Science.gov

Sample records for high arctic vaccinium

  1. Persistent history of the bird-dispersed arctic-alpine plant Vaccinium vitis-idaea L. (Ericaceae) in Japan.

    PubMed

    Ikeda, Hajime; Yoneta, Yusuke; Higashi, Hiroyuki; Eidesen, Pernille Bronken; Barkalov, Viachenslav; Yakubov, Valentin; Brochmann, Christian; Setoguchi, Hiroaki

    2015-05-01

    Arctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal. In light of these hypotheses, we investigated the biogeographic history of the marginal Japanese populations of the widespread arctic-alpine plant Vaccinium vitis-idaea (Ericaceae), which is bird-dispersed, potentially over long distances. We sequenced three nuclear loci and one plastid DNA region in 130 individuals from 65 localities covering its entire geographic range, with a focus on its marginal populations in Japan. We found a homogenous genetic pattern across its enormous range based on the loci analysed, in contrast to the geographically structured variation found in a previous study of amplified fragment length polymorphisms in this species. However, we found several unique haplotypes in the Japanese populations, excluding the possibility that these marginal populations result from recent southward migration. Thus, even though V. vitis-idaea is efficiently dispersed via berries, our study suggests that its isolated populations in Japan have persisted during several cycles of cold and warm climate during the Pleistocene.

  2. Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea).

    PubMed

    Walker, John F; Johnson, Loretta C; Simpson, Nicholas B; Bill, Markus; Jumpponen, Ari

    2010-01-01

    In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris] or propiconazole [Tilt]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt was more effective in reducing fungal colony growth in vitro than Quadris, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris nor Tilt affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf 15N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf 15N assimilation from glycine was three times higher than from 15NH4 in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial communities.

  3. Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea)

    SciTech Connect

    Walker, J.F.; Johnson, L.; Simpson, N.B.; Bill, M.; Jumpponen, A.

    2009-11-01

    In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris{reg_sign}] or propiconazole [Tilt{reg_sign}]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt{reg_sign} was more effective in reducing fungal colony growth in vitro than Quadris{reg_sign}, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris{reg_sign} nor Tilt{reg_sign} affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf {sup 15}N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf {sup 15}N assimilation from glycine was three times higher than from {sup 15}NH{sub 4} in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial

  4. A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana.

    PubMed

    Oakenfull, Rachael J; Baxter, Robert; Knight, Marc R

    2013-01-01

    Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function.

  5. Evolutionary relationships in Vaccinium section Cyanococcus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North American Vaccinium section Cyanococcus includes the ecologically and economically important blueberry species, Vaccinium corymbosum (highbush blueberry), Vaccinium angustifolium (lowbush blueberry), Vaccinium myrtilloides (velvet-leaf blueberry), and Vaccinium virgatum (rabbiteye blueberry...

  6. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice.

    PubMed

    Wu, Tao; Jiang, Zenghong; Yin, Jinjin; Long, Hairong; Zheng, Xiaodong

    2016-01-01

    This study aimed to evaluate the anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin (BA) in high-fat diet-induced obese male C57BL/6 mice. BA at doses of 50, 100, and 200 mg/kg was supplemented in the daily food of obese C57BL/6 mice during an 8-week experiment. Our findings indicate that consumption of BA at high doses reduced body weight by 19.4%, whereas both low and middle doses did not affect the body weight. Furthermore, BA supplementation at high dose could effectively decrease serum glucose, attenuate epididymal adipocytes, improve lipid profiles, and significantly down-regulate expression levels of TNFα, IL-6 PPARγ, and FAS genes. Therefour, BA might alter bodyweight by suppressing fatty acid synthesis and alleviating inflammation.

  7. Evaluation of Vaccinium spp. for Illinoia pepperi (Hemiptera: Aphididae) performance and phenolic content.

    PubMed

    Ranger, Christopher M; Johnson-Cicalese, Jennifer; Polavarapu, Sridhar; Vorsa, Nicholi

    2006-08-01

    Host acceptance and population parameters of the aphid Illinoia pepperi (MacGillivray) (Hemiptera: Aphididae) were measured on highbush blueberry, Vaccinium corymbosum L. 'Elliott', and the wild species Vaccinium boreale Hall and Aalders, Vaccinium tenellum Aiton, Vaccinium pallidum Aiton, Vaccinium hirsutum Buckley, Vaccinium myrsinites Lamarck, and Vaccinium darrowi Camp. After 24 h of exposure, significantly fewer aphids remained in contact with V. boreale and V. hirsutum compared with V. corymbosum Elliott, V. darrowi, and V. pallidum. Length of the prereproductive period of I. pepperi was significantly longer on V. boreale and V. myrsinites, in contrast to V. corymbosum. Fecundity was also lower on V. boreale, V. hirsutum, V. myrsinites, and V. darrowi. Survivorship of I. pepperi 42 d after birth was significantly lower on V. hirsutum compared with the remaining Vaccinium spp. Reduced I. pepperi performance resulted in significantly lower intrinsic rate of increase (r(m)) values being associated with V. myrsinites, V. boreale, V. hirsutum, and V. darrowi, compared with V. corymbosum. Net reproductive rate (R(o)), generation time (T), and doubling time (T(d)) of I. pepperi also were affected by the Vaccinium spp. Total phenolic and flavonol content varied between Vaccinium spp., with some high phenolic content Vaccinium spp. having reduced aphid performance. However, no significant correlation between phenolics and I. pepperi performance was detected. Results from this study identified several potential sources of aphid resistance traits in wild Vaccinium spp.

  8. Blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing

    2015-01-01

    Vaccinium consists of approximately 450 species, of which highbush blueberry (Vaccinium corymbosum) is one of the three major Vaccinium fruit crops (i.e., blueberry, cranberry, and lingonberry) domesticated in the twentieth century. In blueberry the adventitious shoot regeneration using leaf explants has been the most desirable regeneration system to date; Agrobacterium tumefaciens-mediated transformation is the major gene delivery method and effective selection has been reported using either the neomycin phosphotransferase II gene (nptII) or the bialaphos resistance (bar) gene as selectable markers. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining the optimal conditions for efficient plant regeneration, reliable gene delivery, and effective selection. The protocol has led to successful regeneration of transgenic plants from leaf explants of four commercially important highbush blueberry cultivars for multiple purposes, providing a powerful approach to supplement conventional breeding methods for blueberry by introducing genes of interest.

  9. Science Traverses in the Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Williamson, Marie-Claude

    2012-01-01

    The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.

  10. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  11. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic.

    PubMed

    Provencher, J F; Braune, B M; Gilchrist, H G; Forbes, M R; Mallory, M L

    2014-04-01

    Baseline data on trace element concentrations are lacking for many species of Arctic marine birds. We measured essential and non-essential element concentrations in Arctic tern (Sterna paradisaea) liver tissue and brain tissue (mercury only) from Canada's High Arctic, and recorded the presence/absence of gastrointestinal parasites during four different phases of the breeding season. Arctic terns from northern Canada had similar trace element concentrations to other seabird species feeding at the same trophic level in the same region. Concentrations of bismuth, selenium, lead and mercury in Arctic terns were high compared to published threshold values for birds. Selenium and mercury concentrations were also higher in Arctic terns from northern Canada than bird species sampled in other Arctic areas. Selenium, mercury and arsenic concentrations varied across the time periods examined, suggesting potential regional differences in the exposure of biota to these elements. For unknown reasons, selenium concentrations were significantly higher in birds with gastrointestinal parasites as compared to those without parasites, while bismuth concentrations were higher in Arctic terns not infected with gastrointestinal parasites.

  12. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    NASA Astrophysics Data System (ADS)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  13. Dwarf shrub hydraulics: two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared.

    PubMed

    Ganthaler, Andrea; Mayr, Stefan

    2015-12-01

    Vaccinium myrtillus and Vaccinium vitis-idaea are two dwarf shrubs widespread in the European Alps. We studied the hydraulics of these species hypothesizing that (1) the hydraulic architecture of dwarf shrubs differs from trees, (2) hydraulic properties reflect the species' ecological amplitude and (3) hydraulic properties vary spatially and seasonally. Key hydraulic parameters (osmotic potential, turgor loss point, xylem hydraulic conductivity, vulnerability to drought-induced embolism, stomata closure, drought-induced cell damage and embolism repair) and related wood anatomical traits (conduit diameter and conduit wall reinforcement) were analyzed at four sites in Tyrol, Austria. Both species exhibited low hydraulic safety as well as low hydraulic efficiency. Fifty percentage embolism accumulated at -2.08 (V. myrtillus) and -1.97 MPa (V. vitis-idaea), 88% stomata closure was at -2.19 and -2.35 MPa, respectively. After drought, both species showed embolism repair on re-watering. Site-specific variation within species was low, while seasonal changes in embolism resistance and turgor loss point were observed. Results indicate that studied Vaccinium species have a high risk for embolism formation. This is balanced by refilling capacities, which are probably based on the small growth height of dwarf shrubs. V. vitis-idaea, which occurs on drier sites, showed more efficient repair and a lower turgor loss point than V. myrtillus.

  14. Prevention of urinary tract infections with vaccinium products.

    PubMed

    Davidson, Elyad; Zimmermann, Benno F; Jungfer, Elvira; Chrubasik-Hausmann, Sigrun

    2014-03-01

    Cranberries exert a dose-dependent inhibition of the adherence of E. coli fimbriae to uroepithelial cells. This was demonstrated in vitro but also ex vivo in vitro with urine from cranberry consumers. The active principle has not been identified in detail but type-A proanthocyanidins (PAC) play an important role in the mechanism of action. Since the three species, American cranberry (Vaccinium macrocarpon), European cranberry (Vaccinium oxycoccus) and/or lingonberry (Vaccinium vitis-idaea), have different patterns of type-A PACs, results from one species cannot be transferred to the others. It seems likely that most of the studies with monopreparations from V. macrocarpon were underdosed. Whereas photometric PAC quantification may overestimate the true content on co-active compounds, reversed phase high-performance liquid chromatograpy may underestimate them. Recent studies with PAC doses in the upper range (DMAC method) or declared type-A PAC content in the daily dose reveal a dose-dependent trend of clinical effectiveness, however, with a possible ceiling effect. In order to clarify this, future three-arm studies should investigate Vaccinium preparations with higher type-A PAC doses than previously used. We analysed two popular European vitis-idaea products, a mother juice and a proprietary extract. Both preparations may be appropriate to confirm the Vaccinium urinary tract infection-preventive effect beyond doubt.

  15. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.

    PubMed

    Rimando, Agnes M; Kalt, Wilhelmina; Magee, James B; Dewey, Jim; Ballington, James R

    2004-07-28

    A study was conducted to determine the presence of resveratrol, pterostilbene, and piceatannol in Vaccinium berries. Samples representing selections and cultivars of 10 species from Mississippi, North Carolina, Oregon, and Canada were analyzed by gas chromatography/mass spectrometry. Resveratrol was found in Vaccinium angustifolium (lowbush blueberry), Vaccinium arboretum (sparkleberry), Vaccinium ashei (rabbiteye blueberry), Vaccinium corymbosum (highbush blueberry), Vaccinium elliottii (Elliott's blueberry), Vaccinium macrocarpon (cranberry), Vaccinium myrtillus (bilberry), Vaccinium stamineum (deerberry), Vaccinium vitis-ideae var. vitis-ideae (lingonberry), and Vaccinium vitis-ideae var. minor (partridgeberry) at levels between 7 and 5884 ng/g dry sample. Lingonberry was found to have the highest content, 5884 ng/g dry sample, comparable to that found in grapes, 6471 ng/g dry sample. Pterostilbene was found in two cultivars of V. ashei and in V. stamineum at levels of 99-520 ng/g dry sample. Piceatannol was found in V. corymbosum and V. stamineum at levels of 138-422 ng/g dry sample. These naturally occurring stilbenes, known to be strong antioxidants and to have cancer chemopreventive activities, will add to the purported health benefits derived from the consumption of these small fruits.

  16. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  17. Microbial life beneath a high arctic glacier.

    PubMed

    Skidmore, M L; Foght, J M; Sharp, M J

    2000-08-01

    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (< or =-1.8 degrees C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.

  18. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage Mapping.

    PubMed

    Schlautman, Brandon; Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Iorizzo, Massimo; Polashock, James; Grygleski, Edward; Vorsa, Nicholi; Zalapa, Juan

    2017-04-03

    The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.

  19. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage Mapping

    PubMed Central

    Schlautman, Brandon; Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Iorizzo, Massimo; Polashock, James; Grygleski, Edward; Vorsa, Nicholi; Zalapa, Juan

    2017-01-01

    The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry. PMID:28250016

  20. Water vapor intrusions into the High Arctic during winter

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Lesins, G.; Thackray, C. P.; Perro, C.; Nott, G. J.; Duck, T. J.; Damoah, R.; Drummond, J. R.

    2011-06-01

    The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80°N, 86°W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m-2 average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification.

  1. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; ...

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  2. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  3. High-Arctic butterflies become smaller with rising temperatures

    PubMed Central

    Bowden, Joseph J.; Eskildsen, Anne; Hansen, Rikke R.; Olsen, Kent; Kurle, Carolyn M.; Høye, Toke T.

    2015-01-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change. PMID:26445981

  4. High-Arctic butterflies become smaller with rising temperatures.

    PubMed

    Bowden, Joseph J; Eskildsen, Anne; Hansen, Rikke R; Olsen, Kent; Kurle, Carolyn M; Høye, Toke T

    2015-10-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change.

  5. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  6. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  7. Developing native Vaccinium crops and cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium species have long been harvested from the wild. Breeding and cultivar development, however, did not begin until about 1911 in New Jersey with efforts to commercially cultivate northern highbush blueberry (Vaccinium corymbosum). Cultivar development spread to cranberry (V. macrocarpon) and ...

