Science.gov

Sample records for high arctic tundra

  1. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    PubMed

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  2. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic

    PubMed Central

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0–21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere. PMID:26376204

  3. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  4. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  5. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    PubMed Central

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  6. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  7. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (<15cm) in different tundra types varied considerably but the tundra age was similar in the whole area, <450 cal BP. The only exception was Ornithocoprophilous bird-N rich tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110 cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015

  8. Comparative studies of land-atmosphere energy exchange in high and low Arctic tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Lindroth, Anders; Lund, Magnus; Tamstorf, Mikkel P.

    2013-04-01

    The energy balance of arctic terrestrial ecosystems is of crucial importance to understand future climate change in high northern latitudes. Despite a growing interest in the Arctic local measurements and observations of climate characteristics are still scarce. Therefore, we present first results of comparative short- and long-term eddy covariance and energy balance measurements of high and low Arctic terrestrial ecosystems in Greenland. The study area covers high Arctic tundra heath and fen ecosystems in Zackenberg (Northeast Greenland National Park, 74°30'N, 21°00'W) and low Arctic terrestrial ecosystems in the Kobbefjord area close to the city of Nuuk (West Greenland, 64°07'N, 51°21'W). By using a mobile eddy covariance and energy balance tower we collected data during late winter (April 2012), early summer (June/July 2012) and late summer (August 2012). Mobile eddy covariance and energy balance measurements during late winter in Zackenberg focus on the energy balance of undisturbed snow covered surfaces with variable snow depth and snow layer structure. Data collection on thin snow layers with disturbed surfaces and exposed vegetation also show the impact of Muskox cratering on the surface energy balance. Measurements during early summer in the Kobbefjord area were conducted on characteristic bare soils with scattered cushion plants, on grasslands with sedge vegetation and on shrub vegetation up to 100 cm in height. Late summer measurements of energy balance and eddy covariance in the Zackenberg valley focus on transect measurements of energy balance components and active layer thickness of adjacent high arctic fen and heath ecosystems. In addition to the short-term mobile measurements we use and analyse data sets from permanent stations monitoring eddy covariance and energy balance on heath and fen sites in both high and low Arctic environments. Long-term measurements provide continuous data since early April 2012 and in this study we compare our mobile

  9. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. PMID:26956177

  10. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  11. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.

    2016-04-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE = -0.1 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.4 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m-2, while the disturbed tundra released 12.5 g C m-2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m-2 s-1 and +0.55 µmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.19 µmol m-2 s-1 and +1.04 µmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).

  12. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, A. E.; Christen, A.; Henry, G. H. R.

    2015-12-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming, and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, have increased in frequency and magnitude across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season the undisturbed tundra was a small net sink (NEE = -0.12 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.39 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.84 g C m-2, while the disturbed tundra released 12.48 g C m-2. Before full leaf out in early July, the undisturbed tundra was a small source of CO2, but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.41 μmol m-2 s-1 and +0.50 μmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.21 μmol m-2 s-1 and +1.00 μmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the growing season.

  13. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    NASA Astrophysics Data System (ADS)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  14. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    ecosystem sinks for the 15N tracer in the long-term were organic humus soil, followed by bryophytes and then vascular plants, it is concluded that greater N deposition resulting in greater released of N from melting snowpack could significantly enrich the plant N pool and possibly enhance plant growth (with a potential to increase C storage) in the future. Overall, this study shows that high arctic tundra has considerable short- and long term- capacity for retention of snow-melt deposited N, with very tight internal recycling that allows 100% of the initially sequestered N to be retained over 10 years. Such capacity for pollutant N retention may exacerbate the impact that increased N deposition has on high arctic tundra.

  15. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the High Arctic.

    PubMed

    Chen, Qingqing; Zhu, Renbin; Wang, Qing; Xu, Hua

    2014-07-01

    During the summers of 2008 and 2009, net methane (CH₄) and nitrous oxide (N₂O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra (LT), bird sanctuary tundra (BT), the tundra in an abandoned coal mine (CT) and the tundra in scientific bases (ST) in Ny-Ålesund of the High Arctic. Tundra soils in CT (184.5 ± 40.0 μg CH4/(m²·hr)) and ST (367.6 ± 92.3μg CH4/(m²·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT. The lowland tundra soils (mean, -4.4-4.3μg N₂O/(m²·hr)) were weak N₂O sources and even sinks. Bird activity increased N₂O emissions from BT with the mean flux of 7.9μgN2O/(m(2)·hr). The mean N₂O fluxes from CT (45.4 ± 10.2 μg N₂O/(m²·hr)) and ST (78.8 ± 18.5μg N₂O/(m²·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N₂O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH₄ fluxes from tundra soils. The N₂O fluxes showed a significant positive correlation with ammonia nitrogen (NH₄(+)-N) contents (r=0.66, p<0.001) at all the observation sites, indicating that ammonia nitrogen (NH₄(+)-N) content acted as a strong predictor for N₂O emissions from tundra soils. The CH4 and N₂O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths. Overall our results implied that human activities might have greater effects on soil CH₄ and N₂O emissions than current climate warming in Ny-Ålesund, High Arctic.

  16. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the High Arctic.

    PubMed

    Chen, Qingqing; Zhu, Renbin; Wang, Qing; Xu, Hua

    2014-07-01

    During the summers of 2008 and 2009, net methane (CH₄) and nitrous oxide (N₂O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra (LT), bird sanctuary tundra (BT), the tundra in an abandoned coal mine (CT) and the tundra in scientific bases (ST) in Ny-Ålesund of the High Arctic. Tundra soils in CT (184.5 ± 40.0 μg CH4/(m²·hr)) and ST (367.6 ± 92.3μg CH4/(m²·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT. The lowland tundra soils (mean, -4.4-4.3μg N₂O/(m²·hr)) were weak N₂O sources and even sinks. Bird activity increased N₂O emissions from BT with the mean flux of 7.9μgN2O/(m(2)·hr). The mean N₂O fluxes from CT (45.4 ± 10.2 μg N₂O/(m²·hr)) and ST (78.8 ± 18.5μg N₂O/(m²·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N₂O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH₄ fluxes from tundra soils. The N₂O fluxes showed a significant positive correlation with ammonia nitrogen (NH₄(+)-N) contents (r=0.66, p<0.001) at all the observation sites, indicating that ammonia nitrogen (NH₄(+)-N) content acted as a strong predictor for N₂O emissions from tundra soils. The CH4 and N₂O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths. Overall our results implied that human activities might have greater effects on soil CH₄ and N₂O emissions than current climate warming in Ny-Ålesund, High Arctic. PMID:25079988

  17. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.

    PubMed

    Legagneux, P; Gauthier, G; Berteaux, D; Bêty, J; Cadieux, M C; Bilodeau, F; Bolduc, E; McKinnon, L; Tarroux, A; Therrien, J F; Morissette, L; Krebs, C J

    2012-07-01

    Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of

  18. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.

    PubMed

    Legagneux, P; Gauthier, G; Berteaux, D; Bêty, J; Cadieux, M C; Bilodeau, F; Bolduc, E; McKinnon, L; Tarroux, A; Therrien, J F; Morissette, L; Krebs, C J

    2012-07-01

    Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of

  19. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  20. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  1. Effects of increased snow cover on the rates and sources of ecosystem respiration from high arctic tundra

    NASA Astrophysics Data System (ADS)

    Lupascu, M.; Welker, J. M.; Cooper, E.; Xu, X.; Czimczik, C. I.

    2013-12-01

    A key driver of carbon (C) cycling in arctic ecosystems is the amount, onset and duration of snow cover. Arctic tundra is covered in snow for 8-10 months of the year, although spatial and internannual variability of snow cover is high. Anticipated changes in the amount and timing of snow cover as a consequence of climate warming and their implications for regional C budget and biogeochemistry are highly uncertain. Here, we investigated the effects of increased winter snow depth on the rates and sources of ecosystem respiration (Reco) of a polar semi-desert and mesic meadow at two long-term snowpack manipulation experiments in NW Greenland and Svalbard, Norway. We monitored Reco, the concentrations of CO2 in the soil pore space and their radiocarbon (14C) contents (as an age proxy) over the course of three summers in Greenland and one winter in Svalbard. Preliminary results show that wintertime Reco fluxes were 45% higher in areas of deep as compared to ambient snow. Summertime Reco fluxes were positively correlated to total water-year precipitation (summer rain plus winter snow). However, due to the shorter, snow-free vegetation period, cumulative summertime Reco fluxes under increased snow cover were reduced by up to -34.1×5.4% compared to the control. The mean age of soil CO2 was always older during both the winter- and summertime under increased snow cover. Similarly, the mean age of Reco was older under increased snowpack during the wintertime. However, summertime Reco was dominated by decomposition of younger C and plant respiration, and we found no effect of snow cover. Our results demonstrate the vulnerability of permafrost C to increasing snow cover and the strong potential to serve as a positive feedback to global climate change.

  2. Decadal changes of phenological patterns over Arctic tundra biome

    NASA Astrophysics Data System (ADS)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  3. How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.

    2015-12-01

    Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the

  4. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    NASA Technical Reports Server (NTRS)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  5. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  6. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  7. Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach

    NASA Technical Reports Server (NTRS)

    Huemmrich, Fred

    2006-01-01

    This viewgraph presentation reviews the carbon atmospheric exchange with Arctic tundra. In the Arctic the ecosystem has been a net carbon sink. The project investigates the question of how might climate warming effect high latitude ecosystems and the Earth ecosystems and how to measure the changes.

  8. Fourfold higher tundra volatile emissions due to arctic summer warming

    NASA Astrophysics Data System (ADS)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  9. Recent Arctic tundra fire initiates widespread thermokarst development

    USGS Publications Warehouse

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  10. Recent Arctic tundra fire initiates widespread thermokarst development

    PubMed Central

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric; Liu, Lin; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions. PMID:26511650

  11. Recent Arctic tundra fire initiates widespread thermokarst development.

    PubMed

    Jones, Benjamin M; Grosse, Guido; Arp, Christopher D; Miller, Eric; Liu, Lin; Hayes, Daniel J; Larsen, Christopher F

    2015-10-29

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  12. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  13. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  14. The unseen iceberg: plant roots in arctic tundra.

    PubMed

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  15. Critical review of mercury fates and contamination in the Arctic tundra ecosystem.

    PubMed

    Poissant, Laurier; Zhang, Hong H; Canário, João; Constant, Philippe

    2008-08-01

    Mercury (Hg) contamination in tundra region has raised substantial concerns, especially since the first report of atmospheric mercury depletion events (AMDEs) in the Polar Regions. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. This has generated a unique opportunity to survey the whole Arctic in respect to Hg issue and to find out new discoveries. However, there are still considerable knowledge gaps and debates on the fate of Hg in the Arctic and Antarctica, especially regarding the importance and significance of AMDEs vs. net Hg loadings and other processes that burden Hg in the Arctic. Some studies argued that climate warming since the last century has exerted profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity which increased in sedimentary Hg, whereas some others pointed out the importance of the formation and postdeposition crystallographic history of the snow and ice crystals in determining the fate and concentration of mercury in the cryosphere in addition to AMDEs. Is mercury re-emitted back to the atmosphere after AMDEs? Is Hg methylation effective in the Arctic tundra? Where the sources of MeHg are? What is its fate? Is this stimulated by human made? This paper presents a critical review about the fate of Hg in the Arctic tundra, such as pathways and process of Hg delivery into the Arctic ecosystem; Hg concentrations in freshwater and marine ecosystems; Hg concentrations in terrestrial biota; trophic transfer of Hg and bioaccumulation of Hg through food chain. This critical review of mercury fates and contamination in the Arctic tundra ecosystem is assessing the impacts and potential risks of Hg contamination on the health of Arctic people and the global northern environment by highlighting and "perspectiving" the various mercury processes and concentrations found in the Arctic tundra.

  16. Carbon loss from an unprecedented Arctic tundra wildfire.

    PubMed

    Mack, Michelle C; Bret-Harte, M Syndonia; Hollingsworth, Teresa N; Jandt, Randi R; Schuur, Edward A G; Shaver, Gaius R; Verbyla, David L

    2011-07-27

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m(-2) in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.

  17. Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets

    SciTech Connect

    Kling, G.W. ); Kipphut, G.W. ); Miller, M.C. )

    1991-01-01

    Arctic tundra has large amounts of stored carbon and is thought to be a sink for atmospheric carbon dioxide (CO{sub 2}) (0.1 to 0.3 petagram of carbon per year) (1 petagram = 10{sup 15} grams). But this estimate of carbon balance is only for terrestrial ecosystems. Measurements of the partial pressure of CO{sub 2} in 29 aquatic ecosystems across arctic Alaska showed that in most cases (27 of 29) CO{sub 2} was released to the atmosphere. This CO{sub 2} probably originates in terrestrial environments; erosion of particulate carbon plus ground-water transport of dissolved carbon from tundra contribute to the CO{sub 2} flux from surface waters to the atmosphere. If this mechanism is typical of that of other tundra areas, then current estimates of the arctic terrestrial sink for atmospheric CO{sub 2} may be 20 percent too high. 1 table, 2 figs., 21 refs.

  18. Microbial community composition and function across an arctic tundra landscape.

    PubMed

    Zak, Donald R; Kling, George W

    2006-07-01

    Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, lowland tundra. To test this idea, we studied soil microbial communities in upland tussock, stream-side birch-willow, and lakeside wet sedge tundra in arctic Alaska, USA. These are a series of ecosystems that differ in topographic position, plant composition, and soil drainage. Phospholipid fatty acid (PLFA) analyses, coupled with compound-specific 13C isotope tracing, were used to quantify microbial community composition and function; we also assayed the activity of extracellular enzymes involved in cellulose, chitin, and lignin degradation. Surface soil from each tundra ecosystem was labeled with 13C-cellobiose,13C-N-acetylglucosamine, or 13C-vanillin. After a five-day incubation, we followed the movement of 13C into bacterial and fungal PLFAs, microbial respiration, dissolved organic carbon, and soil organic matter. Microbial community composition and function were distinct among tundra ecosystems, with tussock tundra containing a significantly greater abundance and activity of soil fungi. Although the majority of 13C-labeled substrates rapidly moved into soil organic matter in all tundra soils (i.e., 50-90% of applied 13C), microbial respiration of labeled substrates in wet sedge tundra soil was lower than in tussock and birch-willow tundra; approximately 8% of 13C-cellobiose and approximately 5% of 13C-vanillin was respired in wet sedge soil vs. 26-38% of 13C-cellobiose and 18-21% of 13C-vanillin in the other tundra ecosystems. Despite these differences, wet sedge tundra exhibited the greatest extracellular enzyme activity. Topographic variation in plant litter biochemistry

  19. Shrub expansion and climate feedbacks in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    Arctic tundra ecosystems stand to play a substantial role in both the magnitude and rate of global climate warming over the coming decades and centuries. The exact nature of this role will be determined by the combined effects of currently amplified rates of climate warming in the Arctic (Serreze et al 2000) and a series of related positive climate feedbacks that include mobilization of permafrost carbon (Schuur et al 2008), decreases in surface albedo (Chapin et al 2005) and evapotranspiration (ET) mediated increases in atmospheric water vapor (Swann et al 2010). Conceptually, these feedback mechanisms are intuitive and readily comprehensible: warming-induced permafrost thaw will make new soil carbon pools accessible for microbial respiration, and increased vegetation productivity, expansion of shrubs in particular, will lower surface reflectance and increase ET. However, our current understanding of these feedback mechanisms relies largely on limited and local field studies and, as such, the quantitative estimates of feedback effects on regional and global climate require spatial upscaling and uncertainty estimates derived from models. Moreover, the feedback mechanisms interact and their combined net effect on climate is highly variable and not well characterized. A recent study by Bonfils et al (2012) is among the first to explicitly examine how shrub expansion in tundra ecosystems will impact regional climate. Using an Earth system model, Bonfils et al find that an idealized 20% increase in shrub cover north of 60°N latitude will lead to annual temperature increases of 0.66 °C and 1.84 °C, respectively, when the shrubs are 0.5 m and 2 m tall. The modeled temperature increases arise from atmospheric heating as a combined consequence of decreased albedo and increased ET. The primary difference between the two cases is associated with the fact that tall shrubs protrude above the snow, thus reducing albedo year round, whereas short shrubs are completely

  20. Does earlier snowmelt lead to greater CO2 sequestration in two low Arctic tundra ecosystems?

    NASA Astrophysics Data System (ADS)

    Humphreys, Elyn R.; Lafleur, Peter M.

    2011-05-01

    Some studies have reported that spring warming and earlier snowmelt leads to increased CO2 sequestration in Arctic terrestrial ecosystems. We measured tundra-atmosphere CO2 exchange via eddy covariance at two low Arctic sites (mixed upland tundra and sedge fen) in central Canada over multiple snow-free periods to assess this hypothesis. Both sites were net sinks for atmospheric CO2 in all years (2004-2010), but with high interannual variability. Despite a large range in snowmelt date (30 days), we did not find a statistically significant correlation between seasonal accumulated net ecosystem production (NEP) and snowmelt for either site. Although many factors can influence seasonal total NEP, our analysis shows that annual variations in photosynthetic capacity, likely driven by changes in leaf area, is a dominating control at these Arctic sites. At the upland tundra site, protection of overwintering buds by a longer duration of deep snow appears to be linked to greater photosynthetic capacity and NEP. Whereas at the fen site, sedge growth benefits from earlier snowmelt resulting in a strong correlation with early season NEP and an increase in total study period NEP with increasing growing degree days. These results highlight the complexity of interannual variation in ecosystem CO2 exchange in Arctic tundra and suggest that snowmelt date alone cannot predict seasonal, or annual, NEP.

  1. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  2. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGES

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  3. Cold season emissions dominate the Arctic tundra methane budget.

    PubMed

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C; Miller, Charles E; Dinardo, Steven J; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y-W; Henderson, John M; Murphy, Patrick C; Goodrich, Jordan P; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D; Kimball, John S; Lipson, David A; Oechel, Walter C

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  4. Cold season emissions dominate the Arctic tundra methane budget

    PubMed Central

    Zona, Donatella; Gioli, Beniamino; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming. PMID:26699476

  5. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  6. Cold season emissions dominate the Arctic tundra methane budget.

    PubMed

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C; Miller, Charles E; Dinardo, Steven J; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y-W; Henderson, John M; Murphy, Patrick C; Goodrich, Jordan P; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D; Kimball, John S; Lipson, David A; Oechel, Walter C

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming. PMID:26699476

  7. Cold season emissions dominate the Arctic tundra methane budget

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  8. Impacts of Arctic Climate Change on Tundra Fire Regimes at Interannual to Millennial Timescales

    NASA Astrophysics Data System (ADS)

    Hu, F.; Young, A. M.; Chipman, M. L.; Duffy, P.; Higuera, P. E.

    2014-12-01

    Tundra burning is emerging as a key process in the rapidly changing Arctic, and knowledge of tundra fire-regime responses to climate change is essential for projecting Earth system dynamics. This presentation will focus on climate-fire relationships in the Arctic, spatiotemporal patterns of Holocene tundra burning, and the effects of tundra burning on carbon cycling. Analysis of historical records reveals that across the Arctic, tundra burning occurred primarily in areas where mean summer temperature exceeded 9 °C and total summer precipitation was below 115 mm. In Alaska, summer temperature and precipitation explain >90% of the interannual variability in tundra area burned from AD 1950-2009, with thresholds of 10.5 °C and 140 mm. These patterns imply tipping points in tundra fire-regime responses to climate change. The frequency of tundra fires has varied greatly across space and through time. Approximately 1.0% of the circum-Arctic tundra burned from AD 2002-2013, and 4.5% of the Alaskan tundra burned from AD 1950-2009. The latter encompassed ecoregions with fire rotation periods ranging from ~400 to 13,640 years. Charcoal analysis of lake sediments also shows that Arctic tundra can sustain a wide range of fire regimes. Fires were rare on the Alaskan North Slope throughout the Holocene, implying that the climate thresholds evident in the historical records have seldom been crossed. In contrast, in areas of NW Alaska, tundra has burned regularly at 100-250 year intervals during the late Holocene. Tundra burning may cause sudden releases of the enormous amount of Arctic soil C. Charcoal particles from recent burns yielded 14C ages of AD 1952-2006. Thus the C consumed in recent fires may recover through vegetation succession. However, our results suggest that in areas that have burned multiple times in recent decades, old soil C is vulnerable to future fires.

  9. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    NASA Astrophysics Data System (ADS)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  10. Topographic Variation and Methane Production in Siberian Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Eason, J.; Kuhn, M. A.; Dunn, S.; Spawn, S.; Schade, J. D.

    2014-12-01

    Understanding the fate of soil carbon when permafrost soils begin to thaw is critical for predicting the impact of permafrost thaw on global climate change. Microbial metabolism of soil carbon can produce carbon dioxide or methane, depending on soil conditions, and which pathway dominates has great significance for the strength of climate feedbacks since methane is a much more powerful greenhouse gas than carbon dioxide. In Arctic ecosystems, methane production from upland environments is not well understood and generally assumed to be low because conditions there are generally not favorable for methanogenesis. Small changes in topography, however, can lead to great heterogeneity in soil conditions at small scales that may lead to higher methane flux than generally recognized. In this study, we investigated patterns in methane, carbon dioxide, and oxygen concentrations in in surface waters of 15 small ponds in the Kolyma River watershed in Northeast Siberia. The ponds were distributed across a topographic gradient from upland tundra high in the landscape to low-lying ponds in the floodplain of the Kolyma River. In addition, we used chambers to measured methane fluxes from a variety of topographic depressions that ranged from pools to moss-dominated saturated soils lacking surface water, to dry soils dominated by sedges. Dissolved carbon dioxide concentrations in ponds showed no trend down the topographic gradient while methane concentrations decreased downslope. The decrease in methane production may be the result of a switch from green moss to brown moss, which may act as a host for methanotrophic bacteria. Ponds with green moss had significantly higher concentrations of methane than the ponds with brown moss. In addition, we found significantly higher methane fluxes from pools and saturated soils then from drier soils, which showed very low fluxes. These results suggest that upland tundra may be a significant source of methane, and that methane fluxes are driven

  11. Spatial Scale Gaps of Turbulent Heat Fluxes in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Fochesatto, G. J.; Gruber, M. A.; Cristóbal-Rosselló, J.; Edgar, C.; Kane, D. L.

    2013-12-01

    Large-area averaged turbulent fluxes of scalars (heat and carbon) play an important role in climate and ecosystem models by resolving the scale-gap closure defining top-down and bottom-up scaling schemes. Large Aperture Scintillometer (LAS) measurement of the refractive index structure function (CN2) allows for indirect retrieval of area-averaged (>km2) atmospheric boundary layer sensible heat fluxes. In this work we report observations of LAS in Arctic tundra at Imnavait Creek Basin. LAS-derived fluxes are compared to more localized measurements of heat fluxes obtained by an eddy-covariance (EC) system distributed across the basin. This article discusses the divergence observed in the temporal series of LAS-fluxes in comparison to spatially distributed measurements of EC-fluxes. The comparison stresses the role of the Arctic ABL structure, terrain-flow characteristics and radiative fluxes in the overall spatial representation of fluxes.

  12. Luteolibacter arcticus sp. nov., isolated from high Arctic tundra soil, and emended description of the genus Luteolibacter.

    PubMed

    Kim, MyongChol; Pak, SeHong; Rim, SongGuk; Ren, Lvzhi; Jiang, Fan; Chang, Xulu; Liu, Ping; Zhang, Yumin; Fang, Chengxiang; Zheng, Congyi; Peng, Fang

    2015-06-01

    A pale yellow, Gram-reaction-negative, non-motile, aerobic bacterium, designated MC 3726T, was isolated from a tundra soil near Ny-Ålesund, Svalbard Archipelago, Norway (78 °N). Growth occurred at 4-37 °C (optimum 25-30 °C) and at pH 5.0-9.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MC 3726T belonged to the genus Luteolibacter in the family Verrucomicrobiaceae. The 16S rRNA gene sequence of this strain showed 93.18, 92.54 and 92.44 % similarity to those of Luteolibacter cuticulihirudinis E100T, Luteolibacter pohnpeiensis A4T-83T and Luteolibacter yonseiensis EBTL01T, respectively. The cell wall of strain MC 3726T contained meso-diaminopimelic acid as the diagnostic amino acid. Strain MC 3726T contained iso-C14:0 (38.28 %), C16:0 (15.89 %), C16:1ω9c (14.24 %), iso-C16:0 (10.42 %) and anteiso-C15:0 (5.75 %) as the predominant cellular fatty acids, MK-9 and MK-10 as the major respiratory quinones, and phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the main polar lipids. The DNA G+C content was 60.7 mol %. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain MC 3726T is considered to represent a novel species of the genus Luteolibacter, for which the name Luteolibacter arcticus sp. nov. is proposed. The type strain is MC 3726T ( = CCTCC AB 2014275T = LMG 28638T). An emended description of the genus Luteolibacter is also provided, along with emended descriptions of Luteolibacter cuticulihirudinis, Luteolibacter yonseiensis and Luteolibacter pohnpeiensis.

  13. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  14. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    NASA Astrophysics Data System (ADS)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  15. Shrub Abundance Mapping in Arctic Tundra with Misr

    NASA Astrophysics Data System (ADS)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  16. Modelling tundra vegetation response to recent arctic warming.

    PubMed

    Miller, Paul A; Smith, Benjamin

    2012-01-01

    The Arctic land area has warmed by > 1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO(2) for 1980-2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed. PMID:22864701

  17. Modeling dynamics of circum-arctic tundra plant communities in response to climate warming and grazing pressure

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.; Forbes, B. C.; Vors, L. S.

    2011-12-01

    The Arctic is a complex system with strong interconnectedness among system components. Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among climate, soils, and the biological system. In this study, we investigate the individual and interactive effects of projected climate change and reindeer/caribou grazing across a variety of climate zones and soil nutrient levels on tundra plant community dynamics using an arctic vegetation model - ArcVeg. Our research questions include: 1) How does soil nutrient availability affect tundra vegetation responses to projected climate warming? 2) How does grazing affect tundra vegetation responses? 3) How do interactions of soil nutrients, climate warming and grazing affect tundra vegetation? We based our simulations on A1B scenario temperature data from the Intergovernmental Panel on Climate Change (IPCC), soil organic nitrogen data from Terrestrial Ecosystem Model (TEM) simulations and grazing pressure derived from reindeer/caribou population data from the CircumArctic Rangifer Monitoring and Assessment Network (CARMA). We found that in general tundra communities responded to warming with increased plant biomass, but the magnitude of the response is affected by the bioclimate zones, warming magnitude, available soil nutrients and grazing pressures. Regions with greater soil organic nitrogen responded to warming with greater biomass increase, Low Arctic tundra tended to have greater biomass increase than High Arctic tundra due to greater shrub abundance. However, such responses are mitigated by grazing. Regions with greater reindeer population and thus greater grazing intensity tended to have stronger negative effects on plant responses to warming than regions with less grazing. For example, in Subzone D, total biomass and NPP increases due to warming were about 71% and 43% in an Alaskan low grazing-intensity region, but 63% and 36% in a northwestern Canada

  18. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    USGS Publications Warehouse

    Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L.; Yoshikawa, K.; Tweedie, C.; Noyle, B.; Silapaswan, C.; Douglas, D.; Griffith, B.; Jia, G.; Epstein, H.; Walker, D.; Daeschner, S.; Petersen, A.; Zhou, L.; Myneni, R.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land-Air-Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations. The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored. ?? 2003 Elsevier Inc. All rights reserved.

  19. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems

    USGS Publications Warehouse

    Checkstow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L.; Yoshikawa, K.; Tweedie, C.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land-Air-Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations. The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.

  20. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    PubMed

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  1. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    PubMed

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  2. Controls over nutrient flow through plants and microbes in Arctic tundra. Final report

    SciTech Connect

    Schimel, J.

    1994-02-01

    Ecosystem productivity in the Arctic is strongly controlled by N availability to plants. Thus, disturbances to the Arctic system are likely to have their greatest impacts by altering the supply of nutrients to plants. Thus, to understand the dynamics of Arctic tundra, a complete understanding of the controls on N cycling in tundra soils is necessary. This project focused on understanding nutrient dynamics in arctic tussock tundra, specifically evaluating the role of microbial uptake and competition for nutrients as a control on plant N-uptake. The project consisted of several major components: Short- and long-term partitioning of NH{sub 4}{sup +} in tussock tundra (1990--1991); Measurement of NH{sub 4}{sup +} uptake rates by Eriophorum vaginatum and by soil microbes; Determination of microbial NH{sub 4}{sup +} and NO{sub 3}{minus} uptake kinetics; and Determination of the partitioning of NH{sub 4}{sup +} and amino acids between E. vaginatum and soil microbes.

  3. Rough-Legged Buzzards, Arctic Foxes and Red Foxes in a Tundra Ecosystem without Rodents

    PubMed Central

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A.; Kondratyev, Alexander V.; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species—rough-legged buzzard, arctic fox and red fox – perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey – altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period – a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers. PMID:25692786

  4. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    PubMed

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A; Kondratyev, Alexander V; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  5. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    PubMed

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A; Kondratyev, Alexander V; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers. PMID:25692786

  6. Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Walker, D. A.; Raynolds, M. K.; Kelley, A. M.; Jia, G.; Ping, C.; Michaelson, G.; Leibman, M. O.; Kaarlejärvi, E.; Khomutov, A.; Kuss, P.; Moskalenko, N.; Orekhov, P.; Matyshak, G.; Forbes, B. C.; Yu, Q.

    2009-12-01

    Analyses of vegetation properties along climatic gradients provide first order approximations as to how vegetation might respond to a temporally dynamic climate. Until recently, no systematic study of tundra vegetation had been conducted along bioclimatic transects that represent the full latitudinal extent of the arctic tundra biome. Since 1999, we have been collecting data on arctic tundra vegetation and soil properties along two such transects, the North American Arctic Transect (NAAT) and the Yamal Arctic Transect (YAT). The NAAT spans the arctic tundra from the Low Arctic of the North Slope of Alaska to the polar desert of Cape Isachsen on Ellef Ringnes Island in the Canadian Archipelago. The Yamal Arctic Transect located in northwest Siberia, Russia, presently ranges from the forest-tundra transition at Nadym to the High Arctic tundra on Belyy Ostrov off the north coast of the Yamal Peninsula. The summer warmth indices (SWI - sum of mean monthly temperatures greater than 0°C) range from approximately 40 °C months to 3 °C months from south to north. For largely zonal sites along these transects, we systematically collected leaf area index (LAI-2000 Plant Canopy Analyzer), normalized difference vegetation index (NDVI - PSII hand-held spectro-radiometer), and vegetation biomass (clip harvests). Site-averaged LAI ranges from 1.08 to 0 along the transects, yet can be highly variable at the landscape scale. Site-averaged NDVI ranges from 0.67 to 0.26 along the transects, and is less variable than LAI at the landscape scale. Total aboveground live biomass ranges from approximately 700 g m-2 to < 50 g m-2 along the NAAT, and from approximately 1100 g m-2 to < 400 g m-2 along the YAT (not including tree biomass at Nadym). LAI and NDVI are highly correlated logarithmically (r = 0.80) for the entire dataset. LAI is significantly related to total aboveground (live plus dead) vascular plant biomass, although there is some variability in the data (r = 0.63). NDVI is

  7. Migration potential of tundra plant species in a warming Arctic: Responses of southern ecotypes of three species to experimental warming in the High Arctic

    NASA Astrophysics Data System (ADS)

    Bjorkman, Anne; Henry, Greg; Vellend, Mark

    2013-04-01

    Climatic changes due to anthropogenic activity are predicted to have a profound effect on the world's biodiversity and ecosystem functioning. The response of natural communities to climate change will depend primarily on two factors: 1) the ability of species to adapt quickly to changing temperatures and precipitation trends, and 2) the ability of species and populations from southern latitudes to migrate northward and establish in new environments. The assumption is often made that species and populations will track their optimal climate northward as the earth warms, but this assumption ignores a host of other potentially important factors, including the lack of adaptation to photoperiod, soil moisture, and biotic interactions at higher latitudes. In this study, we aim to better understand the ability of southern populations to establish and grow at northern latitudes under warmer temperatures. We collected seeds or ramets of three Arctic plant species (Papaver radicatum, Oxyria digyna, and Arctagrostis latifolia) from Alexandra Fiord on Ellesmere Island, Canada and from southern populations at Cornwallis Island, Canada, Barrow, Alaska, and Latnjajaure, Sweden. These seeds were planted into experimentally warmed and control plots at Alexandra Fiord in 2011. We have tracked their survival, phenology, and growth over two growing seasons. Here, we will present the preliminary results of these experiments. In particular, we will discuss whether individuals originating from southern latitudes exhibit higher growth rates in warm plots than control plots, and whether southern populations survive and grow as well as or better than individuals from Alexandra Fiord in the warmed plots. In both cases, a positive response would indicate that a warming climate may facilitate a migration northward of more southerly species or populations, and that the lack of adaptation to local conditions (soil chemistry, microhabitat, etc.) will not limit this migration. Alternately, a

  8. On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles.

    PubMed

    Mohn, W W; Radziminski, C Z; Fortin, M C; Reimer, K J

    2001-10-01

    There is a need to develop technology to allow the remediation of soil in polar regions that have been contaminated by hydrocarbon fuel spills. Bioremediation is potentially useful for this purpose, but has not been well demonstrated in polar regions. We investigated biopiles for on-site bioremediation of soil contaminated with Arctic diesel fuel in two independent small-scale field experiments at different sites on the Arctic tundra. The results were highly consistent with one another. In biopiles at both sites, extensive hydrocarbon removal occurred after one summer. After 1 year in treatments with optimal conditions, total petroleum hydrocarbons were reduced from 196 to below 10 mg per kg of soil at one site, and from 2,109 to 195 mg per kg of soil at the other site. Addition of ammonium chloride and sodium phosphate greatly stimulated hydrocarbon removal and indicates that biodegradation was the primary mechanism by which this was achieved. Inoculation with cold-adapted, mixed microbial cultures further stimulated hydrocarbon removal during the summer immediately following inoculation. At one site, soil temperature was monitored during the summer season, and a clear plastic cover increased biopile soil temperature, measured as degree-day accumulation, by 30-49%. Our results show that on-site bioremediation of fuel-contaminated soil at Arctic tundra sites is feasible. PMID:11693928

  9. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  10. On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles.

    PubMed

    Mohn, W W; Radziminski, C Z; Fortin, M C; Reimer, K J

    2001-10-01

    There is a need to develop technology to allow the remediation of soil in polar regions that have been contaminated by hydrocarbon fuel spills. Bioremediation is potentially useful for this purpose, but has not been well demonstrated in polar regions. We investigated biopiles for on-site bioremediation of soil contaminated with Arctic diesel fuel in two independent small-scale field experiments at different sites on the Arctic tundra. The results were highly consistent with one another. In biopiles at both sites, extensive hydrocarbon removal occurred after one summer. After 1 year in treatments with optimal conditions, total petroleum hydrocarbons were reduced from 196 to below 10 mg per kg of soil at one site, and from 2,109 to 195 mg per kg of soil at the other site. Addition of ammonium chloride and sodium phosphate greatly stimulated hydrocarbon removal and indicates that biodegradation was the primary mechanism by which this was achieved. Inoculation with cold-adapted, mixed microbial cultures further stimulated hydrocarbon removal during the summer immediately following inoculation. At one site, soil temperature was monitored during the summer season, and a clear plastic cover increased biopile soil temperature, measured as degree-day accumulation, by 30-49%. Our results show that on-site bioremediation of fuel-contaminated soil at Arctic tundra sites is feasible.

