self-field LiLFA results in the shortest trip time (340 days) with a reasonable propellant mass fraction of 57% (129 mT). For a 150 kW, 9 mT payload, cargo mission, both the applied-field LiLFA and the Hall thruster seem reasonable choices with propellant mass fractions of 42 to 45%(7 to 8 mT). The Hall thrusters provide better trip times (530-570 days) compared to the applied-field LiLFA (710 days) for the relatively less demanding mission.

  5. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  6. Flat-field anastigmatic mirror objective for high-magnification extreme ultraviolet microscopy

    NASA Astrophysics Data System (ADS)

    Toyoda, Mitsunori

    2015-08-01

    To apply high-definition microscopy to the extreme ultraviolet (EUV) region in practice, i.e. to enable in situ observation of living tissue and the at-wavelength inspection of lithography masks, we constructed a novel reflective objective made of three multilayer mirrors. This objective is configured as a two-stage imaging system made of a Schwarzschild two-mirror system as the primary objective and an additional magnifier with a single curved mirror. This two-stage configuration can provide a high magnification of 1500, which is suitable for real-time observation with an EUV charge coupled device (CCD) camera. Besides, since off-axis aberrations can be corrected by the magnifier, which provides field flattener optics, we are able to configure the objective as a flat-field anastigmatic system, in which we will have a diffraction-limited spatial resolution over a large field-of-view. This paper describes in detail the optical design of the present objective. After calculating the closed-form equations representing the third-order aberrations of the objective, we apply these equations to practical design examples with a numerical aperture of 0.25 and an operation wavelength of 13.5 nm. We also confirm the imaging performances of this novel design by using the numerical ray-tracing method.

  7. Thickness-dependent phase transition in graphite under high magnetic field

    NASA Astrophysics Data System (ADS)

    Taen, Toshihiro; Uchida, Kazuhito; Osada, Toshihito

    2018-03-01

    Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a semimetal-insulator transition at B ≃30 T is still not clear, while an exotic density-wave state is theoretically proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method. The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic states in other high-magnetic-field phases.

  8. Analysis and design of ferroelectric-based smart antenna structures

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth; Washington, Gregory N.

    2009-03-01

    Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.

  9. Measurement of metallic contaminants in food with a high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Natsume, Miyuki; Uchida, Masashi; Hotta, Naoki; Matsuda, Takemasa; Spanut, Zarina A.; Hatsukade, Yoshimi

    2004-04-01

    We have proposed and demonstrated a high-Tc SQUID system for detecting metallic contaminants in foodstuffs. There is a demand for the development of systems for detecting not only magnetic materials but also non-magnetic materials such as Cu and aluminium in foodstuffs to ensure food safety. The system consists of a SQUID magnetometer, an excitation coil and a permanent magnet. For a non-magnetic sample, an AC magnetic field is applied during detection to induce an eddy current in the sample. For a magnetizable sample, a strong magnetic field is applied to the sample prior to the detection attempt. We were able to detect a stainless steel ball with a diameter of 0.1 mm and a Cu ball less than 1 mm in diameter, for example.

  10. Watching electrons tunnel

    NASA Astrophysics Data System (ADS)

    Moser, Simon

    2008-03-01

    To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.

  11. Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4

    NASA Astrophysics Data System (ADS)

    Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.

    2018-04-01

    We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.

  12. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.

    PubMed

    Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A

    2018-02-01

    We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.

  13. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  14. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  15. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  16. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental procedures characterizing firebrand generation in wildland fires

    Treesearch

    Mohamad El Houssami; Eric Mueller; Alexander Filkov; Jan C Thomas; Nicholas Skowronski; Michael R Gallagher; Ken Clark; Robert Kremens; Albert Simeoni

    2016-01-01

    This study aims to develop a series of robust and efficient methodologies, which can be applied to understand and estimate firebrand generation and to evaluate firebrand showers close to a fire front. A field scale high intensity prescribed fire was conducted in the New Jersey Pine Barrens in March 2013. Vegetation was characterised with field and remotely sensed data...

  18. Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-01-01

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe2O4@BaTiO3 MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells. PMID:24129652

  19. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells.

    PubMed

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-10-16

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe₂O₄ @BaTiO₃ MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells.

  20. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  1. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  2. Strong-field and attosecond physics in solids

    DOE PAGES

    Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...

    2014-10-08

    We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less

  3. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Lanctot, Matthew J.

    2016-10-01

    In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m 1 control, including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression). Optimal multi-harmonic (n=1 and n=2) error field control may be achieved using control algorithms that continuously respond to time-varying 3D field sources and plasma parameters. Supported by the US DOE under DE-FC02-04ER54698.

  4. Magnetic field control of microstructural development in melt-spun Pr2Co14 B

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Rios, Orlando; Conner, Ben S.; Carter, William G.; Huang, Mianliang; Sun, Kewei; Palasyuk, Olena; Jensen, Brandt; Zhou, Lin; Dennis, Kevin; Nlebedim, Ikenna C.; Kramer, Matthew J.

    2017-05-01

    In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr2Co14 B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress the nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr2Co14 B and α-Co in favor of Pr2Co17 . The results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.

  5. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array

    PubMed Central

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao

    2017-01-01

    Abstract Polymer‐based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400–600 kV mm−1, which may bring more challenges relating to the failure probability. Here, a simple two‐step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm−3 is achieved at low electric fields, i.e., 143 kV mm−1, which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm−2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis. PMID:29610724

  6. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOEpatents

    Holloway, Aleksey

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures.

  7. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOEpatents

    Holloway, A.

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

  8. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  9. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    NASA Astrophysics Data System (ADS)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C.; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B.-H.; Bao, Zhenan

    2016-11-01

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  10. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    PubMed

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  11. Microelectromechanical systems for experimental physics and optical telecommunications

    NASA Astrophysics Data System (ADS)

    Aksyuk, Vladimir Anatolyevich

    1999-12-01

    Micro-Electro-Mechanical Systems (MEMS) are an emerging technology, which, when applied to the field of physical sensors, offers not only an obvious advantage of being small and cheap, but more importantly, provides some unique experimental opportunities. These are based on the way physical properties scale with decreasing size. This thesis discusses these basic principles and corresponding advantages and limitations of MEMS technology and presents several experiments in which micromachines are used to do physical measurements that could not be done before. Three types of micromechanical magnetometers are demonstrated. When compared to the state of the art traditional techniques they show greater sensitivity, faster response and can be applied over a wider range of experimental conditions. The high-Q micromechanical torsional oscillator magnetometer is used to observe mesoscopic vortex physics, including single flux lines penetrating into a type-II superconductor just above the first critical field. The Faraday balance ``Trampoline'' magnetometer combines high sensitivity, high bandwidth and can be operated in a wide temperature range. It is used in both high pulsed magnetic fields to record deHaas-vanAlphen oscillations and in DC magnetic fields for magnetization measurements at temperatures down to 100mK. The high sensitivity DC torque magnetometer offers yet higher sensitivity and can be used for a variety of magnetization measurements. Several other MEMS devices for physics and telecommunications applications are presented, including a micromachined near field scanning optical microscope, MEMS fiberoptic switches and large-area large-angle scanners. They provide examples of complex functionality that can be achieved with micromechanics by combining sensors with inherently low-power electrostatic actuators. The optically powered optical power limiter demonstrates the possibility of operating MEMS with optical rather than electrical power.

  12. Quantum oscillations in the heavy-fermion compound YbPtBi

    DOE PAGES

    Mun, E.; Bud'ko, S. L.; Lee, Y.; ...

    2015-08-01

    We present quantum oscillations observed in the heavy-fermion compound YbPtBi in magnetic fields far beyond its field-tuned, quantum critical point. Quantum oscillations are observed in magnetic fields as low as 60 kOe at 60 mK and up to temperatures as high as 3 K, which confirms the very high quality of the samples as well as the small effective mass of the conduction carriers far from the quantum critical point. Although the electronic specific heat coefficient of YbPtBi reaches ~7.4 J/molK 2 in zero field, which is one of the highest effective mass values among heavy-fermion systems, we suppress itmore » quickly by an applied magnetic field. The quantum oscillations were used to extract the quasiparticle effective masses of the order of the bare electron mass, which is consistent with the behavior observed in specific heat measurements. Furthermore, such small effective masses at high fields can be understood by considering the suppression of Kondo screening.« less

  13. Characterization of lunar ferromagnetic phases by the effective linewidth method

    NASA Technical Reports Server (NTRS)

    Patton, C. E.; Schmidt, H.

    1978-01-01

    The effective line-width technique, first developed to study the physics of microwave relaxation in ferrites, has been successfully applied to lunar matter. Effective line-width measurements have been made on two selected samples containing disperse spherical metallic iron particles below 40 microns in diam. The data were obtained for fields from 7 to 12 kOe and a temperature range 125 - 300 K. The effective line width was field-independent and temperature-independent at 650 - 750 Oe. The high-field tails of the ferromagnetic resonance absorption were highly Lorentzian. From the relatively large and temperature-independent high-field effective line widths, it appears that (1) the metallic iron phases in lunar soil are rather impure; (2) the impurities are passive, in that there is no evidence for a temperature peak process; and (3) these samples contain no appreciable magnetite.

  14. Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.

    2016-07-01

    We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.

  15. Insights on the origin of the Tb5Ge4 magnetocaloric effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, J. H.; Barbosa, M. B.; Pires, A. L.

    2017-05-01

    In this report the magnetic, atomic structures and spin-lattice coupling have been thoroughly studied through high magnetic field magnetometry, Synchrotron X-ray diffraction under applied magnetic field and magnetostriction measurements in the Tb5Ge4 compounds. A field induced phase transition from an antiferromagnetic towards a ferromagnetic ordering was confirmed but with absence of structural transformation. This absence has been confirmed experimentally through synchrotron x-ray diffraction under applied field (up to 30 T). Moreover, this absence was explained via a thermodynamic free energy model: first principles calculations determined a large energy gap (ΔE=0.65 eV) between the two possible structures, O(I) and O(II). Frommore » magnetic and structural properties, a H-T phase diagram has been proposed for Tb5Ge4. Finally it was observed a large magnetostriction (up to 600 ppm) induced by ΔH=7 T.« less

  16. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  17. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  18. Electron nematic fluid in a strained S r3R u2O7 film

    NASA Astrophysics Data System (ADS)

    Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-04-01

    S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.

  19. Successive field-induced transitions in BiFeO 3 around room temperature

    DOE PAGES

    Kawachi, Shiro; Miyake, Atsushi; Ito, Toshimitsu; ...

    2017-07-21

    The effects of high magnetic fields applied perpendicular to the spontaneous ferroelectric polarization on single crystals of BiFeO 3 were investigated in this paper through magnetization, magnetostriction, and neutron diffraction measurements. The magnetostriction measurements revealed lattice distortion of 2 x 10 -5 during the reorientation process of the cycloidal spin order by applied magnetic fields. Furthermore, anomalous changes in magnetostriction and electric polarization at a larger field demonstrate an intermediate phase between cycloidal and canted antiferromagnetic states, where a large magnetoelectric effect was observed. Neutron diffraction measurements clarified that incommensurate spin modulation along the [110] hex direction in the cycloidalmore » phase becomes Q = 0 commensurate along this direction in the intermediate phase. Finally, theoretical calculations based on the standard spin Hamiltonian of this material suggest an antiferromagnetic cone-type spin order in the intermediate phase.« less

  20. High-field transport properties of a P-doped BaFe2As2 film on technical substrate.

    PubMed

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-12

    High temperature (high-T c ) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-T c Nb 3 Sn due probably to cost and processing issues. The recent discovery of a second class of high-T c materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe 2 As 2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, H c2 , moderate H c2 anisotropy, and intermediate T c . Here we report on in-field transport properties of P-doped BaFe 2 As 2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport J c of 10 5  A/cm 2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field J c over MgB 2 and NbTi, and a comparable level to Nb 3 Sn above 20 T. By analysing the E - J curves for determining J c , a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  1. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  2. Quasi-elastic light scattering of carnauba wax in the liquid phase: dynamics 2.

    PubMed

    de Almeida, F J; Barbosa, G A

    1983-12-01

    Quasi-elastic light scattering of carnauba wax in the liquid phase is obtained in a heterodyne setup, and dynamic processes are analyzed through electrophoresis. Nonspherical polar clusters are found, containing a net electrical charge. An applied square-wave electric field induces drift and rotation of these clusters.These effects are dependent on strength and frequency of the applied electric field. At 373 K and in the low frequency limit the local electric field strength is approximately 70 times the strength of the applied one. This enhancement is believed to be caused by collective orientation of the clusters. The electrophoretic mobility is 1.1 X 10(-12) m2/V sec in the high frequency limit and 7.4 X 10(-11) m2/V sec in the low frequency limit. The electric dipole moment is 6.3 X 10(-16) N(-1/2) m(-1/2) where N is the cluster density/cubic meter and the net charge is about one or two elementary charges.

  3. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  4. Investigation of smoothness-increasing accuracy-conserving filters for improving streamline integration through discontinuous fields.