  8. High Arctic Hillslope-Wetland Linkages: Types, Patterns and Importance

    NASA Astrophysics Data System (ADS)

    Young, K. L.; Abnizova, A.

    2012-12-01

    High Arctic wetlands are lush areas in an otherwise barren landscape. They help to store and replenish water and they serve as significant resting and breeding grounds for migratory birds. In addition, they provide rich grazing grounds for arctic fauna such as muskox and caribou. Arctic wetlands can be small, patchy grounds of wet vegetation or they can encompass large zones characterized by lakes, ponds, wet meadows, and, often times, they are inter-mixed with areas of dry ground. While seasonal snowmelt continues to remain the most critical source of water for recharging ponds, lakes, and meadows in these environments, less is known about the role of lateral inputs of water into low-lying wetlands, namely water flowing into these wetland ecosystems from adjacent hillslopes, which often surround them. This paper will review the different modes of hillslope runoff into both patchy and regional-scale wetlands including late-lying snowbeds, snow-filled creeks, and both small and large (>1st order) streams. It will draw upon field results from four arctic islands (Ellesmere, Cornwallis, Somerset and Bathurst Island) and a research period which spans from the mid'90s until present. Our study will evaluate seasonal and inter-seasonal patterns of snowmelt driven discharge (initiation, duration), timing, and magnitude of peak flows, in addition to stream response to rainfall and dry episodes. The impacts of these lateral water sources for a range of wetlands (ponds, wet meadows) will include an analysis of water level fluctuations (frequency, duration), shrinkage/expansion rates, and water quality. Finally, this study will surmise how these types of lateral hillslope inflows might shift in the future and suggest the impact of these changes on the sustainability of High Arctic wetland terrain.

  9. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  10. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  11. Bioluminescence as an ecological factor during high Arctic polar night

    PubMed Central

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-01-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night. PMID:27805028

  12. Bioluminescence as an ecological factor during high Arctic polar night.

    PubMed

    Cronin, Heather A; Cohen, Jonathan H; Berge, Jørgen; Johnsen, Geir; Moline, Mark A

    2016-11-02

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20-40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  13. Bioluminescence as an ecological factor during high Arctic polar night

    NASA Astrophysics Data System (ADS)

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-11-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  14. Congruent responses to weather variability in high arctic herbivores.

    PubMed

    Stien, Audun; Ims, Rolf A; Albon, Steve D; Fuglei, Eva; Irvine, R Justin; Ropstad, Erik; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif Egil; Veiberg, Vebjørn; Yoccoz, Nigel G

    2012-12-23

    Assessing the role of weather in the dynamics of wildlife populations is a pressing task in the face of rapid environmental change. Rodents and ruminants are abundant herbivore species in most Arctic ecosystems, many of which are experiencing particularly rapid climate change. Their different life-history characteristics, with the exception of their trophic position, suggest that they should show different responses to environmental variation. Here we show that the only mammalian herbivores on the Arctic islands of Svalbard, reindeer (Rangifer tarandus) and sibling voles (Microtus levis), exhibit strong synchrony in population parameters. This synchrony is due to rain-on-snow events that cause ground ice and demonstrates that climate impacts can be similarly integrated and expressed in species with highly contrasting life histories. The finding suggests that responses of wildlife populations to climate variability and change might be more consistent in Polar regions than elsewhere owing to the strength of the climate impact and the simplicity of the ecosystem.

  15. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  16. A Pan-Arctic Assessment of High-Latitude Lake Change ~25 Years Apart

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E. A.; Wang, J.

    2011-12-01

    The Arctic and Sub-Arctic regions are the home to the world's largest quantity of terrestrial lakes. These lakes play a preeminent role in the global water cycle and balance, are sensitive to global warming, and are vital for human and animal water supply. However, they are poorly observed, and a uniform lake inventory is unavailable at the pan-Arctic scale. Though there have been studies of Arctic lake dynamics at local scales, the general picture of Arctic lake change stays unclear. A systematic regional-scale assessment of Arctic lake change in the past ~30 years is crucial for us to address "How have Arctic lakes responded to global warming?" The presentation reports a systematic effort of high-latitude (45N and north) lake inventory using recently available high-resolution satellite imagery. Since Arctic lakes are abundant in small-size classes and their seasonality varies from region to region, pan-Arctic lake mapping requires the use of thousands of cloud-free Landsat images acquired in lake-stable seasons. Nearly eight million lakes have been mapped in various landscapes of the pan-Arctic using automated lake identification algorithms with high replicability. Lake-abundant regions are selected using a systematic sampling strategy to detect decadal lake change using the mid-1970s and circa-2000 Landsat imagery. Spatial patterns of the observed lake dynamics are analyzed at regional scales and the relationship between lake abundance and size distribution is investigated.

  17. A new high resolution tidal model in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cancet, Mathilde; Andersen, Ole; Lyard, Florent; Cotton, David; Benveniste, Jérôme

    2016-04-01

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. It has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission), but also on the end-users' applications that need accurate tidal information. Better knowledge of the tides will improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have recently developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Oceans (CP4O) project funded by ESA (STSE program). In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including the Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites gives the best possible coverage of altimetry-derived tidal constituents. Tide gauge data have also been used either for assimilation or validation. This paper presents the methodology followed to develop the model and the performances of this new regional tidal model in the Arctic Ocean.

  18. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  19. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes.

    PubMed

    Moyer, Richard A; Hummer, Kim E; Finn, Chad E; Frei, Balz; Wrolstad, Ronald E

    2002-01-30

    Fruits from 107 genotypes of Vaccinium L., Rubus L., and Ribes L., were analyzed for total anthocyanins (ACY), total phenolics (TPH), and antioxidant capacities as determined by oxygen radical absorbing capacity (ORAC) and ferric reducing antioxidant power (FRAP). Fruit size was highly correlated (r = 0.84) with ACY within Vaccinium corymbosum L., but was not correlated to ACY across eight other Vaccinium species, or within 27 blackberry hybrids. Certain Vaccinium and Ribes fruits with pigmented flesh were lower in ACY, TPH, ORAC, and FRAP compared to those values in berries with nonpigmented flesh. ORAC values ranged from 19 to 131 micromol Trolox equivalents/g in Vaccinium, from 13 to 146 in Rubus, and from 17 to 116 in Ribes. Though ACY may indicate TPH, the range observed in ACY/TPH ratios precludes prediction of ACY from TPH and vice versa for a single genotype. In general, TPH was more highly correlated to antioxidant capacity than ACY was. This study demonstrates the wide diversity of phytochemical levels and antioxidant capacities within and across three genera of small fruit.

  20. On the Developmental and Environmental Regulation of Secondary Metabolism in Vaccinium spp. Berries

    PubMed Central

    Karppinen, Katja; Zoratti, Laura; Nguyenquynh, Nga; Häggman, Hely; Jaakola, Laura

    2016-01-01

    Secondary metabolites have important defense and signaling roles, and they contribute to the overall quality of developing and ripening fruits. Blueberries, bilberries, cranberries, and other Vaccinium berries are fleshy berry fruits recognized for the high levels of bioactive compounds, especially anthocyanin pigments. Besides anthocyanins and other products of the phenylpropanoid and flavonoid pathways, these berries also contain other metabolites of interest, such as carotenoid derivatives, vitamins and flavor compounds. Recently, new information has been achieved on the mechanisms related with developmental, environmental, and genetic factors involved in the regulation of secondary metabolism in Vaccinium fruits. Especially light conditions and temperature are demonstrated to have a prominent role on the composition of phenolic compounds. The present review focuses on the studies on mechanisms associated with the regulation of key secondary metabolites, mainly phenolic compounds, in Vaccinium berries. The advances in the research concerning biosynthesis of phenolic compounds in Vaccinium species, including specific studies with mutant genotypes in addition to controlled and field experiments on the genotype × environment (G×E) interaction, are discussed. The recently published Vaccinium transcriptome and genome databases provide new tools for the studies on the metabolic routes. PMID:27242856

  1. Paleoclimate records at high latitude in Arctic during the Paleogene

    NASA Astrophysics Data System (ADS)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay

  2. Slow recovery of High Arctic heath communities from nitrogen enrichment.

    PubMed

    Street, Lorna E; Burns, Nancy R; Woodin, Sarah J

    2015-04-01

    Arctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1)  yr(-1) ; 'low' and 'high', respectively) for 3-8 yr. We investigated whether significant effects on vegetation composition and ecosystem nutrient status persisted up to 18 yr post-treatment. Although the tundra heath is no longer N saturated, N treatment effects persist and are strongly P-dependent. Vegetation was more resilient to N where no P was added, although shrub cover is still reduced in low-N plots. Where P was also added (5 kg P ha(-1)  yr(-1) ), there are still effects of low N on community composition and nutrient dynamics. High N, with and without P, has many lasting impacts. Importantly, N + P has caused dramatically increased moss abundance, which influences nutrient dynamics. Our key finding is that Arctic ecosystems are slow to recover from even small N inputs, particularly where P is not limiting.

  3. Bacterial succession in a glacier foreland of the High Arctic

    PubMed Central

    Schütte, Ursel M.E.; Abdo, Zaid; Bent, Stephen J.; Williams, Christopher J.; Schneider, G. Maria; Solheim, Bjørn; Forney, Larry J.

    2009-01-01

    Succession is defined as changes in biological communities over time. It has been extensively studied in plant communities, but little is known about bacterial succession, in particular in environments such as High Arctic glacier forelands. Bacteria carry out key processes in the development of soil, biogeochemical cycling, and facilitating plant colonization. In this study we sampled two roughly parallel chronosequences in the foreland of Midre Lovén glacier on Svalbard, Norway and tested whether any of several factors were associated with changes in the structure of bacterial communities, including time after glacier retreat, horizontal variation caused by the distance between chronosequences, and vertical variation at two soil depths. The structures of soil bacterial communities at different locations were compared using terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes, and the data were analyzed by sequential analysis of log-linear statistical models. While no significant differences in community structure were detected between the two chronosequences, statistically significant differences between sampling locations in the surface and mineral soils could be demonstrated even though glacier forelands are patchy and dynamic environments. These findings suggest bacterial succession occurs in High Arctic glacier forelands but may differ in different soil depths. PMID:19587774

  4. An active atmospheric methane sink in high Arctic mineral cryosols

    PubMed Central

    Lau, M C Y; Stackhouse, B T; Layton, A C; Chauhan, A; Vishnivetskaya, T A; Chourey, K; Ronholm, J; Mykytczuk, N C S; Bennett, P C; Lamarche-Gagnon, G; Burton, N; Pollard, W H; Omelon, C R; Medvigy, D M; Hettich, R L; Pfiffner, S M; Whyte, L G; Onstott, T C

    2015-01-01

    Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5–30 as the Arctic warms by 5–15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming. PMID:25871932

  5. An active atmospheric methane sink in high Arctic mineral cryosols.

    PubMed

    Lau, M C Y; Stackhouse, B T; Layton, A C; Chauhan, A; Vishnivetskaya, T A; Chourey, K; Ronholm, J; Mykytczuk, N C S; Bennett, P C; Lamarche-Gagnon, G; Burton, N; Pollard, W H; Omelon, C R; Medvigy, D M; Hettich, R L; Pfiffner, S M; Whyte, L G; Onstott, T C

    2015-08-01

    Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming.

  6. Microbial Communities in a High Arctic Polar Desert Landscape

    PubMed Central

    McCann, Clare M.; Wade, Matthew J.; Gray, Neil D.; Roberts, Jennifer A.; Hubert, Casey R. J.; Graham, David W.

    2016-01-01

    The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices. PMID:27065980

  7. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    PubMed

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  8. Ice Mass Changes in the Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Melkonian, A. K.; Pritchard, M. E.; Golos, E. M.

    2012-12-01

    The ~2000 glaciers and icecaps on the islands of the Russian High Arctic cover a total area of about 55,600 km2. Infrequent studies have indicated that these glaciers have lost a total of ~100 km3 of ice, equivalent to about 0.3 mm of sea level, since 1960. Recent GRACE observations suggest that the Severnaya Zemlya Archipelago and Franz Josef Archipelago are approximately in balance, while the "Main Ice Sheet" of the Novaya Zemlya archipelago is losing mass at a small rate. This glacier complex, on the northern island of the archipelago is the largest ice mass in Europe (23,800 km2) and the third largest polar ice masses on the planet after the Antarctic and Greenland Ice sheets. The glaciers, ice caps and icefields of the Russian High Arctic are a major reservoir of fresh water and under climate scenarios that involve warming, a potentially increasing source of mass for sea level rise. We examine the response of the glaciers of the Russian High Arctic to recent, pronounced atmospheric warming. Digitized topographic maps, ASTER Digital Elevation Models (DEMs), cloud free ICESat returns and several DEMs calculated from recent high-resolution imagery pairs are used to provide a time-series and maps of ice surface elevation change rates between the mid-1980s' and 2012 for the "Main Ice Sheet" on Novaya Zemlya and the Franz Josef Land Archipelago. DEMs are co-registered to a common horizontal base and corrected for biases due to varying reference frames and datums. Elevation change rates are calculated on a pixel-by-pixel basis and are integrated over each ice complex to provide volume change rates. Volume rates are converted to mass rates assuming an ice density of 900 kg/m3. Glacier speeds are derived from pairs of ASTER images between 2000 and 2012 and from higher resolution imagery between 2010 and 2012. Cloudy conditions often hamper our ability to make good pairs and problems occur when there are no bedrock outcrops, which are typically used to check for

  9. High Arctic Paraglacial Coastal Evolution in Northern Billefjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Strzelecki, Matt; Long, Antony; Lloyd, Jerry

    2013-04-01

    Most sediment budget studies in paraglacial, High Arctic, environments have focussed attention on quantifying sediment fluxes in glacial and fluvial catchments. In contrast, little attention has been paid to the functioning of the paraglacial coastal zone with existing models of coastal change based on relict systems developed in mid latitude settings. The pristine coasts of Spitsbergen provided a superb opportunity to quantify how High Arctic coasts are respondingto rapid climate warming and associated paraglacial landscape transformation. In this paper we reconstruct the development of the paraglacial coasts in Petuniabukta and Adolfbukta, the northernmost bays of Billefjorden, central Spitsbergen. The study area is characterized by a sheltered location, a semi-arid, sub-polar climate, limited wave fetch and tidal range, and rapid retreat of all surrounding glaciers. Using a combination of geomorphological, sedimentological, remote sensing and dating methods, we study the processes controlling the coastal zone development over annual, century and millennial timescales. Interannual changes observed between 2008-2010 show that gravel barriers in the study area are resilient to the impacts of local storms and the operation of sea-ice processes. In general, the processes controlling the short-term barrier development often operate in the opposite direction to the landforming patterns visible in the longer-term evolution. Over multi-decadal timescales, since the end of the Little Ice Age. we observe drammatic changes in sediment flux and coastal response under an interval characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. A new approach of dating juvenile mollusc found in uplifted marine barriers led to the better understating of the Late Holocene evolution of a Petuniabukta coastal zone and its reaction to deglaciation, glacioisostatic uplift and sea-level fluctuations. We propose a new

  10. Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic Reindeer (Rangifer tarandus)

    PubMed Central

    Kvie, Kjersti S.; Heggenes, Jan; Anderson, David G.; Kholodova, Marina V.; Sipko, Taras; Mizin, Ivan; Røed, Knut H.