  11. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    USGS Publications Warehouse

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  12. Estimating carbon and energy fluxes in arctic tundra

    NASA Astrophysics Data System (ADS)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  13. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Qin; Epstein, Howard; Walker, Donald

    2009-10-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model—ArcVeg—to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g m-2 in total biomass at the high SON site in subzone E, but only 298 g m-2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m-2 at the high SON site in contrast to 184 g m-2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  14. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  15. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  16. Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling.

    PubMed

    Sitch, Stephen; McGuire, A David; Kimball, John; Gedney, Nicola; Gamon, John; Engstrom, Ryan; Wolf, Annett; Zhuang, Qianlai; Clein, Joy; McDonald, Kyle C

    2007-01-01

    This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of process-based approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.

  17. Changing snow cover in tundra ecosystems tips the Arctic carbon balance

    NASA Astrophysics Data System (ADS)

    Zona, D.; Hufkens, K.; Gioli, B.; Kalhori, A. A. M.; Oechel, W. C.

    2014-12-01

    The Arctic environment has witnessed important changes due to global warming, resulting in increased surface air temperatures and rain events which both exacerbate snow cover deterioration (Semmens et al, 2013; Rennert et al, 2009; White et al, 2007; Min et al, 2008; Sharp et al, 2013; Schaeffer et al, 2013). Snow cover duration is declining by almost 20% per decade, a far higher rate than model estimates (Derksen and Brown, 2012). Concomitant with increasing temperatures and decreasing snow cover duration, the length of the arctic growing season is reported to have increased by 1.1 - 4.9 days per decade since 1951 (Menzel et al, 2006), and, plant productivity and CO2 uptake from arctic vegetation are strongly influenced by changes in growing season length (Myneni et al., 1997; Schaefer et al., 2005; Euskirchen et al., 2006). Based on more than a decade of eddy flux measurements in Arctic tundra ecosystems across the North slope of Alaska, and remotely sensed snow cover data, we show that earlier snow melt in the spring increase C uptake while an extended snow free period in autumn is associated with a higher C loss. Here we present the impacts of changes in snow cover dynamics between spring and autumn in arctic tundra ecosystems on the carbon dynamics and net C balance of the Alaskan Arctic. ReferencesDerksen, C., Brown R. (2012) Geophys. Res. Lett., doi:10.1029/2012GL053387 Euskirchen, E.S., et al. (2006) Glob. Change Biol., 12, 731-750. Menzel, A., et al. 2006. Glob. Change Biol., 12, 1969-1976. Min SK, Zhang X, Zweirs F (2008) Science 320: 518-520. Rennert K J, Roe G, Putkonen J and Bitz C M (2009) J. Clim. 22 2302-15. Schaefer, K., Denning A.S., Leonard O. (2005) Global Biogeochem. Cycles, 19, GB3017. Schaeffer, S. M., Sharp, E., Schimel, J. P. & Welker, J. M. (2013). Soil- plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob. Change Biol., 11, 3529-39. doi: 10.1111/gcb.12318

  18. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    PubMed

    Higuera, Philip E; Brubaker, Linda B; Anderson, Patricia M; Brown, Thomas A; Kennedy, Alison T; Hu, Feng Sheng

    2008-03-05

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st) century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  19. Effects of experimentally-warmed tundra on diurnal gas exchange in Salix-, Carex, and Eriophorum in a high-arctic lowland oasis

    SciTech Connect

    Jones, M.H.; MacDonald, S.E. ); Henry, G.H.R. )

    1994-06-01

    Gas exchange was measured for the willow Salix arctica and two sede species. Carex qauatilus stans and Eriophorum angustifolium triste, at Alexandra Fiord, Ellesmere Island (78[degrees]52'N) in an experiment designed to stimulate climate change. The tundra was warmed using passive, open-topped experimental chambers that raised daily mean temperatures approx. 2[degrees] over two seasons. The chambers are part of the International Tundra Experiment (ITEX), the objective of which is to assess potential impacts of global warming on tundra plant communities. Salix arctica was measured in dry tundra and on adjacent wet meadow hummocks. The sedges were measured on hummocks and in hollows in the wet meadow only. Gas exchange was measured every four hours for 48 hours for each species. For S arctica, experimental warming had no effect in the dry tundra, but appeared to depress net assimilation (NA) in the wet meadow. Gas exchange parameters were slightly higher overall in the dry tundra for this species. For the sedges, the warming treatment had no major effect, although it caused some reduction of NA for Eriophorum on the hummocks. Gas exchange parameters were generally higher for Carex than for Eriophorum. No regular diurnal patterns of gas exchange were observed for any species.

  20. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  1. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  2. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.

    PubMed

    Blanc-Betes, Elena; Welker, Jeffrey M; Sturchio, Neil C; Chanton, Jeffrey P; Gonzalez-Meler, Miquel A

    2016-08-01

    Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long-term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and (13) C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun-Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75-120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and -31 ± 1 mg CH4  m(-2)  season(-1) at Ambient and RS). Deeper snow reduced Fox by 35-40% and 90-100% in medium- (MS) and high- (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4  m(-2)  season(-1) at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant-mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw-induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently

  3. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.

    PubMed

    Blanc-Betes, Elena; Welker, Jeffrey M; Sturchio, Neil C; Chanton, Jeffrey P; Gonzalez-Meler, Miquel A

    2016-08-01

    Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long-term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and (13) C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun-Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75-120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and -31 ± 1 mg CH4  m(-2)  season(-1) at Ambient and RS). Deeper snow reduced Fox by 35-40% and 90-100% in medium- (MS) and high- (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4  m(-2)  season(-1) at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant-mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw-induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently

  4. Transformations Of Runoff Chemistry In An Arctic Tundra Catchment

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Pomeroy, J. W.

    2004-05-01

    This paper traces the transformation of snow meltwater chemical composition during melt, elution and runoff in an Arctic tundra basin. The chemistry of the water flowing through pathway segments from the surface of melting snow to the basin outlet are related to the relevant hydrological processes. In so doing, this paper offers physically-based explanations for the transformation of major ion concentrations and loads of runoff water arising from snowmelt and rainfall input as it travels to the stream outlet in this environment. Late-lying snow drifts were found to greatly influence the ion chemistry in adjacent reaches of the stream channel. As the initial pulse of ion-rich meltwater drained from the drift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of peak ionic pulse lengthened. Over the first three metres of surface flow, the concentrations of all ions except for NO3- increased by one to two orders of magnitude, with the largest increase occurring for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0.25 m of unsaturated soil. The hillslope runoff pathways replaced Na+ and Cl-, the major ions in the snow melt percolate arriving at the ground surface with Ca2+ and Mg2+. On slopes below a large melting snowdrift, ion concentrations of meltwater flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, sub-surface flow ion concentrations rose steadily above parent meltwater concentrations. Three seasonally-characteristic hydro-chemical regimes were identified in a stream reach adjacent to late-lying drifts. In the first two stages, the water chemistry in the stream channel strongly resembled that of the hillslope drainage water. In the third stage, in-stream geochemical processes, particularly weathering of

  5. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    PubMed

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  6. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    PubMed

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  7. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  8. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2009-12-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world’s largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model (ArcVeg) to evaluate how two factors (soil organic nitrogen [SON] levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (High Arctic), D (northern Low Arctic) and E (southern Low Arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m2 in total biomass at the high SON site in subzone E, while only 298 g/m2 in the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m2 in the high SON site in contrast to 184 g/m2 in the low SON site in subzone E. When comparing low grazing to high grazing effects on soil organic nitrogen pools over time (Figure 1), higher grazing frequency led to either slower SON accumulation rates or more rapid SON depletion rates. Warming accentuated these differences caused by grazing, suggesting the interaction between grazing and warming may yield greater differences in SON levels across sites. Our results suggest that low SON and grazing may limit plant response to climate change. Interactions among bioclimate subzones, soils, grazing and warming significantly affect plant biomass and productivity in

  9. The temperature response of methane emission in Arctic wet sedge tundra

    NASA Astrophysics Data System (ADS)

    Lim, Edward; Zona, Donatella

    2015-04-01

    Since the last glacial maximum Arctic tundra soils have acted as an important carbon sink, having accumulated carbon under cold, anaerobic conditions (Zona et al. 2009). Several studies indicate that recent climate warming has altered this balance, with the Arctic tundra now posited to be a significant annual source of atmospheric methane (CH4) (McGuire et al. 2012). Nonetheless, the response of Arctic tundra CH4 fluxes to continued climate warming remains uncertain. Laboratory and field studies indicate that CH4 fluxes are temperature sensitive, thus accurate calculation of the temperature sensitivity is vital for the prediction of future CH4 emission. For this, the increase in reaction rate over a 10°C range (Q10) is frequently used, with single fixed Q10 values (between 2 and 4) commonly incorporated into climate-carbon cycle models. However, the temperature sensitivity of CH4 emission can vary considerably depending on factors such as vegetation composition, water table and season. This promotes the use of spatially and seasonally variable Q10 values for accurate CH4 flux estimation under different future climate change scenarios. This study investigates the temperature sensitivity (Q10) of Arctic tundra methane fluxes, using an extensive number of soil cores (48) extracted from wet sedge polygonal tundra (Barrow Experimental Observatory, Alaska). 'Wet' and 'dry' cores were taken from the centre and raised perimeter of ice-wedge polygons, where the water tables are 0cm and -15cm respectively. Cores were incubated in two controlled environment chambers (University of Sheffield, UK) for 12 weeks under different thaw depth treatments (control and control + 6.8cm), water tables (surface and -15cm), and CO2 concentrations (400ppm and 850ppm) in a multifactorial manner. Chamber temperature was gradually increased from -5°C to 20°C, then gradually decreased to -5°C, with each temperature stage lasting one week. Average CH4 fluxes from 'dry' cores were consistently

  10. Estimated storage of amorphous silica in soils of the circum-Arctic tundra region

    NASA Astrophysics Data System (ADS)

    Alfredsson, H.; Clymans, W.; Hugelius, G.; Kuhry, P.; Conley, D. J.

    2016-03-01

    We investigated the vertical distribution, storage, landscape partitioning, and spatial variability of soil amorphous silica (ASi) at four different sites underlain by continuous permafrost and representative of mountainous and lowland tundra, in the circum-Arctic region. Based on a larger set of data, we present the first estimate of the ASi soil reservoir (0-1 m depth) in circum-Arctic tundra terrain. At all sites, the vertical distribution of ASi concentrations followed the pattern of either (1) declining concentrations with depth (most common) or (2) increasing/maximum concentrations with depth. Our results suggest that a set of processes, including biological control, solifluction and other slope processes, cryoturbation, and formation of inorganic precipitates influence vertical distributions of ASi in permafrost terrain, with the capacity to retain stored ASi on millennial timescales. At the four study sites, areal ASi storage (0-1 m) is generally higher in graminoid tundra compared to wetlands. Our circum-Arctic upscaling estimates, based on both vegetation and soil classification separately, suggest a storage amounting to 219 ± 28 and 274 ± 33 Tmol Si, respectively, of which at least 30% is stored in permafrost. This estimate would account for about 3% of the global soil ASi storage while occupying an equal portion of the global land area. This result does not support the hypothesis that the circum-Arctic tundra soil ASi reservoir contains relatively higher amounts of ASi than other biomes globally as demonstrated for carbon. Nevertheless, climate warming has the potential to significantly alter ASi storage and terrestrial Si cycling in the Arctic.

  11. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  12. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, J.S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, M.C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  13. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  14. Disappearing Arctic Tundra Ponds: Assessing 60 Years of Change in the Barrow Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Andresen, C.; Lougheed, V.

    2012-12-01

    Decadal hydrological changes of closed-basin tundra ponds in continuous permafrost fills a missing gap in arctic fresh water research. Furthermore, the lack of historic datasets and high resolution historical imagery adds to the challenge of understanding the long-term trends of these ecosystems. Given the dominance of these aquatic ecosystems in the Arctic landscape, documenting hydrological changes is important to understand carbon and energy balance, trophic energy flow, and biodiversity. We utilized historic aerial imagery from USGS archives of 1948 and modern high-resolution Quickbird imagery from 2008 to assess areal changes in arctic ponds over the past 60 years. Object-oriented classification was used to extract the areal extent of ponds and validated using a combination of ground-based measurements such as Kite Aerial Photography (KAP) and Differential Geographic Positioning System (DGPS). A total of 1120 ponds in different drained thaw lake basins (DTLB) distributed across the Barrow Peninsula were assessed. Analysis indicated a decline in total pond area and a decrease of 36% in the number of ponds, with change more pronounced in smaller ponds (<100m2). Aquatic plant cover data collected over a 40 year period (1970-2012) indicate that expansion of vegetation into the ponds may be a primary mechanism whereby ponds may experience infilling. Other mechanisms may include increased evaporation due to warmer and longer summers, transpiration from encroaching aquatic grasses and changes in precipitation patterns. However, images from additional years will be analyzed to separate out the roles of these variables on inter- versus intra-annual variability in pond surface area.

  15. Analysis of state of vehicular scars on Arctic Tundra, Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H.

    1974-01-01

    Identification on ERTS images of severe vehicular scars in the northern Alaska tundra suggests that, if such scars are of an intensity or have spread to a dimension such that they can be resolved by ERTS sensors (20 meters), they can be identified and their state monitored by the use of ERTS images. Field review of the state of vehicular scars in the Umiat area indicates that all are revegetating at varying rates and are approaching a stable state.

  16. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  17. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-06-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  18. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    USGS Publications Warehouse

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  19. Community Land Model (CLM) Assessment on Simulating and Analyzing Water, Carbon and Nitrogen Cycles in Arctic Coastal Tundra at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Thornton, P. E.; King, A. W.; Ricciuto, D. M.; Post, W. M.

    2012-12-01

    Recent climate warming has been widely hypothesized to be one of primary contributors to shifting both biophysical and biological conditions of Arctic tundra ecosystem and thus water, carbon and nitrogen cycles. Both constrains on integrating multiple-scale observations scattered in various sources and comprehensive process-based model assessments on those may hinder our further and/or deepen understanding of climate impacts on Arctic tundra and their feedbacks. This preliminary study is to assess and improve, as needed, the Community Land Model (CLM-CN mode) on simulating soil water, temperature, nitrogen nutrient and other factors and their effects on soil-plant C stocks and/or fluxes in Arctic tundra at Barrow, Alaska. The model assessment is carried out by exploring and using data compiled from various researches, e.g., AmeriFlux, US/IBP, ITEX and others during past few decades in the area. We add a simple N emission subroutine in the current released CLM4 (in CESM1.0.4) and modify soil water drainage boundary conditions so that model can partially capture the landscape position effects of hydrological process on thermal and biogeochemical processes. We initially parameterize and initialize the model for Arctic tundra at Barrow, AK with 4 new plant functional types (PFTs): mosses, forbs, graminoids, and shrubs, based on literature study. It shows strong inter-annual variance of C fluxes, which tightly coupled with water, temperature and N nutrient dynamics. We then conduct a factory model experiments with drainage classes and varying PFT compositions in order to understand possible water, C and N cycle variations if vegetation changes over landscape. This preliminary analysis is of importance to apply for CLM model in this highly heterogeneous coastal Arctic tundra region under historical and projected climate changes.

  20. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].

    PubMed

    Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V

    2005-01-01

    Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C. PMID:15938404

  1. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  2. Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data

    USGS Publications Warehouse

    Kolden, Crystal A.; Rogan, John

    2013-01-01

    Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.

  3. Community ecology: how green is the arctic tundra?

    PubMed

    Morris, Rebecca J

    2008-03-25

    The exploitation ecosystems hypothesis suggests that food chain length increases along gradients of increasing primary productivity. Recent results provide compelling new evidence for this from an arctic-alpine ecosystem. PMID:18364231

  4. The impact of vegetation type on the shortwave radiation balance of the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Schaepman-Strub, Gabriela

    2015-04-01

    Profound changes in vegetation composition in the Arctic tundra have been observed and are predicted in a warmer future climate. Shrub expansion may positively feed back to climate warming by decreasing the shortwave albedo. On the other hand, permafrost protection through soil shading by shrubs has been discussed in literature. Several studies compared the average radiation balance across vegetation zones. However, variation within vegetation zones may be as important as differences between vegetation zones. The lowland tundra ecosystem at the Kytalyk research site (NE Siberia) is dominated by two vegetation types (dwarf shrub (Betula nana) and wet sedge (Eriophorum angustifolium)) organised in patches at a scale of about 10m. We investigated the shortwave radiation balance of both types separately and related it to the 11 year data set of the fluxtower with a mixed footprint. In addition to canopy albedo, we measured canopy transmittance below dwarf shrubs and wet sedges to quantify the often discussed effect of soil shading. Our results show that at our field site, wet sedge vegetation is shading the soil more efficiently than dwarf shrubs due to multi-year standing litter. While we measured an average transmission of 36% of the incoming shortwave radiation below dwarf shrubs, the transmission of wet sedge was 28%. Wet sedge summer albedo was on average 16% higher than dwarf shrub albedo. Additionally, the snow melted 10 days later in the sedge patches, leading to large albedo differences in the second half of May 2014. Our analysis shows, that cloud cover is the second most important control on albedo and transmittance of both vegetation types. Clouds reduced the summer albedo of both vegetation types across all zenith angles. On average, the growing season albedo was about 11% higher on clear sky days as compared to overcast days whereas the transmittance was about 23% lower. As cloud cover is expected to change with climate change, field studies of the cloud

  5. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    PubMed

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  6. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    PubMed

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  7. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  8. Modeled change in carbon balance between 1970-2100 of a polygonal arctic tundra ecosystem near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Genet, H.; Zhang, Y.; Yuan, F.

    2013-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where microtopographic position (i.e. high center, low center, trough) varies surface hydrology, plant community composition, and biogeochemical cycling, over small (<5m) spatial scales. Due to large spatial heterogeneity and other non-linear responses of soil carbon to altered thermal regime, it is difficult to accurately estimate the fate of terrestrial carbon balance over decadal time-scales without explicitly considering the dynamically coupled processes driving permafrost dynamics, community structure, and ecosystem function. We use a new version of the terrestrial ecosystem model (TEM), which couples a dynamic vegetation and dynamic organic soil model (DVM-DOS-TEM). This large-scale ecosystem model is designed to study interactions among carbon and nitrogen cycling, vegetation composition, and soil physical properties, including permafrost and active layer dynamics. The model is parameterized and calibrated using data specific to the local climate, vegetation, and soils within various polygon land cover types (i.e. high center & rim, low center, trough) collected from sites (71.28°N 156.60° W) on the arctic coastal plain near Barrow, Alaska to estimate the likely change in carbon balance between 1970 and 2100 in this landscape. Model outputs are scaled across the Barrow Peninsula using the distribution of polygonal tundra land cover types, described by a land cover classification of 26.9 km2, using a 2008 multi-spectral QuickBird satellite image. The polygonal tundra land cover classification found high center & rims to represent 37.5% of the study area, low centers 19

  9. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.

    PubMed

    Koyama, Akihiro; Wallenstein, Matthew D; Simpson, Rodney T; Moore, John C

    2014-01-01

    The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  10. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    NASA Astrophysics Data System (ADS)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  11. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    NASA Astrophysics Data System (ADS)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  12. Long-term warming restructures Arctic tundra without changing net soil carbon storage.

    PubMed

    Sistla, Seeta A; Moore, John C; Simpson, Rodney T; Gough, Laura; Shaver, Gaius R; Schimel, Joshua P

    2013-05-30

    High latitudes contain nearly half of global soil carbon, prompting interest in understanding how the Arctic terrestrial carbon balance will respond to rising temperatures. Low temperatures suppress the activity of soil biota, retarding decomposition and nitrogen release, which limits plant and microbial growth. Warming initially accelerates decomposition, increasing nitrogen availability, productivity and woody-plant dominance. However, these responses may be transitory, because coupled abiotic-biotic feedback loops that alter soil-temperature dynamics and change the structure and activity of soil communities, can develop. Here we report the results of a two-decade summer warming experiment in an Alaskan tundra ecosystem. Warming increased plant biomass and woody dominance, indirectly increased winter soil temperature, homogenized the soil trophic structure across horizons and suppressed surface-soil-decomposer activity, but did not change total soil carbon or nitrogen stocks, thereby increasing net ecosystem carbon storage. Notably, the strongest effects were in the mineral horizon, where warming increased decomposer activity and carbon stock: a 'biotic awakening' at depth.

  13. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    SciTech Connect

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie; Kelley, Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  14. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    SciTech Connect

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie; Kelley, Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  15. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils.

    PubMed

    Lipson, David A; Raab, Theodore K; Parker, Melanie; Kelley, Scott T; Brislawn, Colin J; Jansson, Janet

    2015-08-01

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  16. Bird Communities of the Arctic Shrub Tundra of Yamal: Habitat Specialists and Generalists

    PubMed Central

    Sokolov, Vasiliy; Ehrich, Dorothée; Yoccoz, Nigel G.; Sokolov, Alexander; Lecomte, Nicolas

    2012-01-01

    Background The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. Methodology/Principal Findings Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km2). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. Conclusion/Significance If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone. PMID:23239978

  17. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    NASA Astrophysics Data System (ADS)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  18. Terrimonas arctica sp. nov., isolated from Arctic tundra soil.

    PubMed

    Jiang, Fan; Qiu, Xia; Chang, Xulu; Qu, Zhihao; Ren, Lvzhi; Kan, Wenjing; Guo, Youhao; Fang, Chengxiang; Peng, Fang

    2014-11-01

    A novel, Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated R9-86(T), was isolated from tundra soil collected near Ny-Ålesund, Svalbard Archipelago, Norway (78° N). Growth occurred at 4-28 °C (optimum, 22-25 °C) and at pH 6.0-9.0 (optimum, pH 7.0). Flexirubin-type pigments were absent. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R9-86(T) belonged to the genus Terrimonas in the family Chitinophagaceae. 16S rRNA gene sequence similarities between strain R9-86(T) and the type strains of species of the genus Terrimonas with validly published names ranged from 93.7 to 95.0%. Strain R9-86(T) contained iso-C(15:1)-G (25.7%), iso-C(15:0) (24.5%), iso-C(17:0)-3OH (18.3%) and summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c, 8.7%) as its major cellular fatty acids; phosphatidylethanolamine and an unknown polar lipid as its main polar lipids, and MK-7 as its predominant respiratory quinone. The DNA G+C content was 48.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain R9-86(T) is considered to represent a novel species of the genus Terrimonas, for which the name Terrimonas arctica sp. nov. is proposed. The type strain is R9-86(T) ( =CCTCC AB 2011004(T) =NRRL B-59114(T)).

  19. Flowpath Transformations of Precipitation Chemistry in an Arctic Tundra Catchment

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Pomeroy, J. W.

    2003-12-01

    This paper traces the drainage pathways followed by rainfall and snowmelt in an actic tundra basin. The major hydrological processes operating within each flowpath segment from the surface of melting snow to the basin outlet are related to changes in the ion chemistry of the water flowing from each segment. In so doing, this paper offers physically-based explanations for the transformation of major ion concentrations and loads of snowmelt water as it travels to the stream outlet in this environment. Despite representing only five percent of the basin water equivalent, snow drifts were found to control the ion chemistry of the water in hillslope flowpaths and in the stream channel. As the initial pulse of ion-rich meltwater was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of peak ionic pulse lengthened. The hillslope runoff process also replaced Na+ and Cl-, the major ions in the percolate with Ca2+ and Mg2+. Over the first three metres of surface flow, concentrations of most ions increased by one to two orders of magnitude, which was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0.25 m of unsaturated soil. On slopes below a large melting snowdrift, ion concentrations of meltwater flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, sub-surface flow ion concentrations rose steadily above parent meltwater concentrations. Water chemistry in the stream channel strongly resembled that of drainage from adjacent hillslopes. In-channel geochemical processes increased the concentration of most ions with flow distance in the major channel.

  20. Long-Term Hydrological Changes of Coastal Arctic Tundra Ponds in Drained Thaw Lake Basins

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lougheed, V.

    2013-12-01

    Given the dominance of these ponds in the tundra landscape, documenting long-term changes in these aquatic systems is essential to understand carbon and energy balance, trophic energy flow, and biodiversity for the Arctic. The combination of remote sensing using historical imagery, as well as rare historical data from the International Biological Program, provides a unique opportunity for understanding long-term changes in hydrology, chemistry and biology of these significant freshwater environments. To assess the changes in pond area and abundance in 22 drained thaw-lake basins (DTLB) across the Barrow Peninsula over the past 60 years, we utilized historic aerial imagery from USGS archives (1948) and modern high-resolution Quickbird (2002, 2008, 2010). Age classification of DTLB was based on Hinkel et al 2003. We compared water temperature, active layer thickness, and aboveground biomass of these systems to historical datasets compiled in the Limnology of Tundra Ponds' by Hobbie et al 1975. We observed an overall decrease of 28% in pond area and 19% decrease in pond number, where smaller ponds (<100m2) had the highest change. These losses were coincident with significantly higher air and water temperature and reduced annual rainfall, which has decreased by 2.5 cm over the past 62 years (-0.4mm/yr). Active layer in ponds increased on average by 15cm. Aquatic grasses increased in density and cover in ponds over the past 40 years. Area and number of ponds loss was independent of DTLB age; however, medium-age DTLBs had significantly higher number of new ponds over old and ancient-age basins. While we observe new ponds due to thaw lake processes, climate seems to be having a stronger effect on these systems by reducing the overall inundated area and pond number in these basins. Increased evaporation due to warmer and longer summers, permafrost degradation, transpiration from encroaching aquatic grasses and changes in precipitation patterns are likely the current major

  1. The response of Arctic vegetation and soils following an unusually severe tundra fire

    PubMed Central

    Bret-Harte, M. Syndonia; Mack, Michelle C.; Shaver, Gaius R.; Huebner, Diane C.; Johnston, Miriam; Mojica, Camilo A.; Pizano, Camila; Reiskind, Julia A.

    2013-01-01

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred. PMID:23836794

  2. The response of Arctic vegetation and soils following an unusually severe tundra fire.

    PubMed

    Bret-Harte, M Syndonia; Mack, Michelle C; Shaver, Gaius R; Huebner, Diane C; Johnston, Miriam; Mojica, Camilo A; Pizano, Camila; Reiskind, Julia A

    2013-08-19

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km(2) of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub-sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.

  3. Biomarkers as Indicators of Respiration During Laboratory Incubations of Alaskan Arctic Tundra Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Schuur, E.; Bianchi, T. S.; Bracho, R. G.

    2015-12-01

    High latitude permafrost soils are estimated to store 1,330 - 1,580 Pg C, which account for ca. 40% of global soil C and nearly twice that of atmospheric C. Disproportionate heating of high latitude regions during climate warming potentially results in permafrost thaw and degradation of surficial and previously-frozen soil C. Understanding how newly-thawed soils respond to microbial degradation is essential to predicting C emissions from this region. Laboratory incubations have been a key tool in understanding potential respiration rates from high latitude soils. A recent study found that among the common soil measurements, C:N was the best predictor of C losses. Here, we analyzed Alaskan Arctic tundra soils from before and after a nearly 3-year laboratory incubation. Bulk geochemical values as well as the following biomarkers were measured: lignin, amino acids, n-alkanes, and glycerol dialkyl glycerol tetraethers (GDGT). We found that initial C:N did not predict C losses and no significant change in C:N between initial and final samples. The lignin acid to aldehyde (Ad:Al) degradation index showed the same results with a lack of C loss prediction and no significant change during the experiment. However, we did find that C:N and Ad:Al had a significant negative correlation suggesting behavior consistent with expectations. The failure to predict C losses was likely influenced by a number of factors, including the possibility that biomarkers were tracking a smaller fraction of slower cycling components of soil C. To better interpret these results, we also used a hydroxyproline-based amino acid degradation index and n-alkanes to estimate the contribution Sphagnum mosses to soil samples - known to have slower turnover times than vascular plants. Finally, we applied a GDGT soil temperature proxy to estimate the growing season soil temperatures before each incubation, as well as investigating the effects of incubation temperature on the index's temperature estimate.

  4. Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities

    PubMed Central

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.

    2014-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  5. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    USGS Publications Warehouse

    Hope, Andrew; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  6. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.

    PubMed

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul

    2015-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  7. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.

    PubMed

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul

    2015-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.

  8. Spectral indices for remote sensing of phytomass and deciduous shrub changes in Alaskan arctic tundra

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Hobara, S.; Tsuyuzaki, S.; Watanabe, M.; Harada, K.; Kim, Y.; Shaver, G. R.; Fukuda, M.

    2010-12-01

    The relationships between spectral indices, phytomass, and plant functional types were determined by using field observations of a moist acidic tundra (MAT) and a moist non-acidic tundra (MNT) in the Toolik Lake Long Term Ecological Research (LTER) site and a sedge-shrub tundra (SS) in the Arctic National Wildlife Refuge, Alaska, USA. For the MAT and MNT observations, among aboveground phytomass, aboveground vascular phytomass, and vascular plant green phytomass, vascular plant green phytomass was the most sensitive to an exponential function of the normalized difference vegetation index (NDVI). The coefficient of determination (R2) was 0.73. Vascular plant carbon and nitrogen were estimated with exponential functions of NDVI (R2 of 0.57 and 0.53, respectively). For the MAT, MNT, and SS observations, vascular plant green phytomass was more strongly correlated with an exponential function of NDVI (ENDVI, R2 of 0.62) than any other spectral indices. On the other hand, for deciduous shrub green phytomass, the strongest correlation was with a product of an exponential function of NDVI and a spectral index (MIR - RED)/(MIR + RED) (DSSI, R2 of 0.60). Here, MIR and RED denote the bands with wavelengths 2.09-2.35 and 0.63-0.69 µm, respectively. As a result of a regression analysis, 41% of the ENDVI variance and 60% of the DSSI variance were explained by deciduous shrub green phytomass. Up to 38% of the ENDVI variance and up to 10% of the DSSI variance were explained by green phytomass of evergreen shrubs and graminoids, and phytomass of mosses/lichens. These spectral indices were applicable to evaluating tundra plant community changes.

  9. Controls over nutrient flow through plants and microbes in arctic tundra

    SciTech Connect

    Schimel, J.P.

    1990-01-01

    Plant growth in arctic tundra is generally strongly limited by nutrient availability, particularly by nitrogen. The purpose of this sub-project of the R4D program was to examine plant N-uptake and the competition for N between plants and microbes in tundra. This competition can be an important control on N-flow and plant uptake but its significance in tundra has not been studied intensively. How the factors controlling the outcome of competition are altered by disturbance has also received very limited study, yet this is important facet of the R4D program. The primary goal for this project in 1990 was to initiate studies on N-partitioning and turnover in tussock tundra and how this is affected by dust deposition. Secondary goals were to examine the effect of differential dust deposition on microbial activity and nutrient cycling processes (mineralization and nitrification), and begin studies on the control of microbial N-uptake. The N-partitioning studies used {sup 15}N injected into Eriophorum tussocks to examine both the short-term (1 day) partitioning of N and the long-term (1 month and 1 year) redistribution of N through the plant-soil system. These experiments were done in both the early season (June) and peak season (July). To examine the effect of dust on N-partitioning tussocks in the heavy dust zone and in a control site were labeled with {sup 15}N and harvested at the end of the growing season. 4 refs., 1 tab.

  10. Methane emissions from Alaska Arctic tundra - An assessment of local spatial variability

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.

    1992-01-01

    The findings of an extensive midsummer survey of CH4 emissions measurements representing the Alaska Arctic tundra are presented. Variability in rates of emissions was similar in magnitude on local and regional scales, ranging from 0 to 286.5 mg/sq m/d overall and often varying across two orders of magnitude within 0.5 m distances. Primary control on rates of emission was determined by the substrate and position of the water table relative to the surface. Emission rates in the Arctic Foothills ranged from 0.2 mg/sq m/d for tussock tundra to 55.53 mg/sq m/d over wet meadows. Plant-mediated release of CH4 to the atmosphere was directly proportional to green leaf area and represented 92-98 percent of the total emission rates over vegetated sites. The results suggest the current published emission rates may have overestimated the contribution of boreal ecosystems to the global CH4 budget by several fold.

  11. Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.

    PubMed

    Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R

    2016-11-01

    Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.

  12. Methane emissions from Alaska arctic tundra in response to climatic change

    SciTech Connect

    Livingston, G.P.; Morrissey, L.A.

    1992-03-01

    In situ observations of methane emissions from the Alaska North Slope in 1987 and 1989 provide insight into the environmental interactions regulating methane emissions and into the local- and regional-scale response of the arctic tundra to interannual environmental variability. Inferences regarding climate change are based on in situ measurements of methane emissions, regional landscape characterizations derived from Landsat Multispectral Scanner satellite data, and projected regional scale emissions based on observed interannual temperature differences and simulated changes in the spatial distribution of methane emissions. Results suggest that biogenic methane emissions from arctic tundra will be significantly perturbed by climatic change, leading to warmer summer soil temperatures and to vertical displacement of the regional water table. The effect of increased soil temperatures on methane emissions resulting from anaerobic decomposition in northern wetlands will be to both increase total emissions and to increase interannual and seasonal variability. The magnitude of these effects will be determined by those factors affecting the areal distribution of methane emission rates through regulation of the regional water table. At local scales, the observed 4.7 C increase in mid-summer soil temperatures between 1987 and 1989 resulted in a 3.2-fold increase in the rate of methane emissions from anaerobic soils.

  13. Reconstruction and analysis of historical changes in carbon storage in arctic tundra

    SciTech Connect

    McKane, R.B.; Rastetter, E.B.; Shaver, G.R.

    1997-06-01

    Surface air temperature in arctic regions has increased since pre-industrial times, raising concerns that warmer and possibly drier conditions have increased soil decomposition rates, thereby stimulating the release to the atmosphere of the large stores of carbon (C) in arctic soils. We used a model (MBL-GEM, Marine Biological Laboratory General Ecosystem Model) of ecosystem C and nitrogen (N) dynamics to predict and analyze historical (1829-1990) changes in C storage in a N-limited, tussock-tundra ecosystem near Toolik Lake on the North Slope of Alaska. The model simulates stand-level photosynthesis and N uptake by plants, allocation of C and N to foliage, stems, and fine roots, respiration in these tissues, turnover of biomass through litterfall, and decomposition of litter and soil organic matter. We first calibrated the model by deriving a single parameter set that closely simulated the response of tussock tundra to decade-long experimental manipulations of nutrients, temperature, light, and atmospheric CO{sub 2}. 60 refs., 5 figs., 1 tab.

  14. Methane emissions from Alaska Arctic tundra - an assessment of local spatial variability

    SciTech Connect

    Morrissey, L.A.; Livingston, G.P. )

    1992-10-01

    The findings of an extensive midsummer survey of CH4 emissions measurements representing the Alaska Arctic tundra are presented. Variability in rates of emissions was similar in magnitude on local and regional scales, ranging from 0 to 286.5 mg/sq m/d overall and often varying across two orders of magnitude within 0.5 m distances. Primary control on rates of emission was determined by the substrate and position of the water table relative to the surface. Emission rates in the Arctic Foothills ranged from 0.2 mg/sq m/d for tussock tundra to 55.53 mg/sq m/d over wet meadows. Plant-mediated release of CH4 to the atmosphere was directly proportional to green leaf area and represented 92-98 percent of the total emission rates over vegetated sites. The results suggest the current published emission rates may have overestimated the contribution of boreal ecosystems to the global CH4 budget by several fold. 46 refs.