    PubMed

    Steffen, Michael; Curtis, Sean; Kirby, Robert M; Ryan, Jennifer K

    2008-01-01

    Streamline integration of fields produced by computational fluid mechanics simulations is a commonly used tool for the investigation and analysis of fluid flow phenomena. Integration is often accomplished through the application of ordinary differential equation (ODE) integrators--integrators whose error characteristics are predicated on the smoothness of the field through which the streamline is being integrated--smoothness which is not available at the inter-element level of finite volume and finite element data. Adaptive error control techniques are often used to ameliorate the challenge posed by inter-element discontinuities. As the root of the difficulties is the discontinuous nature of the data, we present a complementary approach of applying smoothness-enhancing accuracy-conserving filters to the data prior to streamline integration. We investigate whether such an approach applied to uniform quadrilateral discontinuous Galerkin (high-order finite volume) data can be used to augment current adaptive error control approaches. We discuss and demonstrate through numerical example the computational trade-offs exhibited when one applies such a strategy.

  5. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    PubMed

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  6. Near-field transport imaging applied to photovoltaic materials

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moseley, John; ...

    2017-05-26

    We developed and applied a new analytical technique - near-field transport imaging (NF-TI or simply TI) - to photovoltaic materials. Charge-carrier transport is an important factor in solar cell performance, and TI is an innovative approach that integrates a scanning electron microscope with a near-field scanning optical microscope, providing the possibility to study luminescence associated with recombination and transport with high spatial resolution. In this paper, we describe in detail the technical barriers we had to overcome to develop the technique for routine application and the data-fitting procedure used to calculate minority-carrier diffusion length values. The diffusion length measured bymore » TI agrees well with the results calculated by time-resolved photoluminescence on well-controlled gallium arsenide (GaAs) thin-film samples. We report for the first time on measurements on thin-film cadmium telluride using this technique, including the determination of effective carrier diffusion length, as well as the first near-field imaging of the effect of a single localized defect on carrier transport and recombination in a GaAs heterostructure. Furthermore, by changing the scanning setup, we were able to demonstrate near-field cathodoluminescence (CL), and correlated the results with standard CL measurements. In conclusion, the TI technique shows great potential for mapping transport properties in solar cell materials with high spatial resolution.« less

  7. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  8. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Maize, Kerry; Qiu, Gang; Shakouri, Ali; Ye, Peide D.

    2017-08-01

    We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 1010 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low Rc, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications.

  9. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  10. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, J. S.; McKenzie, I.; Baker, P. J.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  11. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  12. Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder.

    PubMed

    Ward, S; Mena, M; Bouillot, P; Kollath, C; Giamarchi, T; Schmidt, K P; Normand, B; Krämer, K W; Biner, D; Bewley, R; Guidi, T; Boehm, M; McMorrow, D F; Rüegg, Ch

    2017-04-28

    The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.

  13. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    PubMed

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  14. Influence of planar macrodefects on the anisotropy of magnetic-flux penetration in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Cuche, E.; Indenbom, M. V.; André, M.-O.; Richard, P.; Benoit, W.; Wolf, Th.

    1996-02-01

    The magnetic flux penetration in a high-quality YBa 2Cu 3O 7-δ single crystal with an external field applied perpendicular to the crystalline c axis is directly visualized by means of the magneto-optical technique. The observations show that the field penetrates preferentially along the ab planes. Scanning acoustic microscopy reveals macrodefects along ab planes which strongly affect this anisotropy of the field penetration.

  15. Self-assembled tunable networks of sticky colloidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  16. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE PAGES

    Fancher, C. M.; Brewer, S.; Chung, C. C.; ...

    2016-12-27

    Here, the contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectricmore » permittivity of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  17. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  18. Riceland mosquito management practices for Anopheles quadrimaculatus larvae.

    PubMed

    Allen, R A; Wilkes, W W; Lewis, C N; Meisch, M V

    2008-12-01

    Two separate but related studies were conducted regarding management of Anopheles quadrimaculatus larval populations in commercial rice fields near Cleveland, MS, in 2004. Study 1 was to evaluate the effectiveness of 2 treatments of aerially applied ultra-low volume applications of Bacillus thuringiensis var. israelensis (Bti) against An. quadrimaculatus larvae in dense, high-canopy mid- to late-season rice crop. Study 2 was to investigate the effect of preflood treatments of lambda-cyhalothrin (Karate), which is commonly used against rice water weevil (Lissorhoptrus oryzophilus), on An. quadrimaculatus larvae. Excellent initial, but short residual control (>99% control 1 day after treatment) was observed in the Bti-treated fields in both mid- and late-season rice. Little or no effect on mosquito larvae was observed in the lambda-cyhalothrin-treated fields. Results indicate that Bti can be effectively used by mosquito management personnel to control larval populations of An. quadrimaculatus in late-season rice fields; however, lambda-cyhalothrin did not effectively control larval An. quadrimaculatus when applied preflood to rice fields.

  19. Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5

    PubMed Central

    Zhang, Q.; Li, G.; Rhodes, D.; Kiswandhi, A.; Besara, T.; Zeng, B.; Sun, J.; Siegrist, T.; Johannes, M. D.; Balicas, L.

    2013-01-01

    Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc ≅ 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. μ0Hc2 (T → 0 K) > 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, μ0Hc2 shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity. PMID:23486091

  20. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, C. M.; Brewer, S.; Chung, C. C.

    2017-03-01

    The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  1. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    NASA Astrophysics Data System (ADS)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  2. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    NASA Astrophysics Data System (ADS)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  3. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-07

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.

  4. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  5. Controlling turbulent drag across electrolytes using electric fields.

    PubMed

    Ostilla-Mónico, Rodolfo; Lee, Alpha A

    2017-07-01

    Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier-Stokes Poisson-Nernst-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.

  6. Progress on applications of high temperature superconducting microwave filters

    NASA Astrophysics Data System (ADS)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  7. Ion peak narrowing by applying additional AC voltage (ripple voltage) to FAIMS extractor electrode.

    PubMed

    Pervukhin, Viktor V; Sheven, Dmitriy G

    2010-01-01

    The use of a non-uniform electric field in a high-field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer increases sensitivity but decreases resolution. The application of an additional AC voltage to the extractor electrode ("ripple" voltage, U(ripple)) can overcome this effect, which decreases the FAIMS peak width. In this approach, the diffusion ion loss remains minimal in the non-uniform electric field in the cylindrical part of the device, and all ion losses under U(ripple) occur in a short portion of their path. Application of the ripple voltage to the extractor electrode is twice as efficient as the applying of U(ripple) along the total length of the device. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  8. Voltage control of a magnetic switching field for magnetic tunnel junctions with low resistance and perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tezuka, N.; Oikawa, S.; Matsuura, M.; Sugimoto, S.; Nishimura, K.; Irisawa, T.; Nagamine, Y.; Tsunekawa, K.

    2018-05-01

    The authors investigated the voltage control of a magnetic anisotropy field for perpendicular-magnetic tunnel junctions (p-MTJs) with low and high resistance-area (RA) products and for synthetic antiferromagnetic free and pinned layers. It was found that the sample with low RA products was more sensitive to the applied bias voltage than the sample with high RA products. The bias voltage effect was less pronounced for our sample with the synthetic antiferromagnetic layer for high RA products compared to the MTJs with single free and pinned layers.

  9. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors

    PubMed Central

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870

  10. Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.

    PubMed

    Lin, Yi-Feng; Chen, Jia-Ling

    2014-04-15

    Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Microwave Dissipation due to Vortices in High - Superconductors

    NASA Astrophysics Data System (ADS)

    Anand, Niraj

    1995-01-01

    Using meander line resonant structures, we perform highly sensitive measurements of the changes in surface resistance Delta R_{s} of Y{rm Ba}_{2} {rm Cu}_{3}{rm O }_{rm 7-x} thin films in order to probe vortex dynamics as a function of temperature, applied dc magnetic field (H), and angle (theta) of the applied field relative to the ab planes. In our experiments, we observe that the component of the magnetic field normal to the ab planes produces substantially more dissipation than the component parallel to the ab planes. By using an extension of the London theory to anisotropic superconductors, we can calculate the internal flux densities parallel (B_{ab}) and perpendicular (B_{c}) to the ab planes inside a superconductor for an arbitrary field orientation relative to the ab planes. For low fields, we can define a weight (delta) of the relative contribution to dissipation from B _{ab} relative to that from B _{c}. This allows us to calculate an "effective internal flux density and hence obtain the total dissipation. Using the results from this theory, we obtain excellent quantitative agreement with our measurements of Delta R_{s} vs. theta. This is only possible if we take into account both the anisotropic screening and the anisotropic response of the material. We have also measured the magnetic field dependence of dissipation for fields applied at shallow angles from the ab planes. Here we observe two regions of markedly different dissipation separated by a temperature dependent crossover field H_{cr}(T). For H>H_{cr}(T) we observe a strong linear dependence of Delta R_ {s} vs. H. For HH_{cr}(T)]. . We have also measured thermally activated motion of field-induced vortices in a uniform lattice of pinning sites produced by selectively removing superconducting island from a 1000times1000 array of proximity-effect Josephson junctions. Such a defect array can serve as a "model" system for studying pinning in granular materials such as the high-T_ {c} superconductors.

  12. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    NASA Astrophysics Data System (ADS)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  13. Space plasma physics at the Applied Physics Laboratory over the past half-century

    NASA Technical Reports Server (NTRS)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  14. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  15. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    NASA Astrophysics Data System (ADS)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  16. High Speed and High Functional Inverter Power Supplies for Plasma Generation and Control, and their Performance

    NASA Astrophysics Data System (ADS)

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.

  17. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    PubMed

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  18. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  19. On-demand trajectory control of continuously generated airborne microdroplets

    NASA Astrophysics Data System (ADS)

    Ishiwata, Tomoki; Sakai, Keiji

    2011-05-01

    A technique to control the trajectory of in-flight microdroplets is described. The localized electric field generated by a needle electrode applies the dielectrophoretic force to the droplet to deflect its trajectory. Deflection by as much as 0.2 rad can be achieved, sufficient for industrial use. Moreover, highly selective control among droplets in a stream was demonstrated with the electric field modulations of 10 μs, which corresponds to the sorting speed of 105 s-1. In contrast to the conventional electrostatic control, the proposed technique is effective also for insulating liquids, allowing it to be applied to a wider range of materials.

  20. Electric-field control of a hydrogenic donor's spin in a semiconductor

    NASA Astrophysics Data System (ADS)

    de, Amrit; Pryor, Craig E.; Flatté, Michael E.

    2009-03-01

    The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

  1. Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media

    NASA Astrophysics Data System (ADS)

    Toptygin, I. N.

    2017-12-01

    Applying a quantum mechanical treatment to a high-frequency macroscopic electromagnetic field and radiative phenomena in a medium, we construct quantum operators for energy-momentum tensor components in dispersive media and find their eigenvalues, which are different in the Minkowski and Abraham representations. It is shown that the photon momentum in a medium resulting from the quantization of the vector potential differs from that defined from Abraham’s symmetric energy-momentum-tensor but is equal to the momentum defined from the Minkowski tensor. A similar result is obtained by calculating the intrinsic angular momentum (spin) of an electro-magnetic field in the medium. Only the Minkowski tensor leads to the experimentally confirmed spin values that are multiples of ħ, providing the grounds for choosing the Minkowski representation as the proper form for the momentum density of a transverse electromagnetic field in a transparent medium, in both classical and quantum descriptions of the field. The Abraham representation is unsuitable for this purpose and leads to contradictions. The conclusion drawn does not apply to quasistatic and static fields.

  2. Practical fit functions for transport critical current versus field magnitude and angle data from (RE)BCO coated conductors at fixed low temperatures and in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Hilton, D. K.; Gavrilin, A. V.; Trociewitz, U. P.

    2015-07-01

    Applications of (RE = Y, Gd)BCO coated conductors for the generation of high magnetic fields are increasing sharply, this while (RE)BCO coated conductors themselves are evolving rapidly. This article describes and demonstrates recently developed and applied mathematical models that systematically and comprehensively characterize the transport critical current angular dependence of a batch of (RE)BCO coated conductor in high magnetic fields at fixed temperatures with an uncertainty of 10% or better. The model development was based on analysis of experimental data sets from various published sources and coated conductors with different microstructures. These derivations directly are applicable to the accurate prediction of the performance in high magnetic fields of coils wound with (RE)BCO coated conductors. In particular, a nonlinear fit is discussed in this article of transport critical current at T = 4.2 K versus field and angle data. This fit was used to estimate the hysteresis losses of (RE)BCO coated conductors in high magnetic fields, and to design the inserts wound with such conductors of the all-superconducting 32 T magnet being constructed at the NHMFL. A series of such fits, recently developed at several fixed temperatures, continues to be used to simulate the quench behavior of that magnet.

  3. Determination of boundaries between ranges of high and low gradient of beam profile.

    PubMed

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  4. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Alex Gurevich

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth’s magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not onlymore » an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher "medium field Qslope"), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.« less

  5. Possibility of wax control techniques in Indonesian oil fields

    NASA Astrophysics Data System (ADS)

    Abdurrahman, M.; Ferizal, F. H.; Husna, U. Z.; Pangaribuan, L.

    2018-03-01

    Wax is one of the common problem which can reduce the oil production, especially for the reservoir with high paraffin content case. When the temperature of crude oil is lower than pour point, wax molecules can begin rapidly precipitated. The impacts of this problem are the clogging of production equipment, sealing off the pores in the reservoir, and decreasing production flow rate. In order to solve the wax problem, several methods have been applied in some oil fields in the world. For example, chemical methods in Jiangsu field (China) and Mumbai High field (India), hot water in Mangala field (India), magnetic method in Daqing field (China), water-dispersible in Bakken basin (US), and microbial in Jidong field (China). In general, the various crude oils present in the Indonesia contain wax content between 10%-39% and pour point of 22°C-49°C. Hot water and chemical method are commonly used to solve wax problems in Indonesian oil fields. However, the primary solution is magnetic method, and the secondary solution is water dispersible.