    2016-01-01

    In light of current debates on global climate change it has become important to know more on how large, roaming species have responded to environmental change in the past. Using the highly variable mitochondrial control region, we revisit theories of Rangifer colonization and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maximum. Comparing mtDNA control region sequences from the three Arctic archipelagos showed a strong genetic connection between the populations, supporting a common origin in the past. A genetic connection between the three archipelagos and two Russian mainland populations was also found, suggesting colonization of the Eurasian high Arctic archipelagos from the Eurasian mainland. The age of the Franz Josef Land material (>2000 years before present) implies that Arctic indigenous reindeer colonized the Eurasian Arctic archipelagos through natural dispersal, before humans approached this region. PMID:27880778

  11. A Pliocene chronostratigraphy for the Canadian western and high Arctic

    NASA Astrophysics Data System (ADS)

    Gosse, John; Braschi, Lea; Rybczynski, Natalia; Lakeman, Thomas; Zimmerman, Susan; Finkel, Robert; Barendregt, Rene; Matthews, John

    2014-05-01

    The Beaufort Formation comprises an extensive (1200 km long, more than 1 km thick) clastic wedge that formed during the Pliocene along the western Canadian Arctic Archipelago (CAA). In the western Arctic, the Ballast Brook (BB) site on Banks Is. exposes more than 20 km of section through the sandy and pebble sandy braided stream deposits with detrital organic beds. Farther north, Beaufort Fm fluvial and estuarine facies have been examined on Meighen Is. In the high Arctic, high terrace gravels (450 m high surface) at the Fyles Leaf Bed (FLB) and Beaver Pond (BP) sites on Ellesmere Is. are not considered part of the Beaufort Fm but have similar paleoenvironmental records. Fossil plant and faunal material from these sediments is often very well preserved and provides evidence of a boreal-type forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The paleoenvironmental records from the Beaufort Fm in the western CAA sites have revealed a similar ecosystem with noteworthy differences in MAT and perhaps seasonality. New burial ages from Meighen Is. indicate a maximum age of 6.1 Ma, consistent with yet much older than previous age estimates, but supportive of paleomagnetic and biostratigraphy at the same location. The age differences may account for some of the interpreted variations in paleoenvironments, in addition to spatial differences in

  12. The Pliocene High Arctic terrestrial palaeoenvironmental record and the development of the western Canadian Arctic coastal plain

    NASA Astrophysics Data System (ADS)

    Rybczynski, N.; Braschi, L.; Gosse, J. C.; Kennedy, C.; Fraser, D.; Lakeman, T.

    2013-12-01

    The Pliocene fossil record of the High Arctic is represented by a collection of sites that occur across the Canadian Arctic Archipelago (CAA), with deposits in the west comprising a 1200 km-long dissected clastic wedge (Beaufort Formation) and those in the east represented by high terrace gravel deposits. Fossil material from these sites is often very well preserved and provides evidence of a boreal-type forest. In the eastern Arctic our research sites includes the Fyles Leaf Bed (FLB) and the Beaver Pond (BP) sites, on west central Ellesmere Island. These are about 10 km apart and preserve evidence of forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Although modern camels live in open habitats, biogeographic and comparative dental evidence, in combination, suggest that the North American Arctic camels were browsers, and therefore forest-dwelling. Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The Beaufort Formation, located in the Western CAA, was formed by a regional northwesterly flowing braided fluvial system. The Beaufort Formation appears to have filled at least the western portions of the 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Formation, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse

  13. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  14. Microbial cell retention in a melting High Arctic snowpack, Svalbard

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland

    2014-05-01

    Introduction The melting snow pack represents a highly dynamic system not only for chemical compounds but also for bacterial cells. Microbial activity was found at subzero temperatures in ice veins when liquid water persists due to high concentration of ions on the surface of snow crystals and brine channels between large ice crystals in ice. Several observations also suggest microbial activity under subzero temperatures in seasonal snow. Even with regard to the spatial and temporal relevance of snow ecosystems, microbial activity in such an extreme habitat represents a relatively small proportion in the carbon flux of the global ecosystem and even of the glacial ecosystems specifically. On the other hand, it represents a remarkable piece of mosaic of the microbial activity in glacial ecosystems because the snow pack represents the first contact between the atmosphere and cryosphere. This topic also embodies vital crossovers to biogeochemistry and ecotoxicology, offering a quantitative view of utilization of various substrates relevant for downstream ecosystems. Here we present our study of the dynamics of both solvents and cells suspended in meltwater of the melting snowpack on a high arctic glacier to demonstrate the spatio-temporal constraint of interaction between solvent and bacterial cells in this environment. Method We used 6 lysimeters inserted into the bottom of the snowpack to collect replicated samples of melt water before it comes into contact with basal ice or slush layer at the base of the snow pack. The sampling site was chosen at Midre Lovénbreen (Svalbard, Kongsfjorden, MLB stake 6) where the snow pack showed melting on the surface but the basal ice was still dry. Sampling was conducted in June 2010 for a period of 10 days once per day and the snow profile was sampled according to distinguished layers in the profile at the beginning of the field mission and as bulk at its end. The height of snow above the lysimeters dropped from the initial 74 cm

  15. Phenological Advances and Trophic Consequences in Low- and High-Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Schmidt, N. M.; Forchhammer, M. C.; Bøving, P. S.; Post, E.

    2009-12-01

    Seasonal timing of reproduction (phenology) is highly responsive to global warming, especially in the Arctic. Here, we present a comparative analysis of multi-annual observational data on phenological dynamics across trophic levels from Zackenberg, North-East Greenland (a High Arctic site) and Kangerlussuaq, West Greenland (a Low Arctic site). Both sites have experienced considerable warming and our analyses indicate that rates of change in plant phenological responses may differ between sites, related to different proximal drivers at the two sites. We also present parallel data on interacting organisms (pollinators and mammalian herbivores) to evaluate the risks and effects of trophic mismatch at these two sites.

  16. Soil Biota and Litter Decay in High Arctic Ecosystems

    NASA Astrophysics Data System (ADS)

    González, G.; Rivera, F.; Makarova, O.; Gould, W. A.

    2006-12-01

    Frost heave action contributes to the formation of non-sorted circles in the High Arctic. Non-sorted circles tend to heave more than the surrounding tundra due to deeper thaw and the formation of ice lenses. Thus, the geomorphology, soils and vegetation on the centers of the patterned-ground feature (non-sorted circles) as compared to the surrounding soils (inter-circles) can be different. We established a decomposition experiment to look at in situ decay rates of the most dominant graminoid species on non-sorted circles and adjacent inter-circle soils along a climatic gradient in the Canadian High Arctic as a component of a larger study looking at the biocomplexity of small-featured patterned ground ecosystems. Additionally, we investigated variation in soil chemical properties and biota, including soil microarthropods and microbial composition and biomass, as they relate to climate, topographic position, and litter decay rates. Our three sites locations, from coldest to warmest, are Isachsen, Ellef Ringnes Island (ER), NU (bioclimatic subzone A); Mould Bay (MB), Prince Patrick Island, NT (bioclimatic subzone B), and Green Cabin (GC), Aulavik National Park, Thomsen River, Banks Island, NT (bioclimatic subzone C). Our sample design included the selection of 15 non-sorted circles and adjacent inter-circle areas within the zonal vegetation at each site (a total of 90 sites), and a second set of 3 non-sorted circles and adjacent inter-circle areas in dry, mesic and wet tundra at each of the sites. Soil invertebrates were sampled at each site using both pitfall traps, soil microbial biomass was determined using substrate induced respiration and bacterial populations were determined using the most probable number method. Decomposition rates were measured using litterbags and as the percent of mass remaining of Carex misandra, Luzula nivalis and Alopecuris alpinus in GC, MB and ER, respectively. Our findings indicate these graminoid species decayed significantly over

  17. Peopling of the high Arctic - induced by sea ice?

    NASA Astrophysics Data System (ADS)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  18. Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit.

    PubMed

    Noreen, Shabana; Shaheen, Ghazala; Akram, Muhammad; Rashid, Abid; Shah, Syed Muhammad Ali

    2016-07-01

    The objective of present study was to evaluate the antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. The parent extract was ethanolic extract while its sub fractions were prepared in n-hexane, chloroform and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). N-butanol fraction was the most effective antioxidant with 87.0±1.15 activity but the activity was less than ascorbic acid i.e. 93.74±0.12. Highly significant urease inhibition was shown by crude ethanolic extract (71.00±0.2a) with IC50 (392.66±2.1) followed by aqueous fraction (68.00±0.5e) with IC50 (159.83±2.8). The results of crude ethanolic extract and aqueous extracts were highly significant (p<0.05) than standard Thiourea. Present study showed that Vaccinium macrocarpon exhibits potent antiurease and antioxidant activities.

  19. Remote Sensing of Ocean Color in the High Arctic

    NASA Technical Reports Server (NTRS)

    Cota, G. F.; Platt, T.; Harrison, W. G.

    1997-01-01

    With four years of NASA SeaWiFS funding I established a completely new capability and expertise for in-water optical measurements nearly from scratch and with very little optical background. My first-year budget included only capital for a profiling spectral radiometer. Over the next 30 months we conducted six cruises and collected almost 300 optical profiles in challenging environments; many were collected from 21' launches. I also changed institutions during this period: it is very disruptive to move, set up a new lab, and hire and train new people, etc. We also did not have access to NASA funds for almost a year during the move because of difficulties in subcontracting and/or transferring funds. Nevertheless, we delivered data sets from six bio-optical cruises from three high latitude regions, although only two or three cruises from two areas were promised for our SeaWiFS research. The three Canadian Arctic field programs comprise the most comprehensive high latitude bio-optical and biogeochemical data sets in existence. Optical and pigment data from all six cruises have been submitted to NASA and are being included in the algorithm development test set. Additional data are still being submitted.

  20. Serosurvey for Toxoplasma gondii in arctic foxes and possible sources of infection in the high Arctic of Svalbard.

    PubMed

    Prestrud, Kristin Wear; Asbakk, Kjetil; Fuglei, Eva; Mørk, Torill; Stien, Audun; Ropstad, Erik; Tryland, Morten; Gabrielsen, Geir Wing; Lydersen, Christian; Kovacs, Kit M; Loonen, Maarten J J E; Sagerup, Kjetil; Oksanen, Antti

    2007-11-30

    Samples (blood or tissue fluid) from 594 arctic foxes (Alopex lagopus), 390 Svalbard reindeer (Rangifer tarandus platyrhynchus), 361 sibling voles (Microtus rossiaemeridionalis), 17 walruses (Odobenus rosmarus), 149 barnacle geese (Branta leucopsis), 58 kittiwakes (Rissa tridactyla), and 27 glaucous gulls (Larus hyperboreus) from Svalbard and nearby waters were assayed for antibodies against Toxoplasma gondii using a direct agglutination test. The proportion of seropositive animals was 43% in arctic foxes, 7% in barnacle geese, and 6% (1 of 17) in walruses. There were no seropositive Svalbard reindeer, sibling voles, glaucous gulls, or kittiwakes. The prevalence in the arctic fox was relatively high compared to previous reports from canid populations. There are no wild felids in Svalbard and domestic cats are prohibited, and the absence of antibodies against T. gondii among the herbivorous Svalbard reindeer and voles indicates that transmission of the parasite by oocysts is not likely to be an important mechanism in the Svalbard ecosystem. Our results suggest that migratory birds, such as the barnacle goose, may be the most important vectors bringing the parasite to Svalbard. In addition to transmission through infected prey and carrion, the age-seroprevalence profile in the fox population suggests that their infection levels are enhanced by vertical transmission.

  1. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean.

    PubMed

    Liu, Chuan-Zhou; Snow, Jonathan E; Hellebrand, Eric; Brügmann, Gerhard; von der Handt, Anette; Büchl, Anette; Hofmann, Albrecht W

    2008-03-20

    The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

  2. Diet dichotomy between two migrant seabirds breeding near a high Arctic polynya

    PubMed Central

    Boadway, Kelly A.; Davis, Shanti E.; Maftei, Mark; Mallory, Mark L.