  15. Responses of arctic tundra to experimental and observed changes in climate

    SciTech Connect

    Chapin, F.S. III; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A.

    1995-04-01

    The authors manipulated light, temperature, and nutrients in moist tussock tundra in Alaska to determine how global changes might affect community and ecosystem processes. Some of these manipulations altered nutrient availability, growth-form composition, net primary production, and species richness in less than a decade, indicating arctic vegetation at this site is sensitive to climatic change. In general, short-term (3-yr) responses were poor predictors of longer term (9-yr) changes in community composition. The longer term responses showed closer correspondence to patterns of vegetation distribution along environmental gradients. Nitrogen and phosphorus availability tended to increase with elevated temperature and in response to light attenuation. Nutrient addition increased biomass and production of deciduous shrubs but reduced growth of evergreen shrubs and nonvascular plants. Light attenuation reduced biomass of all growth forms. Elevated temperature enhanced shrub production but reduced production of nonvascular plants. The contrasting responses to temperature increase and to nutrient addition by different growth forms {open_quotes}canceled out{close_quotes} at the ecosystem level, buffering changes in ecosystem characteristics such as biomass, production, and nutrient uptake. The major effect of elevated temperature was to speed plant response to changes in soil resources and, in long term (9 yr), to increase nutrient availability. Species richness was reduced 30-50% by temperature and nutrient treatments. Declines in diversity occurred disproportionately in forbs and in mosses. During our 9-yr study (the warmest decade on record in the region), biomass of one dominant tundra species unexpectedly changed in control plots in the direction predicted by our experiments and by Holocene pollen records. This suggests that regional climatic warming may already be altering the species composition of Alaskan arctic tundra. 73 refs., 9 figs., 4 tabs.

  16. Effects of historical changes in climate on carbon storage in Alaskan arctic tundra

    SciTech Connect

    McKane, R.; Rastetter, E.; Shaver, G.; Nadelhoffer, K.; Giblin, A.; Laundre, J. ); Chapin, F.S. III )

    1994-06-01

    Surface air temperature in Arctic regions has increased since pre-industrial times, raising concerns that warmer and drier conditions have increased soil decomposition rates, thereby stimulating the release to the atmosphere of the large stores of C in arctic soils. We used a model (MBL-GEM) of ecosystem C and N dynamics to predict and analyze historical (1829 to 1990) changes in C storage in a tussock tundra ecosystem in Alaska. We calibrated the model by deriving a single parameter set that closely simulated responses to decade-long manipulations of nutrients, temperature, light, and atmospheric CO[sub 2]. Based on the combined effects of reconstructed historical changes in atmospheric CO[sub 2], mean growing-season temperature and two alternative soil moisture scenarios, the model predicts a [minus]3.0 + 2.1 percent change in ecosystem C from 1829 to 1990. These results are consistent with field evidence that historically recent changes in C storage of tussock tundra have been relatively small. However, the model also predicts that relatively large transient losses of ecosystem C(50 to 120 g m[sup [minus]2]yr[sup [minus]1]) may frequently have occurred since the late 1800s, with one of the largest simulated C losses of the 20th century occurring from 1988 to 1990 (85, 92, 61 g C m[sup [minus]2]yr[sup [minus]1], respectively). These simulated losses were at the low end of the range of losses measured in Alaskan tussock tundra from 1983 to 1990 (65 to 487 g C m[sup [minus]2]yr[sup [minus]1]), but nonetheless suggest that these recent losses may be transitory in nature.

  17. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  18. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    EPA Science Inventory

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  19. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    USGS Publications Warehouse

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  20. An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions

    USGS Publications Warehouse

    McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.

    2012-01-01

    Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a

  1. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  2. Geochemical characterization of Arctic tundra and implications for organic matter degradation

    NASA Astrophysics Data System (ADS)

    Gu, B.; Herndon, E.; Graham, D. E.; Phelps, T. J.; Wullschleger, S. D.; Liang, L.

    2013-12-01

    Tundra soils are uniquely cold terrestrial environments that face irrevocable change under warming climate conditions. Specifically, many tundra soils store large quantities of organic carbon that may rapidly degrade with increasing temperature, releasing C into drainage systems or to the atmosphere as greenhouse gases (CH4, CO2). In order to predict rates of C release from tundra soils, it is necessary to quantify how biogeochemical factors such as pore water chemistry, terminal electron acceptor availability, and mineral adsorption regulate rates and pathways of soil organic carbon (SOC) degradation. In this study, we examine spatial and seasonal patterns of aqueous geochemistry and SOC characteristics from across an area of tundra landscape in the Arctic. We aim to identify factors that increase or decrease rates of SOC degradation, including: 1) the composition of organic substrates, 2) abundance of terminal electron acceptors, 3) vertical transport and spatial variability of both organic and inorganic compounds, and 4) adsorption to mineral surfaces. Soil and water samples were obtained from the Barrow Environmental Observatory (BEO) in northern Alaska as part of the Next Generation Ecosystem Experiment (NGEE) Arctic project. Tundra at the BEO is characterized by permafrost below ~60 cm and polygonal features that induce topographic gradients of water saturation. Soils are organic-rich and store large amounts of slowly decomposing plant material. Chemical and physical extractions were used to obtain operationally-defined pools of SOC to evaluate their mineral associations. Water samples collected in early and late summers were analyzed for pH, electrical conductivity, and dissolved concentrations of anions, cations, organic carbon, inorganic carbon, and ferrous iron, as well as dissolved and soil gases (CH4 and CO2). We observe a steep pH gradient, with acidic pH in surface waters and near neutral pH in pore waters >20 cm below the surface. Dissolved organic

  3. Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska.

    PubMed

    Hammerschmidt, Chad R; Fitzgerald, William F; Lamborg, Carl H; Balcom, Prentiss H; Tseng, C Mao

    2006-02-15

    The fate of atmospherically deposited and environmentally active Hg is uncertain in the Arctic, and of greatest toxicological concern is the transformation to monometh-ylmercury (MMHg). Lake/watershed mass balances were developed to examine MMHg cycling in four northern Alaska lakes near the ecological research station at Toolik Lake (68 degrees 38' N, 149 degrees 36' W). Primary features of the cycle are watershed runoff, sedimentary production and mobilization, burial, and photodecomposition in the water column. The principal source of MMHg is in situ benthic production with 80-91% of total inputs provided by diffusion from sediments. The production and contribution of MMHg from tundra watersheds is modest. Photodecomposition, though confined to a short ice-free season, provides the primary control for MMHg (66-88% of total inputs) and greatly attenuates bioaccumulation. Solid-phase MMHg and gross potential rates of Hg methylation, assayed with an isotopic tracer, vary positively with the level of inorganic Hg in filtered pore water, indicating that MMHg production is Hg-limited in these lakes. Moreover, sediment-waterfluxes of MMHg (i.e., net production at steady state) are related to sediment Hg loadings from the atmosphere. These results suggest that loadings of Hg derived from atmospheric deposition are a major factor affecting MMHg cycling in arctic ecosystems. However, environmental changes associated with warming of the Arctic (e.g., increased weathering, temperature, productivity, and organic loadings) may enhance MMHg bioaccumulation by stimulating Hg methylation and inhibiting photodecomposition.

  4. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.

  5. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  6. Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Stieglitz, Marc; Giblin, Anne; Hobbie, John; Williams, Matthew; Kling, George

    2000-12-01

    Through a simple modeling exercise, three mechanisms have been identified, each operating at a different timescale, that may govern carbon dynamics in Arctic tundra regions and partially explain observed CO2 flux variability. At short timescales the biosphere reacts to meteorological forcing. Drier conditions are associated with aerobic soil decomposition, a large CO2efflux, and a net ecosystem loss of carbon. Cooler and moister conditions favor slower anaerobic decomposition in soils, good growing conditions, and terrestrial carbon sequestration. At intermediate timescales, periods of terrestrial carbon loss are directly linked to periods of carbon sequestration by the ability of the ecosystem to retain labile nitrogen. Labile nitrogen released to the soil during periods when the tundra is a source of carbon (soil respiration > net primary productivity) is retained within the ecosystem and accessed during periods when carbon sequestration is favored (net primary productivity > soil respiration). Finally, the ability of vegetation to respond to long-term changes in soil nutrient status via changes in leaf nitrogen and leaf area index modulates this dynamic at intermediate to long timescales.

  7. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  8. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    SciTech Connect

    Bakwin, P.S.; Wofsy, S.C.; Fan, Songmiao; Fitzjarrald, D.R. New York State Univ., Albany )

    1992-10-01

    Measurements of the atmospheric concentrations of NO, NO[sub 2], total NO(y), and O[sub 3] were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s. 58 refs.

  9. Ecology of tundra ponds of the Arctic Coastal Plain: a community profile

    SciTech Connect

    Hobbie, J.E.

    1984-06-01

    The Arctic Coastal Plain is a flat or gently rolling area of tundra which covers the entire coastal region of northern Alaska. This profile synthesizes data on the ecology of the thousands of small shallow ponds that form an important wetland community on the tundra. These polygonal ponds are formed by the freezing, thawing, and cracking of the perma-frost. Nutrient concentrations and rates of supply to the water column are controlled by interactions with the iron-rich peat sediments. Iron concentrations control phosphorus concentrations and these in turn control the growth of algae. Two fringing emergent vascular plants, Carex and Arctophila, are often the most important primary producers in the ponds. Most algae and higher plant biomass is decomposed by microbes in a detrital food web concentrated in the pond sediments. Chironomid larvae, oligochaete worms and other insects are the dominant benthic animals. Because the ponds freeze to the bottom each winter they contain no fish; however, the community is important for many species of migratory waterfowl and shorebirds that use the ponds for feeding and breeding. Activities associated with oil production, including spills, roads, and off-road vehicles, are the major issues facing managers of this wetland community. 63 references.

  10. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  11. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  12. Deeper winter snow reduces ecosystem C losses but increases the global warming potential of Arctic tussock tundra over the growing season.

    NASA Astrophysics Data System (ADS)

    Blanc-Betes, E.; Welker, J. M.; Gomez-Casanovas, N.; Gonzalez-Meler, M. A.

    2015-12-01

    Arctic winter precipitation is projected to increase globally over the next decades, spatial variability encompassing areas with increases and decreases in winter snow. Changes in winter precipitation strongly affect C dynamics in Arctic systems and may lead to major positive climate forcing feedbacks. However, impacts of predicted changes in snowfall and accumulation on the rate and form of C fluxes (CO2 and CH4) and associated forcing feedbacks from Arctic tundra remain uncertain. We investigated how changes in winter precipitation affect net ecosystem CO2 and CH4 fluxes and budgets of moist acidic tundra in an 18-yrs snow fence experiment over a complete growing season at Toolik Lake, AK. Arctic tundra under ambient winter precipitation (CTL) was a net source of CO2 and CH4, yielding net C losses over the growing season. Reduced snow (-15-30% snow depth; RS) switched the system to a net CO2 sink mostly by limiting SOC decomposition within colder soils. Snow additions progressively reduced net ecosystem CO2 losses compared to CTL, switching the system into a weaker net CO2 source with medium additions (+20-45% snow depth; MS) and into a small net CO2 sink with high additions (+70-100% snow depth; HS). Increasingly wetter soils with snow additions constrained the temperature sensitivity of aerobic decomposition and favored the anaerobic metabolism, buffering ecosystem CO2 losses despite substantial soil warming. Accordingly, Arctic tundra switched from a sustained CH4 sink at RS site to an increasingly stronger CH4 source with snow additions. Accounting for both CO2 and CH4, the RS site became a net C sink over the growing season, overall reducing the global warming potential (CO2 equiv.; GWP) of the system relative to CTL. Snow additions progressively reduced net C losses at the MS site compared to CTL and the system transitioned into a net C sink at HS plots, partly due to the slower metabolism of anaerobic decomposition. However, given the greater radiative

  13. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska

    PubMed Central

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  14. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  15. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.

  16. Estimating Arctic Tundra Soil Water Content Variability and Relationship to Landscape Properties Using Above- and Below-Ground Imaging

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Oktem, R.; Curtis, J. B.; Tran, A. P.; Wu, Y.; Cable, W.; Romanovsky, V. E.

    2014-12-01

    Estimating the spatiotemporal distribution of soil water content is crucial for ecosystem understanding because of its strong influence on vegetation dynamics, surface-subsurface energy exchange, water and heat flux, microbial activity and biogeochemical mechanisms. In particular, quantifying Arctic ecosystem feedbacks to climate requires advances in monitoring soil moisture in sufficiently high resolution over modeling-relevant scales, and in understanding its coupling with landscape and soil characteristics. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic) we investigated diverse strategies to estimate the soil water content spatial distribution in Arctic tundra using various proxies including electrical conductivity from electrical resistivity tomography (ERT) and from electromagnetic induction imaging, dielectric permittivity from time-domain reflectometery (TDR), and vegetation index from low-altitude multi-spectral imaging. In addition to occasional campaigns along a 500x40 m corridor, high temporal resolution is achieved through continuous monitoring of surface and subsurface dynamics along a 35 m transect using ERT, temperature loggers, TDR, and visible and NIR imaging from pole-based cameras. This was conducted at the NGEE Barrow, AK site. The results of this study inform on the complementary nature of and trade-offs between various approaches with regard to accuracy, resolution and coverage. In short, while point-scale measurements are relatively hard data, ERT data improves spatiotemporal monitoring of soil water content and state, and low-altitude aerial imaging can be used to extend predictions at larger scale using field-dependent relationships. Importantly, this study enables the identification of spatiotemporal links between soil and landscape properties (such as water inundation, vegetation, topography, thaw layer thickness, water content, temperature, and snow thickness). While some of these properties show strong co

  17. Influence of water table and atmospheric CO/sub 2/ concentration on the carbon balance of arctic tundra

    SciTech Connect

    Peterson, K.M.; Billings, W.D.; Reynolds, D.N.

    1984-08-01

    Carbon balance of intact arctic tundra microcosms (soil cores with vegetation) has been shown to be sensitive to small changes in water table. The persistence of the effect of water table on CO/sub 2/ flux in darkness, and the large reduction of such an effect in sand-culture microcosms without peat-degrading microorganisms have led to the conclusion that rates of microbial degradation of peat are most likely responsible for the bulk of previously observed effects of water table on net ecosystem CO/sub 2/ flux of arctic tundra microcosms. In an experiment using sand cultures, no significant effects of changes in water table or of increasing the atmospheric CO/sub 2/ concentration on the growth of plants was detected in two dominant graminoid species (Dupontia fisheri and Carex aquatilis). 16 references, 3 tables.

  18. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  19. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control

  20. Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions

    NASA Astrophysics Data System (ADS)

    Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

    2013-12-01

    Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

  1. Greening of the Arctic: Spatial and temporal (1982-2009) variation of circumpolar tundra NDVI and aboveground biomass

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Epstein, H. E.; Bhatt, U. S.; Raynolds, M. K.; Jia, G.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.

    2010-12-01

    The Greening of the Arctic project examined the spatial and temporal variability of tundra productivity during field studies along two transects in North America and Russia and in circumpolar remote-sensing studies. Aboveground biomass of zonal vegetation was strongly correlated with summer air temperature along the North America transect (r2 > 0.8), but on the Yamal Peninsula, Russia, there was a nearly flat relationship with air temperature in the central part of the climate gradient. The more homogeneous nature of the Russian transect is caused by more consistent soil conditions, warmer than expected temperatures along the central part of the Russian transect, and the homogenizing effect of various landscape-scale disturbances including reindeer grazing and disturbances related to permafrost thawing. We examined the circumpolar spatial variability of the NDVI with respect to land temperatures and a suite of vegetation/terrain variables in a circumpolar geographic information system (GIS). Tests of sensitivity of NDVI to increases in summer temperature showed the largest percentage increases in NDVI will likely occur in northern partially-vegetated areas. A temporal analysis of maximum summer NDVI from 1982-2008 also indicated the ongoing changes have been strongest in the Far North. The percentage changes in the annual maximum NDVI were highest in the Baffin Bay, Beaufort Sea, Canadian Archipelago and Davis Strait areas (10-15% changes). The NDVI trends for most Arctic regions were highly positively correlated with the changes in summer land temperatures and negatively correlated with temporal changes in the near-shore early-summer sea-ice concentrations. Trends from these and several other lines of evidence point to a general increase in biomass across the Arctic during the period of satellite observations. The most rapid changes are occurring in the Far North. The impact of shrubification on these trends is probably greatest in the southern parts of the Arctic

  2. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    PubMed Central

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  3. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    PubMed

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.

  4. Long-Term Perspectives of Shrub Expansions and Peat Initiation in Arctic Tundra on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Cleary, K.; Yu, Z.

    2014-12-01

    The ongoing climate warming in the Arctic has caused rapid terrestrial ecosystem changes, including shrub expansion and permafrost thaw. Here we used results from a peat-accumulating permafrost tundra in upper Imnavait Creek on the Arctic foothills of Alaska (68° 36' N, 149° 18' W) to investigate ecological responses to recent climate warming in the context of the last millennium. Six peat soil cores were collected from Sphagnum mosaics along an elevational gradient from 906 m to 950 m on a hillslope covered by Eriophorum-dominated tussock tundra. Macrofossil analysis documents a consistent development sequence among all cores from a mineral soil to a minerotrophic sedge peat and finally to an ombrotrophic Sphagnum peat. The 14C dating results show the ages of peat initiation range from about 900 to 140 cal BP, but do not follow the elevation gradient, suggesting the dominant control of local factors. The Sphagnum onset begins at 1820 AD near the ridge top, and subsequently propagates downslope to the floodplain at 2008 AD. This transition (ombrotrophication) was likely in response to Arctic warming, and subsequent permafrost thaw and active layer thickening, leading to drying initiating at the ridge top and facilitating Sphagnum colonization. Pollen analysis of the master core UIC13-3 at 916 m elevation (basal age 700 cal BP) shows that the vegetation was dominated by sedges (up to 84%) during the cool Little Ice Age until 1800 AD, followed by increases in shrubs first from dwarf birch (Betula nana) (up to 57%) and then willows (Salix spp.) up to 62% in the 1960s. These results indicate that shrub expansion of willows, due to accelerated warming in recent decades, was preceded by birch expansion over the last two centuries. Our new results provide a long-term perspective on ecological transformations in the Arctic, in particular the history of recent shrub expansions and the process of peatland initiation and expansion across Arctic tundra.

  5. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  6. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  7. Spectral determination of concentrations of functionally diverse pigments in increasingly complex arctic tundra canopies.

    PubMed

    Boelman, Natalie T; Magney, Troy S; Logan, Barry A; Griffin, Kevin L; Eitel, Jan U H; Greaves, Heather; Prager, Case M; Vierling, Lee A

    2016-09-01

    As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies. PMID:27193900

  8. Spectral determination of concentrations of functionally diverse pigments in increasingly complex arctic tundra canopies.

    PubMed

    Boelman, Natalie T; Magney, Troy S; Logan, Barry A; Griffin, Kevin L; Eitel, Jan U H; Greaves, Heather; Prager, Case M; Vierling, Lee A

    2016-09-01

    As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.

  9. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  10. Evaluating CO2 and CH4 fluxes in Arctic peatland and tundra using a satellite remote sensing driven biophysical model

    NASA Astrophysics Data System (ADS)

    Watts, J.; Kimball, J. S.; Parmentier, F. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W. C.; Tagesson, T.

    2013-12-01

    The Arctic terrestrial carbon sink is contingent on the balance between vegetation gross primary productivity (GPP) and emissions of carbon dioxide (CO2) and methane (CH4). With climate change, warming temperatures could increase GPP within high latitude systems but may also accelerate soil decomposition and CO2 loss. Regional wetting may also shift carbon emissions towards greater CH4 release, a greenhouse gas at least 25 times more potent than CO2. However, an effective framework for monitoring changes in the Arctic net ecosystem carbon balance (NECB) is lacking. Here we introduce an integrated terrestrial carbon flux (TCF) model approach to estimate CO2 and CH4 fluxes from northern peatland and tundra ecosystems at a daily time step. The TCF model framework uses a light-use efficiency (LUE) algorithm to estimate GPP according to satellite NDVI inputs and estimated moisture and temperature constraints. Ecosystem respiration is derived using a three-pool soil organic carbon decomposition model regulated by surface (< 10 cm depth) soil temperature and volumetric moisture inputs. A TCF-CH4 component simulates gas production according to near-surface temperature, anaerobic soil fractions and labile soil carbon inputs derived during model spin-up. Plant transport, soil diffusion and ebullition pathways are used to regulate CH4 emissions into the atmosphere. The combined TCF CO2 and CH4 model was evaluated against tower eddy covariance (EC) flux datasets from six peatland and tundra sites in North America, Eurasia and Greenland. TCF model simulations driven with site information explained on average > 70% (r^2; p < 0.05) of the respective EC record 8-day cumulative CO2 and CH4 fluxes. The TCF results from model simulations using coarser satellite (MODIS 250-m resolution) and reanalysis (MERRA; 1/2 x 2/3° resolution) inputs were more variable, but captured the overall seasonality and magnitude of ecosystem carbon exchange. Model simulations of annual carbon fluxes

  11. Soil Carbon Vulnerability in Arctic Coastal Tundra: Seasonal and Spatial Variations in 14C-CO2

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Torn, M. S.; Conrad, M. E.; Curtis, J. B.; Hahn, M. S.

    2013-12-01

    One reason permafrost soils contain large, old soil organic carbon stores is slow decomposition rates due to cold and waterlogged conditions. If climate change causes high latitude soils to warm and dry, carbon emissions from permafrost soils could be an important atmospheric greenhouse gas source. The vulnerability of global Arctic soil carbon stocks to increased decomposition due to thaw is hard to assess, due to environmental heterogeneity, complex controls on microbial processes, uncertain carbon stocks and flux rates, and poorly understood soil carbon stabilization mechanisms. To address these knowledge gaps, we are using radiocarbon measurements to estimate carbon turnover times in polygonal tundra in Barrow, Alaska. Specifically, we ask: (1) how do old versus recently fixed soil carbon pools contribute to total decomposition, (2) how does this vary seasonally, and (3) how does it vary across a permafrost degradation gradient? Old radiocarbon ages of soil organic matter in perennially frozen soils and deep portions of the seasonally thawed active layer reflect slow historic decomposition rates, and changes in the radiocarbon content of respired CO2 indicate relative mineralization rates of this old, stored carbon. At four time points from June-October 2013, we sample soil organic matter and respired CO2 from low-centered, transitional, and high-centered polygons characteristic of a permafrost degradation cycle. We measure the radiocarbon content of CO2 in surface fluxes and soil pore space from 3 depths in the soil profile, and concurrently incubate active layer soils to resolve the 14C-CO2 signatures of individual soil layers. Preliminary data from 2012 suggest that old soil carbon stores are vulnerable to decomposition. CO2 ages increase with depth in the profile from modern radiocarbon ages to as old as 3115 BP, and high incubation flux rates indicate availability to microbes. As part of the Next Generation Ecosystem Experiment (NGEE-Arctic), we now study

  12. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    PubMed

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

  13. The Effect of Silver Nanoparticles on Seasonal Change in Arctic Tundra Bacterial and Fungal Assemblages

    PubMed Central

    Kumar, Niraj; Palmer, Gerald R.; Shah, Vishal; Walker, Virginia K.

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

  14. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    PubMed

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  15. Hydrocarbon contamination of arctic tundra soils of the Bol'shoi Lyakhovskii Island (the Novosibirskie Islands)

    NASA Astrophysics Data System (ADS)

    Kachinskii, V. L.; Zavgorodnyaya, Yu. A.; Gennadiev, A. N.

    2014-02-01

    Data on the distribution of the components of oil products that have accumulated in the arctic tundra soils of the Bol'shoi Lyakhovskii Island (the Novosibirskie Islands) under the impact of technogenic loads are analyzed. The examined soils differ in the vertical and lateral distribution patterns of the methanenaphthenic and naphthenic hydrocarbons and in the degree of their transformation. This is determined by the position of particular soils in the catenas and by the sorption of particular hydrocarbon compounds in the soils. The portion of light molecular-weight hydrocarbons in the upper horizons decreases by two-ten times in comparison with the deeper soil layers. In the lateral direction, the twofold difference in the contents of the methane-naphthenic and naphthenic hydrocarbons in the upper horizons is seen. The degree of transformation of the hydrocarbons under the impact of microbiological processes depends on the aeration conditions, the depth of permafrost table, the composition of oil products, and the soil organic matter content.

  16. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season

    PubMed Central

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-01-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets. PMID:23467719

  17. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season.

    PubMed

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-02-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.

  18. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra

    USGS Publications Warehouse

    Walker, M.D.; Walker, D. A.; Welker, J.M.; Arft, A.M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; Seastedt, T.R.; Turner, P.L.

    1999-01-01

    Three 60 m long, 2.8 m high snowfences have been erected to study long-term effects of changing winter snow conditions on arctic and alpine tundra. This paper describes the experimental design and short-term effects. Open-top fiberglass warming chambers are placed along the experimental snow gradients and in controls areas outside the fences; each warming plot is paired with an unwarmed plot. The purpose of the experiment is to examine short- and long-term changes to the integrated physical-biological systems under simultaneous changes of winter snow regime and summer temperature, as part of the Long-Term Ecological Research network and the International Tundra Experiment. The sites were at Niwot Ridge, Colorado, a temperate high altitude site in the Colorado Rockies, and Toolik Lake, Alaska, a high-latitude site. Initial results indicate that although experimental designs are essentially identical at the arctic and alpine sites, experimental effects are different. The drift at Niwot Ridge lasts much longer than do the Toolik Lake drifts, so that the Niwot Ridge fence affects both summer and winter conditions, whereas the Toolik Lake fence affects primarily winter conditions. The temperature experiment also differs in effect between the sites. Although the average temperature increase at the two sites is similar (daily increase 1.5??C at Toolik and 1.9??C at Niwot Ridge), at Toolik Lake there is only minor diurnal variation, whereas at Niwot Ridge the daytime increases are extreme on sunny days (as much as 7-10??C), and minimum nighttime temperatures in the chambers are often slightly cooler than ambient (by about 1??C). The experimental drifts resulted in wintertime increases in temperature and CO2 flux. Temperatures under the deep drifts were much more consistent and warmer than in control areas, and at Niwot Ridge remained very close to 0??C all winter. These increased temperatures were likely responsible for observed increases in system carbon loss. Initial

  19. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    PubMed

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  20. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra.

    PubMed

    Killengreen, Siw T; Lecomte, Nicolas; Ehrich, Dorothée; Schott, Tino; Yoccoz, Nigel G; Ims, Rolf A

    2011-09-01

    1. Most studies addressing the causes of the recent increases and expansions of mesopredators in many ecosystems have focused on the top-down, releasing effect of extinctions of large apex predators. However, in the case of the northward expansion of the red fox into the arctic tundra, a bottom-up effect of increased resource availability has been proposed, an effect that can counteract prey shortage in the low phase of the multi-annual rodent cycle. Resource subsidies both with marine and with terrestrial origins could potentially be involved. 2. During different phases of a multi-annual rodent cycle, we investigated the seasonal dynamics and spatial pattern of resource use by red foxes across a coast to inland low arctic tundra gradient, Varanger Peninsula, Norway. We employed two complementary methods of diet analyses: stomach contents and stable isotope analysis. 3. We found that inland red foxes primarily subsisted on reindeer carrions during the low phase of a small rodent population cycle. Lemmings became the most important food item towards the peak phase of the rodent cycle, despite being less abundant than sympatric voles. Isotopic signatures of tissue from both predator and prey also revealed that red foxes near the coast used marine-derived subsidies in the winter, but these allochthonous resources did not spillover to adult foxes living beyond 20-25 km from the coast. 4. Although more needs to be learned about the link between increasing primary productivity due to climatic warming and trophic dynamics in tundra ecosystems, we suggest that changes in reindeer management through a bottom-up effect, at least regionally, may have paved the way towards the establishment of a new mesopredator in the tundra biome.

  1. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra.

    PubMed

    Killengreen, Siw T; Lecomte, Nicolas; Ehrich, Dorothée; Schott, Tino; Yoccoz, Nigel G; Ims, Rolf A

    2011-09-01

    1. Most studies addressing the causes of the recent increases and expansions of mesopredators in many ecosystems have focused on the top-down, releasing effect of extinctions of large apex predators. However, in the case of the northward expansion of the red fox into the arctic tundra, a bottom-up effect of increased resource availability has been proposed, an effect that can counteract prey shortage in the low phase of the multi-annual rodent cycle. Resource subsidies both with marine and with terrestrial origins could potentially be involved. 2. During different phases of a multi-annual rodent cycle, we investigated the seasonal dynamics and spatial pattern of resource use by red foxes across a coast to inland low arctic tundra gradient, Varanger Peninsula, Norway. We employed two complementary methods of diet analyses: stomach contents and stable isotope analysis. 3. We found that inland red foxes primarily subsisted on reindeer carrions during the low phase of a small rodent population cycle. Lemmings became the most important food item towards the peak phase of the rodent cycle, despite being less abundant than sympatric voles. Isotopic signatures of tissue from both predator and prey also revealed that red foxes near the coast used marine-derived subsidies in the winter, but these allochthonous resources did not spillover to adult foxes living beyond 20-25 km from the coast. 4. Although more needs to be learned about the link between increasing primary productivity due to climatic warming and trophic dynamics in tundra ecosystems, we suggest that changes in reindeer management through a bottom-up effect, at least regionally, may have paved the way towards the establishment of a new mesopredator in the tundra biome. PMID:21477201

  2. Environmental effects on CO sub 2 efflux from water track and tussock tundra in arctic Alaska, U. S. A

    SciTech Connect

    Oberbauer, S.F. ); Tenhunen, J.D.; Reynolds, J.F. )

    1991-05-01

    CO{sub 2} efflux and variation in soil environmental characteristics were examined in two tundra vegetation communities, water track (a small drainage of intermittent water flow) and tussock tundra, in the northern foothills of the Philip Smith Mountains in arctic Alaska. Correlation analyses were performed on the observations made at six times during the growing season in order to evaluate the relationships between system CO{sub 2} loss and soil moisture, soil temperature, depth of thaw, and depth to the water table. The two sites differed significantly in terms of soil moisture, soil temperature, depth of thaw, and water table depth on several of the sampling dates. During four of the six measurement periods, the rate of CO{sub 2} efflux differed significantly between sites. Early in the season, respiration was greater in tussock tundra than at the water track, but later in the season, rates at the water track exceeded those at the tussock site. Highest rates were measured at the water track near mid-season. Efflux of CO{sub 2} at both sites was positively correlated with soil temperature. Soil surface (0-5 cm depth) environmental conditions were better predictors of CO{sub 2} efflux than were conditions measured at greater depth (5-10 cm). Soil moisture appeared to increase respiration between 100 and 700% of soil dry weight and decrease soil respiration at higher water contents. The effects of soil moisture were stronger in tussock tundra than in the water track community. These data suggest that both soil temperature and soil moisture limit CO{sub 2} efflux in water track and tussock tundra communities and that the relative importance of these factors changes throughout the growing season.

  3. Canopy Spectral Imaging (NDVI) As A Proxy For Shrub Biomass And Ecosystem Carbon Fluxes Across Arctic Tundra Habitats

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Welker, J. M.; Gonzalez-Meler, M. A.

    2015-12-01

    There is widespread consensus that climate change is contributing to rapid vegetation shifts in the ecologically sensitive Arctic tundra. These tussock grass dominated systems are shifting to tussock/woody shrub communities leading to likely alterations in carbon (C) sequestration and ecosystem productivity, which in turn can manifest in "greening" and changes in normalized difference vegetation index values (NDVI). While the expansion of woody vegetation is well established, our understanding of the ecosystem dynamics associated with this new habitat remain largely unknown. To untangle how the Arctic tundra may be impacted by these vegetation shifts we paired vegetation measurements (i.e. shrub biomass, leaf area, and shrub canopy area) and ecosystem C fluxes (e.g. net ecosystem exchange, NEE, and ecosystem respiration) with ground-level measurements of NDVI. Measurements were conducted at the Toolik Field Station in dry heath and moist acidic tundra habitats which are two primary habitat types on the North Slope of Alaska. We found strong positive relationships between shrub leaf area and biomass as well as shrub canopy area and biomass, relationships that were corroborated with NDVI measurements. This lends support for the use of NDVI as a proxy measurement of leaf area and shrub biomass. Additionally, NDVI was negatively correlated with ecosystem respiration across habitats, with respiratory fluxes consistently higher in the moist acidic relative to the dry heath tundra. Finally, we observed a significant positive nonlinear relationship between NEE and NDVI (R2~0.8; P<0.01). Shrub removal revealed that NEE was strongly controlled by woody shrubs. The positive relationship between NDVI and NEE highlights the potential shifts in the C balance of the Arctic tundra associated with woody encroachment. This increased plant productivity may offset greenhouse gas losses from permafrost degradation contributing some resilience to this system otherwise considered a

  4. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2015-07-01

    Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

  5. Transformations of runoff chemistry in the Arctic tundra, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Pomeroy, J. W.

    2006-09-01

    The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95.5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late-lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion-rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0.25 m of unsaturated soil. The Na+ and Cl- were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt-water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late-lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in-stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater

  6. Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis.

    PubMed

    Pearce, A R; Rastetter, E B; Kwiatkowski, B L; Bowden, W B; Mack, M C; Jiang, Y

    2015-07-01

    Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major

  7. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    PubMed

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  8. Effect of thaw depth on fluxes of CO₂ and CH₄ in manipulated Arctic coastal tundra of Barrow, Alaska.

    PubMed

    Kim, Yongwon

    2015-02-01

    Changes in CO₂ and CH₄ emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO₂ and CH₄, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH₄ emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO₂ emission in the dry section was 3.9-fold higher than in others. CH₄ emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO₂ emission is not related to thaw depth. Quotients of global warming potential (GWPCO₂) (dry/control) and GWPCH₄ (wet/control) increased by 464 and 148%, respectively, and GWPCH₄ (dry/control) declined by 66%. This suggests that CO₂ emission in a drained section is enhanced by soil and ecosystem respiration, and CH₄ emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO₂ and CH₄, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH₄ release, and the disappearance of the lakes causes the stimulated CO₂ production in response to the Arctic climate change. PMID:25461040

  9. Effect of thaw depth on fluxes of CO₂ and CH₄ in manipulated Arctic coastal tundra of Barrow, Alaska.

    PubMed

    Kim, Yongwon

    2015-02-01

    Changes in CO₂ and CH₄ emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO₂ and CH₄, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH₄ emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO₂ emission in the dry section was 3.9-fold higher than in others. CH₄ emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO₂ emission is not related to thaw depth. Quotients of global warming potential (GWPCO₂) (dry/control) and GWPCH₄ (wet/control) increased by 464 and 148%, respectively, and GWPCH₄ (dry/control) declined by 66%. This suggests that CO₂ emission in a drained section is enhanced by soil and ecosystem respiration, and CH₄ emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO₂ and CH₄, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH₄ release, and the disappearance of the lakes causes the stimulated CO₂ production in response to the Arctic climate change.