  6. High microwave attenuation performance of planar carbonyl iron particles with orientation of shape anisotropy field

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Yang, Zhihong; Shen, Shile; Liang, Juan; Xu, Guoyue

    2018-05-01

    Planar anisotropy carbonyl iron (PACI) particles were prepared from commercial spherical carbonyl iron particles through a high performance ball-milling technique. The paraffin composites with orientation of shape anisotropy field for these PACI particles were obtained by applying an external magnetic field during the fabrication process. The frequency-dependent complex permeability values of these prepared paraffin composites have been investigated in the frequency range of 1-18 GHz. The results demonstrate that the orientation of shape anisotropy field for these PACI particles can effectively increase the complex permeability and decrease the complex permittivity values. Benefit from the enhancement in the complex permeability and reduction in the complex permittivity, the better impedance matching condition can be obtained and thus the good microwave absorption performance can be achieved for the samples with enough magnetic field orientation time.

  7. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  8. Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.

  9. Saturation of VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Williamson, M.; de Rozieres, M.; Almasi, H.; Chao, X.; Wang, W.; Wang, J.-P.; Tsoi, M.

    2018-05-01

    Voltage controlled magnetic anisotropy (VCMA) currently attracts considerable attention as a novel method to control and manipulate magnetic moments in high-speed and low-power spintronic applications based on magnetic tunnel junctions (MTJs). In our experiments, we use ferromagnetic resonance (FMR) to study and quantify VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB MTJ pillars. FMR is excited by applying a microwave current and detected via a small rectified voltage which develops across MTJ at resonance. The VCMA effective field can be extracted from the measured resonance field and was found to vary as a function of electrical bias applied to MTJ. At low applied biases, we observe a linear shift of the VCMA field as a function of the applied voltage which is consistent with the VCMA picture based on the bias-induced electron migration across the MgO/CoFeB interface. At higher biases, both positive and negative, we observe a deviation from the linear behavior which may indicate a saturation of the VCMA effect. These results are important for the design of MTJ-based applications.

  10. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A.

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field anglemore » dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.« less

  11. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn

    2017-02-10

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less

  12. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    NASA Astrophysics Data System (ADS)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  13. Preferred Orientation of Rare Earth (RE)-Doped Alumina Crystallites by an Applied Magnetic Field

    DTIC Science & Technology

    2016-06-01

    Magnetic Field by Victoria L Blair, Raymond E Brennan, and Jane W Adams Weapons and Materials Research Directorate, ARL Carli A Moorehead...public release; distribution is unlimited. 16 13. Terada N, Suzuki HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metok N. In situ neutron diffraction...HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. Neutron diffraction texture analysis for alpha-Al2O3 oriented by high magnetic field and

  14. Practical field repair of fused slurry silicide coating for space shuttle t.p.s.

    NASA Technical Reports Server (NTRS)

    Reznik, B. D.

    1971-01-01

    Study of short-time high-temperature diffusion treatments as part of a program of development of methods of reapplying fused slurry silicide coating in the field. The metallographic structure and oxidation behavior of R512E applied to Cb-752 coated under simulated field repair conditions was determined. Oxidation testing in reduced pressure environment has shown that performance equivalent to furnace-processed specimens can be obtained in a two-minute diffusion at 2700 F.

  15. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    DTIC Science & Technology

    2005-07-01

    to the field produces a field parallel to the applied magnetic field. Pauli param- agnetism (also called free-electron paramagnetism) occurs because of...ordering at temperatures below liquid helium (LHe) [103]. Jung et al. report the growth of Zn1−xMnxO (x = 0.1, 0.3) by laser molecular beam epitaxy...May 2003). 49. Josephson, B. D. “Possible New Effects in Superconductive Tunnelling,” Physics Letters , 1 (7):251–253 (July 1962). 50. Jung , S. W

  16. Localization of firearm projectiles in the human body using a superconducting quantum interference device magnetometer: A theoretical study

    NASA Astrophysics Data System (ADS)

    Hall Barbosa, C.

    2004-06-01

    A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.

  17. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  18. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy

    NASA Astrophysics Data System (ADS)

    Kuncser, A.; Antohe, S.; Kuncser, V.

    2017-02-01

    Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.

  19. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.

    The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detectedmore » by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H{sup -} ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.« less

  1. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  2. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  3. 22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

    NASA Astrophysics Data System (ADS)

    Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.

    2018-05-01

    We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).

  4. M-H characteristics and demagnetization resistance of samarium-cobalt permanent magnets to 300 C

    NASA Technical Reports Server (NTRS)

    Niedra, J. M.

    1992-01-01

    The influence of temperature on the M-H demagnetization characteristics of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperatures in demagnetization-resistant permanent magnet devices. In high temperature space power converters, such as free-piston Stirling engine driven linear alternators, magnet demagnetization can occur as long-term consequence of thermal agitation of domains and of metallurgical change, and also as an immediate consequence of too large an applied field. Investigated here is the short-term demagnetization resistance to applied fields derived from basic M-H data. These quasistatic demagnetization data were obtained for commercial, high-intrinsic-coercivity, Sm2Co17-type magnets from 5 sources, in the temperature range 23 to 300 C. An electromagnet driven, electronic hysteresigraph was used to test the 1-cm cubic samples. The observed variation of the 2nd quadrant M-H characteristics was a typical rapid loss of M-coercivity and a relatively lesser loss of remanence with increasing temperature.

  5. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  6. Changes in the superconducting properties of high-T(sub c) ceramics produced by applied electric fields

    NASA Technical Reports Server (NTRS)

    Smirnov, B. I.; Orlova, T. S.; Kaufmann, H.-J.

    1995-01-01

    Effect of an electrostatic field in the electrode-insulator-superconductor system on the current-voltage characteristics of high-T(sub c) ceramics with various composition and different preparation technology has been studied at 77 K. Ceramics of Y-Ba-Cu-O (123) and Bi-Pb-Sr-Ca-Cu-O (2223) systems and also ones doped by Ag have been used. Electric field strength has been up to 140 MV/m. It has been shown that there are reversible changes in the critical current I(sub c) and in the conductivity in electric field at the currents somewhat more than I(sub c) at T is less than T(sub c), while at T is greater than T(sub c) the noticeable electric field effect has not been found. These effects are qualitatively similar in both ceramic systems. High negative and positive gate voltages result in an increase of the conductivity. The electric field effect is modified by magnetic field H. The field effect decreases with increasing magnetic field and disappears at H is greater than 30 Oe. In Y-Ba-Cu-O/Ag (10 wt. percent) ceramics the field effect is practically absent. It may be supposed that in the ceramics the field-induced effect is consistent with weak links at grain boundaries.

  7. Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.

    2017-04-01

    An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.

  8. Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang

    2016-05-01

    The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.

  9. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  10. Control over Janus micromotors by the strength of a magnetic field

    NASA Astrophysics Data System (ADS)

    Baraban, Larysa; Makarov, Denys; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Leiderer, Paul; Erbe, Artur

    2013-01-01

    For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation.For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation. Electronic supplementary information (ESI) available: Videos (1-3) describe the behavior of the magnetic Janus micromotors at different magnetic fields applied. The magnetic field is always applied along the positive direction of the y-axis. All the movies are recorded at the same frame rate of 21 images per second. Experiments were performed at 30 wt% of hydrogen peroxide in aqueous solution. Video 1 shows the motion of the Janus micromotors when a small magnetic field is applied (B = 0.2 mT). The particle is propelled in the direction ``opposite to the cap'' with a velocity of about 6 μm s-1. Video 2 displays the motion of the same Janus bead when an intermediately strong magnetic field is applied (B = 1.5 mT). The particle still moves in the direction ``opposite to the cap'', but with a much smaller velocity of about 1 μm s-1. Video 3 shows the behavior of the Janus micromotor, exposed to the high magnetic field B = 2.2 mT. The particle moves in the direction ``towards the cap'' with the speed of about 4 μm s-1. See DOI: 10.1039/c2nr32662k

  11. Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz

    An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.

  12. Development of very small-diameter, inductively coupled magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Mishio, A.; Nakagawa, T.; Shinohara, S.

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (˜1019 m-3) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ˜1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  13. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  14. Electric field enhanced hydrogen storage on polarizable materials substrates

    PubMed Central

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  15. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    PubMed

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy

  16. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  17. Magnetic nanopantograph in the SrCu2(BO3)2 Shastry–Sutherland lattice

    PubMed Central

    Radtke, Guillaume; Saúl, Andrés; Dabkowska, Hanna A.; Salamon, Myron B.; Jaime, Marcelo

    2015-01-01

    Magnetic materials having competing, i.e., frustrated, interactions can display magnetism prolific in intricate structures, discrete jumps, plateaus, and exotic spin states with increasing applied magnetic fields. When the associated elastic energy cost is not too expensive, this high potential can be enhanced by the existence of an omnipresent magnetoelastic coupling. Here we report experimental and theoretical evidence of a nonnegligible magnetoelastic coupling in one of these fascinating materials, SrCu2(BO3)2 (SCBO). First, using pulsed-field transversal and longitudinal magnetostriction measurements we show that its physical dimensions, indeed, mimic closely its unusually rich field-induced magnetism. Second, using density functional-based calculations we find that the driving force behind the magnetoelastic coupling is the CuOCu^ superexchange angle that, due to the orthogonal Cu2+ dimers acting as pantographs, can shrink significantly (0.44%) with minute (0.01%) variations in the lattice parameters. With this original approach we also find a reduction of ∼10% in the intradimer exchange integral J, enough to make predictions for the highly magnetized states and the effects of applied pressure on SCBO. PMID:25646467

  18. Performance of precision mobile drip irrigation in the Texas High Plains region

    USDA-ARS?s Scientific Manuscript database

    Mobile drip irrigation (MDI) technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, info...

  19. Magnetic field control of microstructural development in melt-spun Pr 2 Co 14 B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Rios, Orlando; Conner, Ben S.

    In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr 2Co 14B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress themore » nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr 2Co 14B and α-Co in favor of Pr 2Co 17. Here, the results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.« less

  20. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  1. Magnetic field control of microstructural development in melt-spun Pr 2 Co 14 B

    DOE PAGES

    McGuire, Michael A.; Rios, Orlando; Conner, Ben S.; ...

    2017-01-27

    In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr 2Co 14B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress themore » nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr 2Co 14B and α-Co in favor of Pr 2Co 17. Here, the results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.« less

  2. Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display.

    PubMed

    Liu, Mali; Lu, Chihao; Li, Haifeng; Liu, Xu

    2018-02-19

    We propose a bifocal computational near eye light field display (bifocal computational display) and structure parameters determination scheme (SPDS) for bifocal computational display that achieves greater depth of field (DOF), high resolution, accommodation and compact form factor. Using a liquid varifocal lens, two single-focal computational light fields are superimposed to reconstruct a virtual object's light field by time multiplex and avoid the limitation on high refresh rate. By minimizing the deviation between reconstructed light field and original light field, we propose a determination framework to determine the structure parameters of bifocal computational light field display. When applied to different objective to SPDS, it can achieve high average resolution or uniform resolution display over scene depth range. To analyze the advantages and limitation of our proposed method, we have conducted simulations and constructed a simple prototype which comprises a liquid varifocal lens, dual-layer LCDs and a uniform backlight. The results of simulation and experiments with our method show that the proposed system can achieve expected performance well. Owing to the excellent performance of our system, we motivate bifocal computational display and SPDS to contribute to a daily-use and commercial virtual reality display.

  3. Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.

    PubMed

    Hou, T P; Wu, K M; Liu, W M; Peet, M J; Hulme-Smith, C N; Guo, L; Zhuang, L

    2018-02-14

    Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M 23 C 6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M 23 C 6 is more dependent on external field effects than thermal effects, whereas that of M 2 C, M 3 C and M 7 C 3 is mainly determined by thermal effects.

  4. Highly sensitive protein detection by combination of atomic force microscopy fishing with charge generation and mass spectrometry analysis.

    PubMed

    Ivanov, Yuri D; Pleshakova, Tatyana; Malsagova, Krystina; Kozlov, Andrey; Kaysheva, Anna; Kopylov, Arthur; Izotov, Alexander; Andreeva, Elena; Kanashenko, Sergey; Usanov, Sergey; Archakov, Alexander

    2014-10-01

    An approach combining atomic force microscopy (AFM) fishing and mass spectrometry (MS) analysis to detect proteins at ultra-low concentrations is proposed. Fishing out protein molecules onto a highly oriented pyrolytic graphite surface coated with polytetrafluoroethylene film was carried out with and without application of an external electric field. After that they were visualized by AFM and identified by MS. It was found that injection of solution leads to charge generation in the solution, and an electric potential within the measuring cell is induced. It was demonstrated that without an external electric field in the rapid injection input of diluted protein solution the fishing is efficient, as opposed to slow fluid input. The high sensitivity of this method was demonstrated by detection of human serum albumin and human cytochrome b5 in 10(-17) -10(-18) m water solutions. It was shown that an external negative voltage applied to highly oriented pyrolytic graphite hinders the protein fishing. The efficiency of fishing with an external positive voltage was similar to that obtained without applying any voltage. © 2014 FEBS.