    2017-01-01

    High Arctic polynyas are predictable areas of open water, which offer long-distance migrant seabirds a reliable source of food during a period when they have to replenish and accumulate energy for reproduction. Investigating the interaction between species nesting sympatrically in the vicinity of polynyas should provide insights into the role that such oceanographic features play for pre-breeding seabirds. We used stable isotopes (δ13C and δ15N) to compare the diet of two ground-nesting seabirds, Sabine's gull (Xema sabini) and Arctic tern (Sterna paradisaea), nesting on an island adjacent to a recurring polynya in the Canadian high Arctic in 2008 and 2009. We show that, unlike Arctic terns, the diet of Sabine's gulls appears to include a non-negligible amount of terrestrially derived prey during early incubation, and that overall both species segregate their dietary niche during pre-laying and early incubation.

  3. Persistence of bat defence reactions in high Arctic moths (Lepidoptera).

    PubMed

    Rydell, J; Roininen, H; Philip, K W

    2000-03-22

    We investigated the bat defence reactions of three species of moths (Gynaephora groenlandica, Gynaephora rossi (Lymantriidae) and Psychophora sabini (Geometridae)) in the Canadian Arctic archipelago. Since these moths inhabit the Arctic tundra and, therefore, are most probably spatially isolated from bats, their hearing and associated defensive reactions are probably useless and would therefore be expected to disappear with ongoing adaptation to Arctic conditions. When exposed to bat-like ultrasound (26 kHz and 110 dB sound pressure level root mean square at 1 m) flying male Gynaephora spp. always reacted defensively by rapidly reversing their flight course. They could hear the sound and reacted at least 15-25 m away. Psychophora sabini walking on a surface froze at distances of at least 5-7 m from the sound source. However, two out of three individuals of this species (all males) did not respond in any way to the sound while in flight. Hence, we found evidence of degeneration of bat defence reactions, i.e. adaptation to the bat-free environment, in P. sabini but not in Gynaephora spp. Some Arctic moths (Gynaephora spp.) still possess defensive reactions against bats, possibly because the selection pressure for the loss of the trait is such that it declines only very slowly (perhaps by genetic drift; and there may not have been enough time for the trait to disappear. One possible reason may be that Arctic moths have long generation times.

  4. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, C. D.; Grythe, H.; Skov, H.; Stohl, A.

    2016-11-01

    In the Arctic, impurities in the atmosphere and cryosphere can strongly affect the atmospheric radiation and surface energy balance. While black carbon has hence received much attention, mineral dust has been in the background. Mineral dust is not only transported into the Arctic from remote regions but also, possibly increasingly, generated in the region itself. Here we study mineral dust in the Arctic based on global transport model simulations. For this, we have developed a dust mobilization scheme in combination with the Lagrangian particle dispersion model FLEXPART. A model evaluation, based on measurements of surface concentrations and annual deposition at a number of stations and aircraft vertical profiles, shows the suitability of this model to study global dust transport. Simulations indicate that about 3% of global dust emission originates from high-latitude dust sources in the Arctic. Due to limited convection and enhanced efficiency of removal, dust emitted in these source regions is mostly deposited closer to the source than dust from for instance Asia or Africa. This leads to dominant contributions of local dust sources to total surface dust concentrations ( 85%) and dust deposition ( 90%) in the Arctic region. Dust deposition from local sources peaks in autumn, while dust deposition from remote sources occurs mainly in spring in the Arctic. With increasing altitude, remote sources become more important for dust concentrations as well as deposition. Therefore, total atmospheric dust loads in the Arctic are strongly influenced by Asian ( 38%) and African ( 32%) dust, whereas local dust contributes only 27%. Dust loads are thus largest in spring when remote dust is efficiently transported into the Arctic. Overall, our study shows that contributions of local dust sources are more important in the Arctic than previously thought, particularly with respect to surface concentrations and dust deposition.

  5. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    PubMed

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction

  6. Decline and recovery of a high Arctic wolf-prey system

    USGS Publications Warehouse

    Mech, L.D.

    2005-01-01

    A long-existing system of wolves (Canis lupus), muskoxen (Ovibos moschatus) and arctic hares (Lepus arcticus) in a 2600 km]2 area of Canada's High Arctic (80DG N latitude) began collapsing in 1997 because of unusual adverse summer weather but recovered to a level at which all three species were rreproducing by 2004. Recovery of wolf presence and reproduction appeared to be more dependent on muskox increase than on hare increase.

  7. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    EPA Science Inventory

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  8. Ice Mass Changes in the Russian High Arctic from Repeat High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Willis, Michael; Zheng, Whyjay; Pritchard, Matthew; Melkonian, Andrew; Morin, Paul; Porter, Claire; Howat, Ian; Noh, Myoung-Jong; Jeong, Seongsu

    2016-04-01

    We use a combination of ASTER and cartographically derived Digital Elevation Models (DEMs) supplemented with WorldView DEMs, the ArcticDEM and ICESat lidar returns to produce a time-series of ice changes occurring in the Russian High Arctic between the mid-20th century and the present. Glaciers on the western, Barents Sea coast of Novaya Zemlya are in a state of general retreat and thinning, while those on the eastern, Kara Sea coast are retreating at a slower rate. Franz Josef Land has a complicated pattern of thinning and thickening, although almost all the thinning is associated with rapid outlet glaciers feeding ice shelves. Severnaya Zemlya is also thinning in a complicated manner. A very rapid surging glacier is transferring mass into the ocean from the western periphery of the Vavilov Ice Cap on October Revolution Island, while glaciers feeding the former Matusevich Ice Shelf continue to thin at rates that are faster than those observed during the operational period of ICESat, between 2003 and 2009. Passive microwave studies indicate the total number of melt days is increasing in the Russian Arctic, although much of the melt may refreeze within the firn. It is likely that ice dynamic changes will drive mass loss for the immediate future. The sub-marine basins beneath several of the ice caps in the region suggest the possibility that mass loss rates may accelerate in the future.

  9. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    PubMed Central

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-01-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. PMID:26867798

  10. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-02-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  11. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.).

    PubMed

    Kalt, W; Ryan, D A; Duy, J C; Prior, R L; Ehlenfeldt, M K; Vander Kloet, S P

    2001-10-01

    Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.

  12. Clonal diversity and genetic differentiation revealed by SSR markers in wild Vaccinium macrocarpon and Vaccinium oxycoccos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American cranberry (Vaccinium macrocarpon Ait.) is a perennial, woody plant species, native to North American bogs and wetlands. Cranberries represent one of the few agriculturally important native plants in which wild gene pools are still readily available within the undeveloped wetlands the northe...

  13. Highly Elliptical Orbits for Arctic observations: Assessment of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Trichtchenko, L. D.; Nikitina, L. V.; Trishchenko, A. P.; Garand, L.

    2014-12-01

    The ionizing radiation environment was analyzed for a variety of potential Highly Elliptical Orbits (HEOs) with orbital periods ranging from 6 h to 24 h suitable to continuously monitor the Arctic region. Several models available from the ESA Space Environment Information System (SPENVIS) online tool were employed, including the new-generation AE9/AP9 model for trapped radiation. Results showed that the Total Ionizing Dose (TID) has a well-pronounced local minimum for the 14-h orbit, which is nearly identical to the overall minimum observed for the longest orbital period (24 h). The thickness of slab aluminum shielding required to keep the annual TID below 10, 5 and 3.33 krad (i.e. 150, 75 and 50 krad for 15 years of mission duration) for a 14-h orbit is 2.1, 2.7 and 3.1 mm respectively. The 16-h orbit requires an additional 0.5 mm of aluminum to achieve the same results, while the 24-h orbit requires less shielding in the order of 0.2-0.3 mm. Comparison between the AE8/AP8 and AE9/AP9 models was conducted for all selected orbits. Results demonstrated that differences ranged from -70% to +170% depending on orbit geometry. The vulnerability to the Single Event Effect (SEE) was compared for all orbits by modeling the Linear Energy Transfer (LET) for long-term conditions and for the 5 min “worst case” scenario. The analysis showed no preference among orbits with periods longer than 15 h, and in order to keep the 14-h orbit at the same level, the shielding should be increased by ∼33% or approximately by 1 mm. To keep the Single Event Upset (SEU) rate produced by the “worst case” event at the same order of magnitude as for the “statistical” long-term case, the thickness of aluminum should be as high as 22 mm. The overall conclusion from a space environment point of view is that all HEO orbits with periods equal to or longer than 14 h can be regarded as good candidates for operational missions. Therefore, selection of orbit should be based on other criteria

  14. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.

    PubMed

    Hokkanen, Juho; Mattila, Sampo; Jaakola, Laura; Pirttilä, Anna Maria; Tolonen, Ari

    2009-10-28

    Phenolic compounds from leaves of lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.), and the natural hybrid of bilberry and lingonberry (Vaccinium x intermedium Ruthe L., hybrid bilberry) were identified using LC/TOF-MS and LC/MS/MS after extraction from the plant material in methanol in an ultrasonicator. The phenolic profiles in the plants were compared using the LC/TOF-MS responses. This is the first thorough report of phenolic compounds in hybrid bilberry. In total, 51 different phenolic compounds were identified, including flavan-3-ols, proanthocyanidins, flavonols and their glycosides, and various phenolic acid conjugates. Of the identified compounds, 35 were detected in bilberry, 36 in lingonberry, and 46 in the hybrid. To our knowledge, seven compounds were previously unreported in Vaccinium genus and many of the compounds are reported for the first time from bilberry and lingonberry.

  15. High temperatures in the Late Cretaceous Arctic Ocean.

    PubMed

    Jenkyns, Hugh C; Forster, Astrid; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2004-12-16

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposits are usually inaccessible beneath a cover of floating ice. A shallow piston core taken from a drifting ice island in 1970 fortuitously retrieved unconsolidated Upper Cretaceous organic-rich sediment from Alpha ridge, a submarine elevated feature of probable oceanic origin. A lack of carbonate in the sediments from this core has prevented the use of traditional oxygen-isotope palaeothermometry. Here we determine Arctic palaeotemperatures from these Upper Cretaceous deposits using TEX86, a new palaeothermometer that is based on the composition of membrane lipids derived from a ubiquitous component of marine plankton, Crenarchaeota. From these analyses we infer an average sea surface temperature of approximately 15 degrees C for the Arctic Ocean about 70 million years ago. This calibration point implies an Equator-to-pole gradient in sea surface temperatures of approximately 15 degrees C during this interval and, by extrapolation, we suggest that polar waters were generally warmer than 20 degrees C during the middle Cretaceous (approximately 90 million years ago).

  16. Exploring the mobility of cryoconite on High-Arctic glaciers

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  17. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site.

    PubMed

    Hobbie, John E; Shaver, Gaius R; Rastetter, Edward B; Cherry, Jessica E; Goetz, Scott J; Guay, Kevin C; Gould, William A; Kling, George W

    2017-02-01

    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3 °C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.

  18. Leaf habit influences nitrogen remobilization in Vaccinium species.

    PubMed

    Grelet, G A; Alexander, I J; Proe, M F; Frossard, J S; Millard, P

    2001-05-01

    The effect of N supply on plant growth and leaf demography of a deciduous and an evergreen Ericaceae was studied in relation to their internal cycling of N. Mature ramets of Vaccinium myrtillus (deciduous) and Vaccinium vitis-idaea (evergreen) were established in sand culture for 1 year with an adequate supply of a balanced nutrient solution. During one growing season, the plants were given two levels of N supply enriched with 15N and eight sequential destructive harvests were taken. Recovery of unlabelled N in the new shoot was used to determine the remobilization of N from storage. Initially, growth was unaffected by N supply. After May, High N enhanced growth for both species but the nature of their growth response differed. For both species, new shoot biomass and leaf number increased but root biomass production was affected for V. myrtillus only. Whole plant biomass production was similar for both species under High N, but was greater for V. vitis-idaea under Low N. The amount of N remobilized to support new shoot growth was similar for the two species and was independent of N current supply. N was remobilized predominantly from previous year leaves for V. vitis-idaea and from previous year stems and roots for V. myrtillus. The contribution of remobilization to new shoot N was similar for the two species, but depended on N supply. Remobilization was faster in V. myrtillus, but lasted longer in V. vitis-idaea. The results are discussed in relation to species growth in N-poor environments, focusing on the extent to which species-differences in the dynamic of N remobilization and growth may explain their adaptation to constant and/or changeable N supply.

  19. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    USGS Publications Warehouse

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  20. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake.

    PubMed

    Soldánová, Miroslava; Georgieva, Simona; Roháčová, Jana; Knudsen, Rune; Kuhn, Jesper A; Henriksen, Eirik H; Siwertsson, Anna; Shaw, Jenny C; Kuris, Armand M; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D; Kostadinova, Aneta

    2017-03-14

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  1. Seasonal surface ozone and filterable bromine relationship in the high Arctic

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Schnell, R. C.; Sheridan, P. J.; Peterson, R. E.; Li, S.-M.; Winchester, J. W.; Tans, P. P.; Sturges, W. T.; Kahl, J. D.; Barrie, L. A.

    Ozone and filterable bromine measurements in the high Arctic during the spring return of solar radiation suggest a rapid concurrent destruction of O 3 and conversion of gaseous to particulate Br. Multiyear observations show that this pattern is an annual feature of O 3 measured near the surface at Barrow, Alaska, and other Arctic locations. Aircraft measurements show low O 3 amounts and high filterable Br concentrations beneath the surface temperature inversion over ice throughout the Arctic in the spring. A wintertime build-up of the gaseous organic compound bromoform and a rapid depletion of bromoform in the spring may be a link between the episodic O 3 depletion events and the accompanying rise in filterable Br.

  2. Magnetic subdomains of the High Arctic Magnetic High - Speculations and implications for understanding of the High Arctic Large Igneous Province and related tectonics.

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G. N.