  10. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  11. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE PAGES

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  12. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  13. Trophic interactions in a high arctic snow goose colony.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Giroux, Jean-François; Rochefort, Line

    2004-04-01

    We examined the role of trophic interactions in structuring a high arctic tundra community characterized by a large breeding colony of greater snow geese (Chen caerulescens atlantica). According to the exploitation ecosystem hypothesis of Oksanen et al. (1981), food chains are controlled by top-down interactions. However, because the arctic primary productivity is low, herbivore populations are too small to support functional predator populations and these communities should thus be dominated by the plant/ herbivore trophic-level interaction. Since 1990, we have been monitoring annual abundance and productivity of geese, the impact of goose grazing, predator abundance (mostly arctic foxes, Alopex lagopus) and the abundance of lemmings, the other significant herbivore in this community, on Bylot Island, Nunavut, Canada. Goose grazing consistently removed a significant proportion of the standing crop (∼40%) in tundra wetlands every year. Grazing changed plant community composition and reduced the production of grasses and sedges to a low-level equilibrium compared to the situation where the presence of geese had been removed. Lemming cyclic fluctuations were strong and affected fox reproduction. Fox predation on goose eggs was severe and generated marked annual variation in goose productivity. Predation intensity on geese was closely related to the lemming cycle, a consequence of an indirect interaction between lemming and geese via shared predators. We conclude that, contrary to the exploitation ecosystem hypothesis, both the plant/herbivore and predator/prey interactions are significant in this arctic community. PMID:21680492

  14. Air Pollution and Acid Rain, Report 8. Effects of air pollution and acid rain on fish, wildlife, and their habitats: arctic tundra and alpine meadows

    SciTech Connect

    Olson, J.E.; Adler, D.

    1982-06-01

    This report on arctic tundra and alpine meadow ecosystems is part of a series synthesizing the results of scientific research related to the effects of air pollution and acid deposition on fish and wildlife resources. Recently performed research reveals the growing air pollution problem in arctic tundra and alpine meadow ecosystems once thought to be relatively unpolluted. The ecosystem features which determine sensitivity to air pollution are described. Data related to the effects of air pollutants on biota and whole ecosystems are reviewed. Because very little work has been done on the effects of air pollution specifically in arctic and alpine ecosystems this report includes relevant information based on studies in other ecosystems. Suggestions are made for areas of further research. 68 references, 2 figures.

  15. [Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra].

    PubMed

    Berestovskaia, Iu Iu; Vasil'eva, L V; Chestnykh, O V; Zavarzin, G A

    2002-01-01

    In tundra, at a low temperature, there exists a slowly developing methanotrophic community. Methane-oxidizing bacteria are associated with plants growing at high humidity, such as sedge and sphagnum; no methonotrophs were found in polytrichous and aulacomnious mosses and lichens, typical of more arid areas. The methanotrophic bacterial community inhabits definite soil horizons, from moss dust to peat formed from it. Potential ability of the methanotrophic community to oxidize methane at 5 degrees C enhances with the depth of the soil profile in spite of the decreasing soil temperature. The methanotrophic community was found to gradually adapt to various temperatures due to the presence of different methane-oxidizing bacteria in its composition. Depending on the temperature and pH, different methanotrophs occupy different econiches. Within a temperature range from 5 to 15 degrees C, three morphologically distinct groups of methanotrophs could be distinguished. At pH 5-7 and 5-15 degrees C, forms morphologically similar to Methylobacter psychrophilus predominated, whereas at the acidic pH 4-6 and 10-15 degrees C, bipolar cells typical of Methylocella palustris were mostly found. The third group of methanotrophic bacteria growing at pH 5-7 and 5-10 degrees C was represented by a novel methanotroph whole large coccoid cells had a thick mucous capsule. PMID:12244726

  16. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    USGS Publications Warehouse

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  17. Monitoring ecosystem dynamics in an Arctic tundra ecosystem using hyperspectral reflectance and a robotic tram system

    NASA Astrophysics Data System (ADS)

    Goswami, Santonu

    ) Is NDVI a good predictor for aboveground biomass and leaf area index (LAI) for plant species that are common in an arctic landscape? (4) How can cyberinfrastructure tools be developed to optimize ground-based remote sensing data collection, management and processing associated with a large scale experimental infrastructure? The Biocomplexity project experimentally manipulated the water table (drained, flooded, and control treatments) of a vegetated thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths (WTD) and soil volumetric water content were also collected along these transects. During 2005-2007, measurements were made without experimental treatments. Experimental treatments were run in 2008 and 2009, which involved water table being raised (+10cm) and lowered (-10cm) in flooding and draining treatments respectively. A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of land-surface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite

  18. Controls over nutrient flow through plants and microbes in Arctic tundra. Final technical report

    SciTech Connect

    Chapin, F.S. III

    1995-01-01

    We successfully developed a series of models to explore the importance of species differences in phenologies of growth and nitrogen uptake to competitive interactions in upland tussock tundra. We developed growth models for 4 major tussock tundra species, based on observed growth rates and phenologies. We found that differences in phenology and nutrient use strategy could permit coexistence of some, but not all of the tundra plants modeled. The plant that was the best competitor, because of its rapid growth rate and superior ability to retranslocate nitrogen, may be naturally limited in its competitive ability by its tussock growth form. The mechanisms behind this limitation, and the contributions of patterns of mortality to observed production, will be explored in future modeling and experimental studies. In addition, our models point out that our understanding of the dynamics of nitrogen supply is still inadequate.

  19. Soil and Plant Mercury Concentrations and Pools in the Arctic Tundra of Northern Alaska by Hedge Christine, Obrist Daniel, Agnan Yannick, Moore Christopher, Biester Harald, Helmig Detlev

    NASA Astrophysics Data System (ADS)

    Hedge, C.; Agnan, Y.

    2015-12-01

    We present vegetation, soil and runoff mercury (Hg) concentrations and pool sizes in vegetation and soils at several arctic tundra sites, an area that represents <7 x 106 km2 of land surface globally. The primary measurement location is at Toolik Field Station (TFS, 68° 38' N) in northern Alaska, with additional samples collected along a transect from TFS to the Arctic Ocean, and in Noatak National Preserve to be collected in August 2015. Soil and vegetation samples from all sites will be analyzed for total Hg concentration, pH, soil texture, bulk density, soil moisture content, organic and total carbon (C), nitrogen, along with major and trace elements. Initial results already obtained from TFS (characterized as moist to wet tundra with Typic Aquiturbel soils) show Hg concentrations in tundra vegetation (112±15 μg kg-1) and organic soil (140±8 μg kg-1) similar to those found in temperate sites. Calculation of plant-based Hg deposition rates by litterfall of 17.3 μg kg-1 yr-1 were surprisingly high, exceeding all other Hg deposition fluxes at this site. Hg concentrations in mineral soils (95±3 μg kg-1) were 2-3 times higher than those found at temperate sites. Hg concentrations showed weak relationships to organic C concentrations contrasting patterns from temperate soils where concentrations typically decline with depth following lower organic carbon contents. In fact, vertical mass profiles of Hg showed a strong increase with depth, with mineral layers storing over 90% (200-500 g ha-1) of Hg within these soils. A principle component analysis including major and trace elements indicated that soil Hg was not of lithogenic origin but from atmospheric sources, possibly by long-range transport. Carbon-14 dating results showed over 7,000 years old organic carbon in mineral soils of the active layer where highest concentrations of soil Hg were observed, suggesting long term retention of atmospheric Hg. These patterns suggest vertical translocation of Hg from the

  20. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  1. DIFFERENTIATION IN N15 UPTAKE AND THE ORGANIZATION OF AN ARCTIC TUNDRA PLANT COMMUNITY

    EPA Science Inventory

    We used N15 soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most abundant species were well differentiated with respect to...

  2. The Role of Explicitly Modeling Bryophytes in Simulating Carbon Exchange and Permafrost Dynamics of an Arctic Coastal Tundra at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Thornton, P. E.; McGuire, A. D.; Oechel, W. C.; Yang, B.; Tweedie, C. E.; Rogers, A.; Norby, R. J.

    2013-12-01

    Bryophyte cover is greater than 50% in many Arctic tundra ecosystems. In regions of the Arctic where shrubs are expanding it is expected that bryophyte cover will be substantially reduced. Such a loss in cover could influence the hydrological, biogeochemical, and permafrost dynamics of Arctic tundra ecosystems. The explicit representation of bryophyte physiological and biophysical processes in large-scale ecological and land surface models is rare, and we hypothesize that the representation of bryophytes has consequences for estimates of the exchange of water, energy, and carbon by these models. This study explicitly represents the effects of bryophyte function and structure on the exchange of carbon (e.g., summer photosynthesis effects) and energy (e.g., summer insulation effects) with the atmosphere in the Community Land Model (CLM-CN). The modified model was evaluated for its ability to simulate C exchange, soil temperature, and soil moisture since the 1970s at Barrow, Alaska through comparison with data from AmeriFlux sites, USDA Soil Climate Networks observation sites at Barrow, and other sources. We also compare the outputs of the CLM-CN simulations with those of the recently developed Dynamical Organic Soil coupled Terrestrial Ecosystem Model (DOS-TEM). Overall, our evaluation indicates that bryophytes are important contributors to land-atmospheric C exchanges in Arctic tundra and that they play an important role to permafrost thermal and hydrological processes which are critical to permafrost stability. Our next step in this study is to examine the climate system effects of explicitly representing bryophyte dynamics in the land surface model. Key Words: Bryophytes, Arctic coastal tundra, Vegetation composition, Net Ecosystem Exchange, Permafrost, Land Surface Model, Terrestrial Ecosystem Model

  3. The effect of nutrient deposition on bacterial communities in Arctic tundra soil.

    PubMed

    Campbell, Barbara J; Polson, Shawn W; Hanson, Thomas E; Mack, Michelle C; Schuur, Edward A G

    2010-07-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously observed after long-term nutrient additions. To analyse the role of microbial communities in these losses, we utilized 16S rRNA gene tag pyrosequencing coupled with community-level physiological profiling to describe changes in MAT bacterial communities after short- and long-term nutrient fertilization in four sets of paired control and fertilized MAT soil samples. Bacterial diversity was lower in long-term fertilized plots. The Acidobacteria were one of the most abundant phyla in all soils and distinct differences were noted in the distributions of Acidobacteria subgroups between mineral and organic soil layers that were also affected by fertilization. In addition, Alpha- and Gammaproteobacteria were more abundant in long-term fertilized samples compared with control soils. The dramatic increase in sequences within the Gammaproteobacteria identified as Dyella spp. (order Xanthomonadales) in the long-term fertilized samples was confirmed by quantitative PCR (qPCR) in several samples. Long-term fertilization was also correlated with shifts in the utilization of specific substrates by microbes present in the soils. The combined data indicate that long-term fertilization resulted in a significant change in microbial community structure and function linked to changes in carbon and nitrogen availability and shifts in above-ground plant communities.

  4. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees.

    PubMed

    Yu, Z; Stewart, G R; Mohn, W W

    2000-12-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill

  5. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    PubMed Central

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  6. Regional biomass and leaf-area estimates derived from satellite imagery as inputs to spatial trace-gas flux models for arctic tundra

    SciTech Connect

    Shippert, M.M.; Walker, D.A.; Auerbach, N.A.; Lewis, B.E. )

    1994-06-01

    Reflectance spectra, leaf area index (LAI), and live biomass measurements were collected for 60 plots near Toolik Lake and Imnavait Creek, Alaska during July and August, 1993. Normalized difference vegetation indices (NDVI) were calculated from the reflectance spectra. NDVI was found to be highly correlated to both LAI and biomass. These relationships have been seen in temperate ecosystems, but have never been tested in Arctic tundra previous to this study. In addition, a clear relationship is seen between NDVI values and pH and moisture. Acidic plots have much higher NDVI values than non-acidic plots, while moist plots have high NDVI values relative to dry and wet plots. The average field NDVI measurements for major physiognomic categories were compared to average NDVI values for the same categories derived from a SPOT multispectral satellite image of the area. These values were also found to be highly correlated. However, field NDVI values were consistently about 40% higher than SPOT NDVI values. Possible explanations for this consistent trend include effects of low sun angle in the Arctic in combination with relatively high view angle of the SPOT sensor. Using the regression equations for the above relationships, biomass and LAI images were calculated from the SPOT image. The resulting images show expected trends in the LAI and biomass across the landscape. The image of biomass will be used as an input to a spatial model of methane emissions for the Alaskan Arctic. Another key input variable to the methane model will be soil moisture. Alternative image processing methods and/or radar images will be used to derive this important variable.

  7. Water table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D. A.; Zona, D.; Raab, T. K.; Bozzolo, F.; Mauritz, M.; Oechel, W. C.

    2011-07-01

    Drained thaw lake basins (DTLB) are the dominant land form of the Arctic coastal plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water table height due to microtopography. Areas in the flooded areas had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas of the landscape. Similarly, soil pore water concentrations of dissolved ferric iron (Fe III), organic carbon, and aromatic compounds were higher in flooded and low elevation areas. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2 production only responded to flooding in high elevation areas. Seasonal changes in the oxidation state of solid phase Fe minerals showed that significant dissimilatory Fe reduction occurred, especially in topographically low areas. This suite of results can all be attributed to the effect of water table on oxygen availability: flooded conditions promote anoxia, stimulating anaerobic processes, methanogenesis and Fe(III) reduction. Flooding also increased soil temperature, which might

  8. Intense, natural pollution affects Arctic tundra vegetation at the Smoking Hills, Canada

    SciTech Connect

    Freedman, B. ); Zobens, V.; Hutchinson, T.C.; Gizyn, W.I. )

    1990-04-01

    Long-term, natural emissions of sulfur dioxide and acidic aerosols have had an impact on remote tundra at the Smoking Hills. The emissions have caused plant damage by SO{sub 2} toxicity, and have severely acidified soil and freshwater. At the most intensively fumigated locations closest to the sources of emission, pollution stresses have devegetated the terrestrial ecosystem. The first plants that are encountered along a spatial gradient of decreasing pollution stress are Artemisia tilesii and Arctagrostis latifolia, which dominate a characteristic, pollution-tolerant community. Farther away at moderately polluted sites there are mixed communities with floristic elements of both fumigated and reference, unfumigated tundra. This pattern of ecosystem response to a concatenation of stresses caused by natural air and soil pollution is qualitatively similar to the damage that occurs in the vicinity of anthropogenic point sources of air pollution, such as smelters.

  9. Controls over nutrient flow through plants and microbes in Arctic tundra

    SciTech Connect

    Chapin, F.S. III.

    1991-01-01

    During 1990, we worked primarily on two major projects. The first was a field study of {sup 15}N partitioning between plants and microbes at Imnavait Creek. {sup 15}N was absorbed faster on the tundra than in temperate climates, and release of labeled nitrogen occurs much more slowly, indicating a slow turnover. The second major project was a model of nutrient uptake by {und Eriophorum vaginatum}. The major effort for 1991 will be on continued model development to match model predictions with results of current field work. Also scheduled for 1991 is completion of field work with {und E. vaginatum} and related soils. This should provide validation of the applicability of R4D concepts to anthropogenic disturbances in tundra. 5 figs. (MHB)

  10. RECONSTRUCTION AND ANALYSIS OF HISTORICAL CHANGES IN CARBON STORAGE IN ARCTIC TUNDRA

    EPA Science Inventory

    Surface air temperature in arctic regions has increased since pre-industrial times, raising concerns that warmer and possibly drier conditions have increased soil decomposition rates, thereby stimulating the release to the atmosphere of the large stores of carbon (C) in arctic so...

  11. Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii.

    PubMed

    Kim, MyongChol; Kang, OkChol; Zhang, Yumin; Ren, Lvzhi; Chang, Xulu; Jiang, Fan; Fang, Chengxiang; Zheng, Congyi; Peng, Fang

    2016-01-01

    An orange, Gram-reaction-negative and aerobic bacterium, designated MC 3718T, was isolated from a tundra soil near Ny-Ålesund, Svalbard archipelago, Norway (78° N). The cells were motile with either a polar or a subpolar flagellum and reproduced by budding or asymmetrical cell division. Growth occurred at 4-37 °C (optimum 28-30 °C) and at pH 6.0-10.0 (optimum pH 9.0). Many cells accumulated poly-β-hydroxybutyrate granules and contained a single large polyphosphate granule at a pole or in the middle of the cell. Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid, and ubiquinone 10 was the main respiratory quinone. Strain MC 3718T contained summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c; 29.49 %), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 29.38 %), C17 : 1ω6c (10.15 %), C14 : 0 2-OH (9.05 %) and C16 : 0 (6.84 %) as the major cellular fatty acids. The main polar lipids were two sphingoglycolipids, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, three unknown phospholipids and two unknown polar lipids. Carotenoids were detected. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MC 3718T belonged to the family Sphingomonadaceae. The DNA G+C content was 67.2 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain MC 3718T is considered to represent a novel genus and species in the family Sphingomonadaceae, for which the name Sphingoaurantiacus polygranulatus gen. nov., sp. nov. is proposed. The type strain of Sphingoaurantiacus polygranulatus is MC 3718T ( = CCTCC AB 2014274T = LMG 28636T). Emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii are also provided.

  12. Observed and Potential Responses of Upland Tundra Ecosystems to a Changing Climate: Results from the Arctic Long-Term Ecological Research Project, North Slope, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.

    2014-12-01

    The Arctic is one of the most rapidly changing biomes on earth. Research at the Toolik Field Station by the Arctic Long-Term Ecological Research project provides a perspective on changes that are impacting the upland tussock tundra region of the North Slope of Alaska, a region that is typical of ~15% of the arctic region. The arctic is responding to a combination of long-term, gradual changes (presses) and short-term, event-driven changes (pulses). The most important press, of course, is the persistent rise in average annual air temperature observed in most places (though not at Toolik). Associated with this increase in SAT is a well-documented increase in shallow permafrost temperature (which is observed around Toolik). Our long-term research shows that this trend will favor taller and more productive shrub and grass vegetation. Higher SAT translates to earlier spring breakup and later onset of winter. This change in seasonality is affecting interactions between shrub leaf-out, insect emergence, and bird nesting. Persistent and more frequent droughts are having important impacts on the ability of Arctic grayling - the top consumer is most upland tundra streams - to survive and has the potential to block their ability to migrate to essential overwintering lakes. The interaction between temperature (which is changing) and light (which is not) creates a "seasonal asynchrony" that may be increasing the loading of nutrients - notably nitrate - to upland tundra streams late in the season, with impacts that we do not fully understand yet. The upland tundra environment is also responding to an increasing frequency of pulses, most notably wildfires and the development of thermo-erosional failures (TEFs). Wildfires transfer large quantities of carbon and nitrogen directly to the atmosphere. TEFs may deliver large quantities of sediment and nutrients to streams and lakes. Currently these pulse disturbances seem to be having only limited, local impacts. However, as shallow

  13. Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D. A.; Zona, D.; Raab, T. K.; Bozzolo, F.; Mauritz, M.; Oechel, W. C.

    2012-01-01

    Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2

  14. Photosynthetic Characterization of Plant Functional Types from Coastal Tundra to Improve Representation of the Arctic in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.

    2012-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that

  15. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  16. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  17. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth

    2012-01-01

    Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.

  18. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  19. Isotope Hydrology of Arctic Tundra Lakes in a Region Impacted by Permafrost Disturbance

    NASA Astrophysics Data System (ADS)

    Peters, D. L.

    2009-05-01

    A projected "hot spot" of climate warming and development is the Mackenzie River Delta region, Northwest Territories, Canada. The upland tundra areas within the Mackenzie Gas Project development area north of Inuvik contain thousands of small lakes and ponds with poorly defined ephemeral drainage that are underlain by thick permafrost and ice-rich sediments for which the basic water balance controls are not fully understood. Natural retrogressive thaw slumps are common along lakeshores and the rapid drainage of ice-rich permafrost-dammed lakes has been occurring. Ongoing oil/gas exploration activities and infrastructure construction may result in terrain disturbance and localized degradation of permafrost, while climate change may increase the magnitude and frequency of thermokarst processes. These disturbed lakes are believed to act as historical analogues for the future effects of climate change on the hydrology, geochemistry, and aquatic ecology of small tundra lake catchments in the continuous permafrost zone of northwestern Canada. Environment Canada initiated an integrated research program in 2005 with the overall goal of improving our understanding of hydro-ecological processes in freshwater aquatic ecosystems affected by shoreline slumping vs. pristine lakes. Limited catchment studies have examined water-balance parameters (e.g., precipitation, evaporation, and surface flows) for tundra lakes in the development area. Enrichment of oxygen-18 (18O) and deuterium (2H) stable isotopes in surface waters have been shown to be useful indicators of water balance variations in remote permafrost regions of Canada where hydroclimatic information is very limited. In particular, information on evaporation: inflow (E/I) ratios and residence times would provide useful information for estimating appropriate water withdrawals from lakes within the proposed development area. A key question is "does permafrost slumping impact the hydrology of tundra lakes via catchment area

  20. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.

  1. Slow recovery of High Arctic heath communities from nitrogen enrichment.

    PubMed

    Street, Lorna E; Burns, Nancy R; Woodin, Sarah J

    2015-04-01

    Arctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1)  yr(-1) ; 'low' and 'high', respectively) for 3-8 yr. We investigated whether significant effects on vegetation composition and ecosystem nutrient status persisted up to 18 yr post-treatment. Although the tundra heath is no longer N saturated, N treatment effects persist and are strongly P-dependent. Vegetation was more resilient to N where no P was added, although shrub cover is still reduced in low-N plots. Where P was also added (5 kg P ha(-1)  yr(-1) ), there are still effects of low N on community composition and nutrient dynamics. High N, with and without P, has many lasting impacts. Importantly, N + P has caused dramatically increased moss abundance, which influences nutrient dynamics. Our key finding is that Arctic ecosystems are slow to recover from even small N inputs, particularly where P is not limiting.

  2. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2014-09-01

    Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS) at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic) to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness) as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities).

  3. Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.

  4. Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Liang, Maochang; Sugimoto, Atsuko; Tei, Shunsuke; Bragin, Ivan V.; Takano, Shinya; Morozumi, Tomoki; Shingubara, Ryo; Maximov, Trofim C.; Kiyashko, Serguei I.; Velivetskaya, Tatiana A.; Ignatiev, Alexander V.

    2014-12-01

    To better understand the factors controlling the growth of larch trees in Arctic taiga-tundra boundary ecosystem, we conducted field measurements of photosynthesis, tree size, nitrogen (N) content, and isotopic ratios in larch needles and soil. In addition, we observed various environmental parameters, including topography and soil moisture at four sites in the Indigirka River Basin, near Chokurdakh, northeastern Siberia. Most living larch trees grow on mounds with relatively high elevations and dry soils, indicating intolerance of high soil moisture. We found that needle δ13C was positively correlated with needle N content and needle mass, and these parameters showed spatial patterns similar to that of tree size. These results indicate that trees with high needle N content achieved higher rates of photosynthesis, which resulted in larger amounts of C assimilation and larger C allocation to needles and led to larger tree size than trees with lower needle N content. A positive correlation was also found between needle N content and soil NH 4 + pool. Thus, soil inorganic N pool may indicate N availability, which is reflected in the needle N content of the larch trees. Microtopography plays a principal role in N availability, through a change in soil moisture. Relatively dryer soil of mounds with higher elevation and larger extent causes higher rates of soil N production, leading to increased N availability for plants, in addition to larger rooting space for trees to uptake more N.

  5. Changes in Algal Trends and Nutrient Budgets in Arctic Tundra Ponds Over the Past 40 Years in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hernandez, C.; Lougheed, V.

    2011-12-01

    In the 1970's, Barrow, Alaska was host to a detailed ecological study, the International Biological Program (IBP), which examined physical, chemical and biological characteristics of Arctic tundra ponds. Forty years later, this area has experienced warming and potential release of nutrients from permafrost; however, there have been no follow up studies since the 1970's and biological changes in these ponds remain unknown. The 1970's IBP research suggested that algae had warmer temperature optima than ambient temperatures and that phosphorus was the limiting nutrient. The goal of this study was to understand algal growth trends during the 2010 growing season, the role of limiting nutrients, and how both these have changed through time in light of shifting climate regimes. Algae was collected and quantified weekly from periphyton (attached to sediment) and phytoplankton (free-floating algae) from several IBP ponds over the summer of 2010. Nutrient addition and release experiments with known quantities of nitrogen (N) and phosphorus (P) were utilized to determine algal nutrient limitation. Algal biomass was significantly greater in 2010 than in the 1970s. Nutrient addition experiments showed a shift from phosphorus limitation in the 1970s to nitrogen limitation of periphyton in 2010, while phytoplankton was co-limited by nitrogen and phosphorus in 2010. These preliminary results indicate substantial changes have occurred over the past 40 years. Further studies are being completed in Summer 2011 to understand inter-annual variability in these trends and to reveal the implications of these trends in algal production and nutrient budgets in the Arctic.

  6. Nitrogen dynamics in arctic tundra soils of varying age: differential responses to fertilization and warming.

    PubMed

    Yano, Yuriko; Shaver, Gaius R; Rastetter, Edward B; Giblin, Anne E; Laundre, James A

    2013-12-01

    In the foothills of the Brooks Range, Alaska, different glaciation histories have created landscapes with varying soil age. Productivity of most of these landscapes is generally N limited, but varies widely, as do plant species composition and soil properties (e.g., pH). We hypothesized that the projected changes in productivity and vegetation composition under a warmer climate might be mediated through differential changes in N availability across soil age. We compared readily available [water-soluble NH4 (+), NO3 (-), and amino acids (AA)], moderately available (soluble proteins), hydrolyzable, and total N pools across three tussock-tundra landscapes with soil ages ranging from 11.5k to 300k years. The effects of fertilization and warming on these N pools were also compared for the two younger sites. Readily available N was highest at the oldest site, and AA accounted for 80-89 % of this N. At the youngest site, inorganic N constituted the majority (80-97 %) of total readily available N. This variation reflected the large differences in plant functional group composition and soil chemical properties. Long-term (8-16 years) fertilization increased the soluble inorganic N by 20- to 100-fold at the intermediate-age site, but only by twofold to threefold at the youngest site. Warming caused small and inconsistent changes in the soil C:N ratio and AA, but only in soils beneath Eriophorum vaginatum, the dominant tussock-forming sedge. These differential responses suggest that the ecological consequences of warmer climates on these tundra ecosystems are more complex than simply elevated N-mineralization rates, and that the responses of landscapes might be impacted by soil age, or time since deglaciation.

  7. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  8. What are the patterns of carbon allocation in Arctic shrub tundra: do species differ?

    NASA Astrophysics Data System (ADS)

    Street, Lorna; Subke, Jens-Arne; Baxter, Robert; Billett, Mike; Dinsmore, Kerry; Lessels, Jason; Wookey, Philip

    2014-05-01

    Arctic "greening" is now a well-accepted phenomenon; multiple lines of evidence suggest that plant productivity has increased, driven by increases in shrub abundance. There is very little understanding, however, of how this "shrubification" will impact biogeochemical cycling, including the allocation and turnover of carbon. Recent research has shown, for example, that greater plant productivity is not necessary associated with greater ecosystem C storage. Proliferation of a number of shrub species has been observed in different regions; for example increased willow growth in Arctic Russia, as opposed to primarily alder expansion in NW Canada, where stem density increased 68 % between 1968 and 2004. The degree to which shrub type will determine the impacts of shrub expansion on the carbon cycle is unknown. We use 13C pulse-labelling to trace the fate of recently photosynthesised carbon in vegetation dominated by two common Arctic shrubs, Betula nana (dwarf birch) and Alnus viridis (green alder) just above the Arctic treeline in NW Canada. We quantify the amount of 13C assimilated, and the proportion of assimilate returned to the atmosphere via respiration versus that allocated to plant tissues. This enables an analysis of the contrasting carbon-use-efficiencies and aboveground versus belowground allocation patterns in the two vegetation types. We use these novel field data to address the hypothesis that belowground C allocation in A. viridis (a symbiotic nitrogen fixing species) is a smaller proportion of total C assimilation, as this species supports less extensive ectomycorrhizal networks compared to B. nana. This is the first tracer study of carbon allocation in N-fixing and non-N-fixing vegetation types in a natural system and provides crucial data for predictive modelling of the Arctic carbon cycle.

  9. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  10. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    NASA Astrophysics Data System (ADS)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  11. A Comparative Review of North American Tundra Delineations

    NASA Technical Reports Server (NTRS)

    Silver, Kirk C.; Carroll, Mark

    2013-01-01

    Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.

  12. Methane Oxidation in Arctic Soils from High- and Flat-Centered Polygons

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Roy Chowdhury, T.; Yang, Z.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2015-12-01

    The premise of global warming will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in saturated tundra soils. Arctic tundra soils also serve as potential sinks for CH4 in response to warming temperature, which might be a key process in the global CH4 budget. Quantification of methane oxidation potential of Arctic tundra is an important component to constrain models assessing the Carbon-climate feedback from high latitude soils. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil hydrology and soil thermal regime. Thus, two distinct polygonal features were investigated in this study to evaluate CH4 oxidation potentials under multiple biogeochemical controls. The rates, drivers, and temperature sensitivity of methane oxidation were compared between High- and Flat-Centered Polygons (HCP and FCP, respectively). A significant lag period of CO2 production was observed in soil microcosms from HCP center, which might be attributed to microbial biomass limitations and the slow growth of anaerobic microbial populations that were sensitive to freezing. Prolonged thawing significantly accelerated carbon mineralization and CH4 oxidation rates measured via methane oxidation assays (MOA) from both active and permafrost organic layers of HCP. Soil microcosms from FCP showed higher CO2 production and CH4 oxidation rates in the active organic layer, but not permafrost layer, which might be explained by the anoxic/oxic interface identified by Fe(II) content in active layer. MOAs with temperature manipulation demonstrated high temperature dependence of methane oxidation activity, mediated primarily by soluble methane monooxygenase based upon metagenomic analysis and PCR quantification. Future work will identify key variables controlling methane oxidation rate and develop parameterization that can be incorporated into Arctic terrestrial ecosystem models.

  13. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen

    NASA Astrophysics Data System (ADS)

    Olofsson, Johan; Ericson, Lars; Torp, Mikaela; Stark, Sari; Baxter, Robert

    2011-07-01

    Climate change is affecting plant community composition and ecosystem structure, with consequences for ecosystem processes such as carbon storage. Climate can affect plants directly by altering growth rates, and indirectly by affecting predators and herbivores, which in turn influence plants. Diseases are also known to be important for the structure and function of food webs. However, the role of plant diseases in modulating ecosystem responses to a changing climate is poorly understood. This is partly because disease outbreaks are relatively rare and spatially variable, such that that their effects can only be captured in long-term experiments. Here we show that, although plant growth was favoured by the insulating effects of increased snow cover in experimental plots in Sweden, plant biomass decreased over the seven-year study. The decline in biomass was caused by an outbreak of a host-specific parasitic fungus, Arwidssonia empetri, which killed the majority of the shoots of the dominant plant species, Empetrum hermaphroditum, after six years of increased snow cover. After the outbreak of the disease, instantaneous measurements of gross photosynthesis and net ecosystem carbon exchange were significantly reduced at midday during the growing season. Our results show that plant diseases can alter and even reverse the effects of a changing climate on tundra carbon balance by altering plant composition.

  14. The Contribution of Moss to Plot-Based Spectral Signals in Moist Acidic Low Arctic Tundra

    NASA Astrophysics Data System (ADS)

    May, J. L.; Beamish, A. L.

    2015-12-01

    To determine the contribution of moss to peak season normalized difference index (NDVI) field measurement of intact vegetation communities were compared to communities with individual species and litter successively removed until only the moss layer remained. Spectral measurements (n=3) were collected using a field radiometer in five upland and five lowland plots in a moist acidic tundra ecosystem at the Imnaviat Creek Watershed, North Slope Alaska. After spectral measurements were taken individual species were removed in the same order in each plot by clipping them at the moss layer. As individual species were removed NDVI values decreased. Decreases were greatest when dwarf shrub species Salix richardsonii sb. pulchra and Betula nana were removed. Notable increases in NDVI were observed once standing litter was removed. The NDVI values of the moss layer were comparable to intact vegetation communities depending on the bryophyte species composition. This suggests that the NDVI signal of moss is largely masked by vascular species but represents a significant factor missing from overall, large-scale NDVI signals. The results of this study corroborate recent data that points to the mismatch between ground based NDVI and aerial and satellite derived NDVI. This preliminary case study provides a strong basis for better characterization of the contribution of moss to NDVI for improved correction of air and space borne imagery.

  15. Effects of climate change on decomposition in Arctic Tussock Tundra: A modeling synthesis

    SciTech Connect

    Moorhead, D.L. ); Reynolds, J.F. )

    1993-11-01

    A model of litter decomposition (GENDEC; Moorhead and Reynolds, 1991) is used to examine the potential effects of changing soil climate on the decay of dead organic matter in a tussock tundra soil of northern Alaska, USA. Model behavior under current climatic conditions is consistent with observations from field and laboratory studies of decomposition and plant growth (5.28 g N[center dot]m[sup [minus]2][center dot]yr[sup [minus]1] turnover and 79.5 g CO[sub 2]-C[center dot]m[sup [minus]2]yr[sup [minus]1] released, respectively). Under changing conditions, carbon and nitrogen release from dead organic matter increase as linear functions of both season length and temperature, and as roughly parabolic functions of soil moisture content. The greatest increase in net N release from dead organic matter (199% of current value), occurs at optimum soil moisture (600%), longest season (140 d) and highest mean summer temperature (8.5[degrees]C). The least amount of N is immobilized (46% of current value) at the lowest temperature (currently 4.5[degrees]C), shortest season (70 d) and highest soil moisture content (1000%). Season length has little effect on the size of the mineral N pool, although pool size does respond to differences in temperature and soil moisture content and ranges from 12 to 25 mg N[center dot]m[sup [minus]2].

  16. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  17. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    PubMed Central

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  18. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  19. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra.

    PubMed

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-05-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3-4) in the Russian discontinuous permafrost tundra are nitrate-rich 'hotspots' of nitrous oxide (N(2)O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N(2)O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N(2)O production of both soils in anoxic microcosms, indicating denitrification as the source of N(2)O. Up to 500 and 10 μM nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N(2)O g(DW)(-1) h(-1), for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N(2)O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK(-1) copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N(2)O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities.

  20. Changes in Dissolved Carbon and Nitrogen Concentrations Along a Hill Slope Flow Path in Siberian Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Theberge, J.; Schade, J. D.; Fiske, G. J.; Loranty, M. M.; Zimov, N.

    2014-12-01

    Permafrost soils contain a large pool of carbon that has accumulated for thousands of years, and remains frozen in organic form. As climate warms, permafrost thaw will lead to active cycling of old organic materials, possibly leading to release of carbon to the atmosphere or to export of organic carbon to the oceans. Organic matter breakdown may also release reactive forms of nitrogen, which may significantly impact ecosystem processes. We currently have limited understanding of where in Arctic landscapes breakdown of organic materials will occur, or whether this will influence the strength and direction of feedback loops that may occur in response to changes in C and N cycling. In this work, we studied changes in dissolved forms of C and N in water moving down a hillslope linking upland terrestrial environments to lowland floodplains within the Kolyma River watershed in the East Siberian Arctic tundra in July, 2014. The hill slope consisted of a mosaic of dry and saturated soils, generally with drier soils on the periphery and saturated soils in and around pools or short reaches of flowing surface water. We established transects at regular intervals downslope, installing wells in the center of the flow path and 5 meters laterally north and south. We analyzed pore-water from wells and surface water from pools at each transect for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). We used patterns in water chemistry to develop a conceptual model for biogeochemical changes as water moved downslope through soils, pools and runs. Pore-water analysis showed significantly higher DOC in lateral wells than in surface water and pore water in the center of the flow path, suggesting possible processing of C as water moves laterally towards the valley bottom. In contrast, DOC increased modestly down the center of the flow path, suggesting either higher hydrologic inputs or production of new DOC downslope. TDN concentration decreased downslope, suggesting

  1. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional

  2. Cultural Resilience of Nenets Social-Ecological Systems in Arctic Russia: A Focus on Reindeer Nomads of the Tundra

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.