  5. Wavelet transform processing applied to partial discharge evaluation

    NASA Astrophysics Data System (ADS)

    Macedo, E. C. T.; Araújo, D. B.; da Costa, E. G.; Freire, R. C. S.; Lopes, W. T. A.; Torres, I. S. M.; de Souza Neto, J. M. R.; Bhatti, S. A.; Glover, I. A.

    2012-05-01

    Partial Discharge (PD) is characterized by high frequency current pulses that occur in high voltage (HV) electrical equipments originated from gas ionization process when damaged insulation is submitted to high values of electric field [1]. PD monitoring is a useful method of assessing the aging degree of the insulation, manufacturing defects or chemical/mechanical damage. Many sources of noise (e.g. radio transmissions, commutator noise from rotating machines, power electronics switching circuits, corona discharge, etc.) can directly affect the PD estimation. Among the many mathematical techniques that can be applied to de-noise PD signals, the wavelet transform is one of the most powerful. It can simultaneously supply information about the pulse occurrence, time and pulse spectrum, and also de-noise in-field measured PD signals. In this paper is described the application of wavelet transform in the suppression of the main types of noise that can affect the observation and analysis of PD signals in high voltage apparatus. In addition, is presented a study that indicates the appropriated mother-wavelet for this application based on the cross-correlation factor.

  6. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  7. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  8. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO 3 thin films

    DOE PAGES

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; ...

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001) p-oriented BiFeO 3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  9. Laser-photofield emission from needle cathodes for low-emittance electron beams.

    PubMed

    Ganter, R; Bakker, R; Gough, C; Leemann, S C; Paraliev, M; Pedrozzi, M; Le Pimpec, F; Schlott, V; Rivkin, L; Wrulich, A

    2008-02-15

    Illumination of a ZrC needle with short laser pulses (16 ps, 266 nm) while high voltage pulses (-60 kV, 2 ns, 30 Hz) are applied, produces photo-field emitted electron bunches. The electric field is high and varies rapidly over the needle surface so that quantum efficiency (QE) near the apex can be much higher than for a flat photocathode due to the Schottky effect. Up to 150 pC (2.9 A peak current) have been extracted by photo-field emission from a ZrC needle. The effective emitting area has an estimated radius below 50 microm leading to a theoretical intrinsic emittance below 0.05 mm mrad.

  10. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  11. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.

    PubMed

    Noda, Naoki; Kamimura, Shinji

    2008-02-01

    With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.

  12. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    PubMed Central

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated. PMID:28139667

  13. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling.

    PubMed

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-31

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  14. Scale Dependend Investigations of the Dynamic State Index Concerning the QG-Theory

    NASA Astrophysics Data System (ADS)

    Mueller, Annette; Névir, Peter

    2017-04-01

    The Dynamic State Index (DSI) indicates local deviations of the atmospheric flow field from a steady wind solution based on the primitive equations under adiabatic and inviscid conditions. We represent generalizations of the DSI for reduced models given by the quasi-geostrophic theory and the Rossby-model. By applying a Fourier transformation to the circumpolar geopotential height field we demonstrate the characteristic dipole structure of the DSI-field related to atmospheric waves. Furthermore, by applying data of the COSMO-DE model of the German Weather Service (DWD), we compare the vertical profile of all three DSI-parameters concerning classes with and without precipitation. We work out that the relation to precipitation decreases with increasing approximation, but in all scales, it can be shown that the DSI is highly correlated to diabatic processes.

  15. Vortex shaking study of REBCO tape with consideration of anisotropic characteristics

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min

    2017-09-01

    The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.

  16. Distribution patterns of MCA-coated granules aerially applied to corn fields of Southern Hungary between 2000 and 2002.

    PubMed

    Wennemann, L; Hummel, H E

    2003-01-01

    Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial application is a viable tool for disseminating MCA in corn fields.

  17. Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field

    NASA Astrophysics Data System (ADS)

    Higuchi, Katsuhiko; Hamal, Dipendra Bahadur; Higuchi, Masahiko

    2018-05-01

    We propose a nonperturbative method to calculate the butterfly diagram of energy spectra for materials immersed in a magnetic field. We apply the proposed method to a crystalline silicon immersed in a magnetic field. It is shown that the conventional Hofstadter butterfly diagram is of low accuracy not only in the high magnetic field region of the diagram but also even in the experimentally available magnetic field region. This means that the present butterfly diagram is regarded as a replacement for the Hofstadter butterfly diagram. We also show that the correction to the Hofstadter buttery diagram would be observed under the ultrahigh magnetic field that is available in experiments.

  18. Development of an YBCO coil with SSTC conductors for high field application

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  19. Development of indirect EFBEM for radiating noise analysis including underwater problems

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Wung; Hong, Suk-Yoon; Song, Jee-Hun

    2013-09-01

    For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.

  20. Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi

    With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.

  1. Experimental study of strained and destrained turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Meneveau, Charles; Katz, Joseph

    2003-11-01

    Planar Particle Image Velocimetry measurements are performed in a water tank facility in which high Reynolds number turbulence is generated by an array of spinning grids. Straining fields are applied using a piston with rectangular cross-section which is pushed towards the bottom of the tank, setting up a planar straining field there. The facility can also be used to reverse the distortion ("destraining'') by pulling the piston upwards. We present calibration tests characterizing the flow in the facility. The initial turbulent state is characterized by means of ditributions of rms values and energy spectra, and corresponds closely to isotropic, homogeneous turbulence. The applied straining is characterized using high-speed camera and PIV measurements of the mean flow without turbulence. Initial results of turbulence subjected to a sequence of straining and destraining motions are presented, with particular emphasis on the flux of kinetic energy from large to small scales and possible backscatter during destraining.

  2. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  3. Inductively-Charged High-Temperature Superconductors And Methods Of Use

    DOEpatents

    Bromberg, Leslie

    2003-09-16

    The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.

  4. An Applied-Scientific Approach to Field Assessments - Try It Out - A Field Guide for Practitioners (Une approche scientifique des evaluations de terrain - Essayer le - Un guide de terrain a destination des praticiens)

    DTIC Science & Technology

    2017-12-01

    settings – be it field trials, field experiments, tests or evaluations . This guide is based on experience of the the NATO STO Task Group (HFM-211...practice by the Task Group. Feedback from defence colleges and Training and Evaluation staffs is highly welcomed. ES - 2 STO-TR-HFM-211 Une... evaluation programs have been setup to analyse and demonstrate the added value and effectiveness of new developments such as new operational concepts, new

  5. Threats to ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis

    2009-08-01

    In 2004 the European Commission (EC) adopted a directive restricting occupational exposure to electromagnetic fields. This directive (2004/40/CE), which examines the possible health risks of the electromagnetic fields from mobile phones, Wi-Fi, Bluetooth and other devices, concluded that upper limits on radiation and applied electromagnetic fields are necessary to prevent workers from suffering any undue acute health effects. But although not initially intended, the biggest impact of the directive could be on magnetic resonance imaging (MRI), which is used in hospitals worldwide to produce images of unrivalled quality of the brain and other soft tissues.

  6. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    PubMed

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  7. Laser-driven interactions and resultant instabilities in materials with high dielectric constant

    NASA Astrophysics Data System (ADS)

    Rajpoot, Moolchandra; Dixit, Sanjay

    2015-07-01

    An analytical investigation of nonlinear interactions resulting in parametric amplification of acoustic wave is made by obtaining the dispersion relation using hydrodynamic model of inhomogeneous plasma by applying large static field at an arbitrary angle with the pump wave. The investigation shows that many early studies have neglected dependence of dielectric constant on deformation of materials but deformation of materials does infect depends on the dielectric constant of medium. Thus we have assumed to high dielectric material like BaTiO3 which resulted in substantially high growth rate of threshold electric field which opens a new dimension to study nonlinear interactions and instabilities.

  8. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    PubMed

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  10. Effects of uniaxial pressure on the quantum tunneling of magnetization in a high-symmetry Mn12 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Atkinson, James H.; Fournet, Adeline D.; Bhaskaran, Lakshmi; Myasoedov, Yuri; Zeldov, Eli; del Barco, Enrique; Hill, Stephen; Christou, George; Friedman, Jonathan R.

    2017-05-01

    The symmetry of single-molecule magnets dictates their spin quantum dynamics, influencing how such systems relax via quantum tunneling of magnetization (QTM). By reducing a system's symmetry, through the application of a magnetic field or uniaxial pressure, these dynamics can be modified. We report measurements of the magnetization dynamics of a crystalline sample of the high-symmetry [M n12O12(O2CMe) 16(Me OH ) 4].M e OH single-molecule magnet as a function of uniaxial pressure applied either parallel or perpendicular to the sample's "easy" magnetization axis. At temperatures between 1.8 and 3.3 K, magnetic hysteresis loops exhibit the characteristic steplike features that signal the occurrence of QTM. After applying uniaxial pressure to the sample in situ, both the magnitude and field position of the QTM steps changed. The step magnitudes were observed to grow as a function of pressure in both arrangements of pressure, while pressure applied along (perpendicular to) the sample's easy axis caused the resonant-tunneling fields to increase (decrease). These observations were compared with simulations in which the system's Hamiltonian parameters were changed. From these comparisons, we determined that parallel pressure induces changes to the second-order axial anisotropy parameter as well as either the fourth-order axial or fourth-order transverse parameter, or to both. In addition, we find that pressure applied perpendicular to the easy axis induces a rhombic anisotropy E ≈D /2000 per kbar that can be understood as deriving from a symmetry-breaking distortion of the molecule.

  11. Effect of external magnetic field on the crystal growth of nano-structured Zn xMn 1- x+ yZr yFe 2-2 yO 4 thin films

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.

    2011-06-01

    Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.

  12. The dynamic resistance of YBCO coated conductor wire: effect of DC current magnitude and applied field orientation

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Zhou, Wei; Li, Quan; Yao, Min; Fang, Jin; Amemiya, Naoyuki; Bumby, Chris W.

    2018-07-01

    Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ˜12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles.

  13. High-Temperature (940 °C) furnace in 18/20 T cold bore magnet

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Hou, Yubin; Feng, Qiyuan; Dong, Hongliang; Lu, Qingyou

    2018-01-01

    We present a high-temperature furnace that can work continuously in an 18/20 T cold bore magnet. A specially designed liquid nitrogen (LN2) jacket is between the high-temperature parts of the furnace and the liquid helium in the magnet Dewar. With LN2 serving as the cooling medium, the calculated value of radiation received by the liquid helium (LHe) is as low as 0.004 W. The furnace can be put into LHe Dewar directly. Together with the magnet, the furnace can provide experimental conditions of a strong static magnetic field and temperatures up to 940 °C. A cobalt oxide synthesis in solution was carried out at 200 °C with and without a 15 T magnetic field for 8 h. Differences in material structure with the applied field were observed in transmission electron micrographs of the products. A Co film sample was treated at 900 °C with and without a 6.8 T magnetic field for 30 min. The scanning electron micrographs of the treated samples show that magnetic field had a clear effect on the heat treatment process. These two applications confirmed the performance of the furnace both in high magnetic field and at high temperature.

  14. Search for multipolar instability in URu2Si2 studied by ultrasonic measurements under pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Mombetsu, S.; Hidaka, H.; Amitsuka, H.; Cong, P. T.; Yasin, S.; Zherlitsyn, S.; Wosnitza, J.; Huang, K.; Kanchanavatee, N.; Janoschek, M.; Maple, M. B.; Aoki, D.

    2018-04-01

    The elastic properties of URu2Si2 in the high magnetic field region above 40 T, over a wide temperature range from 1.5 to 120 K, were systematically investigated by means of high-frequency ultrasonic measurements. The investigation was performed at high magnetic fields to better investigate the innate bare 5 f -electron properties, since the unidentified electronic thermodynamic phase of unknown origin, the so-called "hidden order" (HO), and associated hybridization of conduction and f electrons (c -f hybridization) are suppressed at high magnetic fields. From the three different transverse modes we find contrasting results; both the Γ4(B2 g) and Γ5(Eg) symmetry modes C66 and C44 show elastic softening that is enhanced above 30 T, while the characteristic softening of the Γ3(B1 g) symmetry mode (C11-C12)/2 is suppressed in high magnetic fields. These results underscore the presence of a hybridization-driven Γ3(B1 g) lattice instability in URu2Si2 . However, the results from this work cannot be explained by using existing crystalline electric field schemes applied to the quadrupolar susceptibility in a local 5 f2 configuration. Instead, we present an analysis based on a band Jahn-Teller effect.

  15. Analytical approximations for effective relative permeability in the capillary limit

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.

    2016-10-01

    We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of ln⁡k is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.

  16. Principle of radial transport in low temperature annular plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electricmore » field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.« less

  17. Method for making field-structured memory materials

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Tigges, Chris P.

    2002-01-01

    A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.

  18. Highly cited articles in health care sciences and services field in Science Citation Index Expanded. A bibliometric analysis for 1958 - 2012.