    2015-12-01

    The crustal magnetic anomaly pattern for the high Arctic is dominated by a 1.3 x 106 km2 roughly oval domain of magnetic high, the High Arctic Magnetic High (HAMH) that includes numerous linear and curvi-linear shorter wavelength magnetic highs and lows with no single overall trend. Previous workers (including us) have associated this magnetic domain with the intrusive and extrusive mafic rocks of the High Arctic Large Igneous Province (HALIP). The HAMH shows the HALIP to be roughly the same size as other more well-known LIPs such as the Deccan Traps. The broad crustal magnetic character of LIPs is similar (and distinctive from non-LIP regions) worldwide. We identify 5 general subdomains and further distinguish 2 or 3 sections within each subdomain. We examine matched filter magnetic anomaly depth slices and the bathymetric and gravimetric expression of each sub-domain. Subdomains I and II associated respectively with the Mendeleev and Alpha Ridges have the deepest crustal roots. Subdomain III spans most of the central HAMH between I and II and has a distinctly less magnetic core. Subdomain IV on the Canadian margin side appears transitional to the relatively non-magnetic deep Canada Basin. Subdomain V is a zone of parallel magnetic highs at 90 degrees to the trend of the adjacent Lomonosov Ridge. Subdomains I and II may represent the deep cores of two smaller mantle plume heads that contributed to the overall HALIP. The presence of two plumes might serve to explain the two separate clusters of age dates (80 - 90 Ma and 120 - 130 Ma) found on igneous rocks surrounding and dredged from the HALIP region, and two stratigraphic sequence boundaries and extinction events associated with those time ranges. The boundaries between the magnetic subdomains might coincide with tectonic zones related to the post-LIP complex tectonic history of the Amerasian basin. A linear, through-going boundary that bisects the HAMH and runs perpendicular to the trend of the Lomonosov ridge

  3. High interannual variability of sea ice thickness in the Arctic region.

    PubMed

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  4. Continental Flood Basalts of Bennett Island, East Siberian Sea: High Arctic Geodynamics

    NASA Astrophysics Data System (ADS)

    Tegner, Christian; Pease, Victoria

    2014-05-01

    Volcanism provides a means of tracing mantle melting events and crustal evolution. The High Arctic includes a rich portfolio of volcanic rocks outcropping in the Circum-Arctic borderlands and imaged geophysically beneath the Alpha-Mendeleev Ridge that have been lumped together as a High-Arctic Large Igneous Province (HALIP). However, the ages (c. 440-60 Ma) and compositions (tholeiitic-alkaline-calc-alkaline) reported varies considerably and geological correlations remain elusive. One of the possible correlative events is the formation of continental flood basalts and sills in the Canadian Arctic Islands, Svalbard, Franz Josef Land and Bennett Island. These flood basalts have previously been linked to mantle plume melting and may represent a short-lived LIP event at c. 124-122 Ma. We present new data for a 350 m thick continental flood basalt succession at Bennett Island examined during fieldwork in Septemer 2013 on a joint Russian (VSEGEI) - Swedish (SWEDARCTIC) expedition to the De Long Archipelago. This volcanic succession is composed of 20 near-horisontal, undeformed flow units overlying a thin sedimentary succession of Cretaceous age (?) including coal seams and possibly volcaniclastic material that, in turn, unconformably overlies a more steeply dipping succession of Cambrian and Ordovician sediments. The flows are thinnest (c. 2-10 m) and aphyric to very-sparsely olivine-phyric in the lower portion. In contrast, the flows in the upper portion are thicker (>20 m) and aphyric to sparsely plagioclase-phyric. We will discuss new petrographic and compositional data for the Bennett Island flood basalts, possibly including new U-Pb age data. The aim is to evaluate their petrogenesis, to discuss their possible correlation to the flood basalt and sill successions of the Canadian Arctic Islands, Svalbard and Franz Josef Land and evaluate the geodynamic evolution of the High Arctic.

  5. Climate warming decreases the survival of the little auk (Alle alle), a high Arctic avian predator

    PubMed Central

    Hovinen, Johanna E H; Welcker, Jorg; Descamps, Sébastien; Strøm, Hallvard; Jerstad, Kurt; Berge, Jørgen; Steen, Harald

    2014-01-01

    Delayed maturity, low fecundity, and high adult survival are traits typical for species with a long-life expectancy. For such species, even a small change in adult survival can strongly affect the population dynamics and viability. We examined the effects of both regional and local climatic variability on adult survival of the little auk, a long-lived and numerous Arctic seabird species. We conducted a mark-resighting study for a period of 8 years (2006-2013) simultaneously at three little auk breeding sites that are influenced by the West Spitsbergen Current, which is the main carrier of warm, Atlantic water into the Arctic. We found that the survival of adult little auks was negatively correlated with both the North Atlantic Oscillation (NAO) index and local summer sea surface temperature (SST), with a time lag of 2 and 1 year, respectively. The effects of NAO and SST were likely mediated through a change in food quality and/or availability: (1) reproduction, growth, and development of Arctic Calanus copepods, the main prey of little auks, are negatively influenced by a reduction in sea ice, reduced ice algal production, and an earlier but shorter lasting spring bloom, all of which result from an increased NAO; (2) a high sea surface temperature shortens the reproductive period of Arctic Calanus, decreasing the number of eggs produced. A synchronous variation in survival rates at the different colonies indicates that climatic forcing was similar throughout the study area. Our findings suggest that a predicted warmer climate in the Arctic will negatively affect the population dynamics of the little auk, a high Arctic avian predator. PMID:25247069

  6. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic.

    PubMed

    Hansen, Brage B; Grøtan, Vidar; Aanes, Ronny; Sæther, Bernt-Erik; Stien, Audun; Fuglei, Eva; Ims, Rolf A; Yoccoz, Nigel G; Pedersen, Ashild Ø

    2013-01-18

    Recently accumulated evidence has documented a climate impact on the demography and dynamics of single species, yet the impact at the community level is poorly understood. Here, we show that in Svalbard in the high Arctic, extreme weather events synchronize population fluctuations across an entire community of resident vertebrate herbivores and cause lagged correlations with the secondary consumer, the arctic fox. This synchronization is mainly driven by heavy rain on snow that encapsulates the vegetation in ice and blocks winter forage availability for herbivores. Thus, indirect and bottom-up climate forcing drives the population dynamics across all overwintering vertebrates. Icing is predicted to become more frequent in the circumpolar Arctic and may therefore strongly affect terrestrial ecosystem characteristics.

  7. New High-Resolution Images of Summer Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kwok, Ronald; Untersteiner, Norbert

    2011-02-01

    In 1995 a group of government and academic scientists were appointed by the vice president of the United States to review and advise on acquisitions of imagery obtained by classified intelligence satellites (National Technical Means) and to recommend the declassification of certain data sets for the benefit of science. The group is called MEDEA and was first described by Richelson [1998]. MEDEA disbanded in 2000 but reassembled in 2008. On 15 June 2009, under the auspices of MEDEA, the U.S. Geological Survey (USGS) released to the public as Literal Image Derived Products (LIDPs) numerous images with 1-meter resolution acquired since 1999 at six locations in the Arctic Basin (Beaufort Sea, Canadian Arctic, Fram Strait, East Siberian Sea, Chukchi Sea, and Point Barrow). These locations are named “fiducial sites” to suggest that the collected imagery establishes a baseline data set for understanding recent and future changes. Data in the Global Fiducials Library (GFL) can be accessed via http://gfl.usgs.gov/. This data repository is updated by USGS as additional data become available.

  8. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area).

    PubMed

    Kim, Gwang Hoon; Klochkova, Tatyana A; Kang, Sung Ho

    2008-07-01

    Field survey of algae and cyanobacteria from terrestrial and freshwater habitats in the vicinity of arctic Ny-Alesund, Svalbard (790N) (high Arctic sea area) was performed in June 2006. Species diversity and abundance were evaluated by using epifluorescence microscopy and culturing methods. In total, 29 taxa in 25 genera were identified, of which Leptolyngbya spp., Trichormus sp. and Chlamydomonas nivalis were abundantly present in almost every sample. In several locations, blooms were formed by species C. nivalis, Scotiellopsis sp., Klebsormidium flaccidum, Zygnema sp., Meridion circulare, Tabellaria fenestrata and Fragilaria sp. Eleven new species from this locality are described.

  9. High diversity of root associated fungi in both alpine and arctic Dryas octopetala

    PubMed Central

    2010-01-01

    Background Dryas octopetala is a widespread dwarf shrub in alpine and arctic regions that forms ectomycorrhizal (ECM) symbiotic relationships with fungi. In this study we investigated the fungal communities associated with roots of D. octopetala in alpine sites in Norway and in the High Arctic on Svalbard, where we aimed to reveal whether the fungal diversity and species composition varied across the Alpine and Arctic regions. The internal transcribed spacer (ITS) region of nuclear ribosomal DNA was used to identify the fungal communities from bulk root samples obtained from 24 plants. Results A total of 137 operational taxonomic units (OTUs) were detected (using 97% similarity cut off during sequence clustering) and well-known ECM genera such as Cenococcum, Cortinarius, Hebeloma, Inocybe and Tomentella occurred frequently. There was no decrease in fungal diversity with increasing latitude. The overall spatial heterogeneity was high, but a weak geographical structuring of the composition of OTUs in the root systems was observed. Calculated species accumulation curves did not level off. Conclusions This study indicates that the diversity of fungi associated with D. octopetala does not decrease in high latitude arctic regions, which contrasts observations made in a wide spectrum of other organism groups. A high degree of patchiness was observed across root systems, but the fungal communities were nevertheless weakly spatially structured. Non-asymptotical species accumulation curves and the occurrence of a high number of singletons indicated that only a small fraction of the fungal diversity was detected. PMID:21070665

  10. Modeling of Arctic Storms with a Variable High-Resolution General Circulation Model

    SciTech Connect

    Taylor, Mark A.; Roesler, Erika Louise; Bosler, Peter Andrew

    2015-08-01

    The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.

  11. Micropropagation of Vaccinium sp. by in vitro axillary shoot proliferation.

    PubMed

    Litwińczuk, Wojciech

    2013-01-01

    The Vaccinium genus contains several valuable fruit and ornamental species, among others: highbush blueberry (Vaccinium × corymbosum L.), cranberry (Vaccinium macrocarpon Ait.), and lingonberry (Vaccinium vitis-idaea L.). In some most popular and valuable cultivars, the conventional propagation methods, exploiting hard or soft wood cuttings, are inefficient. The demand for nursery plants could be fulfilled only by micropropagation. In principle cultivars are propagated in vitro through similar three-stage method, based on subculture of shoot explants on different culture media supplemented with IAA (0-4 mg/L) and 2iP (5-10 mg/L), and rooting shoots in vivo. The obtained plantlets are transferred to peat substrate and grown in the glasshouse until the end of growing period. The development of adventitious shoots should be monitored and controlled during in vitro stages. Many clones have specific requirements for growing conditions and/or are recalcitrant.

  12. Carbon Exchange and NDVI by Vegetation Community in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gregory, F. M.; Treitz, P. M.; Scott, N. A.

    2009-12-01

    The objective of this work is to characterize trends in net carbon dioxide flux for three distinct high arctic vegetation communities. The analysis is based on field measures of CO2 flux and other biophysical variables, and multi-temporal high resolution satellite image derivitives (i.e. community class and spectral indices). Cape Bounty, located on the south coast of Melville Island in the Canadian Arctic Archipelago (74d 55m N, 109d 35m W) is representative of a high arctic ecosystem. The terrestrial landscape at Cape Bounty can be divided into three main vegetation community types that can loosely be defined along a moisture gradient: wet sedge meadow, mesic heath and polar desert. These vegetation types, along with bare rock and water bodies, can be distinguished readily on high resolution satellite imagery. Normalized Difference Vegetation Index (NDVI), a surrogate for plant productivity, can be derived and compared spatially by vegetation community and temporally by image date. Our field results suggest that only the wettest vegetation communities sustain net carbon sink status over the high arctic growing season. Composite weekly averages for wet sedge sample locations show them to be neutral to very weak net sinks at the beginning of the growing season, with carbon intake increasing to an average of 2 g/m2/hour at the peak of the growing season (i.e., late July). However, image classification by vegetation community shows that mesic heath and polar desert comprise the majority land cover of the region. These vegetation community types seem to exhibit neutral to weak carbon source status due to soil respiration which increases with higher temperatures. NDVI analysis shows the highest absolute vegetation productivity values and the greatest increases in productivity from early to peak season occur in the wet sedge meadow communities. Although low to mid Arctic sites, such as Toolik Lakes and Point Barrow in Alaska, have been intensively studied, there has as

  13. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  14. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  15. Unexpectedly high radioactivity burdens in ice-rafted sediments from the Canadian Arctic Archipelago.

    PubMed

    Cota, Glenn F; Cooper, Lee W; Darby, Dennis A; Larsen, I L

    2006-07-31

    Unexpectedly high specific activities of (137)Cs (1800-2000 Bq kg(-1) dry weight) have been detected in fine-grained sediments entrained in multi-year sea ice floes grounded in Resolute Bay near the center of the Northwest Passage through the Canadian Arctic Archipelago. These results are remarkable because: (1) the specific activities are about two orders of magnitude higher than average specific activities detected in previous studies of sea ice rafted sediments from the Arctic Ocean, (2) two independent observations of these unexpectedly high specific activities were made several years apart, (3) the sampling site is on the opposite side of the Arctic basin from potential radioactive sources such as disposal and weapons testing sites of the former Soviet Union and nuclear fuel reprocessing sites in western Europe, and (4) the closest compositional match to known geologic source regions is Banks Island, on the western edge of the Arctic Archipelago, although a smaller number of grains from one of the two samples were mineralogically matched to sediments in the Laptev Sea. Consequently, the sediments are probably not from a single distinct source and were likely mixed during sea ice transport. Coupled with previous observations of higher radionuclide specific activities in some sea ice rafted sediments relative to bottom sediments, these new observations indicate that comparatively high as well as variable radioactive contaminant burdens in ice rafted sediments must be common and geographically independent of proximity to known contaminant sources. The mechanisms that would facilitate these unexpected high radionuclide burdens in sea ice are not known and require additional study, as well as investigations of the implications for the transport and fate of contaminants in Arctic sea ice.

  16. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic).