    2013-12-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighbouring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g. geese), to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and

  3. Hyperspectral Study of the Arctic Tundra Ecosystem Using an Automated Robotic Cart System

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Gamon, J. A.; Houser, P.; Matharasi, K.; Tweedie, C. E.

    2007-12-01

    Our study in the NSF Biocomplexity project is carried on by collecting spectral data with the help of an automated robotic tram system over the drying arctic lake bed. The robotic cart samples three 300 meter long transects spread across the lake basin automatically, taking reflectance measurements at each meter using a dual detector spectrometer designed to correct for changing sky conditions. Surface reflectance data were collected for three consecutive years for 2005, 2006 and 2007 as part of the project, which provides a baseline dataset of surface conditions. Three spectral indices, Normalized Difference Vegetation Index (NDVI), a measure of vegetation 'greenness', the Photochemical Reflectance Index (PRI), a measure of carotenoid pigment levels, and the Water Band Index (WBI), a measure of vegetation moisture content, are calculated from the optical data collected to study the surface conditions of the lakebed. Comparison of three years NDVI data showed different greenness conditions of the surface. Peak season NDVI values were the lowest in 2005 compared to 2006 and 2007. WBI values for the two dry years 2005 and 2007 were similar for all the tramlines except for the beginning of the season. PRI values for the two dry years 2005 and 2007 had similar trends for all the tramlines except for the beginning of the season. This tram system along with the cyberinfrastucture tools that we are developing gives us the opportunity for developing a technology to the next level to facilitate the research in the field of environmental science and terrestrial ecology.

  4. Hydrological Controls on Ecosystem CO2 and CH4 Exchange in a MIXED Tundra and a FEN within an Arctic Landscape UNDER Current and Future Climates

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Humphreys, E.; Lafleur, P.

    2014-12-01

    Variation in CO2 and CH4 exchange in years with contrasting weather is strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for this variation were incorporated into the ecosystem model ecosys which simulated CO2 and CH4 fluxes along a topographic gradient within an arctic landscape at Daring Lake, NWT, Canada. Fluxes modelled at mixed tundra and fen sites within the gradient were compared with CO2 fluxes measured at eddy covariance towers from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008. Slopes and correlation coefficients from regressions of modelled vs. measured CO2 fluxes were 1.0 ± 0.1 and 0.7 - 0.8 for both sites in all years. At the mixed tundra site, rises in net CO2 uptake in warmer years with earlier snowmelt were constrained by midafternoon declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa, and by rises in CO2 effluxes with greater active layer depth (ALD). Consequently annual net CO2 uptake at this site rose little with warming. At the fen site, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake in warmer years were greater than those at the mixed tundra site. The greater declines in CO2 influxes with warming at the mixed tundra site were modelled from greater soil-plant-atmosphere water potential gradients that developed in drier soil, and the smaller rises in CO2 effluxes with warming at the fen site were modelled from O2 constraints to heterotrophic and below-ground autotrophic respiration that limited their responses to greater ALD. Modelled and measured CH4 exchange during July and August indicated very small influxes at the mixed tundra site, and larger emissions at the fen site. Emissions of CH4 modelled during soil freezing in October - November contributed about one-third of the annual total, and so should be included in estimates of annual emissions. These contrasting responses to warming under current

  5. Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada)

    NASA Astrophysics Data System (ADS)

    Constant, Philippe; Poissant, Laurier; Villemur, Richard; Yumvihoze, Emmanuel; Lean, David

    2007-04-01

    Snow samples were collected in the seasonal snow cover of the low arctic tundra (Whapmagoostui-Kuujjuarapik, Québec) during episodic atmospheric mercury depletion events (AMDEs) and in the snowmelt period, long after AMDEs had occurred. Total and methyl mercury analyses were done in order to investigate the critical factors influencing the fate of mercury once deposited in the snowpack. Following AMDEs, snow total mercury (THg) concentrations increased and were inversely proportional to the distance from Hudson Bay. The correlations between MeHg, sulfate (SO42-), and chlorine (Cl-) snow concentrations implicated marine aerosols as a significant source of MeHg, independent of AMDEs. However, the newly deposited MeHg was unstable in the snow cover as 15-56% of the MeHg was demethylated or otherwise "lost" during the nighttime period. In contrast, during the snowmelt period, marine aerosols were not a significant source of MeHg. MeHg snow concentrations higher than 200 pg L-1 were observed when snow's heterotrophic plate counts, total suspended volatile solids, and total suspended solids were higher than 5.0 × 105 CFU L-1, 25 mg L-1, and 90 mg L-1, respectively. During the snowmelt, although the THg snow concentrations remained at 8-9 ng L-1, the proportion of MeHg increased from 2.7 to 7.6%. This is the first report suggestive of the presence of mercury methylation activities within the snow cover of the low arctic tundra.

  6. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  7. New York's TUNDRA.

    ERIC Educational Resources Information Center

    Kalinowski, Thomas

    1983-01-01

    Found at the summit of some of the highest peaks of New York State's Adirondack Mountains are low-growing plants similar, and in many cases, identical to plants growing in the Arctic. Describes these plants and the environment in which they are found. Includes a color plate of alpine tundra plants. (Author/JN)

  8. Topographic control of the depth of ground thaw in a peat covered continuous permafrost site in the Canadian arctic tundra

    NASA Astrophysics Data System (ADS)

    Endrizzi, Stefano; Marsh, Philip; Quinton, William; Dall'Amico, Matteo

    2010-05-01

    Recent research has suggested an energy-based framework for delineating runoff contributing areas for permafrost dominated, tundra environments, where end of winter snow cover, and turbulent and radiant fluxes of energy and water are affected by topography, and control both snowmelt and the depth of ground thaw. The resulting spatially variable thaw depth, when combined with spatially variable water supply, spatially variable organic soil thickness, and depth variable hydraulic conductivity in organic soils, has a significant impact on the flow of water from uplands to the stream channel. In order to consider the effects of a spatially variable depth of thaw on runoff in a tundra basin, the hydrologic model GEOtop was applied to the Siksik Creek drainage basin located approximately 50 km north of Inuvik, NWT, Canada, characterized by a relatively gentle topography, with elevation ranging from 0 and 80 m a.s.l.. The small surface area of the basin (approximately 1 km2) allows the model to be run at a relatively high resolution. GEOtop is a grid based model with a complete surface energy balance scheme that accounts for variations in both the turbulent fluxes of sensible and latent heat, as well as for variations in radiant fluxes. The model also has a complete subsurface heat and water flux scheme that is able to route water and energy both vertically between a large number of soil layers, and horizontally between grids. Field data for model validation include meteorological data, depth of thaw, and runoff data for a 3 year period between 1992 and 1994, and high resolution DEM and vegetation height data obtained from airborne LiDAR in 2004. The purpose of this work is studying how topography controls the depth of thaw, and, therefore, the effects of a spatially variable snow cover are intentionally neglected. GEOtop was then run in a simple configuration, assuming an initial condition of uniform frost table at the ground surface at the end of snow melt, with snow

  9. Ecosystem CO2 and CH4 Exchange in a Mixed Tundra and a Fen Within an Arctic Landscape: Modeled Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Grant, R. F.

    2015-12-01

    Climate change will have important effects on arctic productivity and greenhouse gas exchange. These changes were projected by the model ecosys under an SRES A2 scenario over the 21st century for a landscape including an upland tundra and a lowland fen at Daring Lake, NWT. Rising temperatures and precipitation caused increases in active layer depths (ALD) and eventual formation of taliks, particularly in the fen, which were attributed to heat advection from warmer and more intense precipitation and downslope flow. These changes raised net primary productivity from more rapid N mineralization and uptake, driven by more rapid heterotrophic respiration and increasing deciduous vs. evergreen plant functional types. Consequently gains in net ecosystem productivity (NEP) of 29 and 10 g C m-2 y-1 were modelled in the tundra and fen after 90 years. However CH4 emissions modelled from the fen rose sharply from direct effects of increasing soil temperatures and greater ALD on fermenter and methanogenic populations, and from indirect effects of increasing sedge growth which hastened transfer of CH4 through porous roots to the atmosphere. After 90 years, landscape CH4 emissions increased from 1.1 to 5.2 g C m-2 y-1 while landscape NEP increased from 34 to 46 g C m-2 y-1. Positive feedback to radiative forcing from increases in CH4 emissions more than offset negative feedback from increases in NEP. This feedback was largely attributed to rises in CH4 emission caused by heat advection from increasing precipitation, the impacts of which require greater attention in arctic climate change studies.

  10. Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 2. Modeled impacts of climate change

    NASA Astrophysics Data System (ADS)

    Grant, R. F.

    2015-07-01

    Climate change will have important effects on arctic productivity and greenhouse gas exchange. These changes were projected by the model ecosys under an Special Report on Emissions Scenarios (SRES) A2 scenario over the 21st century for a landscape including an upland tundra and a lowland fen at Daring Lake, NWT. Rising temperatures and precipitation caused increases in active layer depths (ALD) and eventual formation of taliks, particularly in the fen, which were attributed to heat advection from warmer and more intense precipitation and downslope flow. These changes raised net primary productivity from more rapid N mineralization and uptake, driven by more rapid heterotrophic respiration and increasing deciduous versus evergreen plant functional types. Consequently, gains in net ecosystem productivity (NEP) of 29 and 10 g C m-2 yr-1 were modeled in the tundra and fen after 90 years. However, CH4 emissions modeled from the fen rose sharply from direct effects of increasing soil temperatures and greater ALD on fermenter and methanogenic populations and from indirect effects of increasing sedge growth, which hastened transfer of CH4 through porous roots to the atmosphere. After 90 years, landscape CH4 emissions increased from 1.1 to 5.2 g C m-2 yr-1 while landscape NEP increased from 34 to 46 g C m-2 yr-1. Positive feedback to radiative forcing from increases in CH4 emissions more than offset negative feedback from increases in NEP. This feedback was largely attributed to rises in CH4 emission caused by heat advection from increasing precipitation, the impacts of which require greater attention in arctic climate change studies.

  11. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems. PMID:26030209

  12. Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific.

    PubMed

    Nissinen, Riitta M; Männistö, Minna K; van Elsas, Jan Dirk

    2012-11-01

    Endophytic bacteria inhabit internal plant tissues, and have been isolated from a large diversity of plants, where they form nonpathogenic relationships with their hosts. This study combines molecular and culture-dependent approaches to characterize endophytic bacterial communities of three arcto-alpine plant species (Oxyria digyna, Diapensia lapponica and Juncus trifidus) sampled in the low Arctic (69°03'N). Analyses of a 325 bacterial endophyte isolates, as well as seven clone libraries, revealed a high diversity. In particular, members of the Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, and Proteobacteria were found. The compositions of the endophytic bacterial communities were dependent on host-plant species as well as on snow cover at sampling sites. Several bacterial genera were found to be associated tightly with specific host-plant species. In particular, Sphingomonas spp. were characteristic for D. lapponica and O. digyna, and their phylogenetic grouping corresponded to the host plant. Most of the endophyte isolates grew well and retained activity at +4 °C, and isolate as well as clone library sequences were often highly similar to sequences from bacteria from cold environments. Taken together, this study shows that arctic plants harbour a diverse community of bacterial endophytes, a portion of which seems to be tightly associated with specific plant species.

  13. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra

    PubMed Central

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-01-01

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  14. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-08-19

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4-7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.

  15. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.

    PubMed

    Bjorkman, Anne D; Elmendorf, Sarah C; Beamish, Alison L; Vellend, Mark; Henry, Gregory H R

    2015-12-01

    Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long-term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21-year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05-0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species - especially for early-flowering species - while spring temperature was significantly related to flowering time only for later-flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species' phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses

  16. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-08-19

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4-7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  17. Methane flux time series for tundra environments

    SciTech Connect

    Whalen, S.C.; Reeburgh, W.E. )

    1988-12-01

    Seasonal measurements of net methane flux were made at permanent sites representing important components of arctic tundra. The sites include Eriophorum tussocks, intertussock depressions, moss-covered areas, and Carex stands. Methane fluxes showed high diel, seasonal, intra site, and between site variability. Eriophorum tussocks and Carex dominated methane release to the atmosphere, with mean annual net methane fluxes of 8.05 + or{minus}2.50 g CH{sub 4}/sq m and 4.88 + or{minus}0.73 g CH{sub 4}/sq m, respectively. Methane fluxes form the moss sites and intertussock depressions were much lower. Over 90% of the mean annual methane flux from the Eriophorum, intertussock depressions, and Carex sites occurred between thaw and freeze-up. Some 40% of the mean annual methane flux from the moss sites occurred during winter. Composite methane fluxes for tussock tundra and Carex-dominated wet meadow tundra environments were produced by weighting measured component fluxes according to areal coverage. Tussock and wet meadow tundra account for an estimated global methane emission of 19-33 Tg/yr. 39 refs., 7 figs., 2 tabs.

  18. Calibration, Compositing, and Classification of Landsat Datasets and High-Resolution Imagery in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2014-12-01

    Providing calibrated, cloud-free, and phenologically consistent satellite basemaps at moderate (~30 m) and high resolution (≤2 m) is critical to the mapping of arctic tundra vegetation and landscape attributes across large study areas. We obtained ground cover (n = 107) and field spectra (n = 28) data for tundra vegetation across a network of field plots in a ~100,000 km2 study area spanning the foothills and coastal plain ecoregions of Alaska's North Slope. Calibration and atmospheric correction of Landsat TM, ETM+ and OLI, WorldView-2, and GeoEye-1 imagery were performed and we compared results across sensors and with ground spectra. For the Landsat imagery, we produced consistent basemaps using compositing approaches that focused on capturing central tendencies from multiple years of imagery within narrow phenological windows (e.g., green-up, peak growth, fall senescence). We leveraged information from the full 1985-2014 time series to optimize compositing year ranges to prevent bias due to directional changes (e.g., shrubification), and "step-changes" (e.g., tundra fire, lake drainage, ice-wedge degradation) in vegetation and landscape characteristics over the Landsat era. Finally, we explored automated classification of the calibrated Landsat and high-resolution imagery using the spectral rule-based classifier Satellite Image Automatic Mapper (SIAM).

  19. Relative contributions of rhizosphere and microbial respiration to belowground and total ecosystem respiration in arctic tussock tundra: results of a 13C pulse-chase experiment

    NASA Astrophysics Data System (ADS)

    Segal, A. D.; Sullivan, P.; Weintraub, M. N.; Darrouzet-Nardi, A.; Steltzer, H.

    2011-12-01

    Many arctic ecosystems that have historically been strong carbon (C) sinks are becoming sources of C to the atmosphere. Although ecosystem respiration is the largest C flux out of ecosystems, our ability to model respiration lags considerably behind our ability to model photosynthesis in the Arctic. Understanding the controls on respiration is especially important for an ecosystem which appears to be experiencing the greatest climate warming and also contains large stores of soil C. Partitioning respiration into its component fluxes and identifying factors controlling respiration of each component is a critical first step towards improving our ability to model changes in respiration. However, partitioning belowground constituents has proven to be challenging in most ecosystems. Therefore, to accurately estimate rhizosphere respiration and bulk soil microbial respiration in moist acidic tussock tundra, we selected an isotopic method that results in minimal disturbance of belowground processes. In mid July of 2011, we introduced a 13CO2 label into a clear ecosystem CO2 flux chamber, allowed the vegetation to incorporate the label through photosynthesis and returned 2 days and 4 days after labeling to follow the movement of the 13C signal. A smaller CO2 flux chamber was used to chase the label separately in tussock and inter-tussock areas. All above ground plant tissue was clipped immediately before the chase measurements and soil cores were taken immediately after chasing the label. Syringe samples (n=5 or 6) were collected from the small flux chamber at regular intervals as CO2 concentrations were allowed to build, and Keeling plots were used to estimate δ13C of belowground respiration. After completing the field measurements, the soil cores were sorted into live roots and root free soil. Samples of each were incubated in mason jars placed in a 10°C water bath. The jars were scrubbed free of CO2 and syringe samples were collected from each jar after CO2

  20. The freeze-up of high Arctic ponds and potential impacts on the carbon balance

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Abnizova, A.; Muster, S.; Wischnewski, K.; Boike, J.

    2011-12-01

    A considerable part of the global carbon budget is stored in the Arctic permafrost landscapes. Several studies suggest that lakes and ponds play a key role in the carbon turnover of these ecosystems as they are considered to be favourable paths of carbon exchange between surface and atmosphere. The direction and strength of the carbon fluxes from Arctic lakes is controlled by a variety of physical and biochemical processes whose climate interactions are complex and still poorly understood. In some Arctic regions the fractional area of lakes and ponds can be as large as 25% highlighting the importance of water bodies in the Arctic ecosystems. Our long-term studies on the energy balance of a typical Arctic lake landscape reveal that the seasonal freeze-thaw dynamic is highly sensitive to small variations in the winter time radiation budget and the subsurface heat flux, especially at shallow ponds. The time required to completely freeze the water body including the subjacent bottom sediments can vary up to several months. This implies that the period of unfrozen ponds, during which biological activity is favourable, highly depends on factors such as the winter time cloudiness and snow cover. Hence, the close interaction between the winter time surface energy balance and biological processes might strongly affect the production and storage of green house gases of Arctic landscapes. This potential climate feedback mechanism is even more important as small water bodies are usually below the spatial resolution of remote sensing products. Therefore, they are not included in landscape classifications used in recent estimates of the global carbon budget or climate models. Nevertheless, small water bodies can make up a considerable percentage of the tundra surface comparable in size to the area occupied by large (thermokarst) lakes. Further investigation on the role of small water bodies appears to be mandatory for a better understanding of the Arctic carbon balance.

  1. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  2. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; Graham, David E.; Gu, Baohua

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO2 and CH4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO2 and CH4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  3. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    NASA Astrophysics Data System (ADS)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  4. Comparative responses of Dryas octopetala to simulated changes in climate from alpine, low- and high arctic ITEX sites

    SciTech Connect

    Welker, J.M.; Parsons, A.N.; Walker, M.D. |||

    1995-06-01

    Field manipulations of environmental conditions have been established in dry tundra sites on Niwot Ridge, CO, Toolik Lake, AK and on Svalbard, Norway as part of the International Tundra Experiment (ITEX). Dryas octopetala is the dominant species at all three sites where we have examined organismic and ecosystem responses to similar increases in temperature. Leaf and seed mass differ significantly between all sites and warmer temperatures resulted in reductions in leaf mass at both the high and low arctic sites in the initial year, but this was not observed at the alpine site. Reductions in leaf mass were accompanied by changes in leaf demography. Seed masses were inherently different between sites, being largest from plants in the alpine tundra. Plants in the alpine and in the high arctic had higher seed weights when warmed. By the end of the second year, leaf C:N ratios were higher in alpine plants which were warmed. These organismic responses may set the stage for altered colonization of bare ground while changes in C:N ratios may modify decomposition rates linking organismic and ecosystem dynamics.

  5. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  6. Lab-Scale Investigation of Multi-dimensional Relationships between Soil Intrinsic Properties to Improve Estimation of Soil Organic and Ice Content using Novel Core Imaging and Geophysical Techniques in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2015-12-01

    Shallow permafrost distribution and characteristics are important for predicting ecosystem feedbacks to a changing climate over decadal to century timescales. These can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. Investigating permafrost soil intrinsic properties generally involves time-consuming and expensive lab-based analysis of few soil cores over a large area and extrapolating between points to characterize spatial variations in soil properties. Geophysical techniques provide lower resolution data over a spatially large area and when coupled with high-resolution point data can potentially estimate with greater accuracy the spatial variation of investigated properties, thus limiting the difficulty of collecting many soil cores in remote areas. As part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we investigate multi-dimensional relationships between various permafrost intrinsic soil properties, and further linkages with geophysical parameters such as density from X-ray computed tomography (CT) and electrical conductivity from electrical resistance tomography (ERT) to evaluate how best to constrain estimation of properties as soil organic carbon content, ice content and saturation across low- to high-centered polygon features in the arctic tundra. Results of this study enable the quantification of the multi-dimensional relationships between intrinsic properties, which can be further used to constrain estimation of such properties from geophysical data and/or where limited core-based information is available. This study also enables the identification of the key controls on soil electrical resistivity and density at the investigated permafrost site, including salinity, porosity, water content, ice content, soil organic matter, and lithological properties. Overall, inferred multi-dimensional relationships and related

  7. Increased plant biomass in a High Arctic heath community from 1981 to 2008.

    PubMed

    Hudson, J M G; Henry, G H R

    2009-10-01

    The Canadian High Arctic has been warming for several decades. Over this period, tundra plant communities have been influenced by regional climate change, as well as other disturbances. At a site on Ellesmere Island, Nunavut, Canada, we measured biomass and composition changes in a heath community over 13 years using a point-intercept method in permanent plots (1995-2007) and over 27 years using a biomass harvest comparison (1981-2008). Results from both methods indicate that the community became more productive over time, suggesting that this ecosystem is currently in transition. Bryophyte and evergreen shrub abundances increased, while deciduous shrub, forb, graminoid, and lichen cover did not change. Species diversity also remained unchanged. Because of the greater evergreen shrub cover, canopy height increased. From 1995 to 2007, mean annual temperature and growing season length increased at the site. Maximum thaw depth increased, while soil water content did not change. We attribute the increased productivity of this community to regional warming over the past 30-50 years. This study provides the first plot-based evidence for the recent pan-Arctic increase in tundra productivity detected by satellite-based remote-sensing and repeat-photography studies. These types of ground-level observations are critical tools for detecting and projecting long-term community-level responses to warming. PMID:19886474

  8. Modeling the influence of hydrological processes on spatial and temporal patterns of CO{sub 2} soil efflux from an arctic tundra catchment

    SciTech Connect

    Ostendorf, B.

    1996-08-01

    Spatial and temporal patterns of CO{sub 2} efflux from arctic tundra soils are examined with three, linked simulation models at a 2.2-km{sup 2} catchment. The model complex runs on a 20*20 m grid and a temporal resolution of 1 h over one growing season. TOPMODEL is used to predict the dynamics of the water balance and spatial pattern of water table. A canopy model (GAS-FLUX) is used to predict moss and vascular plant transpiration rates. Soil respiration is computed form an empirical regression model incorporating the effects of soil temperature and depth to the water table. Soil efflux in the riparian zones of 60 g C m{sup {minus}2} compares to 119 g C m{sup {minus}2} in the hillslopes indicating large spatial differences. An increase of air temperature and solar radiation or a decrease of precipitation increase soil respiration. The results indicate a tight connection between water and carbon cycles at the catchment scale. Keeping all other conditions constant, a seasonal increase of transpiration rates by 10% increases soil respiration by 5% or 4.6 g Cm{sup {minus}2}. Data deficiencies and suggestions for future modeling are discussed. 40 refs., 8 figs.

  9. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  10. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities

    NASA Astrophysics Data System (ADS)

    Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin; Hallinger, Martin; Lantz, Trevor; Blok, Daan; Tape, Ken D.; Macias-Fauria, Marc; Sass-Klaassen, Ute; Lévesque, Esther; Boudreau, Stéphane; Ropars, Pascale; Hermanutz, Luise; Trant, Andrew; Siegwart Collier, Laura; Weijers, Stef; Rozema, Jelte; Rayback, Shelly A.; Schmidt, Niels Martin; Schaepman-Strub, Gabriela; Wipf, Sonja; Rixen, Christian; Ménard, Cécile B.; Venn, Susanna; Goetz, Scott; Andreu-Hayles, Laia; Elmendorf, Sarah; Ravolainen, Virve; Welker, Jeffrey; Grogan, Paul; Epstein, Howard E.; Hik, David S.

    2011-12-01

    Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra ecosystems. Here, we (1) synthesize these findings, (2) present a conceptual framework that identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines of investigation for future research. Satellite observations from around the circumpolar Arctic, showing increased productivity, measured as changes in ‘greenness’, have coincided with a general rise in high-latitude air temperatures and have been partly attributed to increases in shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or changes in herbivory intensity are all contributing to observed changes in shrub abundance. A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter energy fluxes, regional climate, soil-atmosphere exchange of water, carbon and nutrients, and ecological interactions between species. In order to project future rates of shrub expansion and understand the feedbacks to ecosystem and climate processes, future research should investigate the species or trait-specific responses of shrubs to climate change including: (1) the temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new individuals, and (3) the relative influence of the positive and negative feedbacks involved in shrub expansion.

  11. Integrating Research and Education in a Study of Biocomplexity in Arctic Tundra Ecosystems: Costs, Results, and Benefits to the Research Agenda

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; González, G.; Walker, D. A.

    2006-12-01

    The integration of research and education is one of the fundamental goals of our national science policy. There is strong interest to improve this integration at the graduate and undergraduate levels, with the general public, and with local and indigenous people. Efforts expended in integrating research and education can occur at the expense of research productivity and represent a cost. Results may include number of personnel involved, activities accomplished, research or other products produced. Benefits are difficult to quantify and may be short term and tangible, e.g. education-research projects enhancing research productivity with publications, or long-term and include intangibles such as personal interactions and experiences influencing career choices, the perception of research activities, enhanced communication, and direct or indirect influence on related research and educational projects. We have integrated the University field course Arctic Field Ecology with an interdisciplinary research project investigating the interactions of climate, vegetation, and permafrost in the study Biocomplexity of Arctic Tundra Ecosystems. The integration is designed to give students background in regional ecology; introduce students to the project objectives, methods, and personnel; provide for interaction with participating scientists; conduct research initiated by the class and instructors; and provide the opportunity to interact with indigenous people with interests in traditional ecological knowledge and land management. Our costs included increased logistical complexity and time-demands on the researchers and staff managing the integration. The educational component increased the size of the research group with the addition of 55 participants over the 4 field seasons of the study. Participants came from 7 countries and included 20 enrolled university students, 18 Inuit non student participants, 9 Inuit students, 3 visiting scientists, 3 staff, and 2 scientist

  12. The effect of snow cover on lemming population cycles in the Canadian high Arctic.

    PubMed

    Bilodeau, Frédéric; Gauthier, Gilles; Berteaux, Dominique

    2013-08-01

    Rising temperatures and changes in the precipitation regime will have a strong impact on the quality of the snow cover in the Arctic. A snow cover of good quality protecting lemmings from cold temperatures and predators is thought to be an important factor for maintaining the cyclic dynamic of their populations in the tundra. We examined if the characteristics of annual fluctuations (amplitude and shape of phases) in brown lemming (Lemmus trimucronatus) density could be determined by snow depth, snow density, sub-nivean temperature and persistence of snow. Using an 18-year time series of brown lemming abundance on Bylot Island in the Canadian Arctic, we tested if snow variables could explain the residual variation between the observed lemming density and the one predicted by models where cyclicity had been accounted for. Our analysis provides support for the hypothesis that snow cover can affect the amplitude and possibly also the periodicity of lemming population cycles in the High Arctic. Summer abundance of brown lemmings was higher following winters with a deep snow cover and a low-density snow pack near the ground but was unaffected by the date of establishment or melting and duration of the snow cover. Two snow variables showed a temporal trend; mean winter snow depth tended to increase and date of establishment of the hiemal threshold occurred earlier over time. These temporal trends, which should be favourable to lemmings, may explain why healthy population cycles have apparently been maintained at our study site contrary to other Arctic sites.

  13. Alaska's Living Tundra. Alaska Wildlife Week, 25-29 April 1988. Unit 6: Primary Teacher's Guide; Upper Elementary Teacher's Guide; Junior/Senior High School Teacher's Guide; Supplement.

    ERIC Educational Resources Information Center

    Quinlan, Susan E.

    Despite its cold and barren appearance, Alaska's tundra supports a surprising variety of insects, birds, and mammals. In this document, three teacher's guides (for primary, upper elementary, and junior and senior high schools) and a supplementary resource packet present a comprehensive unit of study on Alaska's living tundra. The five lessons in…

  14. Alaska Coastal Tundra Vegetation's Links to Climate

    NASA Astrophysics Data System (ADS)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.; Epstein, H. E.; Pinzon, J. E.; Tucker, C. J.; Thoman, R. L.; Tran, H.; Molders, N.; Ermold, W.; Zhang, J.; Steele, M.

    2012-12-01

    Changes in the seasonal climate in arctic coastal regions of Alaska have been documented during the satellite record and are linked to tundra vegetation productivity. The Arctic Normalized Difference Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic. In the tundra of northern Alaska, significant increases have been documented in seasonal maximum (max) NDVI along the Beaufort and Chukchi Sea coasts. In contrast, maxNDVI over coastal tundra areas in southwest Alaska along the Bering Sea has declined. Increasing land surface temperatures have been documented in the Chukchi, Beaufort and Bering Sea tundra regions during the summer, but temperatures have declined in midsummer. NDVI variability has been previously tied with sea ice. The purpose of this study is to identify the climate system components that are linked to Alaska coastal tundra NDVI changes on seasonal and sub-seasonal time scales. Three coastal tundra domains were evaluated based on the Treshnikov divisions and they are named the East Bering, East Chukchi, and Beaufort, in reference to the adjacent seas. In the Beaufort and East Chukchi regions, the strength of the Beaufort High was correlated with NDVI, however the sign of the relationship changes from month to month in summer indicating a complex relationship. The maxNDVI is above average when the June Beaufort High (BH) is stronger, however, a weaker BH in July is also linked with increased TI-NDVI (time-integrated over the season). This suggests that a stronger BH, which suppresses cloudiness and increases solar insolation, may drive warming in June. Trends in wind speeds suggest that the changes in temperature are also linked with changes in the local sea breeze circulation, and stronger winds along the coast are correlated with warmer

  15. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2010-12-01

    Multiple environmental drivers, including climate, soil conditions and herbivory, affect arctic tundra vegetation dynamics. These factors may have been evaluated individually in the past; however, their interactions contribute to more complicated tundra plant community dynamics and may represent a substantial source of uncertainty in predicting tundra ecosystem properties in the changing Arctic. This study investigates the effects of soils, grazing, and climate change on tundra plant communities at the plant functional type (PFT) level, based on previous integrated modeling research at the ecosystem level. The study area encompasses the Yamal Peninsula, northwestern Siberia, where soil and biomass data were collected along the Yamal Arctic Transect (YAT), to drive a nutrient-based tundra vegetation model (ArcVeg) and to validate the simulation results. We analyzed plant functional type biomass and net primary productivity (NPP), and found that with higher temperatures (+2°C mean growing season temperature), most plant functional types responded positively with increased biomass and NPP, while grazing suppressed such responses in both high and low soil organic nitrogen (SON) sites. The magnitudes of the responses to warming depended on SON and grazing intensity. Relatively, there were greater responses of biomass and NPP in low SON sites compared to high SON sites. Moss biomass (in contrast to other plant types) declined 34% with warming in the low SON site and 28% in the high SON site in subzone E (the most southern tundra subzone). Increases in Low Arctic shrub biomass with warming were 61% in the high SON site in subzone E and 96% in the low SON site. Decrease in moss biomass due to warming was mitigated about 2% by high grazing frequency (maximum of 25% of biomass removal every two years) in the high SON site in subzone E, with an opposite effect in the low SON site. High grazing frequency caused greater relative increases in total shrub biomass for both low

  16. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment.

    PubMed

    Oberbauer, S F; Elmendorf, S C; Troxler, T G; Hollister, R D; Rocha, A V; Bret-Harte, M S; Dawes, M A; Fosaa, A M; Henry, G H R; Høye, T T; Jarrad, F C; Jónsdóttir, I S; Klanderud, K; Klein, J A; Molau, U; Rixen, C; Schmidt, N M; Shaver, G R; Slider, R T; Totland, Ø; Wahren, C-H; Welker, J M

    2013-08-19

    The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.

  17. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  18. Science Traverses in the Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Williamson, Marie-Claude

    2012-01-01

    The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.

  19. Relative roles of different-sized herbivores and plant-plant interactions in tall shrub tundra vegetation

    NASA Astrophysics Data System (ADS)

    Ravolainen, Virve; Ims, Rolf; Bårdsen, Bård-Jørgen; Stien, Audun; Kollstrøm, Julie; Lægreid, Eiliv; Bråthen, Kari Anne

    2013-04-01

    Tall shrubs play important roles in the ecology of Arctic tundra ecosystems, including support of high shrub-associated biodiversity and regulation of a range of ecosystem processes. Tall shrub patches and herbaceous vegetation surrounding them often form a two-state vegetation mosaic. Such tall shrub tundra vegetation is an important locus for current vegetation changes in the Arctic. Both abiotic and biotic drivers are known to influence the shrub component. However, although expansion of the shrub state has received much focus lately, relative strengths of the multiple drivers of vegetation state are currently not fully understood. We investigated the role of herbivory relative to temperature and relative to plant-plant interactions, conducting a field survey and experimental studies at large spatial scales in riparian tall shrub tundra in Norway. We found both summer temperatures and summer grazing by reindeer (Rangifer tarandus) to affect tall shrub distribution and expansion potential. Furthermore, we found strong and rapid shrub growth change in response to abundance of key arctic herbivores; small rodents. Finally, we quantified the relative importance of neighboring plants and both herbivore types to recruiting tall shrubs. The previously unforeseen rate at which tall shrub tundra responded to altered herbivore pressures further exemplifies its central role in the tundra ecosystems, promoting tall shrub tundra as a bell-whether of change with respect to both abiotic and biotic drivers. While many of the results clearly relate to herbivory, neighboring plants or climate as drivers, some variation remains unexplained warranting future research focus on this highly dynamic part of the tundra ecosystem. Our results suggest that spatially variable biotic interactions are likely to modify forcing by climate, calling for an ecosystem approach when studying change in tundra ecosystems.

  20. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias B.; Hanisch, Jessica; Weiss, Niels; Kuhry, Peter; Maximov, Trofim C.; Hugelius, Gustaf

    2015-10-01

    Permafrost-affected ecosystems are important components in the global carbon (C) cycle that, despite being vulnerable to disturbances under climate change, remain poorly understood. This study investigates ecosystem carbon storage in two contrasting continuous permafrost areas of NE and East Siberia. Detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) is analyzed for one tundra (Kytalyk) and one taiga (Spasskaya Pad/Neleger) study area. In total, 57 individual field sites (24 and 33 in the respective areas) have been sampled for PC and SOC, including the upper permafrost. Landscape partitioning of ecosystem C storage was derived from thematic upscaling of field observations using a land cover classification from very high resolution (2 × 2 m) satellite imagery. Nonmetric multidimensional scaling was used to explore patterns in C distribution. In both environments the ecosystem C is mostly stored in the soil (≥86%). At the landscape scale C stocks are primarily controlled by the presence of thermokarst depressions (alases). In the tundra landscape, site-scale variability of C is controlled by periglacial geomorphological features, while in the taiga, local differences in catenary position, soil texture, and forest successions are more important. Very high resolution remote sensing is highly beneficial to the quantification of C storage. Detailed knowledge of ecosystem C storage and ground ice distribution is needed to predict permafrost landscape vulnerability to projected climatic changes. We argue that vegetation dynamics are unlikely to offset mineralization of thawed permafrost C and that landscape-scale reworking of SOC represents the largest potential changes to C cycling.

  1. Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet

    PubMed Central

    Wong, Fiona K. Y.; Lacap, Donnabella C.; Lau, Maggie C. Y.; Aitchison, J. C.; Cowan, Donald A.

    2010-01-01

    The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes. Electronic supplementary material The online version of this article (doi:10.1007/s00248-010-9653-2) contains supplementary material, which is available to authorized users. PMID:20336290

  2. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    NASA Astrophysics Data System (ADS)

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Conrad, Mark S.; Muss, Jordan D.; Perkins, George B.; Smith, Lydia J.; Torn, Margaret S.; Wullschleger, Stan D.; Wilson, Cathy J.