    PubMed

    Hsu, Y-H E; Ho, Y-S

    2014-01-01

    This study aimed to identify and analyze characteristics of highly cited articles published in the Web of Science category of health care sciences and services from 1958 to 2012. Articles that have been cited at least 100 times were assessed regarding publication outputs, distribution of outputs in journals, publications of authors, institutions, countries as well as citation life cycles of the articles with the highest total citations since its publication up to 2012 and the highest citations in 2012. Six bibliometric indicators were used to evaluate source countries, institutions, and authors. Total citations from the time the articles were first published to the end of 2012 and citations in 2012 only were applied. Additionally, Y-index was applied to evaluate publication characteristics of authors. A high percentage of authors had the same numbers of first author and corresponding author status of highly cited articles in health care sciences and services field. RESULTS showed that 890 of the most highly referenced articles, published between 1977 and 2009, had been cited at least 100 times. Medical Care and Journal of General Internal Medicine published the most highly cited articles. The United States produced 76% of highly cited articles and also published the most number of independent, internationally collaborative, first authored, corresponding authored, and single author highly cited articles. The Harvard University was the most productive institute and was number one for the total highly cited articles, inter-institutionally collaborative articles, single institution articles, first author articles, and corresponding author articles. The application of quantitative techniques in the analysis of highly cited articles can improve the researchers' understanding of the directions in health care sciences and services field. Y-index is useful for the evaluation of contributing authors.

  19. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  20. Refractory clad transient internal probe for magnetic field measurements in high temperature plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Cellamare, Vincent; Jarboe, Thomas R.; Mattick, Arthur T.

    2005-05-01

    The transient internal probe (TIP) is a diagnostic for local internal field measurements in high temperature plasmas. A verdet material, which rotates the polarization angle of the laser light under magnetic fields, is launched into a plasma at about 1.8km/s. A linearly polarized Ar+ laser illuminates the probe in transit and the light retroreflected from the probe is analyzed to determine the local magnetic field profiles. The TIP has been used for magnetic field measurements on the helicity injected torus where electron temperature Te⩽80eV. In order to apply the TIP in higher temperature plasmas, refractory clad probes have been developed utilizing a sapphire tube, rear disc, and a MgO window on the front. The high melting points of these refractory materials should allow probe operation at plasma electron temperatures up to Te˜300eV. A retroreflecting probe has also been developed using "catseye" optics. The front window is replaced with a plano-convex MgO lens, and the back surface of the probe is aluminized. This approach reduces spurious polarization effects and provides refractory cladding for the probe entrance face. In-flight measurements of a static magnetic field demonstrate the ability of the clad probes to withstand gun-launch acceleration, and provide high accuracy measurements of magnetic field.

  1. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Konecny, R.; Antipov, S.

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures inmore » many accelerator applications.« less

  2. Application of near field communication for health monitoring in daily life.

    PubMed

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  3. REBCO tape performance under high magnetic field

    NASA Astrophysics Data System (ADS)

    Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal

    2017-08-01

    New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  4. SU-E-T-414: Experimental Correction of High-Z Electrode Effect in Mini-Ionization Chambers for Small Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraga-Gutierrez, J

    Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth withmore » SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.« less

  5. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  6. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  7. Simulations of the plasma dynamics in high-current ion diodes

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.

    Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.

  8. Babinet principle applied to the design of metasurfaces and metamaterials.

    PubMed

    Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M

    2004-11-05

    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

  9. Effect of electric field and temperature gradient on orientational dynamics of nematics encapsulated in a hallow cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Maslennikov, P. V.

    2018-05-01

    We have considered a homogeneously oriented liquid crystal (HOLC) microvolume, confined between two infinitely long horizontal coaxial cylinders subjected to both a temperature gradient ∇T and a radially applied electric field E . We have investigated dynamic field pumping, i.e. studied the interactions between director, velocity, electric fields, as well as a radially applied temperature gradient, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T and E in producing hydrodynamic flow, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HOLC cavity. Calculations show that, under the effect of the named perturbations and at high curvature of the inner cylinder, the HOLC microvolume settles down to a nonstandard pumping regime with maximum flow in the vicinity of the cooler inner cylinder.

  10. Current flow instability and nonlinear structures in dissipative two-fluid plasmas

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.

    2018-01-01

    The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.

  11. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    NASA Astrophysics Data System (ADS)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  12. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    PubMed

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  13. Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin

    NASA Astrophysics Data System (ADS)

    Moran, Bradley M.

    Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin. Experiments are performed at 1 K on samples located within a glassy matrix, using the high-resolution technique spectral hole-burning. The internal electric field distributions can be explored by implementing a unique mathematical treatment for analyzing the effect that externally applied electric fields have on the spectral hole profiles. Precise control of the light field, the temperature, and the externally applied electric field at the site of the sample is crucial. Experimentally, the functionality of custom cryogenic temperature confocal scanning microscope was extended to allow for collection of imaging and spectral data with the ability to modulate the polarization of the light at the sample. Operation of the instrumentation was integrated into a platform allowing for seamless execution of input commands with high temporal inter-instrument resolution for collection of data streams. For the regulated control and cycling of the sample temperature. the thermal characteristics of the research Dewar were theoretically modeled to systematically predict heat flows throughout the system. A high voltage feedthrough for delivering voltages of up to 5000 V to the sample as positioned within the Dewar was developed. The burning of spectral holes with this particular experimental setup is highly repeatable. The quantum mechanical treatment that is employed during analysis of the experimental data requires the state energies and the transition dipole moments of the porphyrin probe. The configuration interaction, as well as the coupled-cluster approaches, have been investigated for their ability to produce realistic valuations for these calculated quantities as gauged by their ability to accurately reproduce valuations for spectroscopically observable transition energies. A capacitive cell, for the determination of a material's dielectric permittivity, necessary for defining the magnitude of the externally applied electric field at the sample, was developed and shown to successfully yield permittivity valuations for various media in accordance with those reported the literature, while offering the ability to provide measures for permittivities over the temperature range of 1-300 K.

  14. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III

    2003-01-01

    An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  15. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  16. Effect of Soil Fumigation on Degradation of Pendimethalin and Oxyfluorfen in Laboratory and Ginger Field Studies.

    PubMed

    Huang, Bin; Li, Jun; Fang, Wensheng; Liu, Pengfei; Guo, Meixia; Yan, Dongdong; Wang, Qiuxia; Cao, Aocheng

    2016-11-23

    Herbicides are usually applied to agricultural fields following soil fumigation to provide effective weed control in high-value cash crops. However, phytotoxicity has been observed in ginger seedlings following the application of herbicides in fumigated fields. This study tested a mixture of herbicides (pendimethalin and oxyfluorfen) and several fumigant treatments in laboratory and field studies to determine their effect on the growth of ginger. The results showed that soil fumigation significantly (P < 0.05) extended the degradation period of these herbicides in the field and in laboratory studies. The half-life of pendimethalin was extended by an average of approximately 1.29 times in the field and 1.74 times in the laboratory. The half-life of oxyfluorfen was extended by an average of about 1.19 times in the field and 1.32 times in the laboratory. Moreover, the extended period of herbicide degradation in the fumigant and nonfumigant treatments significantly reduced ginger plant height, leaf number, stem diameter, and the chlorophyll content. The study concluded that applying a dose below the recommended rate of these herbicides in chloropicrin (CP) or CP + 1,3-dichloropropene fumigated ginger fields is appropriate, as application of the recommended herbicide dose in fumigated soil may be phytotoxic to ginger.

  17. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  18. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon; ...

    2017-12-28

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  19. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    NASA Astrophysics Data System (ADS)

    Danilov, A. A.; Kramarenko, V. K.; Nikolaev, D. V.; Rudnev, S. G.; Salamatova, V. Yu; Smirnov, A. V.; Vassilevski, Yu V.

    2013-04-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  20. Controlled Waveform Magnets

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Schlllig, J. B.

    Issues for the design and operation of high field controlled waveform magnets and their power supplies are discussed. The basic technical elements are reviewed and applied to problems specific to this class of magnets. Examples are given along with a guide to the literature.

  1. High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements.

    PubMed

    Fischer, Andreas; Kupsch, Christian; Gürtler, Johannes; Czarske, Jürgen

    2015-09-21

    Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.

  2. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  3. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  4. Magnetic heat pumping

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1978-01-01

    A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.

  5. Exact analysis of surface field reduction due to field-emitted vacuum space charge, in parallel-plane geometry, using simple dimensionless equations

    NASA Astrophysics Data System (ADS)

    Forbes, Richard G.

    2008-10-01

    This paper reports (a) a simple dimensionless equation relating to field-emitted vacuum space charge (FEVSC) in parallel-plane geometry, namely 9ζ2θ2-3θ-4ζ+3=0, where ζ is the FEVSC "strength" and θ is the reduction in emitter surface field (θ =field-with/field-without FEVSC), and (b) the formula j =9θ2ζ/4, where j is the ratio of emitted current density JP to that predicted by Child's law. These equations apply to any charged particle, positive or negative, emitted with near-zero kinetic energy. They yield existing and additional basic formulas in planar FEVSC theory. The first equation also yields the well-known cubic equation describing the relationship between JP and applied voltage; a method of analytical solution is described. Illustrative FEVSC effects in a liquid metal ion source and in field electron emission are discussed. For Fowler-Nordheim plots, a "turn-over" effect is predicted in the high FEVSC limit. The higher the voltage-to-local-field conversion factor for the emitter concerned, then the higher is the field at which turn over occurs. Past experiments have not found complete turn over; possible reasons are noted. For real field emitters, planar theory is a worst-case limit; however, adjusting ζ on the basis of Monte Carlo calculations might yield formulae adequate for real situations.

  6. Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman

    2018-03-01

    With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Beihai; Hu, Zhongqiang; Koritala, Rachel E.

    Ceramic film capacitors with high dielectric constant and high breakdown strength hold special promise for applications demanding high power density. By means of chemical solution deposition, we deposited ≈2-μm-thick films of lanthanum-doped lead zirconate titanate (PLZT) on LaNiO3-buffered Ni (LNO/Ni) foils and platinized silicon (PtSi) substrates. The dielectric properties and energy storage performance of the resulting samples were determined under a high level of applied electric field. X-ray diffraction stress analysis revealed that PLZT on LNO/Ni bears a compressive stress of ≈370 MPa while PLZT on PtSi endures a tensile stress of ≈250 MPa. Compressive stress was found to leadmore » to heightened polarization, improved tunability, increased irreversible domain wall motion, and enhanced breakdown strength for PLZT deposited on the LNO/Ni as compared with the PtSi substrate. We observed a tunability of ≈55 and ≈40 % at room temperature under 100 kV/cm applied field, remanent polarization of ≈23.5 and ≈7.4 µC/cm^2, coercive electric field of ≈25.6 and ≈21.1 kV/cm, and dielectric breakdown strength of ≈2.6 and ≈1.5 MV/cm for PLZT deposited on LNO/Ni foils and PtSi substrates, respectively. A high recoverable energy density of ≈85 J/cm^3 and energy conversion efficiency of ≈65 % were measured on the PLZT film grown on LNO/Ni.« less

  8. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  9. Women and Men Go to University: Mathematical Background and Gender Differences in Choice of Field in Higher Education.

    ERIC Educational Resources Information Center

    Ayalon, Hanna

    2003-01-01

    Using data on applicants to an Israeli university, researchers examined whether high school course-taking patterns affected gender segregation in higher education. Women were underrepresented among applicants to mathematics-related studies. Mathematical background in high school effectively narrowed the gender gap in applying to selective and…

  10. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP).

    PubMed

    Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho

    2017-01-01

    Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.

  11. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, Abhijit, E-mail: apramani@cityu.edu.hk; Stoica, Alexandru D.; An, Ke

    2016-08-29

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. It is observed that only ∼25% of domains undergo reorientation or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve complex mesoscale phenomena in other functional materials.

  12. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE PAGES

    Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke

    2016-09-02

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.

  13. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Bilayer Photoresist Insulator for High Performance Organic Thin-Film Transistors on Plastic Films

    NASA Astrophysics Data System (ADS)

    Wang, He; Li, Chun-Hong; Pan, Feng; Wang, Hai-Bo; Yan, Dong-Hang

    2009-11-01

    A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm2/Vs) and current on/off ratio (about 106). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.

  14. Stability of the discretization of the electron avalanche phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it; Barbieri, Luca, E-mail: luca.barbieri@rse-web.it; Gondola, Marco, E-mail: marco.gondola@rse-web.it

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied tomore » this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.« less

  15. Geometrical control of pure spin current induced domain wall depinning.

    PubMed

    Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.

  16. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  17. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    1988-03-25

    applied electric field and calculated for each detector according to U = fIRMA I(, (1)U R(w)A(w)IBB(wTe) "dw I0 BB e where R() = R0 r(w) and A(w) = A a...the spectrum of the stimulated emis- magnetic field tunable GaAs detector was used for the de - ,’i. sion from p-Ge by means of an extremely narrowband...crossed electric and magnetic fields is studied by means of a tunable narrow- band GaAs- detector . A multimode spectrum is observed from polished high

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, I. S.; Ivanov, I. E.; Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru

    A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code.

  19. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicablemore » methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.« less

  20. The effect of magnetic field on copper in various corrosive medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, L. Y.; Othman, N. K.; Jalar, A.