    PubMed

    Zhang, Tao; Wang, Neng Fei; Zhang, Yu Qin; Liu, Hong Yu; Yu, Li Yan

    2015-10-23

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  17. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  18. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  19. Sleep and the endogenous melatonin rhythm of high arctic residents during the summer and winter.

    PubMed

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Arendt, Josephine

    2015-03-15

    The seasonal extremes of photoperiod in high latitudes place particular strain on the human circadian system. Arctic residence has been associated with poor sleep in both summer and winter. The goal of the work reported here was to study the circadian rhythms of individuals living in the high Arctic by measuring sleep variables and the timing of melatonin production. Two research trials were conducted in the built environment of CFS Alert (82° 29' 58″ N). Participants wore motion logging devices (actigraphs), which measure ambient light as well as motion, for 1week to provide data on sleep quantity, quality and light exposure. On the penultimate day of each trial, the participants were maintained together in a gymnasium with lounge chairs and saliva was collected at regular intervals to measure melatonin and assess the dim light melatonin onset (DLMO), offset (MelOFF), 50% rise and fall times of the whole profile and total production. In general, sleep duration was found to be significantly different between the January and June data collections at CFS Alert, with participants in June sleeping 50min on average less each day compared to their January counterparts. In June sleep was mistimed in many subjects relative to circadian phase as evidenced by the melatonin rhythm. Exposure to bright evening light was the most likely causal factor and should be avoided in the Arctic summer. The Arctic summer represents a particularly challenging environment for obtaining sufficient sleep. This has implications for the cognitive performance of staff during work hours.

  20. Marine microgels as a source of cloud condensation nuclei in the high Arctic.

    PubMed

    Orellana, Mónica V; Matrai, Patricia A; Leck, Caroline; Rauschenberg, Carlton D; Lee, Allison M; Coz, Esther

    2011-08-16

    Marine microgels play an important role in regulating ocean basin-scale biogeochemical dynamics. In this paper, we demonstrate that, in the high Arctic, marine gels with unique physicochemical characteristics originate in the organic material produced by ice algae and/or phytoplankton in the surface water. The polymers in this dissolved organic pool assembled faster and with higher microgel yields than at other latitudes. The reversible phase transitions shown by these Arctic marine gels, as a function of pH, dimethylsulfide, and dimethylsulfoniopropionate concentrations, stimulate the gels to attain sizes below 1 μm in diameter. These marine gels were identified with an antibody probe specific toward material from the surface waters, sized, and quantified in airborne aerosol, fog, and cloud water, strongly suggesting that they dominate the available cloud condensation nuclei number population in the high Arctic (north of 80°N) during the summer season. Knowledge about emergent properties of marine gels provides important new insights into the processes controlling cloud formation and radiative forcing, and links the biology at the ocean surface with cloud properties and climate over the central Arctic Ocean and, probably, all oceans.

  1. Marine microgels as a source of cloud condensation nuclei in the high Arctic

    PubMed Central

    Orellana, Mónica V.; Matrai, Patricia A.; Leck, Caroline; Rauschenberg, Carlton D.; Lee, Allison M.; Coz, Esther

    2011-01-01

    Marine microgels play an important role in regulating ocean basin-scale biogeochemical dynamics. In this paper, we demonstrate that, in the high Arctic, marine gels with unique physicochemical characteristics originate in the organic material produced by ice algae and/or phytoplankton in the surface water. The polymers in this dissolved organic pool assembled faster and with higher microgel yields than at other latitudes. The reversible phase transitions shown by these Arctic marine gels, as a function of pH, dimethylsulfide, and dimethylsulfoniopropionate concentrations, stimulate the gels to attain sizes below 1 μm in diameter. These marine gels were identified with an antibody probe specific toward material from the surface waters, sized, and quantified in airborne aerosol, fog, and cloud water, strongly suggesting that they dominate the available cloud condensation nuclei number population in the high Arctic (north of 80°N) during the summer season. Knowledge about emergent properties of marine gels provides important new insights into the processes controlling cloud formation and radiative forcing, and links the biology at the ocean surface with cloud properties and climate over the central Arctic Ocean and, probably, all oceans. PMID:21825118

  2. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation.

    PubMed

    Ancillotti, Claudia; Ciofi, Lorenzo; Rossini, Daniele; Chiuminatto, Ugo; Stahl-Zeng, Jianru; Orlandini, Serena; Furlanetto, Sandra; Del Bubba, Massimo

    2017-02-01

    Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

  3. Local cultural animal food contributes high levels of nutrients for Arctic Canadian Indigenous adults and children.

    PubMed

    Kuhnlein, Harriet V; Receveur, Olivier

    2007-04-01

    Food systems of Canadian Arctic Indigenous Peoples contain many species of traditional animal and plant food, but the extent of use today is limited because purchased food displaces much of the traditional species from the diet. Frequency and 24-h dietary interviews of Arctic adults and children were used to investigate these trends. The most frequently consumed Arctic foods were derived from animals and fish. In adults these foods contributed 6-40% of daily energy of adults. Children ate much less, 0.4-15% of energy, and >40% of their total energy was contributed by "sweet" and "fat" food sources. Nevertheless, for adults and children, even a single portion of local animal or fish food resulted in increased (P < 0.05) levels of energy, protein, vitamin D, vitamin E, riboflavin, vitamin B-6, iron, zinc, copper, magnesium, manganese, phosphorus, and potassium; although children had similar results for these nutrients, they did not reach significance for energy, vitamin D, or manganese. Because market foods are the major source of energy in the Arctic, traditional animal-source foods are extremely important to ensure high dietary quality of both adults and children.

  4. Microbes in High Arctic Snow and Implications for the Cold Biosphere ▿ †

    PubMed Central

    Harding, Tommy; Jungblut, Anne D.; Lovejoy, Connie; Vincent, Warwick F.

    2011-01-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83oN). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere. PMID:21460114

  5. The effect of snow cover on lemming population cycles in the Canadian high Arctic.

    PubMed

    Bilodeau, Frédéric; Gauthier, Gilles; Berteaux, Dominique

    2013-08-01

    Rising temperatures and changes in the precipitation regime will have a strong impact on the quality of the snow cover in the Arctic. A snow cover of good quality protecting lemmings from cold temperatures and predators is thought to be an important factor for maintaining the cyclic dynamic of their populations in the tundra. We examined if the characteristics of annual fluctuations (amplitude and shape of phases) in brown lemming (Lemmus trimucronatus) density could be determined by snow depth, snow density, sub-nivean temperature and persistence of snow. Using an 18-year time series of brown lemming abundance on Bylot Island in the Canadian Arctic, we tested if snow variables could explain the residual variation between the observed lemming density and the one predicted by models where cyclicity had been accounted for. Our analysis provides support for the hypothesis that snow cover can affect the amplitude and possibly also the periodicity of lemming population cycles in the High Arctic. Summer abundance of brown lemmings was higher following winters with a deep snow cover and a low-density snow pack near the ground but was unaffected by the date of establishment or melting and duration of the snow cover. Two snow variables showed a temporal trend; mean winter snow depth tended to increase and date of establishment of the hiemal threshold occurred earlier over time. These temporal trends, which should be favourable to lemmings, may explain why healthy population cycles have apparently been maintained at our study site contrary to other Arctic sites.

  6. Microbes in high arctic snow and implications for the cold biosphere.

    PubMed

    Harding, Tommy; Jungblut, Anne D; Lovejoy, Connie; Vincent, Warwick F

    2011-05-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83(o)N). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere.

  7. Impact of early and late winter icing events on sub-arctic dwarf shrubs.

    PubMed

    Preece, C; Phoenix, G K

    2014-01-01

    Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub-arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January-iced plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage.

  8. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  9. Living on the edge: Conservation genetics of seven thermophilous plant species in a High Arctic archipelago.

    PubMed

    Birkeland, Siri; Elisabeth Borgen Skjetne, Idunn; Krag Brysting, Anne; Elven, Reidar; Greve Alsos, Inger

    2017-01-20

    Small, isolated, and/or peripheral populations are expected to harbour low levels of genetic variation and may therefore have reduced adaptability to environmental change, including climate warming. In the Arctic, global warming has already caused vegetation change across the region and is acting as a significant stressor on Arctic biodiversity. Many of the rare plants in the Arctic are relicts from early Holocene warm periods, but their ability to benefit from the current warming is dependent on the viability of their populations. We therefore examined Amplified Fragment Length Polymorphism (AFLP) data from regional red listed vascular plant species in the High Arctic archipelago of Svalbard and reference populations from the main distribution area of: 1) Botrychium lunaria, 2) Carex capillaris ssp. fuscidula, 3) Comastoma tenellum, 4) Kobresia simpliciuscula ssp. subholarctica, 5) Ranunculus wilanderi, 6) Sibbaldia procumbens and 7) Tofieldia pusilla In addition, we gathered population size data in Svalbard. The Svalbard populations had low genetic diversity and distinctiveness and few or no private markers compared to populations outside the archipelago. This is similar to observations in other rare species in Svalbard and the genetic depletion may be due to an initial founder effect and/or a genetic bottleneck caused by late Holocene cooling. There seems to be limited gene flow from other areas and the Svalbard populations should therefore be considered as demographically independent management units. Overall, these management units have small and/or few populations and are therefore prone to stochastic events which may further increase vulnerability to inbreeding depression, loss of genetic variation, and reduced evolutionary potential. Our results support theory predicting lower levels of genetic diversity in small, isolated and/or peripheral populations and may be of importance for management of other rare plant species in the Arctic.

  10. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.

    PubMed

    Descamps, Sébastien; Aars, Jon; Fuglei, Eva; Kovacs, Kit M; Lydersen, Christian; Pavlova, Olga; Pedersen, Åshild Ø; Ravolainen, Virve; Strøm, Hallvard

    2017-02-01

    The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.

  11. The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James

    2014-05-01

    In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in

  12. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    PubMed

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change.

  13. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Hanna, Andrea J. M.; Allison, Mead A.; Bianchi, Thomas S.; Marcantonio, Franco; Goff, John A.

    2014-02-01

    Arctic coastal environments near major river outfalls, like Simpson Lagoon, Alaska and the adjacent Colville River Delta, potentially contain high-resolution sediment records useful in elucidating late Holocene Arctic sediment transport pathways and coupled terrestrial-ocean evidence of paleoclimate variability. This study utilizes a multi-tracer geochronology approach (137Cs, 239,240Pu, and 14C) tailored for high-latitude environments to determine the age models for cores collected from Simpson Lagoon, and to date seismic boundaries in shallow acoustic reflection data (CHIRP) to examine late Holocene infill patterns. Modern (~100 y) sediment accumulation rates range from <0.02 to 0.46±0.04 cm y-1, with a primary depocenter in western Simpson Lagoon adjacent to the Colville Delta and a secondary depocenter in eastern Simpson Lagoon. CHIRP reflectors, age-constrained by 14C analysis, reveal rapid late Holocene (0-3500 y BP) transgression consistent with high modern shoreline retreat rates. The western depocenter contains >5 m of late Holocene interbedded sediments, likely derived primarily from the Colville River, with onset of accumulation occurring prior to ~3500 y BP. A paleo-high in central Simpson Lagoon, separating the two depocenters, was subaerially exposed prior to ~600 y BP. The millimeters-per-year sedimentation rates across the lagoon, coupled with the undisturbed, interbedded sediment record, indicate that these settings hold great potential to develop new Arctic paleoenvironmental records.

  14. Biogeochemical sulphur cycle in an extreme environment - Life beneath a high arctic glacier, Nunavut, Canada

    USGS Publications Warehouse

    Grasby, S.E.; Allen, C.C.; Longazo, T.G.; Lisle, J.T.; Griffin, Dale W.; Beauchamp, B.

    2003-01-01

    Unique springs discharge from the surface of a high arctic glacier, releasing H2S, and depositing native sulphur, gypsum, and calcite. A rare CaCO3 polymorph, vaterite, is also observed. Physical and chemical conditions of the spring water and surrounding environment, as well as mineralogical and isotopic signatures, argue for biologically mediated redox reactions controlling sulfur. Cell counts and DNA analyses, confirm bacteria are present in the spring system. ?? 2003 Elsevier Science B.V. All rights reserved.

  15. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution

    PubMed Central

    Rybczynski, Natalia; Gosse, John C.; Richard Harington, C.; Wogelius, Roy A.; Hidy, Alan J.; Buckley, Mike

    2013-01-01

    The mid-Pliocene was a global warm period, preceding the onset of Quaternary glaciations. Here we use cosmogenic nuclide dating to show that a fossiliferous terrestrial deposit that includes subfossil trees and the northern-most evidence of Pliocene ice wedge casts in Canada’s High Arctic (Ellesmere Island, Nunavut) was deposited during the mid-Pliocene warm period. The age estimates correspond to a general maximum in high latitude mean winter season insolation, consistent with the presence of a rich, boreal-type forest. Moreover, we report that these deposits have yielded the first evidence of a High Arctic camel, identified using collagen fingerprinting of a fragmentary fossil limb bone. Camels originated in North America and dispersed to Eurasia via the Bering Isthmus, an ephemeral land bridge linking Alaska and Russia. The results suggest that the evolutionary history of modern camels can be traced back to a lineage of giant camels that was well established in a forested Arctic. PMID:23462993

  16. Characterization of Arctic Highly Magnetic Domains - the Geophysical Expression of Inferred Large Igneous Province(s)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G.; Miller, E. L.; Jackson, R.