    2015-11-01

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51 ± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production.

  3. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Conrad, Mark S.; Muss, Jordan D.; Perkins, George B.; Smith, Lydia J.; Torn, Margaret S.; Wullschleger, Stan D.; et al

    2015-11-08

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopicmore » and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. Furthermore, this work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production.« less

  4. Quantitative Interpretation of Arctic Tundra Attributes Using Remote Sensing: Leveraging Field Data, Modern- and Legacy Landsat Data, and Commercial Imagery in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Frost, G. V., Jr.; Macander, M. J.; Nelson, P. R.

    2014-12-01

    Integrated analysis of ground-based vegetation data and remote sensing supports vegetation mapping, landscape-change detection, wildlife habitat assessment, and tracking of phenological events such as green-up and senescence. The life-cycles of tundra plants occur within a highly compressed seasonal window, making the quantitative assessment of vegetation and landscape attributes from ≤30m resolution remotely-sensed imagery, such as above-ground biomass, % shrub cover, and % surface water, a difficult task when applied across large study domains. To support mapping of vegetation and landscape attributes across ~100,000 km2 of Alaska's North Slope, we obtained ground data for tundra vegetation using a point-intercept sampling approach across a network of 107 field plots spanning gradients of bioclimate, landscape position (upland, lowland, riverine), and geomorphic setting (foothills, coastal plain). At each plot, vegetation data were collected along three 50-m linear transects, compatible with 30-m Landsat imagery. We summarized live vegetation, litter, and non-vegetated surfaces using three terms: top cover (uppermost "hit"), percent cover (total areal cover along transect), and hit density (all "hits" at a point). We then evaluated a suite of data models (e.g., General Additive Models, classification tree, clustering) and data-mining approaches (e.g., neural networks, random forest) using midsummer Landsat TM/ETM+ acquisitions since 1985, and OLI acquisitions for 2013-2014. The large size, frequent cloudiness, and interannual variability of the study area necessitated the compositing of a multitude of Landsat scenes. A median NDVI compositing technique was used to select Landsat observations from cloud- and shadow-free pixels that met day-of-year and year constraints. This technique produced seamless, phenologically consistent composites that are largely free of artifacts and suitable for regional-scale analysis. Ground-based training data and an archive of

  5. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources. PMID:24946703

  6. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Conrad, Mark S.; Muss, Jordan D.; Perkins, George B.; Smith, Lydia J.; Torn, Margaret S.; Wullschleger, Stan D.; Wilson, Cathy J.

    2015-11-08

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. Furthermore, this work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH

  7. Bird orientation at high latitudes: flight routes between Siberia and North America across the Arctic Ocean

    PubMed

    Alerstam; Gudmundsson

    1999-12-22

    Bird migration and orientation at high latitudes are of special interest because of the difficulties associated with different compass systems in polar areas and because of the considerable differences between flight routes conforming to loxodromes (rhumblines) or orthodromes (great circle routes). Regular and widespread east-north-east migration of birds from the northern tundra of Siberia towards North America across the Arctic Ocean (without landmark influences) were recorded by ship-based tracking radar studies in July and August. Field observations indicated that waders, including species such as Phalaropusfulicarius and Calidris melanotos, dominated, but also terns and skuas may have been involved. Analysis of flight directions in relation to the wind showed that these movements are not caused by wind drift. Assuming possible orientation principles based on celestial or geomagnetic cues, different flight trajectories across the Arctic Ocean were calculated: geographical loxodromes, sun compass routes, magnetic loxodromes and magnetoclinic routes. The probabilities of these four alternatives are evaluated on the basis of both the availability of required orientation cues and the predicted flight paths. This evaluation supports orientation along sun compass routes. Because of the longitudinal time displacement sun compass routes show gradually changing compass courses in close agreement with orthodromes. It is suggested that an important migration link between Siberia and North American stopover sites 1000-2500km apart across the Arctic Ocean has evolved based on sun compass orientation along orthodrome-like routes. PMID:10693821

  8. Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Whiticar, Michael J; Galand, Pierre E; Xu, Xiaomei; Lovejoy, Connie

    2013-01-01

    Thawing permafrost in the Canadian Arctic tundra leads to peat erosion and slumping in narrow and shallow runnel ponds that surround more commonly studied polygonal ponds. Here we compared the methane production between runnel and polygonal ponds using stable isotope ratios, ¹⁴C signatures, and investigated potential methanogenic communities through high-throughput sequencing archaeal 16S rRNA genes. We found that runnel ponds had significantly higher methane and carbon dioxide emissions, produced from a slightly larger fraction of old carbon, compared to polygonal ponds. The methane stable isotopic signature indicated production through acetoclastic methanogenesis, but gene signatures from acetoclastic and hydrogenotrophic methanogenic Archaea were detected in both polygonal and runnel ponds. We conclude that runnel ponds represent a source of methane from potentially older C, and that they contain methanogenic communities able to use diverse sources of carbon, increasing the risk of augmented methane release under a warmer climate.

  9. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic

    PubMed Central

    Negandhi, Karita; Laurion, Isabelle; Whiticar, Michael J.; Galand, Pierre E.; Xu, Xiaomei; Lovejoy, Connie

    2013-01-01

    Thawing permafrost in the Canadian Arctic tundra leads to peat erosion and slumping in narrow and shallow runnel ponds that surround more commonly studied polygonal ponds. Here we compared the methane production between runnel and polygonal ponds using stable isotope ratios, 14C signatures, and investigated potential methanogenic communities through high-throughput sequencing archaeal 16S rRNA genes. We found that runnel ponds had significantly higher methane and carbon dioxide emissions, produced from a slightly larger fraction of old carbon, compared to polygonal ponds. The methane stable isotopic signature indicated production through acetoclastic methanogenesis, but gene signatures from acetoclastic and hydrogenotrophic methanogenic Archaea were detected in both polygonal and runnel ponds. We conclude that runnel ponds represent a source of methane from potentially older C, and that they contain methanogenic communities able to use diverse sources of carbon, increasing the risk of augmented methane release under a warmer climate. PMID:24236014

  10. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nakatsubo, Takayuki; Uchida, Masaki; Sasaki, Akiko; Kondo, Miyuki; Yoshitake, Shinpei; Kanda, Hiroshi

    2015-06-01

    Moss tundra that accumulates a thick peat layer is one of the most important ecosystems in the High Arctic, Svalbard. The importance of this ecosystem for carbon sequestration was estimated from the apparent rates of carbon accumulation based on the 14C age and amount of peat in the active layer. The study site at Stuphallet, Brøgger Peninsula, northwestern Svalbard was covered with a thick peat layer dominated by moss species such as Calliergon richardsonii, Paludella squarrosa, Tomenthypnum nitens, and Warnstorfia exannulata. The average thickness of the active layer (brown moss and peat) was approximately 28 cm in 1 August 2011. The calibrated (cal) age of peat from the bottom of the active layer (20-30 cm below the peatland surface) ranged from 81 to 701 cal yr BP (median value of 2σ range). Based on the total carbon (4.5-9.2 kg C m-2), the apparent rate of carbon accumulation in the active layer was 9.0-19.2 (g C m-2 yr-1), which is similar to or greater than the net ecosystem production or net primary production reported for other vegetation types in this area. Our data suggest that moss tundra plays an important role in carbon sequestration in this area.

  11. Responses of Tundra Ecosystems to Environmental Change: Observational and Experimental Results

    NASA Astrophysics Data System (ADS)

    Henry, G. H.

    2004-05-01

    Evidence of environmental changes due to human-enhanced climate warming continues to accumulate from polar regions. Responses in tundra and taiga ecosystems to climate changes have been variable because of the wide range in process response rates, from metabolic processes to adjustments in ecosystem carbon balance, and the variability in environmental settings across local to regional scales. For example, strong increases in rates of plant growth and changes in species composition and abundance have been observed in parts of the Low Arctic, but very little change has been measured in high arctic tundra. A dramatic increase in the cover of deciduous shrubs in areas of the western North American Arctic is predicted to result in positive feedbacks to soil temperature, through increased surface roughness and snow depth, and to atmospheric heating by reducing albedo. Increased shrub cover has also been found in long-term experimental warming studies conducted throughout the tundra biome as part of the International Tundra Experiment (ITEX). Warming is also affecting the carbon balance of tundra and taiga, which hold 25% of the soil carbon of global terrestrial ecosystems. However, trajectories of these changes are largely unknown for most northern systems, and differ because of initial conditions of the carbon and nutrient economy. Over the longer-term, the positive increases in plant growth may be constrained by negative feedbacks to nutrient cycling, as increases in C:N ratios of plant litter slow the release of nitrogen to soils. However, nitrogen availability has been shown to increase in response to short-term warming. In this presentation, I will review the responses of tundra ecosystems to climate variability and change, both through observational and experimental studies.

  12. Stability of the boreal forest-tundra ecotone: A test for the greenhouse effect

    SciTech Connect

    Nichols, H. . Dept. of EPO Biology)

    1993-09-01

    The Greenhouse Warming hypothesis predicts that high northern latitudes will experience greater temperature increases than lower latitudes over the next century. Arctic meteorological data indicates some recent surface warmings, while tropospheric level cooling has occurred over the last 40 years, over the North American arctic. These equivocal signals indicate the need to examine the reproductive status of the arctic tree-line, which integrates the climatic trends of the circumpolar regions. The boundary between the boreal forest and the arctic tundra is sensitive to climate change according to climatic theory, and it is expected to respond to global atmospheric warming, as demonstrated by paleo-ecological studies of the forest limit during the last several thousand years. Much of the forest edge and the dwarf spruce true islands'' in the arctic tundra are currently infertile and reproduce by vegetative layering, due to insufficient summer warmth, but are expected to produce ripened seed and pollen when sufficient warming occurs. Since weather observatories are few and far between in the arctic, these tree islands act as quasi-meteorological stations to give us early warning of climatic change. These clonal trees will act as beacons'' throughout the circumpolar areas to indicate climatic warming, and will need to be monitored by ground survey using pollen and seed collections. Then sensitivity of northern ecosystems and human cultures to climatic change require the collaboration of several arctic nations in field and remote-sensing studies to assess these dichotomous possibilities.

  13. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic.

    PubMed

    Provencher, J F; Braune, B M; Gilchrist, H G; Forbes, M R; Mallory, M L

    2014-04-01

    Baseline data on trace element concentrations are lacking for many species of Arctic marine birds. We measured essential and non-essential element concentrations in Arctic tern (Sterna paradisaea) liver tissue and brain tissue (mercury only) from Canada's High Arctic, and recorded the presence/absence of gastrointestinal parasites during four different phases of the breeding season. Arctic terns from northern Canada had similar trace element concentrations to other seabird species feeding at the same trophic level in the same region. Concentrations of bismuth, selenium, lead and mercury in Arctic terns were high compared to published threshold values for birds. Selenium and mercury concentrations were also higher in Arctic terns from northern Canada than bird species sampled in other Arctic areas. Selenium, mercury and arsenic concentrations varied across the time periods examined, suggesting potential regional differences in the exposure of biota to these elements. For unknown reasons, selenium concentrations were significantly higher in birds with gastrointestinal parasites as compared to those without parasites, while bismuth concentrations were higher in Arctic terns not infected with gastrointestinal parasites.

  14. THE ROLE OF THERMAL REGIMEN IN TUNDRA PLANT COMMUNITY RESTORATION

    EPA Science Inventory

    Mineral extraction activities in the Arctic regions of the world produce long-lasting ecological disturbances. Assisted recovery from such disturbances may require restoration of the tundra thermal regime. We transplanted plugs of entire root zone and live tundra plants to a dist...

  15. Can Long-Term Precipitation Trends Explain Net Annual Carbon Loss From High Elevation Alpine Tundra?

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Blanken, P.; Williams, M. W.

    2013-12-01

    Five continuous years of eddy covariance measurements over predominantly snow-free alpine tundra on Niwot Ridge, Colorado show that ecosystem respiration dominates over gross primary productivity on an annual basis, and that this ecosystem is a significant source of carbon to the atmosphere over long periods of time. Long-term data also show that precipitation has increased since the 1960s, in contrast to modeled forecasts that generally predict decreasing precipitation through the 21st century across the Rocky Mountain region. To constrain the specific relationship between precipitation and the alpine tundra carbon cycle, we tested the degree to which precipitation and soil moisture determined respiration fluxes over the course of three years, and across a range of 17 sites, including xeric, mesic, and hydric alpine tundra soils, within the footprint of ongoing eddy covariance measurements. Overall, we found that respiration from this ecosystem was principally moisture-limited. Cumulatively, the highest respiration rates were measured from hydric soils associated with seasonal ice lenses and perched water tables, however, growing season respiration rates peaked in mesic areas when hydric soils were saturated. Respiration from xeric soils increased with soil moisture, but fluxes from these areas were small in magnitude relative to mesic and hydric soils. Changes in precipitation and resultant soil moisture thus invoked a bidirectional response from alpine tundra soils, as moisture and respiration were positively correlated in some areas, but negatively correlated in others, depending on landscape position and prevailing soil moisture regime. Interannually, however, respiration fluxes were highest in wet years, indicating that moisture stimulated respiration from xeric and mesic soils more than it was suppressed from hydric soils. In sum, increased precipitation over the last half-century may be augmenting respiratory fluxes from alpine tundra, but changes in

  16. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    NASA Astrophysics Data System (ADS)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  17. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Daniëls, F. J. A.; Alsos, I.; Bhatt, U. S.; Breen, A. L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L. A.; Edwards, M. E.; Ehrich, D.; Epstein, H. E.; Gould, W. A.; Ims, R. A.; Meltofte, H.; Raynolds, M. K.; Sibik, J.; Talbot, S. S.; Webber, P. J.

    2016-05-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.

  18. Deposition of ozone to tundra

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.; Fan, S.-M.; Wofsy, S. C.; Spiro, P. A.; Bakwin, P. S.; Ritter, J. A.; Browell, E. V.; Gregory, G. L.; Fitzjarrald, D. R.; Moore, K. E.

    1992-01-01

    Eddy correlation measurements of O3 deposition fluxes to tundra during the Arctic Boundary Layer Expedition (ABLE 3A) are reported. The mean O3 deposition velocity was 0.24 cm/s in the daytime and 0.12 cm/s at night. The day-to-day difference in deposition velocity was driven by both atmospheric stability and surface reactivity. The mean surface resistance to O3 deposition was 2.6 s/cm in the daytime and 3.4 s/cm at night. The relatively low surface resistance at night is attributed to light-insensitive uptake of O3 at dry upland tundra surfaces. The small day-tonight difference in surface resistance is attributed to additional stomatal uptake by wet meadow tundra plants in the daytime. The mean O3 deposition flux to the world north of 60 deg N in July-August is estimated at 8.2 x 10 exp 10 molecules/sq cm/s. Suppression of photochemical loss by small anthropogenic inputs of nitrogen oxides could have a major effect on O3 concentrations in the summertime Arctic troposphere.

  19. Deposition of ozone to tundra

    SciTech Connect

    Jacob, D.J.; Fan, S.M.; Wofsy, S.C.; Spiro, P.A.; Bakwin, P.S.; Ritter, J.A.; Browell, E.V.; Gregory, G.L.; Fitzjarrald, D.R.; Moore, K.E. NASA, Langley Research Center, Hampton, VA New York State Univ., Albany )

    1992-10-01

    Eddy correlation measurements of O3 deposition fluxes to tundra during the Arctic Boundary Layer Expedition (ABLE 3A) are reported. The mean O[sub 3] deposition velocity was 0.24 cm/s in the daytime and 0.12 cm/s at night. The day-to-day difference in deposition velocity was driven by both atmospheric stability and surface reactivity. The mean surface resistance to O[sub 3] deposition was 2.6 s/cm in the daytime and 3.4 s/cm at night. The relatively low surface resistance at night is attributed to light-insensitive uptake of O[sub 3] at dry upland tundra surfaces. The small day-tonight difference in surface resistance is attributed to additional stomatal uptake by wet meadow tundra plants in the daytime. The mean O[sub 3] deposition flux to the world north of 60 deg N in July-August is estimated at 8.2 x 10 exp 10 molecules/sq cm/s. Suppression of photochemical loss by small anthropogenic inputs of nitrogen oxides could have a major effect on O[sub 3] concentrations in the summertime Arctic troposphere. 34 refs.

  20. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    SciTech Connect

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E. )

    1992-02-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression.

  1. Soil-plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall.

    PubMed

    Schaeffer, Sean M; Sharp, Elizabeth; Schimel, Joshua P; Welker, Jeffery M

    2013-11-01

    Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long-term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant-available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N-availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3 (-) -N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long-term changes in soil N-cycling that would be reflected in soil δ(15) N values. We found that soil δ(15) N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.

  2. Changing Climate Sensitivity in Response to Forest-Tundra Snow Albedo Feedback during the mid to late Pliocene Cooling

    NASA Astrophysics Data System (ADS)

    Paiewonsky, P.

    2015-12-01

    The forest-tundra snow albedo feedback is an important feedback in Earth's climate system, especially due to its potential role in modulating glacial cycles. Until now, little research has been done on how the strength of this feedback might vary with the background climate state. Over the last 4 million years, I hypothesize that the feedback has been generally weaker under warm Northern Hemispheric conditions when tundra has been primarily confined to the high Arctic and forest has extended to most of the Arctic coastline than under cooler Northern Hemispheric conditions in which the forest-tundra boundary has generally lain to the south, extending across the interiors of the large continental land masses. To test the hypothesis of the weakened/strengthened feedback, I used an Earth System Model of Intermediate Complexity that consists of a dynamic terrestrial vegetation model coupled to a climate model. A set of time-slice experiments with different orbital and greenhouse gas concentrations were analyzed. In one set of experiments, the feedback gain with respect to annual average top-of-atmosphere net short wave radiation due to vegetation was 1.42 for modern conditions but only 1.14 for the mid-Pliocene. Additionally, we compared experiments with different shortwave-radiation parameterizations, which differed in the amount of shortwave energy flux reaching the surface (and subsequently affecting vegetative biomass). These techniques allowed us to isolate the mechanisms responsible for the varying strength of the forest-tundra snow albedo feedback. The results also show that many factors affect the strength of feedback. In this presentation I will concentrate on the availability of land for conversion of forest to tundra (and vice versa), cloud cover near the forest-tundra boundary, and the integrated surface insolation contrast between tundra and forest during the snow-covered season.

  3. Quantifying the historic and future distribution of fire in Alaskan tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Young, A. M.; Higuera, P. E.; Duffy, P. A.

    2012-12-01

    During the past 60 years fire has been relatively rare and small in size within tundra ecosystems. However, historical observations and paleoecological evidence indicates that fire regimes vary widely across Alaskan tundra, in both space and time. These lines of evidence suggest that fire occupies a highly specified niche or ecological space in Alaskan tundra, which may change significantly with future climate warming. The objective of this research was to quantify the relationships between fire occurrence and different seasonal climate variables, and to begin to make inferences about future distributions of fire across the tundra landscape. The results of this research will ultimately contribute to the goal of summarizing the linkages that exist among climate, vegetation, and fire in the historical record, and for making predictions concerning fire disturbance in tundra ecosystems throughout the next century. Historic tundra fires occurred non-randomly across space, and a relationship exists between fire occurrence and warm, dry climates. We quantified this relationship with generalized boosting models (GBM) using datasets of downscaled temperature and precipitation (2 km, 1971-2000), and historic records of tundra area burned (1950-2010). The GBM used six seasonal climate variables, focused on growing season temperature and precipitation, to predict the probability of fire occurrence over the 1950-2010 time period. To understand implications of these historic relationships given ongoing climate warming, we constructed future climatologies of temperature and precipitation for the five GCMs which performed best in Alaska under the IPCC AR4 A1B (middle-of-the-road) emissions scenario for the time period 2021-2050. The GBM performed well predicting the observed spatial distribution of tundra area burned, capturing key regions which experienced the most fire activity from 1950-2010. The mean temperature of the warmest month (MeanMaxTemp) was the most influential

  4. Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.

    2015-07-01

    CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October-November contributed about one third of the annual total.

  5. Turbulent transports over tundra

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1992-01-01

    An extensive period of eddy correlation surface flux measurements was conducted at a site distant from the coast on the western Alaskan tundra. The surface exchange of heat and moisture over tundra during the summer was limited by a strong resistance to transfer from the upper soil layer through the ground cover, with canopy resistances to evaporation observed to be approximately 200 s/m. Though July 1988 was anomalously warm and dry in the region and August was close to normal temperature and rainfall, there was no appreciable difference in the canopy resistance between the periods. During the dry sunny period at the end of July, the observed evaporation rate was 2 mm/d. High canopy resistance led to an approximate equipartition of net radiation between latent and sensible heat, each accounting for 40 percent of the available energy, with heat balance apparently going into soil heat flux.

  6. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    USGS Publications Warehouse

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  7. Shrub tundra snowmelt

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Bewley, D. S.; Essery, R. L. H.; Hedstrom, N. R.; Link, T.; Granger, R. J.; Sicart, J. E.; Ellis, C. R.; Janowicz, J. R.

    2006-03-01

    Observations of land surface and snowpack energetics and mass fluxes were made over arctic shrub tundra of varying canopy height and density using radiometers, eddy covariance flux measurements, and snow mass changes from snow surveys of depth and density. Over several years, snow accumulation in the shrubs was found to be consistently higher than in sparse tundra due to greater retention of snowfall by all shrubs and wind redistribution of snowfall to tall shrubs. Where snow accumulation was highest due to snow redistribution, shrubs often became buried by the end of winter. Three classes of shrub-snow interactions were observed: tall shrubs that were exposed over snow, tall shrubs that were bent over and buried by snow, and short shrubs buried by snow. Tall shrubs buried by snow underwent spring-up during melt. Though spring-up was episodic for a single shrub, over an area it was a progressive emergence from early to mid melt of vegetation that dramatically altered the radiative and aerodynamic properties of the surface. Short shrubs were exposed more rapidly once snow depth declined below shrub height, usually near the end of melt. Net radiation increased with increasing shrub due to the decreased reflectance of shortwave radiation overwhelming the increased longwave emission from relatively warm and dark shrubs. Net radiation to snow under shrubs was much smaller than that over shrubs, but was greater than that to snow with minimal shrub exposure, in this case the difference was due to downward longwave radiation from the canopy exceeding the effect of attenuated shortwave transmission through the canopy. Because of reduced turbulent transfer under shrub canopies and minimal water vapour contributions from the bare shrub branches, sublimation fluxes declined with increasing shrub exposure. In contrast, sensible heat fluxes to the shrub surface became more negative and those to the underlying snow surface more positive with increasing shrub exposure, because of

  8. Decoupled connection between soil microbial community and organic geochemical composition: a case study in the Arctic tundra, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Liang, C.; Steffens, M.; Jastrow, J. D.; Zhang, X.; Antonopoulos, D. A.; Kogel-Knabner, I.

    2013-12-01

    Two-way feedback interactions persist between the soil microbiology and the carbon (C) geochemistry through C substrate-uptake preference and microbial utilization/transformation. Therefore, an understanding of how those continuously iterative processes influence soil microbial community and geochemical composition of soil organic matter is essential. However, finding direct correlations between the both has remained a challenge and been little explored. Here we show an unequivocal evidence that the forces structuring the soil microbial community and the organic geochemical composition of tundra soils differ. We determined soil microbial community and soil organic C (SOC) composition by four molecular-level techniques, i.e. DNA pyrosequencing and phospholipids fatty acid (PLFA) biomarkers for microbial analysis and solid-state 13C NMR spectroscopy and neutral sugars for SOC characterization for active-layer and permafrost. By independently summarizing explanatory structures of the relative abundance of microbial groups and soil C forms (using ordination and cluster analysis), we found that microbial community and the SOC chemistry were each consistently characterized by the two distinct measurement approaches. These methods identified distinct pattern differences between soil horizons (permafrost layer versus active organic layer) in both microbial community and the SOC. We used correlations to build the hypothesis about 'decoupled connection between microbiology and SOC geochemistry', particularly of their non-linearity in tundra soils, and then to assess how the C decomposition rate constants (at 4°C) relate to those structural patterns. We demonstrate that the controls on soil microbial community structure are fundamentally different from those on substrate C composition within tundra soils, thus enriching our understanding of C biogeochemical cycling and associated microbial behaviors.

  9. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  10. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  11. Indirect interactions in the High Arctic.

    PubMed

    Roslin, Tomas; Wirta, Helena; Hopkins, Tapani; Hardwick, Bess; Várkonyi, Gergely

    2013-01-01

    Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change. PMID

  12. Indirect Interactions in the High Arctic

    PubMed Central

    Roslin, Tomas; Wirta, Helena; Hopkins, Tapani; Hardwick, Bess; Várkonyi, Gergely

    2013-01-01

    Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change. PMID

  13. Variation in peak growing season net ecosystem production across the Canadian Arctic.

    PubMed

    Lafleur, Peter M; Humphreys, Elyn R; St Louis, Vincent L; Myklebust, May C; Papakyriakou, Tim; Poissant, Laurier; Barker, Joel D; Pilote, Martin; Swystun, Kyle A

    2012-08-01

    Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 μmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 μmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.

  14. Nitrous oxide production and emission in high arctic soils of NW Greenland

    NASA Astrophysics Data System (ADS)

    Stills, A.; Lupascu, M.; Czimczik, C. I.; Sharp, E. D.; Welker, J. M.; Schaeffer, S. M.

    2010-12-01

    Nitrous oxide (N2O) is a potent ozone depleting greenhouse gas with a global warming potential 298 times larger than carbon dioxide (CO2 on a 100-year time scale. Recent studies identified arctic soils undergoing thawing and changes in drainage as potentially large sources of N2O to the atmosphere. More in situ2O production in and emission from arctic soils are needed to understand ecosystem feedbacks to climate change in high arctic tundra, and the role of high latitudes in the global N2O budget. We monitored the concentration of N2O in soils and emissions of N2O to the atmosphere from prostrate shrub tundra in NW Greenland under current and future climate conditions. Measurements were made monthly from June to August 2010 at a long-term climate change experiment started in 2003 consisting of +2oC warming (T1), +4oC warming (T2), +50% summer precipitation (W), +4oC × +50% summer precipitation (T2W), and control (C). In each treatment, N2O was monitored from vegetated and barren soils. In addition, we quantified nitrogen (N) mineralization rates. The concentration of N2O in soils was measured by sampling air from permanent wells ranging from 20 to 90 cm soil depth. N2O emissions were measured every 15 minutes for one hour using opaque, static chambers. Nitrous oxide samples were collected manually with syringes and stored in pre-evacuated glass vials with butyl rubber septa and aluminum crimp. The vials were sealed with silicon, shipped to UC Irvine, and analyzed by GC-ECD (Shimadzu GC-2014). To determine soil N mineralization rates, resin bags were installed under PVC cores from 8 to 10 cm in early spring in all treatments. Bags were removed at peak season. A second set was installed to capture end-of-season mineralization rates. Resin bags were extracted for future analysis of total accumulated ammonium and nitrate. Soil cores concurrently collected with resin bag installation and removal will be analyzed for % C and N, and were extracted for future analysis

  15. High resolution Arctic snow observations: SnowNet (Invited)

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Sturm, M.; Gelvin, A. B.; Berezovskaya, S.; Saari, S. P.; Finnegan, D. C.; Liston, G. E.

    2009-12-01

    Snow’s importance has become especially prominent in the terrestrial Arctic, where snow dominates the landscape most of the year and changes in snow arrival, depth, and melt have substantial energy budget and biotic consequences. Yet, the Arctic presents formidable challenges to accurate snow measurements because snow depths can vary greatly over relatively short distances (< 10 m). Snow distribution patterns in windy environments, such as the Arctic, arise from interactions among wind, snow, vegetation, and topography. In this environment, snow is transported easily and is retained in topographic depressions, near taller vegetation, and deposited on the lee sides of hills. Reliable observations of where snow exists in the Arctic landscape can be difficult to obtain, and estimates vary depending on where snow is sampled. Measurements tend to be widely distributed and sparse. In addition, observed changes in Arctic vegetation (e.g., increasing shrubs) and land surfaces (e.g., thermokarst) complicate matters further. In response to this critical shortcoming in Arctic snow measurements, we have developed a prototype observational network (SnowNet) that employs standard meteorological observations and high resolution topographic and vegetation data in concert with a comprehensive spatially-intensive snow measurement program. Our sites at Barrow (started 2007) and Imnavait Creek (started 2008), Alaska, feature frequent site visits and intensive spatial sampling of snow depths and densities and snow-surface topography. Both sites have high resolution (~20 cm) topographic and vegetation data layers generated from remote sensing and ground surveys. Further, we have been incorporating extremely high-resolution (< 10 cm) ground-based LiDAR snow and vegetation datasets that allow us to identify relationships among topography, vegetation, and snow in Arctic environments. In addition, we have collected tens of thousands of manual snow depths across our research sites. This

  16. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    SciTech Connect

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  17. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet

  18. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000-11)

    NASA Astrophysics Data System (ADS)

    Dutrieux, L. P.; Bartholomeus, H.; Herold, M.; Verbesselt, J.

    2012-12-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000-11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr-1) and warming (+0.27% yr-1) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting factors

  19. Long-term increases in snow pack elevate leaf N and photosynthesis in Salix arctica: responses to a snow fence experiment in the High Arctic of NW Greenland

    NASA Astrophysics Data System (ADS)

    Leffler, A. Joshua; Welker, Jeffery M.

    2013-06-01

    We examine the influence of altered winter precipitation on a High Arctic landscape with continuous permafrost. Gas exchange, leaf tissue element and isotopic composition (N, δ13C, δ15N), and plant water sources derived from stem and soil water δ18O were examined in Salix arctica (arctic willow) following a decade of snow-fence-enhanced snow pack in NW Greenland. Study plots in ambient and +snow conditions were sampled in summer 2012. Plants experiencing enhanced snow conditions for 10 years had higher leaf [N], photosynthetic rate, and more enriched leaf δ15N. Enhanced snow did not influence stomatal conductance or depth of plant water use. We attribute the higher photosynthetic rate in S. arctica exposed to deeper snow pack to altered biogeochemical cycles which yielded higher leaf [N] rather than to enhanced water availability. These data demonstrate the complexity of High Arctic plant responses to changes in winter conditions. Furthermore, our data depict the intricate linkages between winter and summer conditions as they regulate processes such as leaf gas exchange that may control water vapor and CO2 feedbacks between arctic tundra and the surrounding atmosphere.

  20. Identification of unrecognized tundra fire events on the north slope of Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Breen, Amy L.; Gaglioti, Benjamin V.; Mann, Daniel H.; Rocha, Adrian V.; Grosse, Guido; Arp, Christopher D.; Kunz, Michael L.; Walker, Donald A.

    2013-01-01

    Characteristics of the natural fire regime are poorly resolved in the Arctic, even though fire may play an important role cycling carbon stored in tundra vegetation and soils to the atmosphere. In the course of studying vegetation and permafrost-terrain characteristics along a chronosequence of tundra burn sites from AD 1977, 1993, and 2007 on the North Slope of Alaska, we discovered two large, previously unrecognized tundra fires. The Meade River fire burned an estimated 500 km2 and the Ketik River fire burned an estimated 1200 km2. Based on radiocarbon dating of charred twigs, analysis of historic aerial photography, and regional climate proxy data, these fires likely occurred between AD 1880 and 1920. Together, these events double the estimated burn area on the North Slope of Alaska over the last ~100 to 130 years. Assessment of vegetation succession along the century-scale chronosequence of tundra fire disturbances demonstrates for the first time on the North Slope of Alaska that tundra fires can facilitate the invasion of tundra by shrubs. Degradation of ice-rich permafrost was also evident at the fire sites and likely aided in the presumed changes of the tundra vegetation postfire. Other previously unrecognized tundra fire events likely exist in Alaska and other Arctic regions and identification of these sites is important for better understanding disturbance regimes and carbon cycling in Arctic tundra.

  1. Vertical migration in high Arctic waters during autumn 2004

    NASA Astrophysics Data System (ADS)

    Falk-Petersen, Stig; Leu, Eva; Berge, Jørgen; Kwasniewski, Slawomir; Nygård, Henrik; Røstad, Anders; Keskinen, Essi; Thormar, Jonas; von Quillfeldt, Cecilie; Wold, Anette; Gulliksen, Bjørn

    2008-10-01

    The diel vertical migration (DVM) of zooplankton and pelagic fish in the southern Arctic Ocean (82°N) and in Rijpfjorden (Svalbard, Nordaustlandet, 80°N) was investigated in autumn 2004, when there were distinct differences in light conditions between day and night. We collected data on zooplankton and fish distribution using plankton nets, trawls, and an echo sounder together with data on environmental parameters including sea-ice distribution, hydrography, and in situ fluorescence in the water column. In Rijpfjorden, the Arctic phytoplankton bloom had culminated several weeks prior to the present study and all three Calanus species had migrated down to depths for over wintering and did not show any changes in vertical distribution. However, in the Arctic Ocean pack ice at 82°N, Calanus hyperboreus, was found in high abundances (up to 65 ind. m -3) actively feeding on the Arctic bloom in September. They performed a classic DVM, feeding in the upper 50 m during the night and descending to depths below 50 m during the day. In Rijpfjorden, distinct DVM patterns were observed among the amphipod Themisto libellula, adult and juvenile stages of the pteropod Limacina helicina, and polar cod. Polar cod in Rijpfjorden fed on Calanus spp. and on L. helicina. We conclude that animals display DVM in the Arctic during autumn if they need to feed in food-rich surface waters.

  2. Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.

    2004-01-01

    Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.

  3. Potential responses of tundra ecosystems to perturbations from energy development. Part I. Final report

    SciTech Connect

    Oechel, W.C.

    1986-01-01

    This report discusses research conducted to understand the effects of energy development on changes in nutrient status, changes in water flow and water availability, and changes in surface energy balance of the arctic tundra. (ACR)

  4. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.

    PubMed

    Zinger, Lucie; Shahnavaz, Bahar; Baptist, Florence; Geremia, Roberto A; Choler, Philippe

    2009-07-01

    The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively). Bacterial and fungal communities were characterized by using molecular fingerprinting and cloning/sequencing of microbial ribosomal DNA extracted from the soil. Herein, we show that the spatial and temporal distribution of snow strongly correlates with microbial community composition. High seasonal contrast in ESM is associated with marked seasonal shifts for bacterial communities; whereas less contrasted seasons because of long-lasting snowpack in LSM is associated with increased fungal diversity. Finally, our results indicate that, similar to plant communities, microbial communities exhibit important shifts in composition at two extremes of the snow cover gradient. However, winter conditions lead to the convergence of microbial communities independently of snow cover presence. This study provides new insights into the distribution of microbial communities in alpine tundra in relation to snow cover dynamics, and may be helpful in predicting the future of microbial communities and biogeochemical cycles in arctic and alpine tundra in the context of a warmer climate.

  5. Trends of Vegetation Greenness in the Arctic from 1982-2005

    NASA Astrophysics Data System (ADS)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.