    2014-09-03

    The effect of applied magnetic field on the corrosion behaviour of copper within various corrosive medium is investigated. The copper coupon is immersed in 0.5 M HCl, 0.5 M NaCl and 0.5 M NaOH with or without applying up to 40 mT magnetic fields for 24 hours. The weight loss of copper coupon in HCl increased up to 96.56% with applied magnetic fields. However, in NaOH medium, only 33.33% more weight loss was observed and no difference were observed for coupons in NaCl when magnetic field is applied. This observation indicates that corrosion behaviour in HCl and NaOH is controlledmore » by mass transport that can be influenced by the induced magneto hydrodynamics effect when magnetic field is applied. There was no change in weight loss of copper in NaCl when magnetic field is applied because the corrosion mechanism of copper in NaCl is governed by electron charge transfer.« less

  1. Zero- to low-field MRI with averaging of concomitant gradient fields.

    PubMed

    Meriles, Carlos A; Sakellariou, Dimitris; Trabesinger, Andreas H; Demas, Vasiliki; Pines, Alexander

    2005-02-08

    Magnetic resonance imaging (MRI) encounters fundamental limits in circumstances in which the static magnetic field is not sufficiently strong to truncate unwanted, so-called concomitant components of the gradient field. This limitation affects the attainable optimal image fidelity and resolution most prominently in low-field imaging. In this article, we introduce the use of pulsed magnetic-field averaging toward relaxing these constraints. It is found that the image of an object can be retrieved by pulsed low fields in the presence of the full spatial variation of the imaging encoding gradient field even in the absence of the typical uniform high-field time-independent contribution. In addition, error-compensation schemes can be introduced through the application of symmetrized pulse sequences. Such schemes substantially mitigate artifacts related to evolution in strong magnetic-field gradients, magnetic fields that vary in direction and orientation, and imperfections of the applied field pulses.

  2. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  3. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiskumara, R.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.

    A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted upmore » to applied fields as high as ∼275 kV/cm.« less

  4. Structural and Functional Effect of an Oscillating Electric Field on the Dopamine-D3 Receptor: A Molecular Dynamics Simulation Study

    PubMed Central

    Fallah, Zohreh; Jamali, Yousef; Rafii-Tabar, Hashem

    2016-01-01

    Dopamine as a neurotransmitter plays a critical role in the functioning of the central nervous system. The structure of D3 receptor as a member of class A G-protein coupled receptors (GPCRs) has been reported. We used MD simulation to investigate the effect of an oscillating electric field, with frequencies in the range 0.6–800 GHz applied along the z-direction, on the dopamine-D3R complex. The simulations showed that at some frequencies, the application of an external oscillating electric field along the z-direction has a considerable effect on the dopamine-D3R. However, there is no enough evidence for prediction of changes in specific frequency, implying that there is no order in changes. Computing the correlation coefficient parameter showed that increasing the field frequency can weaken the interaction between dopamine and D3R and may decrease the Arg128{3.50}-Glu324{6.30} distance. Because of high stability of α helices along the z-direction, applying an oscillating electric field in this direction with an amplitude 10-time higher did not have a considerable effect. However, applying the oscillating field at the frequency of 0.6 GHz along other directions, such as X-Y and Y-Z planes, could change the energy between the dopamine and the D3R, and the number of internal hydrogen bonds of the protein. This can be due to the effect of the direction of the electric field vis-à-vis the ligands orientation and the interaction of the oscillating electric field with the dipole moment of the protein. PMID:27832207

  5. Helical plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beklemishev, A. D., E-mail: bekl@bk.ru

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ionsmore » along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.« less

  6. Depoling and fatigue behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal at megahertz frequencies under bipolar electric field

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang; Li, Shiyang; Zhang, Yang; Cao, Wenwu

    2017-05-01

    Bipolar electric field induced degradation in [001]c poled Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single crystals was investigated at megahertz frequencies. The electromechanical coupling factor kt, dielectric constant ɛr, dielectric loss D, and piezoelectric constant d33 were measured as a function of amplitude, frequency, and number of cycles of the applied electric field. Our results showed that samples degrade rapidly when the field amplitude is larger than a critical value due to the onset of domain switching. We define this critical value as the effective coercive field Ec at high frequencies, which increases drastically with frequency. We also demonstrate an effective counter-depoling method by using a dc bias, which could help the design of high field driven devices based on PMN-PT single crystals and operated at megahertz frequencies.

  7. Antiferromagnetic spin Seebeck effect.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Zhang, Wei; KC, Amit

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less

  8. The magnetoresistance of sub-micron Fe wires

    NASA Astrophysics Data System (ADS)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  9. Antiferromagnetic Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  10. Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields.

    PubMed

    Bortolon, A; Heidbrink, W W; Kramer, G J; Park, J-K; Fredrickson, E D; Lore, J D; Podestà, M

    2013-06-28

    The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.

  11. Field efficacy of acaricides against Varroa destructor

    PubMed Central

    Gracia, María Jesús; Moreno, Carlos; Ferrer, Montserrat; Sanz, Alfredo; Peribáñez, Miguel Ángel; Estrada, Rosa

    2017-01-01

    Field trials were conducted in Northeast Spain (Aragón) to evaluate the effectiveness of two acaricides against Varroa destructor. These experiments took into account the season of the year, apiary, colony, and developmental state and strength of the colony. The acaricides used were a synthetic (amitraz, Apivar®) and a natural (formulated from Api Life Var®, thymol oil and thymol alcohol) product. The treatments used in the present study reduce high infestations of V. destructor, although they do not eliminate the infestation. Similar efficacies between treatments were found. Nevertheless, the efficacy of a treatment depends on the apiary where applied. Moreover, the detected variability in the apiary and hive poses a challenge to the identification of the significant factors. Therefore, more field studies to assess efficacies in several apiaries are needed to obtain a better understanding of the effects of the applied treatments. PMID:28158303

  12. Soft and wet actuator developed with responsible high-strength gels

    NASA Astrophysics Data System (ADS)

    Harada, S.; Hidema, R.; Furukawa, H.

    2012-04-01

    Novel high-strength gels, named double network gels (DN gels), show a smart response to altering external electric field. It was reported that a plate shape of the DN gel bends toward a positive electrode direction when a static (DC) electric field is applied. Based on this previous result, it has been tried to develop a novel soft and wet actuator, which will be used as an automatically bulging button for cellar phones, or similar small devices. First, a bending experiment of a hung plate-shape DN gel was done, and its electric field response was confirmed. Second, the response of a lying plate-shape DN gels was confirmed in order to check the bulging phenomena. The edge of three plate-shape gels that was arranged radially on a plane surface was lifted 2mm by applying DC 8V. This system is a first step to make a gels button. However the critical problem is that electrolysis occurs simultaneously under electric field. Then, the water sweep out from gels, and gels is shrinking; They cause the separation between aluminum foil working as electrode and gels. That is why, a flexible electrode should be made by gels completely attached to the gels. As a third step, a push button is tried to make by a shape memory gels (SMG). The Young's modulus of the SMG is dramatically changed by temperature. This change in the modulus is applied to control the input-acceptable state and input-not-acceptable states of the button. A novel push button is proposed as a trial, and its user-friendliness is checked by changing the size of the button. The button is deformed by pushing and is back to original shape due to the property of shape memory. We believe the mechanism of this button will be applied to develop new devices especially for visually impaired persons.

  13. Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating

    PubMed Central

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan

    2016-01-01

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237

  14. Photonic modes in synthetic photonic lattices localized due to nontrivial gauge field circulation

    NASA Astrophysics Data System (ADS)

    Pankov, Artem; Vatnik, Ilya; Churkin, Dmitry; Sukhorukov, Andrey A.

    2017-10-01

    One of concepts giving opportunities for studying of topological insulators in non-magnetic materials, or creating scattering-immune in optical waveguides is creation of synthetic gauge fields in photonic systems. It was shown that gauge fields shift the band-gaps of optical waves, which can be applied to implement one-way nonreciprocal waveguides, even though both the waveguide core and cladding are in a topologically trivial state [1]. In our work we propose a method to create a gauge field in a synthetic photonic mesh lattice - an optical device proved its high versatility for optical experiments [2]. We demonstrate presence of localized modes due to nontrivial gauge field circulation.

  15. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  16. Numerical Study of High Speed Viscous Flows.

    DTIC Science & Technology

    1986-12-01

    freestream Renolds number p density (7 arbitrary saftey factor used in equation (48) T local temperature t time shear stress u velocity component tangent...field, where the undisturbed flow conditions are used. The third boundary condition is applied far downstream of the body where the flow is weakly...8217(xy) (24) where and 𔄁 are defined in the List of Symbols. When the above transformation is applied to equation (16) the following equation

  17. Field measurements on skewed semi-integral bridge with elastic inclusion : instrumentation report.

    DOT National Transportation Integrated Search

    2006-01-01

    This project was designed to enhance the Virginia Department of Transportation's expertise in the design of integral bridges, particularly as it applies to highly skewed structures. Specifically, the project involves extensive monitoring of a semi-in...

  18. A new approach to measuring the ride quality of highway bridges.

    DOT National Transportation Integrated Search

    2002-01-01

    This report describes a field survey that applied modern high-speed profiling technology to examine the ride quality of bridge decks. The results of the survey were used to explore how various structural, service, and condition characteristics influe...

  19. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  1. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    PubMed Central

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-01-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  2. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    NASA Astrophysics Data System (ADS)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  3. A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Gnoffo, Peter A.

    2000-01-01

    A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.

  4. Temperature and field dependent electronic structure and magnetic properties of LaCoO3 and GdCoO3

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Orlov, Yu. S.; Dudnikov, V. A.

    2012-10-01

    The transformation of the band structure of LaCoO3 in the applied magnetic field has been theoretically studied. If the field is below its critical value BC≈65 T, the dielectric band gap decreases with the field, thus giving rise to negative magnetoresistance that is highest at T≈300÷500 K. The critical field is related to the crossover between the low- and high-spin terms of Co3+ ions. The spin crossover results in an insulator-metal transition induced by an increase in the magnetic field. Similar calculations have been done for GdCoO3 which is characterized by large spin gap∼2000 K.

  5. Bird use of fields treated postharvest with two types of flooding in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2012-01-01

    We surveyed birds on grain and non-grain fields in the Tulare Basin of California treated post-harvest with two types of flooding that varied in duration and depth of water applied (Flooded-type fields [FLD]: 1 week; Irrigated-type fields [IRG]: 1 week) flooding increased waterbird use of grain fields in the Tulare Basin more than in the northern Central Valley. Thus, even though water costs are high in the Tulare Basin, if net benefit to waterbirds is considered, management programs that increase availability of FLD-type fields (especially grain) in the Tulare Basin may be a cost-effective option to help meet waterbird habitat conservation goals in the Central Valley of California.

  6. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, J.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  7. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, James S.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  8. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.

  9. Asymptotic expansion of pair production probability in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Arai, Takashi

    2015-12-01

    We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.

  10. In situ emulsification using a non-uniform alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei V.

    2014-08-01

    We report an electric field based method for in situ emulsification of water droplets immersed in a continuous oil phase. High density water-in-oil emulsions are generated using non-uniform ac electric fields applied between needle and plate electrodes. An initial water droplet is entrained in the area of high electric field near the needle electrode where it is dispersed under the influence of high electric stresses. Breakup mechanisms responsible for a gradual dispersion of the water droplets are investigated. Identified mechanisms involve drop elongation to a cylindrical shape followed by a capillary breakup, ac electrospraying from individual water droplets, and formation and breakup of bead-like structures comprised by the water droplets interconnected by thin water bridges. Water droplets with diameters close to 1 μm and a narrow size distribution are formed at long processing times. The generated emulsion has a well-defined boundary and is confined near the needle electrode in a shape resembling a pendant drop.

  11. Ab initio molecular dynamics in a finite homogeneous electric field.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  12. Tachyon and quintessence in brane worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimento, Luis P.; Forte, Monica; Richarte, Martin G.

    2009-04-15

    Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less

  13. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  14. Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon

    NASA Astrophysics Data System (ADS)

    Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.

    2018-03-01

    Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.

  15. Stress analysis in high-temperature superconductors under pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  16. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  17. Data Analysis and Synthesis for the ONR Undersea Sand Dunes in the South China Sea Field Experiments

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work... oceanography , and impact of the bottom configuration and physical oceanography on acoustic propagation. • The space and time scales of the dune

  18. Development and Validation of Methodology to Model Flow in Ventilation Systems Commonly Found in Nuclear Facilities. Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James L.; Davis, John

    2016-03-01

    In this work, we apply the CFD in modeling airflow and particulate transport. This modeling is then compared to field validation studies to both inform and validate the modeling assumptions. Based on the results of field tests, modeling assumptions and boundary conditions are refined and the process is repeated until the results are found to be reliable with a high level of confidence.

  19. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  20. High-gradient, pulsed operation of superconducting niobium cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campisi, I.E.; Farkas, Z.D.

    1984-02-01

    Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30more » figures, 2 tables.« less

  1. Patterned Ferroelectric Films for Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.

    2008-01-01

    Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.

  2. The Response of Starch/gelatin/glycerin Aqueous Electrorheological Elastomer to Applied Electric Field

    NASA Astrophysics Data System (ADS)

    Gao, Lingxiang; Zhao, Xiaopeng

    The aqueous ER elastomers, containing crude organic starch particles which dispersed in gelatin/glycerin/water matrix, were prepared with or without the applied DC electric field. The responses of the composite systems to the electric field were tested by the compression modulus and resistance of the elastomers. The result shows that they are enhanced and controlled evidently under an applied DC electric field. The strongest responses appear at 25% weight fraction of starch. In addition, the increment modulus of the elastomer increases with the strength of the applied field within 0.5~1.5 kV/mm, while after the field is stronger than 1.5 kV/mm it doesn't increase with field, appearing "saturation".

  3. Improving the local wavenumber method by automatic DEXP transformation

    NASA Astrophysics Data System (ADS)

    Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni

    2014-12-01

    In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.

  4. Drilling plastic formations using highly polished PDC cutters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.H.; Lund, J.B.; Anderson, M.