    2012-12-01

    The magnetic anomalies of the high arctic are dominated by a large domain (1000 x 1700 km; the High Arctic Magnetic High, HAMH) consisting of numerous high-amplitude magnetic high ridges with a complex set of orientations and by other smaller, but still fundamentally highly magnetic, domains. The magnetic potential anomaly field (also known as pseudogravity) of the HAMH shows a single large intensity high and underscores the crustal-scale thickness of this geophysical feature (which also forms a prominent anomaly on satellite magnetic maps). The seafloor morphology of this region includes the complex linear trends of the Alpha and Mendeleev ridges, but the magnetic expression of this domain extends beyond the complex bathymetry to include areas where Canada Basin sediments have covered the complex basement topography. The calculated magnetic effect of the bathymetric ridges matches some of the observed magnetic anomalies, but not others. We have analyzed and modeled the distinctive HAMH and other smaller magnetic high domains to generate estimates of their volume and to characterize the directionality of their component features. Complimentary processing and modeling of high arctic gravity anomalies allows characterization of the density component of these geophysical features. Spatially, the HAMH encompasses the Alpha and Mendeleev "ridges," that are considered to represent a major mafic igneous province. The term "Alpha-Mendeleev Large Igneous Province" is given to a domain mapped by tracing magnetic anomalies in a recent map published by AAPG (Grantz and others, 2009). On this map the province is described as "alkali basalt with ages between 120 and 90 Ma". New seismic and bathymetric data, collected as part of on-going research efforts for definition of extended continental shelf, are revealing new details about the Alpha ridge. One interesting development is the possible identification of a supervolcano that may represent a major locus of igneous activity. In

  17. Arctic Cut-Off High Drives the Poleward Shift of a New Greenland Melting Record

    NASA Technical Reports Server (NTRS)

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-01-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centered over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. Subject terms: Earth sciences Atmospheric science Climate science

  18. Arctic cut-off high drives the poleward shift of a new Greenland melting record.

    PubMed

    Tedesco, M; Mote, T; Fettweis, X; Hanna, E; Jeyaratnam, J; Booth, J F; Datta, R; Briggs, K

    2016-06-09

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade.

  19. Arctic cut-off high drives the poleward shift of a new Greenland melting record

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-06-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade.

  20. Arctic cut-off high drives the poleward shift of a new Greenland melting record

    PubMed Central

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-01-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. PMID:27277547

  1. The active methanotrophic community in a wetland from the High Arctic.

    PubMed

    Graef, Christiane; Hestnes, Anne Grethe; Svenning, Mette Marianne; Frenzel, Peter

    2011-08-01

    The dominant terminal process of carbon mineralization in most freshwater wetlands is methanogenesis. With methane being an important greenhouse gas, the predicted warming of the Arctic may provide a positive feedback. However, the amount of methane released to the atmosphere may be controlled by the activity of methane-oxidizing bacteria (methanotrophs) living in the oxic surface layer of wetlands. Previously, methanotrophs have been isolated and identified by genetic profiling in High Arctic wetlands showing the presence of only a few genotypes. Two isolates from Solvatnet (Ny-Ålesund, Spitsbergen; 79°N) are available: Methylobacter tundripaludum (type I) and Methylocystis rosea (type II), raising the question whether the low diversity is a cultivation effect. We have revisited Solvatnet applying stable isotope probing (SIP) with (13) C-labelled methane. 16S rRNA profiling revealed active type I methanotrophs including M. tundripaludum, while no active type II methanotrophs were identified. These results indicate that the extant M. tundripaludum is an active methane oxidizer at its locus typicus; furthermore, Methylobacter seems to be the dominant active genus. Diversity of methanotrophs was low as compared, e.g. to wetland rice fields in the Mediterranean. This low diversity suggests a high vulnerability of Arctic methanotroph communities, which deserves more attention.

  2. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    PubMed

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  3. Net regional methane sink in High Arctic soils of northeast Greenland

    NASA Astrophysics Data System (ADS)

    Juncher Jørgensen, Christian; Lund Johansen, Katrine Maria; Westergaard-Nielsen, Andreas; Elberling, Bo

    2015-01-01

    Arctic tundra soils serve as potentially important but poorly understood sinks of atmospheric methane (CH4), a powerful greenhouse gas. Numerical simulations project a net increase in methane consumption in soils in high northern latitudes as a consequence of warming in the past few decades. Advances have been made in quantifying hotspots of methane emissions in Arctic wetlands, but the drivers, magnitude, timing and location of methane consumption rates in High Arctic ecosystems are unclear. Here, we present measurements of rates of methane consumption in different vegetation types within the Zackenberg Valley in northeast Greenland over a full growing season. Field measurements show methane uptake in all non-water-saturated landforms studied, with seasonal averages of - 8.3 +/- 3.7 μmol CH4 m-2 h-1 in dry tundra and - 3.1 +/- 1.6 μmol CH4 m-2 h-1 in moist tundra. The fluxes were sensitive to temperature, with methane uptake increasing with increasing temperatures. We extrapolate our measurements and published measurements from wetlands with the help of remote-sensing land-cover classification using nine Landsat scenes. We conclude that the ice-free area of northeast Greenland acts as a net sink of atmospheric methane, and suggest that this sink will probably be enhanced under future warmer climatic conditions.

  4. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect

    PubMed Central

    Swann, Abigail L.; Fung, Inez Y.; Levis, Samuel; Bonan, Gordon B.; Doney, Scott C.

    2010-01-01

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice. PMID:20080628

  5. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    PubMed Central

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  6. On the gate of Arctic footsteps: Doors open to foreign high schools

    NASA Astrophysics Data System (ADS)

    Manno, C.; Pecchiar, I.

    2012-12-01

    With the increased attention on the changing Arctic Region effective science education, outreach and communication need to be higher priorities within the scientific communities. In order to encourage the dissemination of polar research at educational levels foreign high school students and teachers were visiting Tromso University for a week. The project highlights the role of the universities as link between research and outreach. The first aim of this project was to increase awareness of foreign schools on major topics concerning the Arctic issues (from the economic/social to the environmental/climatic point of view). Forty three Italian high school students were involved in the laboratory activities running at the UiT and participated in seminars. Topics of focus were Ocean Acidification, Global Warming and the combined effects with other anthropogenic stressors. During their stay, students interviewed several scientists in order to allow them to edit a "visiting report" and to elaborate all the material collected. Back in Italy they performed an itinerant exhibition (presentation of a short movie, posters, and pictures) in various Italian schools in order to pass on their Arctic education experience. The project highlights the role of University as communicator of "climate related issues" in the international frame of the "new generation" of students.

  7. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  8. Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice

    PubMed Central

    Boos, Karin; D'Hert, Diederik; Nachtsheim, Dominik A.

    2016-01-01

    The at-sea distribution of top predators, seabirds and marine mammals, was determined in the high Arctic pack ice on board the icebreaker RV Polarstern in July to September 2014. In total, 1,620 transect counts were realised, lasting 30 min each. The five most numerous seabird species represented 74% of the total of 15,150 individuals registered: kittiwake Rissa tridactyla, fulmar Fulmarus glacialis, puffin Fratercula arctica, Ross's gull Rhodostethia rosea, and little auk Alle alle. Eight cetacean species were tallied for a total of 330 individuals, mainly white-beaked dolphin Lagenorhynchus albirostris and fin whale Balaenoptera physalus. Five pinniped species were represented by a total of 55 individuals and the polar bear Ursus maritimus was represented by 12 individuals. Four main geographical zones were identified: from Tromsø to the outer marginal ice zone (OMIZ), the Arctic pack ice (close pack ice, CPI), the end of Lomonosov Ridge off Siberia, and the route off Siberia and northern Norway. Important differences were detected between zones, both in species composition and in individual abundance. Low numbers of species and high proportion of individuals for some of them can be considered to reflect very low biodiversity. Numbers encountered in zones 2 to 4 were very low in comparison with other European Arctic seas. The observed differences showed strong patterns. PMID:27777810

  9. A Pan-arctic Survey about the Meaning of Winter Respiration in Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Selbmann, A. K.; Natali, S.

    2015-12-01

    The arctic is warming at twice the rate of the rest of the planet, with the greatest warming occurring during the winter months. Despite the cold temperatures during the winter, microbial activity continues and leads to a release of soil carbon during a criticial period when plant uptake has ceased. Due to the warming climate, huge pools of carbon stored in permafrost soils are expected to be released to the atmosphere. To identify the annual carbon balance of arctic ecosystems and potential impacts caused by a rise in temperatures, understanding the magnitude of winter respiration is essential. In order to refine current and future estimates of carbon loss from permafrost ecosystems, we conducted a pan-arctic synthesis of winter respiration from northern high latitude regions. We examined differences in cumulative winter respiration among permafrost zones, biomes, ecosystem types, and effects of measurement method on winter respiration estimates. We also examined effect of air temperature and precipitation (Worldclim database) on rates of winter respiration. The database contained 169 measurement points from 46 study sites located throughout the permafrost zones. We found that 21.6 % of annual respiration is happening during non-growing season, which can shift ecosystems from annual sinks during the growing season to net sources of carbon on an annual basis. Across studies, the average carbon loss during the winter was 66 g CO2-C. There was a strong relationship between mean annual air temperature and winter respiration, and lower respiration in continuous compared to discontinuous permafrost zones and northern areas without permafrost. The present results clarify the contribution of winter respiration to annual carbon balance and show the sensitivity of carbon release to rising temperatures in northern high latitudes. These results suggest that permafrost degradation and increased temperature will lead to a higher release of carbon from the Arctic in wintertime

  10. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  11. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  12. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  13. Bird orientation at high latitudes: flight routes between Siberia and North America across the Arctic Ocean

    PubMed

    Alerstam; Gudmundsson

    1999-12-22

    Bird migration and orientation at high latitudes are of special interest because of the difficulties associated with different compass systems in polar areas and because of the considerable differences between flight routes conforming to loxodromes (rhumblines) or orthodromes (great circle routes). Regular and widespread east-north-east migration of birds from the northern tundra of Siberia towards North America across the Arctic Ocean (without landmark influences) were recorded by ship-based tracking radar studies in July and August. Field observations indicated that waders, including species such as Phalaropusfulicarius and Calidris melanotos, dominated, but also terns and skuas may have been involved. Analysis of flight directions in relation to the wind showed that these movements are not caused by wind drift. Assuming possible orientation principles based on celestial or geomagnetic cues, different flight trajectories across the Arctic Ocean were calculated: geographical loxodromes, sun compass routes, magnetic loxodromes and magnetoclinic routes. The probabilities of these four alternatives are evaluated on the basis of both the availability of required orientation cues and the predicted flight paths. This evaluation supports orientation along sun compass routes. Because of the longitudinal time displacement sun compass routes show gradually changing compass courses in close agreement with orthodromes. It is suggested that an important migration link between Siberia and North American stopover sites 1000-2500km apart across the Arctic Ocean has evolved based on sun compass orientation along orthodrome-like routes.

  14. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere

    PubMed Central

    Fu, Pingqing; Kawamura, Kimitaka; Chen, Jing; Qin, Mingyue; Ren, Lujie; Sun, Yele; Wang, Zifa; Barrie, Leonard A.; Tachibana, Eri; Ding, Aijun; Yamashita, Youhei

    2015-01-01

    Organic aerosols are ubiquitous in the earth’s atmosphere. They have been extensively studied in urban, rural and marine environments. However, little is known about the fluorescence properties of water-soluble organic carbon (WSOC) or their transport to and distribution in the polar regions. Here, we present evidence that fluorescent WSOC is a substantial component of High Arctic aerosols. The ratios of fluorescence intensity of protein-like peak to humic-like peak generally increased from dark winter to early summer, indicating an enhanced contribution of protein-like organics from the ocean to Arctic aerosols after the polar sunrise. Such a seasonal pattern is in agreement with an increase of stable carbon isotope ratios of total carbon (δ13CTC) from −26.8‰ to −22.5‰. Our results suggest that Arctic aerosols are derived from a combination of the long-range transport of terrestrial organics and local sea-to-air emission of marine organics, with an estimated contribution from the latter of 8.7–77% (mean 45%). PMID:25920042

  15. The Unexpected Re-Growth of Ice-Entombed Bryophytes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    La Farge, C.

    2014-12-01

    The rapid retreat of glaciers and ice caps throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based ice. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little Ice Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little Ice Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial margins. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau ice caps on Baffin Island, Nunavut, where ice retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their

  16. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.

    PubMed

    Varin, Thibault; Lovejoy, Connie; Jungblut, Anne D; Vincent, Warwick F; Corbeil, Jacques

    2012-01-01

    Polar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived from Proteobacteria and Cyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation of Actinobacteria and Alphaproteobacteria in the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups.

  17. Experimental Increases in Snow Alter Physical, Chemical and Feedback Processes in the High Arctic.

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J.; Arens, S.; Hagedorn, B.; Sletten, R.; Persson, K.

    2006-12-01

    Winter conditions are changing throughout the Arctic. There are observed increases in snowfall across portions of Greenland while the margins of the Greenland Ice Sheet are thinning. However, these changes and the consequences of altered surface dynamics on High Arctic terrestrial ecosystems and their potential feedbacks are unclear. Increases in snow may cause warmer soils in winter, greater rates of winter C losses, increases in winter N mineralization, shorter growing seasons and reduced net C gain in summer due to either reduced gross photosynthesis or increases in ecosystem respiration. In this study, we have constructed replicated snow fences in polar desert and semi-desert (prostrate dwarf shrub) ecosystems in NW Greenland. Our measurements were taken at the deep (1.0 m snow depth) and intermediate (0.35 m snow depth) points along the drift to address these questions: a) how do increases in snow depth alter the surface and subsurface physical and chemical processes of these ecosystems?, and b) to what extent do increases in snow depth alter net CO2 exchange, gross ecosystem photosynthesis and ecosystem respiration? After three years of treatment we have found that in winter, deep snow results in warmer soil temperatures and in the subsequent summer, areas with deep winter snow have colder soil temperatures. This effect is most pronounced immediately following snowmelt and temperatures slowly return to ambient conditions near the end of summer. Deeper snow results in higher soil water contents in early summer but by mid-July soil water contents are the same, regardless of previous winter snow conditions. Net ecosystem CO2 exchange rates are consistently negative (C source to the atmosphere) through most of the growing season and vary in their magnitude by snow depth and ecosystem type. Areas with the deepest snow during winter consistently have the largest losses of CO2 to the atmosphere. The middle snow depth treatment showed lower rates of respiration than

  18. Experimental Increases in Snow Alter Physical, Chemical and Feedback Processes in the High Arctic.

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J.; Sullivan, P.; Sletten, R.; Arens, S.; Kristenson, H.