    2007-12-01

    The Arctic region has experienced a continuous trend of warming during the past 30 years. Meanwhile, many areas of the Arctic are undergoing large-scale industrial development, e.g. oil and gas exploration, at a rapid pace, indicating an increasing human pressure and land use changes even in this frontier wilderness. Major questions face arctic terrestrial ecologists are what will happen to the tundra ecosystems as the global climate warms and what will happen to the indigenous people way of life as land cover changes proceed? Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation photosynthetic activity along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are NASA Gimms data at 8 km pixel resolution and MODIS land cover data. Fractional vegetation cover was analyzed in order to select homogenously vegetated areas of tundra and autoregression analysis was performed on time series of those homogenous pixels. Only pixels below 70 degree north were included for 2004-2005 due to calibration errors occurred beyond 70 degree north for those years. Linear trends in Arctic tundra vegetation greenness over period 1982-2005 were positive. However, there were different magnitudes between Eurasia and North America. The rate of change was +0.64%/yr over North American Arctic compared to +0.44%/yr over Eurasian Arctic. Vegetation productivities increase from north to south along bioclimatic gradient, therefore, greenness is much higher in areas below 70 degree north compared to entire tundra biome. Higher rates of greening in High Arctic contributed to a stronger positive trend in the longer time series. The rate of greening detected here was higher than that reported in previous studies. This is likely due to two reasons: 1) we restricted our study area in tundra biome only with a phenological tundra-taiga boundary identification approach, therefore

  6. High-Arctic butterflies become smaller with rising temperatures.

    PubMed

    Bowden, Joseph J; Eskildsen, Anne; Hansen, Rikke R; Olsen, Kent; Kurle, Carolyn M; Høye, Toke T

    2015-10-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change. PMID:26445981

  7. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  8. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  9. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  10. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  11. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer

    Peter E. Thornton; Jitendra Kumar; Colleen M. Iversen; Richard T. Mills; Gautam Bisht; Nathan Collier; Vladimir Romanovsky

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  12. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago

    NASA Astrophysics Data System (ADS)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-11-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in Arctic regions dominated by soil freeze/thaw processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a high Arctic tundra area at the west coast of Svalbard based on eddy covariance flux measurements. The annual cumulative CO2 budget is close to 0 g C m-2 yr-1, but displays a strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (snow-free ground), the CO2 exchange occurs mainly as a result of biological activity, with a dominance of strong CO2 assimilation by the ecosystem. (2) The autumn (snow-free ground or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (snow-covered ground), low but persistent CO2 release occurs, overlayed by considerable CO2 exchange events in both directions associated with high wind speed and changes of air masses and atmospheric air pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas) is associated with both meteorological and biological forcing, resulting in a carbon uptake by the high Arctic ecosystem. Data related to this article are archived at http://doi.pangaea.de/10.1594/PANGAEA.809507.

  13. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  14. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    USGS Publications Warehouse

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  15. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    NASA Astrophysics Data System (ADS)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  16. Psychrotolerant Paenibacillus tundrae isolates from barley grains produce new cereulide-like depsipeptides (paenilide and homopaenilide) that are highly toxic to mammalian cells.

    PubMed

    Rasimus, Stiina; Mikkola, Raimo; Andersson, Maria A; Teplova, Vera V; Venediktova, Natalia; Ek-Kommonen, Christine; Salkinoja-Salonen, Mirja

    2012-05-01

    Paenilide is a novel, heat-stable peptide toxin from Paenibacillus tundrae, which colonizes barley. P. tundrae produced 20 to 50 ng of the toxin mg(-1) of cells (wet weight) throughout a range of growth temperatures from +5°C to +28°C. Paenilide consisted of two substances of 1,152 Da and 1,166 Da, with masses and tandem mass spectra identical to those of cereulide and a cereulide homolog, respectively, produced by Bacillus cereus NS-58. The two components of paenilide were separated from those of cereulide by high-performance liquid chromatography (HPLC), showing a structural difference suggesting the replacement of O-Leu (cereulide) by O-Ile (paenilide). The exposure of porcine spermatozoa and kidney tubular epithelial (PK-15) cells to subnanomolar concentrations of paenilide resulted in inhibited motility, the depolarization of mitochondria, excessive glucose consumption, and metabolic acidosis. Paenilide was similar to cereulide in eight different toxicity endpoints with porcine and murine cells. In isolated rat liver mitochondria, nanomolar concentrations of paenilide collapsed respiratory control, zeroed the mitochondrial membrane potential, and induced swelling. The toxic effect of paenilide depended on its high lipophilicity and activity as a high-affinity potassium ion carrier. Similar to cereulide, paenilide formed lipocations, i.e., lipophilic cationic compounds, with K(+) ions already at 4 mM [K(+)], rendering lipid membranes electroconductive. Paenilide-producing P. tundrae was negative in a PCR assay with primers specific for the cesB gene, indicating that paenilide was not a product of plasmid pCER270, encoding the biosynthesis of cereulide in B. cereus. Paenilide represents the first potassium ionophoric compound described for Paenibacillus. The findings in this paper indicate that paenilide from P. tundrae is a potential food-poisoning agent. PMID:22407690

  17. Potential for mercury reduction by microbes in the high arctic.

    PubMed

    Poulain, Alexandre J; Ní Chadhain, Sinéad M; Ariya, Parisa A; Amyot, Marc; Garcia, Edenise; Campbell, Peter G C; Zylstra, Gerben J; Barkay, Tamar

    2007-04-01

    The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions.

  18. Seeing the risks of multiple Arctic amplifying feedbacks.

    NASA Astrophysics Data System (ADS)

    Carter, P.

    2014-12-01

    There are several potentially very large sources of Arctic amplifying feedbacks that have been identified. They present a great risk to the future as they could become self and inter-reinforcing with uncontrollable knock-on, or cascading risks. This has been called a domino effect risk by Carlos Duarte. Because of already committed global warming and the millennial duration of global warming, these are highly policy relevant. These Arctic feedback processes are now all operant with emissions of carbon dioxide methane and nitrous oxide detected. The extent of the risks from these feedback sources are not obvious or easy to understand by policy makers and the public. They are recorded in the IPCC AR5 as potential tipping points, as is the irreversibility of permafrost thaw. Some of them are not accounted for in the IPCC AR5 global warming projections because of quantitative uncertainty. UNEP issued a 2012 report (Policy Implications of Thawing Permafrost) advising that by omitting carbon feedback emissions from permafrost, carbon budget calculations by err on the low side. There is the other unassessed issue of a global warming safety limit for preventing uncontrollable increasing Arctic feedback emissions. Along with our paper, we provide illustrations of the Arctic feedback sources and processes from satellite imagery and flow charts that allows for their qualitative consideration. We rely on the IPCC assessments, the 2012 paper Possible role of wetlands permafrost can methane hydrates in the methane cycle under future climate change; a review, by Fiona M. O'Connor et al., and build on the WWF 2009 Arctic Climate Feedbacks: Global Implications. The potential sources of Arctic feedback processes identified include: Arctic and Far North snow albedo decline, Arctic summer sea ice albedo decline, Greenland summer ice surface melting albedo loss, albedo decline by replacement of Arctic tundra with forest, tundra fires, Boreal forest fires, Boreal forest die

  19. High Arctic Hillslope-Wetland Linkages: Types, Patterns and Importance

    NASA Astrophysics Data System (ADS)

    Young, K. L.; Abnizova, A.

    2012-12-01

    High Arctic wetlands are lush areas in an otherwise barren landscape. They help to store and replenish water and they serve as significant resting and breeding grounds for migratory birds. In addition, they provide rich grazing grounds for arctic fauna such as muskox and caribou. Arctic wetlands can be small, patchy grounds of wet vegetation or they can encompass large zones characterized by lakes, ponds, wet meadows, and, often times, they are inter-mixed with areas of dry ground. While seasonal snowmelt continues to remain the most critical source of water for recharging ponds, lakes, and meadows in these environments, less is known about the role of lateral inputs of water into low-lying wetlands, namely water flowing into these wetland ecosystems from adjacent hillslopes, which often surround them. This paper will review the different modes of hillslope runoff into both patchy and regional-scale wetlands including late-lying snowbeds, snow-filled creeks, and both small and large (>1st order) streams. It will draw upon field results from four arctic islands (Ellesmere, Cornwallis, Somerset and Bathurst Island) and a research period which spans from the mid'90s until present. Our study will evaluate seasonal and inter-seasonal patterns of snowmelt driven discharge (initiation, duration), timing, and magnitude of peak flows, in addition to stream response to rainfall and dry episodes. The impacts of these lateral water sources for a range of wetlands (ponds, wet meadows) will include an analysis of water level fluctuations (frequency, duration), shrinkage/expansion rates, and water quality. Finally, this study will surmise how these types of lateral hillslope inflows might shift in the future and suggest the impact of these changes on the sustainability of High Arctic wetland terrain.

  20. High Arctic Archives of Terrestrial Change in Svalbard Wetlands

    NASA Astrophysics Data System (ADS)

    Beilman, D. W.; Reimer, P. J.; Blaauw, M.; Hormes, A.

    2008-12-01

    High resolution records of change in terrestrial High Arctic environments are often limited by slow accumulation rates and the absence of material or conditions suitable for accurate chronologies. At several wetland sites in the inner fjords of western Svalbard we investigated organic deposits to assess the sensitivity of ecosystem carbon dynamics to past climate variation. These carbon rich wetlands contain by area about 26 to 61 kg C m-2 in deposits as thick as 1.4 m. Our radiocarbon evidence and the published literature show that sequestered carbon in Svalbard wetlands is typically of mid- to late-Holocene age. High resolution AMS radiocarbon measurements on fossil remains of individual plant species reveal a pattern of carbon sequestration that varied from multi-centennial periods of rapid accumulation, as high as about 35 g C m- 2 yr-1, to very slow or hiatus conditions that persisted for hundreds to thousands of years followed by renewed sequestration. Periods of strong carbon accumulation in the mid-Holocene and over the last thousand years capture High Arctic wetland conditions resolvable at the sub-decadal scale. This is the first assessment of High Arctic organic deposits using a high-resolution radiocarbon approach. Together with marine, glacial and lake records, peat archives of terrestrial change contribute to a clearer picture of polar region sensitivity over the last several thousand years.

  1. Future distribution of tundra refugia in northern Alaska

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-01-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  2. Future distribution of tundra refugia in northern Alaska

    NASA Astrophysics Data System (ADS)

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-10-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  3. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  4. Carbon dioxide in Arctic and subarctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  5. Evidence of high-elevation amplification versus Arctic amplification.

    PubMed

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  6. Crossing the final ecological threshold in high Arctic ponds.

    PubMed

    Smol, John P; Douglas, Marianne S V

    2007-07-24

    A characteristic feature of most Arctic regions is the many shallow ponds that dot the landscape. These surface waters are often hotspots of biodiversity and production for microorganisms, plants, and animals in this otherwise extreme terrestrial environment. However, shallow ponds are also especially susceptible to the effects of climatic changes because of their relatively low water volumes and high surface area to depth ratios. Here, we describe our findings that some high Arctic ponds, which paleolimnological data indicate have been permanent water bodies for millennia, are now completely drying during the polar summer. By comparing recent pond water specific conductance values to similar measurements made in the 1980s, we link the disappearance of the ponds to increased evaporation/precipitation ratios, probably associated with climatic warming. The final ecological threshold for these aquatic ecosystems has now been crossed: complete desiccation. PMID:17606917

  7. High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia

    PubMed Central

    Forbes, Bruce C.; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-01-01

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience. PMID:20007776

  8. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia.

    PubMed

    Forbes, Bruce C; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-12-29

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience.

  9. Bioluminescence in the high Arctic during the polar night.

    PubMed

    Berge, J; Båtnes, A S; Johnsen, G; Blackwell, S M; Moline, M A

    2012-01-01

    This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To further understand community dynamics and composition, plankton nets were used to collect organisms passing through the bathyphotometer along with traditional vertical net tows. Additionally, using a moored bathyphotometer closed to the sampling site, the bioluminescence potential itself was shown not to have a diurnal or circadian rhythm. Rather, our results provide evidence for a diel vertical migration of bioluminescent zooplankton that does not correspond to any externally detectable changes in illumination. PMID:24489409

  10. Bioluminescence in the high Arctic during the polar night.

    PubMed

    Berge, J; Båtnes, A S; Johnsen, G; Blackwell, S M; Moline, M A

    2012-01-01

    This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To further understand community dynamics and composition, plankton nets were used to collect organisms passing through the bathyphotometer along with traditional vertical net tows. Additionally, using a moored bathyphotometer closed to the sampling site, the bioluminescence potential itself was shown not to have a diurnal or circadian rhythm. Rather, our results provide evidence for a diel vertical migration of bioluminescent zooplankton that does not correspond to any externally detectable changes in illumination.

  11. Last Decade of Changes in Ground Temperature and Active Layer Thickness in the High Canadian Arctic and in Barrow

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Walker, D. A.; Yoshikawa, K.; Marchenko, S. S.

    2013-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Most of the permafrost observatories in the Northern Hemisphere show substantial warming of permafrost since circa 1980-1990. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C. Permafrost is already thawing within the southern part of the permafrost domain. However, recent observations documented propagation of this process northward into the continuous permafrost zone. The close proximity of the exceptionally icy soil horizons to the ground surface, which is typical for the arctic tundra biome, makes tundra surfaces extremely sensitive to the natural and human-made changes that may resulted in development of processes such as thermokarst, thermal erosion, and retrogressive thaw slumps that strongly affect the stability of ecosystems and infrastructure. In 2003-2005, three Ecological Permafrost Observatories where established in the High Canadian Arctic (Green Cabin on the Banks Island, Mould Bay on the Prince Patrick Island, and Isachsen on the Ellef Ringnes Island) as a part of the University of Alaska Fairbanks NSF funded Biocomplexity Project. These observatories represent the northern part of the North American Arctic Transect (NAAT) established as a result of this project. The climatic and ground temperature data collected at these observatories show a general warming trend similar to what has been observed at the other locations in the North American Arctic. An important result of this resent warming is a significant increase in the active layer thickness (ALT) during the last decade. For example, ALT at the Isachsen observatory increased from 0.4-0.42 m in 2005 to 0.54 m in 2012. The maximum ALT of 0.58 m was recorded in 2008. In a shallow excavation across an ice wedge at the Isachsen site, we estimated that the top of the ice wedge ice was located at 42

  12. Wintertime ecosystem respiration shifts tundra from carbon sink to carbon source at tundra warming experiment

    NASA Astrophysics Data System (ADS)

    Webb, E.; Schuur, E. A.; Natali, S.; Bracho, R.

    2013-12-01

    Northern latitude ecosystems play a significant role in the global carbon (C) budget due to the roughly 1700 Pg of C stored in permafrost soils. As high latitudes warm, previously frozen C is expected to decompose, thereby increasing CO2 fluxes to the atmosphere and potentially creating a positive feedback to climate warming. While warming has been shown to increase plant C uptake during the growing season, these seasonal C gains may be offset on an annual basis by ecosystem respiration (Reco) during the remaining seven months of the year. Here we present research from the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, a tundra ecosystem warming experiment in interior Alaska. We partitioned the non-growing season into three segments: fall (October 1 until first snow), winter (snow-covered period until spring), and spring (snow depth less than 30cm until melt out). During fall, we measured net ecosystem exchange and Reco using a static flux chamber. In winter, we measured Reco using chamber measurements and soda lime. For spring, we modeled fluxes based on known relationships between snow depth and photosynthetic rate of arctic evergreen species. We found that ecosystem warming caused plants to photosynthesize later in fall and increased C uptake during spring but also enhanced respiration during the long winter. We combined these off-season estimates with measurements from growing season auto-chamber data and found that despite the C gained during the growing season, ecosystem warming resulted in net annual C loss for the two years measured. This annual C loss was dependent on the magnitude of wintertime Reco. Our results indicate that snow depth, soil temperature, and day of season are the major determinants of wintertime Reco. Some climate models predict that arctic ecosystems will experience warmer winters with more snow. Thus, despite increased plant productivity during the growing season, we document that increased wintertime temperatures

  13. Mercury Depletion Episode Studies in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Schroeder, W.; Hoenniger, G.; Platt, U.; Lawson, G.

    2001-12-01

    Episodic mercury depletion episodes were first recorded in Alert, Canada in 1995. Since this time, considerable research has been undertaken to further study this phenomenon. It has been found that there is an occurrence of fast photo-chemically induced reactions involving the oxidation of Hg (0) to Hg (II) during the springtime period in the high Arctic. Data from a cold regions pyrolysis unit (CRPU) have confirmed that particle-associated mercury (PM) and reactive gaseous mercury (RGM) are still present in the air during a mercury depletion event when Hg (0) concentration levels are very low. These more reactive species are less volatile and are more readily removed in the air and/or are deposited on the snow surfaces than Hg (0). In the winter and spring of 2000 in Alert, snow samples collected showed an almost 20 fold increase in mercury concentrations during the springtime period from the dark period. Air profiling measurements undertaken during the same time period have shown that Hg (0) is re-emitted from the snow pack surfaces both over land and the frozen Arctic Ocean near Alert. It is thought that free radical BrO is responsible for the destruction of ozone depletion episodes in the Arctic during springtime and increased concentrations from satellites have been measured during these times. Ground level in situ measurements taken over the frozen ocean during depletion events showed an anti-correlation between Hg (0) and BrO concentrations during MDEs. In February 2001, continuous automated RGM and PM measurements were initiated to further study this phenomenon in parallel with the CRPU to measure total atmospheric mercury concentrations in ambient air in the Canadian Arctic during springtime depletion events. A summary of findings from these studies will be presented.

  14. Climate feedbacks at the tundra-taiga interface.

    PubMed

    Harding, Richard; Kuhry, Peter; Christensen, Torben R; Sykes, Martin T; Dankers, Rutger; van der Linden, Sandra

    2002-08-01

    Feedbacks, or internal interactions, play a crucial role in the climate system. Negative feedback will reduce the impact of an external perturbation, a positive feedback will amplify the effect and could lead to an unstable system. Many of the feedbacks found in the climate system are positive; thus, for example, increasing CO2 levels will increase temperature, reduce the snow cover, increase the absorption of radiation and hence increase temperature further. The most obvious feedbacks, such as the snow example quoted above, are already included within our models of the climate and earth system. Others, such as the impact of increasing forest cover due to global warming, are only just being included. Others, such as, the impact of global warming on the northern peatlands and the impact of freshwater flows on the Arctic Ocean are not yet considered. The contrast in surface characteristics between low tundra vegetation to high taiga forest is considerable. The contrast is greatest in the winter, when the tundra is snow covered but the trees of the taiga protrude through the snow pack, and is probably the greatest contrast found on the land surface anywhere. This variation causes massive changes in the energy fluxes at the surface and hence the temperature conditions on the ground and within the atmosphere. There will be large resultant changes in the vegetation development, the carbon fluxes, the permafrost and the hydrology. The Arctic is already experiencing change and it is essential for us to understand the basic processes, and how these interact, to be confident of our predictions of environmental change in the future.

  15. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    NASA Astrophysics Data System (ADS)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    Satellite data from platforms with pointing capabilities (CHRIS/Proba, RapidEye) or from sensors with wide swath (AVHRR, MODIS, MERIS) is influenced by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured spectral surface reflectance depending on the solar illumination geometry and sensor viewing conditions. The Environmental Mapping and Analysis Program (EnMAP), a German hyperspectral mission with expected launch in 2016, will provide high spectral resolution observations with a ground sampling distance of 30 meters. Since the EnMAP sensor has pointing capabilities, both spectral and directional reflection characteristics need to be taken into account for the algorithms development for vegetation parameters. The 'hyperspectral method development for Arctic VEGetation biomes' (hy-Arc-VEG) project is part of the national preparation program for the EnMAP mission. Within the EnMAP projcect hy-Arc-VEG we developed a portable field spectro-goniometer, named ManTIS (Manual Transportable Instrument for Spherical BRDF observations), for the in-situ measurements of anisotropic effects of tundra surfaces (national and international patent pending - DE 102011117713.6). The goniometer was designed for field use in difficult as well as challenging terrain and climate. It is therefore of low weight, without electrical devices and weatherproof. It can be disassembled and packed into small boxes for transport. The current off-nadir viewing capacity is matched to the EnMAP sensor configuration (up to 30°). We carried out spectral field and goniometer measurements on the joint YAMAL 2011 expedition (RU-US-DE) organized by the Earth-Cryosphere Institute (ECI) in August 2011 on the Yamal Peninsula, northwestern Siberia, Russia. The field goniometer measurements (conducted under varying sun zenith angles) as well as field spectro-radiometrical measurements were carried out at the NASA Yamal Land Cover/Land Use Change

  16. [CO2-exchange in tundra ecosystems of Vaygach Island during the unusually warm and dry vegetation season].

    PubMed

    Zamolodchikov, D G

    2015-01-01

    In summer of 2013, field studies of CO2-exchange in tundra ecosystems of Vaygach Island have been conducted using the chamber method. The models are developed that establish relationships between CO2 fluxes and key ecological factors such as temperature, photosynthetic active radiation, leaf mass of vascular plants, and depth of thawing. According to the model estimates, in 2013 vegetation season tundra ecosystems of Vaygach Island have been appearing to be a CO2 source to the atmosphere (31.9 ± 17.1 g C m(-2) season(-1)) with gross primary production equal to 136.6 ± 18.9 g C m(-2) season(-1) and ecosystem respiration of 168.5 ± ± 18.4 g C m(-2) season(-1). Emission of CO2 from the soil surface (soil respiration) has been equal, on the average, to 67.3% of the ecosystem respiration. The reason behind carbon losses by tundra ecosystems seems to be unusually warm and dry weather conditions in 2013 summer. The air temperature during summer months has been twice as high as the climatic norm for 1961-1990. Last decades, researches in the circumpolar Arctic revealed a growing trend to the carbon sink from the atmosphere to tundra ecosystems. This trend can be interrupted by unusually warm weather situations becoming more frequent and of larger scale.

  17. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

    PubMed

    Ueyama, Masahito; Iwata, Hiroki; Harazono, Yoshinobu; Euskirchen, Eugénie S; Oechel, Walter C; Zona, Donatella

    2013-12-01

    To better understand the spatial and temporal dynamics of CO2 exchange between Arctic ecosystems and the atmosphere, we synthesized CO2 flux data, measured in eight Arctic tundra and five boreal ecosystems across Alaska (USA) and identified growing season and spatial variations of the fluxes and environmental controlling factors. For the period examined, all of the boreal and seven of the eight Arctic tundra ecosystems acted as CO2 sinks during the growing season. Seasonal patterns of the CO2 fluxes were mostly determined by air temperature, except ecosystem respiration (RE) of tundra. For the tundra ecosystems, the spatial variation of gross primary productivity (GPP) and net CO2 sink strength were explained by growing season length, whereas RE increased with growing degree days. For boreal ecosystems, the spatial variation of net CO2 sink strength was mostly determined by recovery of GPP from fire disturbance. Satellite-derived leaf area index (LAI) was a better index to explain the spatial variations of GPP and NEE of the ecosystems in Alaska than were the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Multiple regression models using growing degree days, growing season length, and satellite-derived LAI explained much of the spatial variation in GPP and net CO2 exchange among the tundra and boreal ecosystems. The high sensitivity of the sink strength to growing season length indicated that the tundra ecosystem could increase CO2 sink strength under expected future warming, whereas ecosystem compositions associated with fire disturbance could play a major role in carbon release from boreal ecosystems.

  18. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    SciTech Connect

    Grebmeier, J.M.; Cooper, L.W. |; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-06-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68{degree}37` N, 149{degree}17` W). Inventories of {sup 137}Cs (102--162 mBq/cm{sup 2}) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of {sup 137}Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70{degree}13` N, 148{degree}30` W). Atmospheric deposition of {sup 137}Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of {sup 137}Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68{degree}38` N, 149{degree}38` W) showed widely varying {sup 137}Cs inventories, from a low of 22 mBq/cm{sup 2} away from the lake inlet, to a high between 140 to >200 mBq/cm{sup 2} near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed.

  19. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges

    NASA Astrophysics Data System (ADS)

    Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mârd, J.; Mernild, S. H.; Prowse, T.; Semenova, O.; Stuefer, S. L.; Woo, M.-K.

    2016-03-01

    Terrestrial hydrology is central to the Arctic system and its freshwater circulation. Water transport and water constituents vary, however, across a very diverse geography. In this paper, which is a component of the Arctic Freshwater Synthesis, we review the central freshwater processes in the terrestrial Arctic drainage and how they function and change across seven hydrophysiographical regions (Arctic tundra, boreal plains, shield, mountains, grasslands, glaciers/ice caps, and wetlands). We also highlight links between terrestrial hydrology and other components of the Arctic freshwater system. In terms of key processes, snow cover extent and duration is generally decreasing on a pan-Arctic scale, but snow depth is likely to increase in the Arctic tundra. Evapotranspiration will likely increase overall, but as it is coupled to shifts in landscape characteristics, regional changes are uncertain and may vary over time. Streamflow will generally increase with increasing precipitation, but high and low flows may decrease in some regions. Continued permafrost thaw will trigger hydrological change in multiple ways, particularly through increasing connectivity between groundwater and surface water and changing water storage in lakes and soils, which will influence exchange of moisture with the atmosphere. Other effects of hydrological change include increased risks to infrastructure and water resource planning, ecosystem shifts, and growing flows of water, nutrients, sediment, and carbon to the ocean. Coordinated efforts in monitoring, modeling, and processing studies at various scales are required to improve the understanding of change, in particular at the interfaces between hydrology, atmosphere, ecology, resources, and oceans.

  20. Satellite based permafrost modeling in low land tundra landscapes

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Heikenfeld, M.; Boike, J.

    2012-12-01

    For most of the cryosphere components such as glaciers, ice sheets, sea ice, and snow satellite monitoring and change detection is well established since several decades. For permafrost, however, which represents the largest component of the Arctic cryosphere operational satellite monitoring schemes do not exist so far. Most of the processes which control the Arctic terrestrial ecosystems are related to the thermal state of permafrost and the freeze/thaw dynamics of the active layer. Hence, satellite based permafrost monitoring would be highly beneficial for the impact assessment of climate change in the Arctic. Permafrost monitoring could also be highly beneficial for the risk assessment of infrastructure in the Arctic such as roads, pipelines, and buildings which are directly affected by the thermal stability of permafrost. Increasing thaw depths and prolonged thaw periods can damage pipelines and interrupt the access to vast regions due to road damages. Sustained warming of permafrost can result in thermal erosion and landslides which threaten buildings and other infrastructural facilities. In this study we present a possible permafrost monitoring scheme based on a numerical heat flow model which is forced by multiple satellite products and initialized by weather reanalysis data. The used forcing and initialization dataset includes the land surface temperature (LST), the snow cover fraction (SCF), and the snow water equivalent (SWE). Previous studies demonstrated that MODIS LST products can deliver reasonable surface temperature measurements in tundra landscapes (Langer et al. 2010, Westermann et al. 2011). This study is based on the ten year record of the daily MOD11A1v5 and MYD11A1v5 land surface temperature products with a spatial resolution of 1km. The snow cover evolution is obtained from the daily GlobSnow SWE product with a spatial resolution of about 25km. In addition, the MODIS snow cover products MOD10A1v5 and MYD10v5 with a resolution of 1km are used

  1. A Pan-Arctic Assessment of High-Latitude Lake Change ~25 Years Apart

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E. A.; Wang, J.

    2011-12-01

    The Arctic and Sub-Arctic regions are the home to the world's largest quantity of terrestrial lakes. These lakes play a preeminent role in the global water cycle and balance, are sensitive to global warming, and are vital for human and animal water supply. However, they are poorly observed, and a uniform lake inventory is unavailable at the pan-Arctic scale. Though there have been studies of Arctic lake dynamics at local scales, the general picture of Arctic lake change stays unclear. A systematic regional-scale assessment of Arctic lake change in the past ~30 years is crucial for us to address "How have Arctic lakes responded to global warming?" The presentation reports a systematic effort of high-latitude (45N and north) lake inventory using recently available high-resolution satellite imagery. Since Arctic lakes are abundant in small-size classes and their seasonality varies from region to region, pan-Arctic lake mapping requires the use of thousands of cloud-free Landsat images acquired in lake-stable seasons. Nearly eight million lakes have been mapped in various landscapes of the pan-Arctic using automated lake identification algorithms with high replicability. Lake-abundant regions are selected using a systematic sampling strategy to detect decadal lake change using the mid-1970s and circa-2000 Landsat imagery. Spatial patterns of the observed lake dynamics are analyzed at regional scales and the relationship between lake abundance and size distribution is investigated.

  2. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  3. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  4. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    DOE PAGES

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-27

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world fieldmore » sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field

  5. Paleoclimate records at high latitude in Arctic during the Paleogene

    NASA Astrophysics Data System (ADS)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay

  6. How to preserve the tundra in a warming climate?

    NASA Astrophysics Data System (ADS)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  7. An active atmospheric methane sink in high Arctic mineral cryosols.

    PubMed

    Lau, M C Y; Stackhouse, B T; Layton, A C; Chauhan, A; Vishnivetskaya, T A; Chourey, K; Ronholm, J; Mykytczuk, N C S; Bennett, P C; Lamarche-Gagnon, G; Burton, N; Pollard, W H; Omelon, C R; Medvigy, D M; Hettich, R L; Pfiffner, S M; Whyte, L G; Onstott, T C

    2015-08-01

    Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming. PMID:25871932

  8. Bacterial succession in a glacier foreland of the High Arctic

    PubMed Central

    Schütte, Ursel M.E.; Abdo, Zaid; Bent, Stephen J.; Williams, Christopher J.; Schneider, G. Maria; Solheim, Bjørn; Forney, Larry J.

    2009-01-01

    Succession is defined as changes in biological communities over time. It has been extensively studied in plant communities, but little is known about bacterial succession, in particular in environments such as High Arctic glacier forelands. Bacteria carry out key processes in the development of soil, biogeochemical cycling, and facilitating plant colonization. In this study we sampled two roughly parallel chronosequences in the foreland of Midre Lovén glacier on Svalbard, Norway and tested whether any of several factors were associated with changes in the structure of bacterial communities, including time after glacier retreat, horizontal variation caused by the distance between chronosequences, and vertical variation at two soil depths. The structures of soil bacterial communities at different locations were compared using terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes, and the data were analyzed by sequential analysis of log-linear statistical models. While no significant differences in community structure were detected between the two chronosequences, statistically significant differences between sampling locations in the surface and mineral soils could be demonstrated even though glacier forelands are patchy and dynamic environments. These findings suggest bacterial succession occurs in High Arctic glacier forelands but may differ in different soil depths. PMID:19587774

  9. An active atmospheric methane sink in high Arctic mineral cryosols.

    PubMed

    Lau, M C Y; Stackhouse, B T; Layton, A C; Chauhan, A; Vishnivetskaya, T A; Chourey, K; Ronholm, J; Mykytczuk, N C S; Bennett, P C; Lamarche-Gagnon, G; Burton, N; Pollard, W H; Omelon, C R; Medvigy, D M; Hettich, R L; Pfiffner, S M; Whyte, L G; Onstott, T C

    2015-08-01

    Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming.

  10. Mapping Snowfields in the High Arctic by UAV

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Leya, Thomas; Fuhr, Günter

    2014-05-01

    Plant habitats are often influenced by small scale factors of substrate composition, topography and water sources that influence the availability of water and nutrients. In our lomg-term study to investigate the the distribution and dispersal strategies as well as the life cycle of psychrophilic algae (snow algae) it was necessary to get a better understanding of the structure of the snowfields where these algae live. Previous attempts to map snowfields using tethered platforms, such as kites or balloons, had proven to be difficult due to the very unstable weather conditions in the extreme environment of the High Arctic. The inherent problems of tethered platforms could be overcome with unmanned aerial vehicles (UAV). During the August 2013 field campaign on the Svalbard archipelago we used an Asctec Falcon 8 UAV to map snowfields and glacier surfaces in the visible and thermal infra-red spectrum. The georeferenced images were assembled into photo mosaic maps which were also converted into digital elevation models. The photo mosaic maps and digital elevation models gave new insights into small-scale factors that influence the physical and chemical conditions of the snow algae habitat. This presentation gives an overview of our results from the use of UAV for the mapping of snowfields in the High Arctic and discusses the risks and limitations of UAV in this extreme environment.

  11. An active atmospheric methane sink in high Arctic mineral cryosols

    PubMed Central

    Lau, M C Y; Stackhouse, B T; Layton, A C; Chauhan, A; Vishnivetskaya, T A; Chourey, K; Ronholm, J; Mykytczuk, N C S; Bennett, P C; Lamarche-Gagnon, G; Burton, N; Pollard, W H; Omelon, C R; Medvigy, D M; Hettich, R L; Pfiffner, S M; Whyte, L G; Onstott, T C

    2015-01-01

    Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5–30 as the Arctic warms by 5–15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming. PMID:25871932

  12. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    NASA Astrophysics Data System (ADS)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  13. Using Discriminant Analysis to Examine Spectral Differences Among Four Tundra Vegetation Communities at Ivotuk, Alaska

    NASA Astrophysics Data System (ADS)

    Bratsch, S.; Epstein, H. E.

    2014-12-01

    Warming in the Arctic has resulted in changes in the distribution and composition of tundra vegetation in addition to a lengthening of the growing season. Past studies have mapped tundra vegetation at relatively coarse spatial scales; however, vegetation changes in the Arctic are occurring at spatial scales within a few meters. This research uses hyperspectral remote sensing data to differentiate among four vegetation communities at Ivotuk, Alaska (68.49°N, 155.74°W). Ivotuk is located on the North Slope, and is dominated by four plant communities including moist acidic tundra (MAT), moist nonacidic tundra (MNT), mossy tussock tundra (MT), and shrub tundra (ST). Hand-held hyperspectral data were collected during the 1999 growing season (5 June-27 August) at biweekly intervals using narrow, ~1.42 nm wavebands. Only wavebands within 400-1060 nm were used in analysis. Two sets of comparisons were conducted using stepwise discriminant analysis: 1) MNT and ST, and 2) all four tundra plant communities. MNT and ST classification accuracy ranged from 91.3-100%, with 100% classification and cross-validated accuracy occurring on 27 July. Classification accuracy for the overall growing season was 97.9% for MNT and 98.1% for ST. The stepwise function indicated 18 significant bands including 8 near infrared (NIR) and 4 blue bands. MAT, MNT, MT, and ST classification accuracy ranged from 58-100%, with greatest classification accuracy (100%) also occurring during peak growing season on 27 July. Overall classification accuracy for the growing season was 97.6% for MNT, 92% for MT, 84% for ST, and 70.8% for MAT. There were 14 significant bands including 6 NIR and 3 blue bands. The results presented here demonstrate that discriminant analysis can be useful in distinguishing among the dominant tundra vegetation communities in the Arctic, and can potentially help us to better understand and monitor arctic vegetation and ecosystem responses to environmental changes.

  14. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    PubMed

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  15. Microbial Communities in a High Arctic Polar Desert Landscape

    PubMed Central

    McCann, Clare M.; Wade, Matthew J.; Gray, Neil D.; Roberts, Jennifer A.; Hubert, Casey R. J.; Graham, David W.

    2016-01-01

    The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices. PMID:27065980

  16. High levels of molecular chlorine in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, Jin; Huey, L. Gregory; Liu, Zhen; Tanner, David J.; Cantrell, Chris A.; Orlando, John J.; Flocke, Frank M.; Shepson, Paul B.; Weinheimer, Andrew J.; Hall, Samuel R.; Ullmann, Kirk; Beine, Harry J.; Wang, Yuhang; Ingall, Ellery D.; Stephens, Chelsea R.; Hornbrook, Rebecca S.; Apel, Eric C.; Riemer, Daniel; Fried, Alan; Mauldin, Roy L.; Smith, James N.; Staebler, Ralf M.; Neuman, J. Andrew; Nowak, John B.