    1995-12-31

    Highly plastic and over-pressured formations are troublesome for both roller cone and PDC bits. Thus far, attempts to increase penetration rates in these formations have centered around re-designing the bit or modifying the cutting structure. These efforts have produced only moderate improvements. This paper presents both laboratory and field data to illustrate the benefits of applying a mirror polished surface to the face of PDC cutters in drilling stressed formations. These cutters are similar to traditional PDC cutters, with the exception of the reflective mirror finish, applied to the diamond table surfaces prior to their installation in the bit. Resultsmore » of tests conducted in a single point cutter apparatus and a full-scale drilling simulator will be presented and discussed. Field results will be presented that demonstrate the effectiveness of polished cutters, in both water and oil-based muds. Increases in penetration rates of 300-400% have been observed in the Wilcox formation and other highly pressured shales. Typically, the beneficial effects of polished cutters have been realized at depths greater than 7000 ft, and with mud weights exceeding 12 ppg.« less

  5. Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health.

    PubMed

    Weikl, F; Radl, V; Munch, J C; Pritsch, K

    2015-10-01

    Fungi are, after pollen, the second most important producers of outdoor airborne allergens. To identify sources of airborne fungal allergens, a workflow for qPCR quantification from environmental samples was developed, thoroughly tested, and finally applied. We concentrated on determining the levels of allergenic fungi belonging to Alternaria, Cladosporium, Fusarium, and Trichoderma in plant and soil samples from agricultural fields in which cereals were grown. Our aims were to identify the major sources of allergenic fungi and factors potentially influencing their occurrence. Plant materials were the main source of the tested fungi at and after harvest. Amounts of A. alternata and C. cladosporioides varied significantly in fields under different management conditions, but absolute levels were very high in all cases. This finding suggests that high numbers of allergenic fungi may be an inevitable side effect of farming in several crops. Applied in large-scale studies, the concept described here may help to explain the high number of sensitization to airborne fungal allergens. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ICPP: Beltrami fields in plasmas -- H-mode boundary layers and high beta equilibria

    NASA Astrophysics Data System (ADS)

    Yoshida, Zensho

    2000-10-01

    The Beltrami fields, eigenfunctions of the curl operator, represent essential characteristics of twisted, spiral, chiral or helical structures in various vector fields. Amongst diverse applications of the theory of Beltrami fields, the present paper focuses on the self-organized states of plasmas. The Taylor relaxed state is the principal example of self-organized Beltrami fields. Suppose that a plasma is produced in an external magnetic field (harmonic field). If we do not apply any drive, the plasma will disappear and the system will relax into the harmonic magnetic field. When we drive a current and sustain the total helicity, the plasma relaxes into the Taylor state and achieves the Beltrami magnetic field. When a strong flow is implemented to a plasma, self-organized states becomes qualitatively different from the conventional relaxed stats. The two-fluid effect induces a coupling among the flow, magnetic field, electric field and the pressure, resulting in a "singular perturbation" to the MHD system. To invoke this effect, one must supply a driving force to sustain a strong flow. It is equivalent to giving an internal electric field or applying a steep gradient in pressure, because these fields are tightly coupled. In the two-fluid model, the Beltrami condition demands that the vorticity parallels the flow in both electron and ion fluids. We find that a superposition of two Beltrami magnetic fields (and also two Beltrami flows) solves the simultaneous two-fluid Beltrami conditions [1]. Despite this simple mathematical structure, the set of solutions contains field configurations that are far richer than the conventional theory. The hydrodynamic pressure of a shear flow yields a diamagnetic state that is suitable for confining a high-beta plasma. The H-mode boundary layer is an example, which is spontaneously generated by the core plasma pressure [2]. Active control of shear flow will significantly extend the scope of such self-organized states [3]. [1] S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998). [2] S. M. Mahajan and Z. Yoshida, Phys. Plasmas 7, 635 (2000). [3] Z. Yoshida et al., in Non-Neutral Plasma Physics III (ed. J.J. Bollinger, AIP, 1999), 397.

  7. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed fieldmore » is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.« less

  8. Magnetic field effect on the electrical resistivity of Y1-xNixBa2Cu3O7-δ superconductor

    NASA Astrophysics Data System (ADS)

    Hadi-Sichani, Behnaz; Shakeripour, Hamideh; Salamati, Hadi

    2018-06-01

    The Ni- substituted Y1-xNixBa2Cu3O7-δ high temperature superconducting samples with 0 ≤ x < 0.01 were synthesized by the standard solid-state reaction. The temperature dependent resistivity of the samples was measured under magnetic fields in the range of zero to 1 Tesla, applied perpendicular to the current direction. To study of magnetoresistance is one of the most important ways to investigate the intergranular nature of superconducting materials. The resistive transition is made of two parts. The first- unaffected to applied magnetic field part which is near the onset of superconductivity. This region is due to superconductivity in grains. The second- broaden tail part which is due to the connectivity of the grains. At temperatures close to Tc 0, (ρ = 0), under applied magnetic fields, weak links are affected and the vortices are penetrated and move inside the intergranular and then the tail part is broaden. This broadening part observed in the electrical resistivity, ρ(T), and in the derivative of the electrical resistivity, dρ/dT, becomes too small or even absent in Ni doped samples. For pure sample, Tc 0 was around 90 K; by applying a magnetic field H = 0.3 T it shifted to 40 K. This broadening is 91.4 K to 80 K for x = 0.002 and 91.7 K to 85 K for x = 0.004 samples. We found an optimal value of Ni doping concentration which improves the coupling of the grains. Then, vortices get strongly pinned. These observations suggest that the Ni substitution can reduce the weak links and increase the Jc values of these superconductors.

  9. Knowledge Translation: The Bridging Function of Cochrane Rehabilitation.

    PubMed

    Negrini, Stefano; Gimigliano, Francesca; Arienti, Chiara; Kiekens, Carlotte

    2018-06-01

    Cochrane Rehabilitation is aimed to ensure that all rehabilitation professionals can apply Evidence Based Clinical Practice and take decisions according to the best and most appropriate evidence in this specific field, combining the best available evidence as gathered by high-quality Cochrane systematic reviews, with their own clinical expertise and the values of patients. This mission can be pursued through knowledge translation. The aim of this article is to shortly present what knowledge translation is, how and why Cochrane (previously known as Cochrane Collaboration) is trying to reorganize itself in light of knowledge translation, and the relevance that this process has for Cochrane Rehabilitation and in the end for the whole world of rehabilitation. It is well known how it is difficult to effectively apply in everyday life what we would like to do and to apply the scientific knowledge in the clinical field: this is called the know-do gap. In the field of evidence-based medicine, where Cochrane belongs, it has been proven that high-quality evidence is not consistently applied in practice. A solution to these problems is the so-called knowledge translation. In this context, Cochrane Rehabilitation is organized to provide the best possible knowledge translation in both directions (bridging function), obviously toward the world of rehabilitation (spreading reviews), but also to the Cochrane community (production of reviews significant for rehabilitation). Cochrane is now strongly pushing to improve its knowledge translation activities, and this creates a strong base for Cochrane Rehabilitation work, focused not only on spreading the evidence but also on improving its production to make it more meaningful for the world of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  11. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.

    PubMed

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-07

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe 2 O 3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  12. Field dissipation of sulfentrazone and pendimethalin in Colorado

    USDA-ARS?s Scientific Manuscript database

    Pendimethalin and sulfentrazone are applied PRE in sunflower to control many grasses and broadleaf weeds. These herbicides have quite different physicochemical properties. Pendimethalin has a high carbon-referenced sediment partition coefficient (Koc)(17,200 L kg-1), with a low leaching potential, w...

  13. Greener and Sustainable Approaches to the Synthesis of Pharmaceutically Active Heterocycles

    EPA Science Inventory

    Green chemistry is a rapidly developing field providing a proactive avenue for the sustainable development of future science and technology. Green chemistry can be applied to the design of highly efficient, environmentally benign synthetic protocols to deliver life-saving medicin...

  14. Magnetic Penetration Effects in Small Superconducting Devices

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.; hide

    2011-01-01

    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.

  15. Economic development evaluation based on science and patents

    NASA Astrophysics Data System (ADS)

    Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan

    2017-09-01

    Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.

  16. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less

  17. Quantum dots in bio-imaging: Revolution by the small

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Harinder; Kaul, Zeenia; Wadhwa, Renu

    2005-04-22

    Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research onmore » QDs has evolved from being a pure science subject to the one with high-end commercial applications.« less

  18. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  19. Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    PubMed Central

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-01-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858

  20. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    PubMed

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  1. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    NASA Astrophysics Data System (ADS)

    Cavigli, L.; de Julián Fernández, C.; Gatteschi, D.; Gurioli, M.; Sangregorio, C.; Mattei, G.; Mazzoldi, P.; Bogani, L.

    2007-09-01

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3 nm Co33Ni67 alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable.

  2. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    NASA Astrophysics Data System (ADS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  3. Driven acoustic oscillations within a vertical magnetic field

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.; Cally, P. S.

    1995-01-01

    The effects of a vertical magnetic field on p-mode frequencies, line widths, and eigenfunctions, are examined. A solar model, consisting of a neutrally stable polytropic interior matched to an isothermal chromosphere, is applied. The p-modes are produced by a spatially distributed driver. The atmosphere is threaded by a constant vertical magnetic field. The frequency shifts due to the vertical magnetic field are found to be much smaller than the shifts caused by horizontal fields of similar strength. A large vertical field of 2000 G produces shifts of several nHz. It is found that the frequency shifts decrease with increasing frequency and increase with field strength. The coupling of the acoustic fast mode to the escaping slow modes is inefficient. Constant vertical magnetic field models are therefore incapable of explaining the high level of absorption observed in sunspots and plage.

  4. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  5. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    NASA Astrophysics Data System (ADS)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  6. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  7. Electric-Field Instrument With Ac-Biased Corona Point

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.

    1993-01-01

    Measurements indicative of incipient lightning yield additional information. New instrument gives reliable readings. High-voltage ac bias applied to needle point through high-resistance capacitance network provides corona discharge at all times, enabling more-slowly-varying component of electrostatic potential of needle to come to equilibrium with surrounding air. High resistance of high-voltage coupling makes instrument insensitive to wind. Improved corona-point instrument expected to yield additional information assisting in safety-oriented forecasting of lighting.

  8. Dynamical anisotropic response of black phosphorus under magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  9. Magnetic Field Dependent Charge Transport Studies in Organic Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Martin, Jesse

    Organic magnetoresistance is a phenomenon that is exhibited by many organic semiconductors. The resistance can change by more than 10 % at room temperature and as little as 10 milli-Tesla (mT) applied magnetic field. The change can be either positive or negative, and is angle invariant with respect to magnetic field orientation. Several theories have been presented to account for this anomalous magnetoresistance, but thus far the magnetoresistance by interconversion of singlets and triplets (MIST) model has been the most successful in explaining the behavior. Despite all the research that has gone into this effect, very few reports have gone to fields above 1 Tesla (T). In this manuscript, several specific predictions made by the MIST mechanism will be tested including qualitative behaviors and a quantitative fitting. Studies have been performed up to 35 T to explore the high field behavior. It will be demonstrated that for the low field regime, the MIST model is in excellent agreement with experiment, but that the high field regime is caused by a separate mechanism, not described by any current theory.

  10. Contact resistance extraction methods for short- and long-channel carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Pacheco-Sanchez, Anibal; Claus, Martin; Mothes, Sven; Schröter, Michael

    2016-11-01

    Three different methods for the extraction of the contact resistance based on both the well-known transfer length method (TLM) and two variants of the Y-function method have been applied to simulation and experimental data of short- and long-channel CNTFETs. While for TLM special CNT test structures are mandatory, standard electrical device characteristics are sufficient for the Y-function methods. The methods have been applied to CNTFETs with low and high channel resistance. It turned out that the standard Y-function method fails to deliver the correct contact resistance in case of a relatively high channel resistance compared to the contact resistances. A physics-based validation is also given for the application of these methods based on applying traditional Si MOSFET theory to quasi-ballistic CNTFETs.

  11. Applying Statistical Models and Parametric Distance Measures for Music Similarity Search

    NASA Astrophysics Data System (ADS)

    Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph

    Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.

  12. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGES

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  13. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  14. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Purves, Randy W.; Guevremont, Roger; Day, Stephen; Pipich, Charles W.; Matyjaszczyk, Matthew S.

    1998-12-01

    Ion mobility spectrometry (IMS) has become an important method for the detection of many compounds because of its high sensitivity and amenability to miniaturization for field-portable monitoring; applications include detection of narcotics, explosives, and chemical warfare agents. High-field asymmetric waveform ion mobility spectrometry (FAIMS) differs from IMS in that the electric fields are applied using a high-frequency periodic asymmetric waveform, rather than a dc voltage. Furthermore, in FAIMS the compounds are separated by the difference in the mobility of ions at high electric field relative to low field, rather than by compound to compound differences in mobility at low electric field (IMS). We report here the first cylindrical-geometry-FAIMS interface with mass spectrometry (FAIMS-MS) and the MS identification of the peaks observed in a FAIMS compensation voltage (CV) spectrum. Using both an electrometer-based-FAIMS (FAIMS-E) and FAIMS-MS, several variables that affect the sensitivity of ion detection were examined for two (polarity reversed) asymmetric waveforms (modes 1 and 2) each of which yields a unique spectrum. An increase in the dispersion voltage (DV) was found to improve the sensitivity and separation observed in the FAIMS CV spectrum. This increase in sensitivity and the unexpected dissimilarity in modes 1 and 2 suggest that atmospheric pressure ion focusing is occurring in the FAIMS analyzer. The sensitivity and peak locations in the CV spectra were affected by temperature, gas flow rates, operating pressure, and analyte concentration.