    2014-02-01

    Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

  17. Partitioning of organic carbon in European Russian tundra and taiga ecosystems

    NASA Astrophysics Data System (ADS)

    Oosterwoud, M. R.; Temminghoff, E. J. M.; van der Zee, S. E. A. T. M.

    2009-04-01

    Sorption of dissolved organic carbon (DOC) on mineral phases is an important process for carbon preservation and element cycling in soils. Sorption of DOC to active minerals results in its fractionation because hydrophobic compounds (humic and fulvic acids) will be preferentially sorbed. Binding of cations (Ca2+, Mg2+, Al3+, Fe3+) by the DOC reduces the negative charge and thus its water solubility. At low pH and high cation concentrations, cations may cause coagulation of DOC. The sorption and/or coagulation are important factors in relation to DOC transport. Little is known about DOC partitioning between the soil solid and solution phases of arctic ecosystems. As a consequence of future warming arctic ecosystem will shift from surface water dominated to groundwater dominated systems. In general, permafrost affected soils with shallow active layers, having lateral flow towards the stream with only short contact time to mineral layers, lead to higher hydrophobic (humic and fulvic acid) DOC concentrations in streams compared to permafrost free soils where a larger share of hydrophilic DOC is expected to be discharged into streams. Changes in the delivery of DOC, nutrients and major ions to arctic rivers may have important consequences for primary production and carbon cycling. The partitioning of DOC is a fundamental process needed for modelling current and future stream water quality and solute transport. Therefore, the objective of this study is to determine the sorption and consequent fractionation of DOC in arctic ecosystems. During fieldwork carried out in the summer of 2007 and 2008 in the Russian Komi Republic, we collected soil, soil solution and surface water samples in both a forested taiga and a permafrost affected tundra catchment. The liquid samples were analysed for total organic carbon and inorganic cations. A rapid batch procedure was used for determining the humic-, fulvic- and hydrophilic acid fractions. Using the chemical speciation model

  18. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over

  19. The Effect of Temperature and Increased Rainfall on Carbon Dioxide Exchange in a High Arctic Ecosystem: Improving Models and Testing Linearity of Response

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Welker, J.; Sullivan, P.

    2006-12-01

    Ecosystem carbon dioxide exchange determines the terrestrial flux of carbon dioxide to the atmosphere through the two component processes of photosynthesis and respiration. Temperature and water availability are dominant factors that regulate carbon dioxide exchange and ecosystem productivity across the globe. Yet, in many ecosystems, the complex interaction of temperature and water availability and their individual and combined effects on photosynthesis and respiration make it difficult to predict how climate change will affect carbon dioxide exchange. For example, climate warming can increase carbon dioxide uptake in wetter Arctic ecosystems, but leads to the loss of carbon dioxide to the atmosphere in drier Arctic ecosystems. Characterizing how temperature and water availability affect ecosystem carbon exchange in the Arctic is essential to determine whether the rate of climate warming could accelerate due to carbon dioxide losses from Arctic ecosystems. We conducted a multi-level warming experiment that included control plots and two- levels of warming in a widespread High Arctic ecosystem. Infrared lamps were used to warm the tundra during the growing season and rainfall was increased by 50 percent in control plots and the higher level warming treatment. Carbon dioxide exchange was measured using chamber techniques over several 24-hour periods during the growing season for three years and was resolved into the component fluxes. Climate and biophysical variables that affect carbon dioxide exchange rates were measured in coordination with these flux measurements. We chose to analyze the data from this experiment by fitting the data to light and temperature response functions for gross ecosystem photosynthesis and ecosystem respiration, respectively. Based on our sample size of 30 experimental plots (5 treatments x 6 replicates), we selected relatively simple models of carbon dioxide exchange to minimize overfitting, but considered linear and nonlinear models

  20. High Arctic wetlands: Their occurrence, hydrological characteristics and sustainability

    NASA Astrophysics Data System (ADS)

    Woo, Ming-ko; Young, Kathy L.

    2006-04-01

    High Arctic wetlands, though limited in occurrence, are an important ecological niche, providing the major vegetated areas in an arid and cold polar desert environment. These wetlands are often found as patches in the barren landscape. At a few locales which may be ice-wedge polygonal grounds, glacial terrain and zones of recent coastal uplift, wetland occurrence can become extensive, forming a mosaic that comprises patches of different wetland types. Reliable water supply during the thawed season is a deciding factor in wetland sustainability. The sources include meltwater from late-lying snowbanks, localized ground water discharge, streamflow, inundation by lakes and the sea, and for some ice-wedge wetlands, ground-ice melt. Different types of wetlands have their own characteristics, and peat accumulation or diatom depositions are common. The peat cover insulates the wetland from summer heating and encourages permafrost aggradation, with the feedback that a shallow frost table reduces the moisture storage capacity in a thinly thawed layer, which becomes easily saturated. All the wetlands studied have high calcium content since they are formed on carbonate terrain. Coastal wetlands have high salt concentration while snowmelt and ground-ice melt provides dilution. The sustainability of High Arctic wetlands is predicated upon water supply exceeding the losses to evaporation and lateral drainage. Disturbances due to natural causes such as climatic variations, geomorphic changes, or human-induced drainage, can reduce inundation opportunities or increase outflow. Then, the water table drops, the vegetation changes and the peat degrades, leading to the detriment of the wetlands.

  1. High Arctic Paraglacial Coastal Evolution in Northern Billefjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Strzelecki, Matt; Long, Antony; Lloyd, Jerry

    2013-04-01

    Most sediment budget studies in paraglacial, High Arctic, environments have focussed attention on quantifying sediment fluxes in glacial and fluvial catchments. In contrast, little attention has been paid to the functioning of the paraglacial coastal zone with existing models of coastal change based on relict systems developed in mid latitude settings. The pristine coasts of Spitsbergen provided a superb opportunity to quantify how High Arctic coasts are respondingto rapid climate warming and associated paraglacial landscape transformation. In this paper we reconstruct the development of the paraglacial coasts in Petuniabukta and Adolfbukta, the northernmost bays of Billefjorden, central Spitsbergen. The study area is characterized by a sheltered location, a semi-arid, sub-polar climate, limited wave fetch and tidal range, and rapid retreat of all surrounding glaciers. Using a combination of geomorphological, sedimentological, remote sensing and dating methods, we study the processes controlling the coastal zone development over annual, century and millennial timescales. Interannual changes observed between 2008-2010 show that gravel barriers in the study area are resilient to the impacts of local storms and the operation of sea-ice processes. In general, the processes controlling the short-term barrier development often operate in the opposite direction to the landforming patterns visible in the longer-term evolution. Over multi-decadal timescales, since the end of the Little Ice Age. we observe drammatic changes in sediment flux and coastal response under an interval characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. A new approach of dating juvenile mollusc found in uplifted marine barriers led to the better understating of the Late Holocene evolution of a Petuniabukta coastal zone and its reaction to deglaciation, glacioisostatic uplift and sea-level fluctuations. We propose a new

  2. A Pliocene chronostratigraphy for the Canadian western and high Arctic

    NASA Astrophysics Data System (ADS)

    Gosse, John; Braschi, Lea; Rybczynski, Natalia; Lakeman, Thomas; Zimmerman, Susan; Finkel, Robert; Barendregt, Rene; Matthews, John

    2014-05-01

    The Beaufort Formation comprises an extensive (1200 km long, more than 1 km thick) clastic wedge that formed during the Pliocene along the western Canadian Arctic Archipelago (CAA). In the western Arctic, the Ballast Brook (BB) site on Banks Is. exposes more than 20 km of section through the sandy and pebble sandy braided stream deposits with detrital organic beds. Farther north, Beaufort Fm fluvial and estuarine facies have been examined on Meighen Is. In the high Arctic, high terrace gravels (450 m high surface) at the Fyles Leaf Bed (FLB) and Beaver Pond (BP) sites on Ellesmere Is. are not considered part of the Beaufort Fm but have similar paleoenvironmental records. Fossil plant and faunal material from these sediments is often very well preserved and provides evidence of a boreal-type forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The paleoenvironmental records from the Beaufort Fm in the western CAA sites have revealed a similar ecosystem with noteworthy differences in MAT and perhaps seasonality. New burial ages from Meighen Is. indicate a maximum age of 6.1 Ma, consistent with yet much older than previous age estimates, but supportive of paleomagnetic and biostratigraphy at the same location. The age differences may account for some of the interpreted variations in paleoenvironments, in addition to spatial differences in

  3. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.

    PubMed

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene

    2015-04-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  4. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.

    PubMed

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene

    2015-04-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  5. Summer C Fixation of Salix arctic is Altered by Prior Winter Snow Regimes: Photosynthetic Responses to Long-Term Snow Increases in the High Arctic of NW Greenland

    NASA Astrophysics Data System (ADS)

    Leffler, A.; Welker, J. M.; Sullivan, P. F.; Maseyk, K. S.

    2012-12-01

    Climate models and snow measurements on Greenland show increased precipitation in addition to warming in the High Arctic. Because polar semi-deserts may be water limited, additional snow and snow melt water, may alleviate mid-summer drought and promote additional carbon fixation. We investigated the long-term (10 years of experimental snow increases) consequences of additional winter snow as it effects subsequent summer gas exchange of Salix arctica in a polar semi-desert tundra ecosystem in NW Greenland (76.6N, 68.6W). In 2011, measurements of gas exchange physiology were conducted along a transect from high to ambient snow accumulation in mid-July. In 2012, gas exchange was measured in high and ambient snow zones between late June and early August. In 2012, the seasonal patterns of δ18O of xylem water and soil water between 5 and 20 cm below the soil surface was measured to determine if snow accumulation influences the water sources and depth of water used by S. arctica. In 2011, photosynthesis in the deep snow zones was lower than in the ambient snow zone; similar results were observed for leaf N content. Carbon isotope composition (δ13C) of S. arctica leaves did not differ between deep and ambient snow zones suggesting a similar season-long relationship between photosynthesis and stomatal conductance in both locations. In 2012, there was a trend towards higher photosynthesis at the height of the growing season in the deep snow zones. Light response curves in 2012 suggest higher maximum photosynthesis in the deep snow zones compared to the ambient zones. Regardless of prior winter snow accumulation, S. arctica appears to derive nearly all its xylem water from the top 5 cm of the soil. There is little evidence that differences in photosynthetic physiology result directly from increased soil moisture associated with high snow, rather the effect appears more complex. Much of the increased snow accumulation will run-off of these systems when the soils are still

  6. The 1977 tundra fire at Kokolik River, Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D.; Brown, J.; Johnson, L.

    1981-01-01

    During the summer of 1977, fire totaled 44 sq km of tundra vegetation according to measurements using LANDSAT imagery. Based on the experience gained from analysis of this fire using ground observations, satellite imagery, and topographic maps, it appears that natural drainages form effective fire breaks on the subdued relief of the Arctic coastal plain and northern foothills. It is confirmed that the intensity of the fire is related to vegetation type and to the moisture content of the organic rich soils.

  7. Effects of shrub expansion on the hydrology of the western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Marsh, P.; Endrizzi, S.; Lantz, T. C.; Marsh, C.; Pomeroy, J. W.

    2011-12-01

    The expansion of tall (or upright) shrubs into tundra areas of the North American arctic has been documented in a few areas, and it has been suggested that this is occurring over a broad area of the arctic and will have an important impact on snow accumulation, surface energy balance, and runoff of these areas. However, there are still considerable unknowns about the details of these effects and our ability to predict future changes in hydrology. In order to help answer these questions, a detailed measurement program has been carried out at the Trail Valley Creek (TVC) research basin located approximately 50 km NE of Inuvik, NWT, Canada. This area is characterized by rolling upland tundra underlain by continuous permafrost, with a mix of tundra, shrub tundra, and forest patches. Field observations aimed at developing an improved understanding of the effect of a transition from tundra to shrub tundra has been carried out over the last 4 years. Observations at both shrub and tundra sites in the TVC basin include: meteorological observations at 3 stations; extensive end of winter snow surveys; eddy covariance observations; changes in LAI at a shrub site during the melt period; aerial photos and satellite images at frequent intervals over the melt season; winter observations of snow depth and soil temperature; aerial photo observations of changes in shrub cover; and high resolution LIDAR based measurements of elevation and vegetation height. In combination with these observations, the GEOtop hydrologic model was used to consider the interacting processes controlling snow accumulation and melt at shrub and tundra sites. Preliminary analysis demonstrates that the shrub cover has increased in the study basin over the last 32 years. At a shrub site, the shrubs were bent over and buried by snow during the winter, with increased snow depth at the shrub site compared to a tundra site. As a result, the soil temperature was higher at the shrub site both during the winter, and

  8. The Pliocene High Arctic terrestrial palaeoenvironmental record and the development of the western Canadian Arctic coastal plain

    NASA Astrophysics Data System (ADS)

    Rybczynski, N.; Braschi, L.; Gosse, J. C.; Kennedy, C.; Fraser, D.; Lakeman, T.

    2013-12-01

    The Pliocene fossil record of the High Arctic is represented by a collection of sites that occur across the Canadian Arctic Archipelago (CAA), with deposits in the west comprising a 1200 km-long dissected clastic wedge (Beaufort Formation) and those in the east represented by high terrace gravel deposits. Fossil material from these sites is often very well preserved and provides evidence of a boreal-type forest. In the eastern Arctic our research sites includes the Fyles Leaf Bed (FLB) and the Beaver Pond (BP) sites, on west central Ellesmere Island. These are about 10 km apart and preserve evidence of forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Although modern camels live in open habitats, biogeographic and comparative dental evidence, in combination, suggest that the North American Arctic camels were browsers, and therefore forest-dwelling. Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The Beaufort Formation, located in the Western CAA, was formed by a regional northwesterly flowing braided fluvial system. The Beaufort Formation appears to have filled at least the western portions of the 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Formation, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse

  9. Vegetation greening in the Canadian Arctic related to decadal warming.

    PubMed

    Jia, Gensuo J; Epstein, Howard E; Walker, Donald A

    2009-12-01

    This study is presented within the context that climate warming and sea-ice decline has been occurring throughout much of the Arctic over the past several decades, and that terrestrial ecosystems at high latitudes are sensitive to the resultant alterations in surface temperatures. Results are from analyzing interannual satellite records of vegetation greenness across a bioclimate gradient of the Canadian Arctic over the period of 1982-2006. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation greenness along spatial gradients of summer temperature and vegetation. Linear autoregression temporal analysis of vegetation greenness was performed with relatively "pure" vegetation pixels of Advanced Very High Resolution Radiometer (AVHRR) data, spanning Low Arctic, High Arctic and polar desert ecosystems. Vegetation greenness generally increased over tundra ecosystems in the past two decades. Peak annual greenness increased 0.49-0.79%/yr over the High Arctic where prostrate dwarf shrubs, forbs, mosses and lichens dominate and 0.46-0.67%/yr over the Low Arctic where erect dwarf shrubs and graminoids dominate. However, magnitudes of vegetation greenness differ with length of time series and periods considered, indicating a nonlinear response of terrestrial ecosystems to climate change. The decadal increases of greenness reflect increasing vegetation production during the peak of the growing season, and were likely driven by the recent warming.

  10. Response of Rates and Sources of Ecosystem CO2 Efflux to Increasing Levels of Winter Snow Depth in the High Arctic of Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Thomas, J. S.; Lupascu, M.; Xu, X.; Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    Arctic soils contain vast amounts of organic carbon (C) that range in age from modern to ancient. These soil C pools may be especially vulnerable to changes in conditions; especially increases in winter snowfall, as deeper snow will insulate soils in winter, and add moisture in summer. While, snowfall is increasing in many parts of the Arctic, how increases in winter precipitation affect C cycling in the High Arctic is largely unknown. In this project, we used a long-term snowpack manipulation to develop a better understanding of current and future soil C cycling under conditions of deep winter snow pack and the associated feedbacks to future atmospheric CO2 levels. We examined the effects of three levels of winter snowpack (ambient (0.25 m), ×2, ×4) on the timing, magnitude and sources of ecosystem CO2 efflux and soil microclimate in prostrate dwarf-shrub tundra on patterned ground in the High Arctic of NW Greenland. From June to August 2010 and 2011 we monitored ecosystem CO2 efflux and soil CO2 concentrations (LI-COR 800 & 840) together with soil temperature and moisture daily and the radiocarbon (14C) content of CO2 monthly. The 14C content of CO2 can be used to infer the dominant source of CO2 (plant vs. microbially-respired) as well as the age of microbially-respired CO2. Initial results indicate that during the 2010 sampling period (Jun 28 - Aug 16), daily CO2 emissions from vegetated areas were higher under ×4 ambient snowpack relative to ambient snowpack (84.9 vs. 53.1 mmol m-2 d-1), but lower under ×2 ambient snowpack (56.7 mmol m-2 d-1). CO2 emissions from bare areas increased with snowpack depth from ambient (8.6 mmol m-2 d-1) to ×2 ambient snowpack (16.5 mmol m-2 d-1) to x4 ambient snowpack (18.9 mmol m-2 d-1). Midsummer ecosystem CO2 emissions were dominated by modern C; additional 14C measurements are in progress. Our findings indicate that increases in snowpack may stimulate C loss from this high arctic ecosystem - probably facilitated by

  11. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    USGS Publications Warehouse

    Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

  12. Microbial cell retention in a melting High Arctic snowpack, Svalbard

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland

    2014-05-01

    Introduction The melting snow pack represents a highly dynamic system not only for chemical compounds but also for bacterial cells. Microbial activity was found at subzero temperatures in ice veins when liquid water persists due to high concentration of ions on the surface of snow crystals and brine channels between large ice crystals in ice. Several observations also suggest microbial activity under subzero temperatures in seasonal snow. Even with regard to the spatial and temporal relevance of snow ecosystems, microbial activity in such an extreme habitat represents a relatively small proportion in the carbon flux of the global ecosystem and even of the glacial ecosystems specifically. On the other hand, it represents a remarkable piece of mosaic of the microbial activity in glacial ecosystems because the snow pack represents the first contact between the atmosphere and cryosphere. This topic also embodies vital crossovers to biogeochemistry and ecotoxicology, offering a quantitative view of utilization of various substrates relevant for downstream ecosystems. Here we present our study of the dynamics of both solvents and cells suspended in meltwater of the melting snowpack on a high arctic glacier to demonstrate the spatio-temporal constraint of interaction between solvent and bacterial cells in this environment. Method We used 6 lysimeters inserted into the bottom of the snowpack to collect replicated samples of melt water before it comes into contact with basal ice or slush layer at the base of the snow pack. The sampling site was chosen at Midre Lovénbreen (Svalbard, Kongsfjorden, MLB stake 6) where the snow pack showed melting on the surface but the basal ice was still dry. Sampling was conducted in June 2010 for a period of 10 days once per day and the snow profile was sampled according to distinguished layers in the profile at the beginning of the field mission and as bulk at its end. The height of snow above the lysimeters dropped from the initial 74 cm

  13. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  14. Energy and water balance studies of a snow cover during snowmelt period at a high arctic site

    NASA Astrophysics Data System (ADS)

    Bruland, O.; Maréchal, D.; Sand, K.; Killingtveit, Å.

    The predicted global warming is supposed to have an enhanced effect on the arctic regions. How this will influence the water, carbon dioxide and methane balances in the European arctic tundra is the objective of the EU-funded project ``Understanding Land Surface Physical Processes in the Arctic'' (LAPP), to which where SINTEF is one of several contributors. The snow cover is one of the limiting factors for these exchange processes and knowledge of how it behaves and will behave under a different climate is important. Data collected for water and energy balance studies in an area close to Ny-Ålesund at 79°N at Svalbard are the basis of this study. Measurements during the ablation periods since 1992 show an average air temperature for the periods of 2.1°C, an average incoming shorwave radiation of 230W/m2 and an average measured runoff intensity of 14mm/day with a maximum of 68mm/day. Three models of different complexity are tested in order to simulate the water and energy balance of a snow cover on the arctic tundra. The three models are: a complex numerical model (CROCUS), a simple energy balance model and a temperature index model. The simulations were carried out for the melt periods in 1992 and 1996 as these two periods represent very different meteorological conditions. The results of these simulations exposed weaknesses in all the models. The energy balance model lacks calculation of cold content in the snowpack. This influences both the outgoing longwave radiation and the timing of the melt. Due to the effect of compensating errors in the simulations, CROCUS performed better than the simple energy balance model but also this model has problems with the simulation of outgoing longwave radiation. The temperature index model does not perform well for snowmelt studies in regions were radiation is the main driving energy source for the melt.

  15. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Progress report

    SciTech Connect

    Oechel, W.C.

    1992-04-01

    This report presents the progress on the DOE funded project: ``Response of a Tundra Ecosystem to Elevated Atmospheric Carbon Dioxide and CO{sub 2}-Induced Climate Change.`` The current funding cycle was initiated on September 1, 1989, to run through August 31, 1992. There was an initial reduction in scope dictated by budget availabilities, primarily manipulations of CO{sub 2}, temperature and nutrients at a wet tundra located at Barrow Alaska. These experiments still need to be done over the mid- to longer term in order to accurately predict, apriori, the effects of climate change on the arctic tundra as well as possible feedbacks. Coordination and cooperation with other agencies was initiated in 1990 and formally proposed in our 1991 renewal at the national and international level and has become an important aspect of the research. To accurately and precisely scale plot and transect measurements to the circumpolar tundra is beyond the scope of the current DOE project. It is possible, however to determine the patterns and controls of CO{sub 2} flux from the current circumpolar arctic tundra with the involvement of additional agencies and governments. Results from the past two years of this project confirm that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggest a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. Measurements along a latitudinal gradient across the north slope of Alaska indicate a loss of carbon from tussock tundra and wet tundra, decreasing in magnitude along a decreasing gradient of temperature but an increasing gradient in soil moisture. These data are in agreement with work done on tussock tundra in 1983{endash}85 and 1987.

  16. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO sub 2 -induced climate change

    SciTech Connect

    Oechel, W.C.

    1992-04-01

    This report presents the progress on the DOE funded project: Response of a Tundra Ecosystem to Elevated Atmospheric Carbon Dioxide and CO{sub 2}-Induced Climate Change.'' The current funding cycle was initiated on September 1, 1989, to run through August 31, 1992. There was an initial reduction in scope dictated by budget availabilities, primarily manipulations of CO{sub 2}, temperature and nutrients at a wet tundra located at Barrow Alaska. These experiments still need to be done over the mid- to longer term in order to accurately predict, apriori, the effects of climate change on the arctic tundra as well as possible feedbacks. Coordination and cooperation with other agencies was initiated in 1990 and formally proposed in our 1991 renewal at the national and international level and has become an important aspect of the research. To accurately and precisely scale plot and transect measurements to the circumpolar tundra is beyond the scope of the current DOE project. It is possible, however to determine the patterns and controls of CO{sub 2} flux from the current circumpolar arctic tundra with the involvement of additional agencies and governments. Results from the past two years of this project confirm that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggest a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. Measurements along a latitudinal gradient across the north slope of Alaska indicate a loss of carbon from tussock tundra and wet tundra, decreasing in magnitude along a decreasing gradient of temperature but an increasing gradient in soil moisture. These data are in agreement with work done on tussock tundra in 1983{endash}85 and 1987.

  17. Phenological Advances and Trophic Consequences in Low- and High-Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Schmidt, N. M.; Forchhammer, M. C.; Bøving, P. S.; Post, E.

    2009-12-01

    Seasonal timing of reproduction (phenology) is highly responsive to global warming, especially in the Arctic. Here, we present a comparative analysis of multi-annual observational data on phenological dynamics across trophic levels from Zackenberg, North-East Greenland (a High Arctic site) and Kangerlussuaq, West Greenland (a Low Arctic site). Both sites have experienced considerable warming and our analyses indicate that rates of change in plant phenological responses may differ between sites, related to different proximal drivers at the two sites. We also present parallel data on interacting organisms (pollinators and mammalian herbivores) to evaluate the risks and effects of trophic mismatch at these two sites.

  18. A Comparison of Satellite and Aircraft-Mounted Thermal Observations of Freeze/Thaw Cycling of the Alaska Tundra and Boreal Forests during the Carbon in the Arctic Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Miller, C. E.; Dinardo, S. J.

    2014-12-01

    Freeze/thaw (F/T) related surface processes in the Arctic are important as they bracket negative and positive modes in the flux of CO2 and CH4 between the surface and atmosphere. The Carbon in the Arctic Vulnerability Experiment (CARVE) monitors carbon gas cycling in Alaskan using aircraft-deployed gas sampling instruments along with remote sensing observations of the land surface condition. A nadir-pointed, forward looking infrared (FLIR) imager mounted on the CARVE aircraft is used to measure upwelling mid-infrared spectral radiance at 3-5 microns. The FLIR instrument was operated during the spring, summer and fall seasons of 2013 and 2014 during clear sky conditions and targeting ecosystem components affecting the carbon cycle. The instantaneous field of view (IFOV) of the FLIR instrument allows for a resolution of ~36 cm from a height of 500 m. This high resolution data allow for the discrimination of individual landscape components such as soil, vegetation and surface water features in the image footprint. We assess the effectiveness of the FLIR thermal images in monitoring thawing and inundation processes of individual ecosystem components of importance in biogeochemical cycling. We also observe how these individual components scale using coarse resolution satellite observations of land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Freeze/thaw state determined from the Advanced Microwave Scanning Radiometer (AMSR2) on JAXA's Shizuku (GCOM-W1) satellite. Portions of the work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration.

  19. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  20. Peopling of the high Arctic - induced by sea ice?

    NASA Astrophysics Data System (ADS)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  1. Correlated declines in Pacific arctic snow and sea ice cover

    USGS Publications Warehouse

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  2. Remote Sensing of Ocean Color in the High Arctic

    NASA Technical Reports Server (NTRS)

    Cota, G. F.; Platt, T.; Harrison, W. G.

    1997-01-01

    With four years of NASA SeaWiFS funding I established a completely new capability and expertise for in-water optical measurements nearly from scratch and with very little optical background. My first-year budget included only capital for a profiling spectral radiometer. Over the next 30 months we conducted six cruises and collected almost 300 optical profiles in challenging environments; many were collected from 21' launches. I also changed institutions during this period: it is very disruptive to move, set up a new lab, and hire and train new people, etc. We also did not have access to NASA funds for almost a year during the move because of difficulties in subcontracting and/or transferring funds. Nevertheless, we delivered data sets from six bio-optical cruises from three high latitude regions, although only two or three cruises from two areas were promised for our SeaWiFS research. The three Canadian Arctic field programs comprise the most comprehensive high latitude bio-optical and biogeochemical data sets in existence. Optical and pigment data from all six cruises have been submitted to NASA and are being included in the algorithm development test set. Additional data are still being submitted.

  3. Decade time scale plot to landscape scale change in tundra ecosystem structure and function near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Lin, D. H.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Hollister, R. D.; Webber, P. J.; Tweedie, C. E.

    2012-12-01

    Several models suggest shifts in tundra ecosystem structure and function are likely to affect the future state of the Arctic system and how these shifts may impact the global system. Validation of such predictions remains a challenge, however, due to the lack of sustained environmental observations throughout much of the Arctic. In the absence of sustained monitoring, relocating, rescuing, and retrospectively resampling historic research sites and datasets has proven to be an effective means to establish likely change scenarios and develop hypotheses of future change trajectories. This study, synthesizes several recently published works that have used this retrospective approach to explore plot to landscape change in tundra ecosystem structure and function near Barrow, Alaska over the past half Century. This study is a contribution to the International Polar Year 'Back to the Future' project IPY-BTF, IPY # 512). At the landscape level, analysis of land cover change of time series high spatial resolution aerial and satellite imagery spanning 1948-2008 show an overall increase in the extent of dry and moist land cover and open water, and a decrease in the extent of wet and aquatic, land cover types. The 'drying' trend noted for the coastal landscape of Barrow is similar to that noted for four other Alaskan tundra landscapes but in the same study, the Barrow landscape also showed the most dramatic change in wet and aquatic land cover types. Plot level studies of sites, established in 1972 during the International Biological Program, that have been resampled three times show that species richness and diversity has increased and that wet plant communities have changed more than dry plant communities. An analysis of ecosystem function coupled to this plot level study suggests the greatest functional change has occurred in aquatic and wet plant communities where methane efflux and net ecosystem production (NEP) has increased and albedo and the normalized difference

  4. Serosurvey for Toxoplasma gondii in arctic foxes and possible sources of infection in the high Arctic of Svalbard.

    PubMed

    Prestrud, Kristin Wear; Asbakk, Kjetil; Fuglei, Eva; Mørk, Torill; Stien, Audun; Ropstad, Erik; Tryland, Morten; Gabrielsen, Geir Wing; Lydersen, Christian; Kovacs, Kit M; Loonen, Maarten J J E; Sagerup, Kjetil; Oksanen, Antti

    2007-11-30

    Samples (blood or tissue fluid) from 594 arctic foxes (Alopex lagopus), 390 Svalbard reindeer (Rangifer tarandus platyrhynchus), 361 sibling voles (Microtus rossiaemeridionalis), 17 walruses (Odobenus rosmarus), 149 barnacle geese (Branta leucopsis), 58 kittiwakes (Rissa tridactyla), and 27 glaucous gulls (Larus hyperboreus) from Svalbard and nearby waters were assayed for antibodies against Toxoplasma gondii using a direct agglutination test. The proportion of seropositive animals was 43% in arctic foxes, 7% in barnacle geese, and 6% (1 of 17) in walruses. There were no seropositive Svalbard reindeer, sibling voles, glaucous gulls, or kittiwakes. The prevalence in the arctic fox was relatively high compared to previous reports from canid populations. There are no wild felids in Svalbard and domestic cats are prohibited, and the absence of antibodies against T. gondii among the herbivorous Svalbard reindeer and voles indicates that transmission of the parasite by oocysts is not likely to be an important mechanism in the Svalbard ecosystem. Our results suggest that migratory birds, such as the barnacle goose, may be the most important vectors bringing the parasite to Svalbard. In addition to transmission through infected prey and carrion, the age-seroprevalence profile in the fox population suggests that their infection levels are enhanced by vertical transmission.

  5. High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic.

    PubMed

    Miljeteig, Cecilie; Strøm, Hallvard; Gavrilo, Maria V; Volkov, Andrey; Jenssen, Bjørn M; Gabrielsen, Geir W

    2009-07-15

    We found high levels of contaminants, in particular organochlorines, in eggs of the ivory gull Pagophila eburnea, a high Arctic seabird species threatened by climate change and contaminants. An 80% decline in the ivory gull breeding population in the Canadian Arctic the last two decades has been documented. Because of the dependence of the ivory gull on sea ice and its high trophic position, suggested environmental threats are climate change and contaminants. The present study investigated contaminant levels (organochlorines, brominated flame retardants, perfluorinated alkyl substances, and mercury) in ivory gull eggs from four colonies in the Norwegian (Svalbard) and Russian Arctic (Franz Josef Land and Severnaya Zemlya). The contaminant levels presented here are among the highest reported in Arctic seabird species, and we identify this as an important stressor in a species already at risk due to environmental change.

  6. Recovery of plant biomass and soil N cycling in Alaskan tundra following an unusual fire

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Mack, M. C.; Huebner, D. C.; Johnston, M.; Shaver, G. R.

    2012-12-01

    Climate warming is likely to increase the frequency of disturbances in the Arctic. The Anaktuvuk River fire of 2007 burned 1039 km2 of northern Alaskan tundra; this was unprecedented for this vegetation, which is clonal, slow-growing, and long-lived. We harvested plant biomass and soils from severely and moderately burned areas and controls in 2011 to assess recovery of plant productivity and soil N cycling four years after the fire. Biomass of vascular plants had recovered to nearly control levels in moderately burned areas, due primarily to resprouting by graminoids, particularly Eriophorum vaginatum. Graminoid biomass was actually greater in moderately burned tundra than in unburned tundra. Deciduous shrub and evergreen shrub biomass in moderately burned tundra was approximately half that seen in unburned tundra, but non-vascular plant biomass was much less, so that total aboveground biomass in moderately burned tundra had not returned to control levels. Severely burned tundra had less of all components of the community than in moderately burned tundra, except that there was higher biomass of non-vascular plants, due to colonization by fire-following liverworts and mosses. Productivity of vascular plants was similar in unburned and severely burned tundra plots, and higher in moderately burned plots, due in part to higher soil N availability. Recovery of plant biomass was largely due to resprouting of species that survived the fire, though numerous seedlings were seen. Biomass of vascular plants has recovered rapidly in the moderately burned sites, while severely burned sites and nonvascular plants are recovering more slowly, but the relative abundance of different species differs from unburned tundra. The relationship between spectral indices (NDVI, EVI-2) collected at the plot level and either biomass or NPP varied with burn category, which may complicate assessments of NPP by remote sensing following fire.

  7. Recent mass changes of glaciers in the Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Moholdt, Geir; Wouters, Bert; Gardner, Alex S.

    2012-05-01

    Glaciers and ice caps are known to contribute significantly to present-day sea level rise, but there are still glaciated regions where little is known about modern changes in glacier mass. One of these regions is the Russian High Arctic archipelagos which has a total glaciated area of 51,500 km2. We have assessed the glacier mass budget of this region for a 6-year period between October 2003 and October 2009 using independent ICESat laser altimetry and GRACE gravimetry. Over this period we found that the archipelagos have lost ice at a rate of -9.1 ± 2.0 Gt a-1, which corresponds to a sea level contribution of 0.025 mm a-1. Approximately 80% of the ice loss came from Novaya Zemlya with the remaining 20% coming from Franz Josef Land and Severnaya Zemlya. Meteorological records of temperature and precipitation for the period 1980-2009 suggest that the recent climatic mass budget is not substantially different from the longer-term trend.

  8. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean.

    PubMed

    Liu, Chuan-Zhou; Snow, Jonathan E; Hellebrand, Eric; Brügmann, Gerhard; von der Handt, Anette; Büchl, Anette; Hofmann, Albrecht W

    2008-03-20

    The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

  9. Decline and recovery of a high Arctic wolf-prey system

    USGS Publications Warehouse

    Mech, L.D.

    2005-01-01

    A long-existing system of wolves (Canis lupus), muskoxen (Ovibos moschatus) and arctic hares (Lepus arcticus) in a 2600 km]2 area of Canada's High Arctic (80DG N latitude) began collapsing in 1997 because of unusual adverse summer weather but recovered to a level at which all three species were rreproducing by 2004. Recovery of wolf presence and reproduction appeared to be more dependent on muskox increase than on hare increase.

  10. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    effective soil age. My research is focused on addressing the questions of the extent of microbial N limitation in arctic tundra soils, the potential for co-limitation of labile C despite a high SOC environment, and the dependence, if any, nutrient limitation may have on the effective age of the soil. I have addressed these questions by conducting a laboratory soil incubation of factorial design with treatments of amended glucose, amended ammonium nitrate, and a control consisting of an addition of an equivalent volume of deionized water. Moist acid tundra soils possessing similar soil properties from two arctic sites of close proximity yet with varying deglaciation chronologies were utilized in my study. Soil properties of C-mineralization via respiration, microbial biomass, and nitrogen content in the forms of ammonium, nitrate, and total free amino acids and microbial extra-cellular enzyme production were assayed to determine the microbial response to the experimental treatments. Through the results of this work, I hope to better our understanding of biogeochemical cycling within arctic tundra ecosystems and the response to climate change by contributing to existing knowledge of nutrient limitation on microbial mediated decomposition of SOC in the arctic and how this may differ in soils of varying effective age.

  11. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.

    PubMed

    Frost, Gerald V; Epstein, Howard E

    2014-04-01

    Circumpolar expansion of tall shrubs and trees into Arctic tu