  15. Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle larvae.

    PubMed

    Wraight, S P; Ramos, M E

    2017-03-01

    Studies were undertaken to further characterize the previously identified synergistic activity of Bacillus thuringiensis- and Beauveria bassiana-based biopesticides against Colorado potato beetle (CPB). A flowable concentrate of B. thuringiensis morrisoni strain tenebrionis (Bt) (Novodor® FC) and a wettable powder of B. bassiana strain GHA (Bb) (Mycotrol® 22WP) were applied against CPB larval populations infesting potato in field plots. Novodor FC and an oil-dispersion formulation of Bb (Mycotrol ES) were applied against second-instar CPB larvae on potted potato plants in greenhouse tests under low relative humidity (RH), variable-temperature conditions. Each pathogen was applied alone and in combination (tank-mixed) with the other pathogen. In the field tests, each biopesticide was also combined with the spray-carrier (formulation without active ingredient) of the other pathogen. Results from the greenhouse tests showed that under warm, dry conditions, low activity of Mycotrol was counterbalanced by high activity of the Novodor, and under cool, somewhat more humid conditions, low Novodor activity was balanced by high activity of Mycotrol, with the result being a constant level of synergism (CPB mortality ca. 20 percentage points higher than predicted by independent action). Similar levels of synergism were observed under the markedly different conditions of the field and greenhouse environments, and the synergism was confirmed as arising from interaction of the two micobes, as the Bt spray carrier had no significant effect on efficacy of the Mycotrol product and the Bb spray carrier had no effect on the efficacy of Novodor. The great capacity of these two control agents to act in concert to control CPB is well documented (the fast-acting, toxic Bt acting to protect potato crops from defoliation and the slow-acting Bb reducing survival to the adult stage). These finding further underscore the strong complementary action of these agents applied jointly against CPB. Published by Elsevier Inc.

  16. The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering.

    PubMed

    Brady, Mariea A; Vaze, Reva; Amin, Harsh D; Overby, Darryl R; Ethier, C Ross

    2014-02-01

    To recapitulate the in vivo environment and create neo-organoids that replace lost or damaged tissue requires the engineering of devices, which provide appropriate biophysical cues. To date, bioreactors for cartilage tissue engineering have focused primarily on biomechanical stimulation. There is a significant need for improved devices for articular cartilage tissue engineering capable of simultaneously applying multiple biophysical (electrokinetic and mechanical) stimuli. We have developed a novel high-throughput magneto-mechanostimulation bioreactor, capable of applying static and time-varying magnetic fields, as well as multiple and independently adjustable mechanical loading regimens. The device consists of an array of 18 individual stations, each of which uses contactless magnetic actuation and has an integrated Hall Effect sensing system, enabling the real-time measurements of applied field, force, and construct thickness, and hence, the indirect measurement of construct mechanical properties. Validation tests showed precise measurements of thickness, within 14 μm of gold standard calliper measurements; further, applied force was measured to be within 0.04 N of desired force over a half hour dynamic loading, which was repeatable over a 3-week test period. Finally, construct material properties measured using the bioreactor were not significantly different (p=0.97) from those measured using a standard materials testing machine. We present a new method for articular cartilage-specific bioreactor design, integrating combinatorial magneto-mechanostimulation, which is very attractive from functional and cost viewpoints.

  17. High-Speed Videography Overview

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1989-02-01

    The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.

  18. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  19. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  20. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.

    PubMed

    Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M

    2011-02-10

    The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.

  1. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification

    PubMed Central

    Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene

    2017-01-01

    Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991

  2. Capillary electrophoresis interfaced with a mass spectrometer (CE-MS): technical considerations and applicability for biomarker studies in animals.

    PubMed

    Albalat, Amaya; Husi, Holger; Siwy, Justyna; Nally, Jarlath E; McLauglin, Mark; Eckersall, Peter D; Mullen, William

    2014-02-01

    Proteomics is a growing field that has the potential to be applied to many biology-related disciplines. However, the study of the proteome has proven to be very challenging due to its high level of complexity when compared to genome and transcriptome data. In order to analyse this level of complexity, high resolution separation of peptides/proteins are needed together with high resolution analysers. Currently, liquid chromatography and capillary electrophoresis (CE) are the two most widely used separation techniques that can be coupled on-line with a mass spectrometer (MS). In CE, proteins/ peptides are separated according to their size, charge and shape leading to high resolving power. Although further progress in the area of sensitivity, throughput and proteome coverage are expected, MS-based proteomics have developed to a level at which they are habitually applied to study a wide range of biological questions. The aim of this review is to present CE-MS as a proteomic analytical platform for biomarker research that could be used in farm animal and veterinary studies. This is a MS-analytical platform that has been widely used for biomarker research in the biomedical field but its application in animal proteomic studies is relatively novel. The review will focus on introducing the CE-MS platform and the primary considerations for its application to biomarker research. Furthermore, current applications but more importantly potential application in the field of farm animals and veterinary science will be presented and discussed.

  3. M-H characteristics and demagnetization resistance of samarium-cobalt permanent magnets to 300 C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1992-01-01

    The influence of temperature on the M-H demagnetization characteristics of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperatures in demagnetization-resistant permanent magnet devices. In high temperature space power converters, such as free-piston Stirling engine driven linear alternators, magnet demagnetization can occur as a long-term consequence of thermal agitation of domains and of metallurgical change, and also as an immediate consequence of too large an applied field. Investigated here is the short-term demagnetization resistance to applied fields derived from basic M-H data. This quasistatic demagnetization data was obtained for commercial, high-intrinsic-coercivity, Sm2Co17-type magnets from 5 sources, in the temperature range 23 to 300 C. An electromagnet driven, electronic hysteresigraph was used to test the 1-cm cubic samples. The observed variation of the 2nd quadrant M-H characteristics was a typical rapid loss of M-coercivity and a relatively lesser loss of remanence with increasing temperature. The 2nd quadrant M-H curve knee point is used to define the limits of operation safe against irreversible demagnetization due to an excessive bucking field for a given flux density swing at temperature. Such safe operating area plots are shown to differentiate the high temperature capabilities of the samples from different sources. For most of the samples, their 2nd quadrant M-H loop squareness increased with temperature, reaching a peak or a plateau above 250 C.

  4. Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2006-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  5. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2005-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  6. The energy spectrum and geometrical structure of Galactic turbulent magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Gaensler, Bryan; Mcclure-Griffiths, Naomi; Purcell, Cormac; Hill, Alex; Burkhart, Blakesley; Lazarian, Alex

    2012-10-01

    The energy spectrum and geometrical structure of the turbulent magnetic field can offer a solid test of different theoretical models on the generation and evolution of Galactic magnetic fields. They are also pivotal to understanding the propagation of cosmic-ray particles. However, the energy spectrum has been difficult to determine and the geometrical structure has never been obtained so far, due to lack of proper methods and observations. We aim to infer these quantities by applying our newly developed techniques to polarisation images. These images are required to be observed with high angular resolution and broadband multi-channel polarimetry, which is possible only recently using the ATCA. As a pilot study, we plan to map the 2X2 degree high-latitude field centred at l=255.5 degree and b=-38 degree at 1.1-3.1 GHz in total intensity and polarisation.

  7. The energy spectrum and geometrical structure of Galactic turbulent magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Gaensler, Bryan; Mcclure-Griffiths, Naomi; Purcell, Cormac; Hill, Alex; Burkhart, Blakesley; Lazarian, Alex

    2012-04-01

    The energy spectrum and geometrical structure of the turbulent magnetic field can offer a solid test of different theoretical models on the generation and evolution of Galactic magnetic fields. They are also pivotal to understanding the propagation of cosmic-ray particles. However, the energy spectrum has been difficult to determine and the geometrical structure has never been obtained so far, due to lack of proper methods and observations. We aim to infer these quantities by applying our newly developed techniques to polarisation images. These images are required to be observed with high angular resolution and broadband multi-channel polarimetry, which is possible only recently using the ATCA. As a pilot study, we plan to map the 2X2 degree high-latitude field centred at l=255.5 degree and b=-38 degree at 1.1-3.1 GHz in total intensity and polarisation.

  8. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Nonlinear conductivity in silicon nitride

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  10. Pixel response-based EPID dosimetry for patient specific QA.

    PubMed

    Han, Bin; Ding, Aiping; Lu, Minghui; Xing, Lei

    2017-01-01

    Increasing use of high dose rate, flattening filter free (FFF), and/or small-sized field beams presents a significant challenge to the medical physics community. In this work, we develop a strategy of using a high spatial resolution and high frame rate amorphous silicon flat panel electronic portal imaging device (EPID) for dosimetric measurements of these challenging cases, as well as for conventional external beam therapy. To convert a series of raw EPID-measured radiation field images into water-based dose distribution, a pixel-to-pixel dose-response function of the EPID specific to the linac is essential. The response function was obtained by using a Monte Carlo simulation of the photon transport in the EPID with a comprehensive calibration. After the raw image was converted into the primary incident photon fluence, the fluence was further convolved into a water-based dose distribution of the dynamic field by using a pregenerated pencil-beam kernel. The EPID-based dosimetric measurement technique was validated using beams with and without flattening filter of all energies available in Varian TrueBeam STx™. Both regularly and irregularly shaped fields measured using a PTW 729 ion chamber array in plastic water phantom. The technique was also applied to measure the distribution for a total of 23 treatment plans of different energies to evaluate the accuracy of the proposed approach. The EPID measurements of square fields of 4 × 4 cm 2 to 20 × 20 cm 2 , circular fields of 2-15 cm diameters, rectangular fields of various sizes, and irregular MLC fields were in accordance with measurements using a Farmer chamber and/or ion chamber array. The 2D absolute dose maps generated from EPID raw images agreed with ion chamber measurements to within 1.5% for all fields. For the 23 patient cases examined in this work, the average γ-index passing rate were found to be 99.2 ± 0.6%, 97.4 ± 2.4%, and 72.6 ± 8.4%, respectively, for criterions of 3 mm/3%, 2 mm/2%, and 1 mm/1%. The high spatial resolution and high frame rate EPID provides an accurate and efficient dosimetric tool for QA of modern radiation therapy. Accurate absolute 2D dose maps can be generated from the system for an independent dosimetric verification of treatment delivery. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  12. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  13. Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-01-01

    Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915

  14. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension.

    PubMed

    Nicholson, David A; Rutledge, Gregory C

    2016-12-28

    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.

  15. Internal split field generator

    DOEpatents

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  16. Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters

    NASA Astrophysics Data System (ADS)

    Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.

    2001-05-01

    Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mun, Eundeok; Bud'ko, Sergey L.; Canfield, Paul C.

    We present the magnetic field dependencies of transport properties for RPtBi ( R = Gd, Dy, Tm, and Lu) half-Heusler compounds. Temperature- and field-dependent resistivity measurements of high-quality RPtBi single crystals reveal an unusually large, nonsaturating magnetoresistance (MR) up to 300 K under a moderate magnetic field of H = 140 kOe. At 300 K, the large MR effect decreases as the rare earth is traversed from Gd to Lu and the magnetic field dependence of MR shows a deviation from the conventional H2 behavior. The Hall coefficient ( RH) for R = Gd indicates a sign change around 120more » K, whereas RH curves for R = Dy, Tm, and Lu remain positive for all measured temperatures. At 300 K, the Hall resistivity reveals a deviation from the linear field dependence for all compounds. Thermoelectric power measurements on this family show strong temperature and magnetic field dependencies which are consistent with resistivity measurements. A highly enhanced thermoelectric power under applied magnetic field is observed as high as ~100 μV/K at 140 kOe. Furthermore, analysis of the transport data in this series reveals that the rare-earth-based half-Heusler compounds provide opportunities to tune MR effect through lanthanide contraction and to elucidate the mechanism of nontrivial MR.« less

  18. Instabilities of the force-free current configurations

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; Erb, A.; Walker, E.; Flükiger, R.; Benoit, W.

    1996-03-01

    Using the magneto-optic technique, it is shown that inductively induced force-free current configurations in high purity YBa2Cu3O7-δ single crystals become unstable above a certain well-defined amplitude and frequency of the variation of the applied perpendicular field.

  19. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  20. Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil.

    PubMed

    Dores, Eliana F G C; Spadotto, Claudio A; Weber, Oscarlina L S; Dalla Villa, Ricardo; Vecchiato, Antonio B; Pinto, Alicio A

    2016-05-25

    The environmental behavior of chlorpyrifos and endosulfan in soil was studied in the central-western region of Brazil by means of a field experiment. Sorption was evaluated in laboratory batch experiments. Chlorpyrifos and endosulfan were applied to experimental plots on uncultivated soil and the following processes were studied: leaching, runoff, and dissipation in top soil. Field dissipation of chlorpyrifos and endosulfan was more rapid than reported in temperate climates. Despite the high Koc of the studied pesticides, the two endosulfan isomers and endosulfan sulfate as well as chlorpyrifos were detected in percolated water. In runoff water and sediment, both endosulfan isomers and endosulfan sulfate were detected throughout the period of study. Observed losses of endosulfan by leaching (below a depth of 50 cm) and runoff were 0.0013 and 1.04% of the applied amount, whereas chlorpyrifos losses were 0.003 and 0.032%, respectively. Leaching of these highly adsorbed pesticides was attributed to preferential flow.

Top