    2007-12-01

    Winter climate conditions are changing throughout the Arctic. In Greenland, there are observed increases in snowfall across portions of the island while the margins of the Greenland Ice Sheet are thinning. However, these changes and the consequences of altered meteorological surface dynamics on High Arctic terrestrial ecosystems and their potential feedbacks are unclear. Increases in winter snow cover may cause warmer soils in winter, greater rates of winter C losses, increases in winter N mineralization, shorter growing seasons and reduced net C gain in summer due to either reduced gross photosynthesis or increases in ecosystem respiration. In our study, we have constructed replicated snow fences in prostrate dwarf shrub tundra (polar desert and semi- desert) ecosystems in NW Greenland. Our measurements were taken at the deep (1.0 m snow depth) and intermediate (0.35 m snow depth) points along the drift to address these questions: a) how do increases in snow depth alter the surface and subsurface physical and chemical processes of these ecosystems?, and b) to what extent do increases in snow depth alter net CO2 exchange, gross ecosystem photosynthesis and ecosystem respiration? After three years of treatment we have found that in winter, deep snow results in warmer soil temperatures and in the subsequent summer, areas with deep winter snow have colder soil temperatures. This effect is most pronounced immediately following snowmelt and temperatures slowly return to ambient conditions near the end of summer. Deeper snow results in higher soil water contents in early summer, but by mid-July soil water contents have returned to ambient levels. Net ecosystem CO2 exchange rates are consistently negative (CO2 source to the atmosphere) through most of the growing season and vary in their magnitude by snow depth and ecosystem type. Areas with the deepest snow during winter consistently have the largest rates of CO2 loss to the atmosphere. The middle snow depth treatment

  19. [PATTERNS IN CIRCULATION AND TRANSMISSION OF MARINE BIRD PARASITES IN HIGH ARCTIC: A CASE OF ACANTHOCEPHALAN POLYMORPHUS PHIPPSI (PALAEACANTHOCEPHALA, POLYMORPHIDAE)].

    PubMed

    Galaktionov, K V; Atrashkevich, G I

    2015-01-01

    This study, based on the materials on parasitic infection of marine birds and invertebrates in Frantz Josef Land (FJL) collected in 1991-1993, focussed on the acanthocephalan Polymorphus phippsi. We identified this parasite, confirmed its species status and analysed its circulation and transmission patterns in high Arctic. The causes of its erroneous identification as P. minutus in several studies were also examined. In contrast to P. minutus, the transmission of P. phippsi is realized in marine coastal ecosystems. Its' main intermediate host in the Arctic is the amphipod Gammarus (Lagunogammarus) setosus, commonin coastal. areas of the shelf zone throughout the Arctic basin. P. phippsi population in FJL and the entire European Arctic is on the whole maintained by a single obligate final host, the common eider Somateria mollissima. Prevalence (P) of P. phippsi in this bird reached 100 %, with the maximal infection intensity (IImax) of 1188 and the mean abundance (MA) of 492.1. Other species of birds found to be infected with P. phippsi (Arctic turn, black guillemot, purple sandpiper and several gulls) are facultative and/or eliminative hosts. The most heavily infected birds were Arctic terns (P = 72.7%, IImax = 227, MA = = 47.1), which contained single mature acanthocephalans. For one of the FJL regions, infections flows of P. phippsi through various host categories were calculated. Involvement of birds unrelated to the common eider into the circulation of P. phippsi is facilitated by their feeding character in the Arctic. While coastal crustaceans are abundant, fish food is relatively scarce (polar cod, snailfishes), and so amphipods make up a considerable part of the diet of marine birds in FJL, if not most of it, as for instance in case of Arctic tern. This promotes an easy entry of the larvae of crustaceans-parasitizing helminthes (cestodes and acanthocephalans, including cystacanths P. phippsi) into non-specific hosts and opens broad colonization possibilities

  20. Protactinium-231 and thorium-230 abundances and high scavenging rates in the western arctic ocean

    PubMed

    Edmonds; Moran; Hoff; Smith; Edwards

    1998-04-17

    The Canadian Basin of the Arctic Ocean, largely ice covered and isolated from deep contact with the more dynamic Eurasian Basin by the Lomonosov Ridge, has historically been considered an area of low productivity and particle flux and sluggish circulation. High-sensitivity mass-spectrometric measurements of the naturally occurring radionuclides protactinium-231 and thorium-230 in the deep Canada Basin and on the adjacent shelf indicate high particle fluxes and scavenging rates in this region. The thorium-232 data suggest that offshore advection of particulate material from the shelves contributes to scavenging of reactive materials in areas of permanent ice cover.

  1. Circulation in the Arctic Ocean: Results from a high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Gao, Guoping; Zhang, Yu; Beardsley, Robert C.; Lai, Zhigang; Qi, Jianhua; Lin, Huichan

    2016-02-01

    A high-resolution unstructured-grid global-regional nested ice-current coupled FVCOM system was configured for the Arctic Ocean and used to examine the impact of model resolution and geometrical fitting on the basin-coastal scale circulation and transport in the pan-Arctic. With resolving steep bottom slope and irregular coastal geometry, the model was capable of simulating the multi-scale circulation and its spatial variability in the Arctic Basin and flow through the Bering Strait, Fram Strait and Canadian Archipelago. The model-simulated annual-mean velocities were in good agreement with observations within the measurement uncertainty and variability due to insufficient sampling. The errors in the flow direction varied with the flow speed, larger in the weak velocity zone and smaller as the velocity increased. In the upper 50-m layer, the annual-mean circulation pattern was dominated by the wind- and ice-drifting-induced anticyclonic circulation in the Arctic Basin and a relatively strong cyclonic slope current along the edge of the continental shelf. In the deep 200-600-m layer, a relatively permanent cyclonic circulation occurred along the steep bottom slope. These annual-mean circulations accounted for ∼85% of the total kinetic energy variance. De-trending the mean flow, an empirical orthogonal function (EOF) analysis showed that the semi-annual and seasonal variability of the sub-tidal flow was dominated by the first and second modes that accounted for ∼46% and ∼30% of the total variance in the upper 50-m layer and ∼58% and 20% in the deep 200-600-m layer. Consistent with observations, the AO-FVCOM-simulated cyclonic slope flow was characterized by a large positive topostrophy. Sensitivity experiment results with various grid configurations suggested that the currents over slopes, narrow straits and water passages featured topographic and baroclinic frontal dynamical scales associated with bathymetric slope and internal Rossby deformation radius

  2. Polyphenol profile and antioxidant activity of the fruit and leaf of Vaccinium glaucoalbum from the Tibetan Himalayas.

    PubMed

    Feng, Cheng-Yong; Wang, Wei-Wei; Ye, Jian-Fei; Li, Shan-Shan; Wu, Qian; Yin, Dan-Dan; Li, Bing; Xu, Yan-Jun; Wang, Liang-Sheng

    2017-03-15

    Vaccinium glaucoalbum, a perennial evergreen shrub, is naturally distributed in high-altitude areas. In this study, the composition and content of polyphenolic compounds in the fruit and leaf of V. glaucoalbum were characterized. In total, 24 chemical compounds were detected and identified by HPLC-DAD and HPLC-ESI-MS(2). Among all the compounds determined, 15 were anthocyanins and detected in fruit, 5 were flavonols and monitored in leaf, and 4 were chlorogenic acids and found in both fruit and leaf. The total anthocyanin content (TAC) of fruit (682mg/100gFW) was the highest among wild Vaccinium berries in China which have been investigated for now, and the total flavonol content of leaf was 2764mg/100gFW. The antioxidant activity of both fruit and leaf was assessed by DPPH and FRAP assays. Given its high TAC and strong antioxidant activity, the fruit of V. glaucoalbum has great potential in functional food.

  3. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic): Aquatic Fungi in the Arctic.

    PubMed

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem.

  4. Heavy metal bioaccumulation and histopathological alterations in wild Arctic hares (Lepus arcticus) inhabiting a former lead-zinc mine in the Canadian high Arctic: A preliminary study.

    PubMed

    Amuno, S; Niyogi, S; Amuno, M; Attitaq, J

    2016-06-15

    A preliminary study was undertaken to determine post-mining baseline accumulation of selected trace metals, and histopathological alterations in free-living arctic hares (Lepus arcticus) inhabiting the vicinity of a former lead-zinc mine located on North Baffin Island in the Canadian High Arctic. Trace metal analysis included measurement of As, Cd, Fe, Pb and Zn in tissues, and histopathological assessment comprised of evaluation and scoring the severity of metal-induced hepatic and renal lesions. Metal contents in hepatic and renal tissues from hares from the mine area compared with the reference locations did not differ significantly suggesting that the animals are not uniformly exposed to background levels of metals in the environment. However, relatively higher accumulation pattern of Pb and Cd were noted in liver tissues of hare from the mine area compared to the background area, but did not induce increased lesions. Surface soils near the mine area contained relatively higher levels of trace metals (Zn>Mn>Pb>Cd>As) compared to reference soils, and with soil levels of Cd showing strong correlation with Cd accumulation in kidney tissues. Generally, both case and reference animals showed similar but varying severities of hepatic and renal lesions at the sublethal level, notably vascular congestion, occasional large hepatocyte nuclei, binucleate hepatocytes, yellow-brown pigmentation in the cytoplasm of hepatocytes and clustering of lymphocytes. Only hares with relatively higher accumulation of Pb from the mine area showed evidence of renal edema and hemorrhage of the capsular surface. This study constitutes the first assessment of metal induced histopathological alterations in arctic hares exposed to a historical mining area in the high arctic.

  5. Pollution in the Summertime Canadian High Arctic observed during NETCARE 2014: Investigation of origin and composition

    NASA Astrophysics Data System (ADS)

    Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan

    2015-04-01

    The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources

  6. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  7. Proceedings of the Ninth International Vaccinium Symposium Vol.2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ISHS 9th International Vaccinium Symposium had 51 oral and 86 poster presentations. Scientists from 35 countries participated in the meeting. From these 120 manuscripts were published in this book. This book contains the state of blueberry research and breeding from a global view. Volume 2 conta...

  8. Proceedings of the Ninth International Vaccinium Symposium Vol. 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ISHS 9th International Vaccinium Symposium had 51 oral and 86 poster presentations. Scientists from 35 countries participated in the meeting. From these 120 manuscripts were published in this book. This book contains the state of blueberry research and breeding from a global view. Volume 1 conta...

  9. Microsatellite Markers Assess Genetic Diversity of Wild Southeastern American Vaccinium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture (USDA)-Agricultural Research Service (ARS)-National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, USA preserves genetic resources of many temperate fruit crops, including blueberry. This genebank contains > 1,750 Vaccinium accessions from 39 cou...

  10. Salmonella spp. dynamics in wild blueberry, Vaccinium angustifolium Aiton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A six-year field study was conducted in the two major wild, or lowbush, blueberry growing regions in Maine, Midcoast and Downeast. This study used data from two cropping cycles (four years) to model the dynamics of Salmonella spp. prevalence in wild blueberry fields (Vaccinium angustifolium Aiton). ...

  11. Seasonal variation in viability of cryopreserved Vaccinium dormant buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Berries of several Vaccinium L (Ericaceae) species have become an integral part of everyday diets of a vast American population. The most economically important are blueberry and cranberry. The USDA-ARS, National Plant Germplasm System maintains over 1,500 accessions of living plants and seeds at a ...

  12. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: isolation, identification, and bioactivities.

    PubMed

    Kylli, Petri; Nohynek, Liisa; Puupponen-Pimiä, Riitta; Westerlund-Wikström, Benita; Leppänen, Tiina; Welling, Jukka; Moilanen, Eeva; Heinonen, Marina

    2011-04-13

    European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably

  13. Phenolics in Slovenian bilberries ( Vaccinium myrtillus L.) and blueberries ( Vaccinium corymbosum L.).

    PubMed

    Moze, Spela; Polak, Tomaz; Gasperlin, Lea; Koron, Darinka; Vanzo, Andreja; Poklar Ulrih, Natasa; Abram, Veronika

    2011-07-13

    Phenolics from bilberries ( Vaccinium myrtillus L.) sampled from seven different locations and highbush blueberries ( Vaccinium corymbosum L.) from one location in Slovenia were analyzed. In samples of both species 15 anthocyanins were identified by LC-MS/MS. Their contents were expressed as cyanidin 3-glucoside equivalents (C3GE); bilberries contained 1210.3 ± 111.5 mg C3GE/100 g fw and blueberries 212.4 ± 14.1 mg C3GE/100 g fw. Glycosides of delphinidin and cyanidin were predominant (488.5 vs 363.6 mg C3GE/100 g fw) in the bilberries and glycosides of malvidin (108.0 vs 100.8 mg C3GE/100 g fw) in the blueberries, whereas the contents of peonidin were lowest (74.5 vs 4.8 mg C3GE/100 g fw) in both berries. The contents of flavanols, flavonols, phenolic acids, and stilbenes were determined by LC-MS. For the first time, rutin was identified (bilberries, 0.2 ± 0.0 mg/100 g fw; blueberries, 3.1 ± 0.1 mg/100 g fw). Chlorogenic acid (as 3-caffeoylquinic acid) was the most abundant among the phenolic acids (23.1 ± 1.0 mg/100 g fw in bilberries and 70.0 ± 3.4 mg/100 g fw in blueberries). Statistical analysis shows that the content of 27 individual flavonoids, phenolic acids, and stilbenes can be used to identify the picking region of these Slovenian bilberries.

  14. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  15. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  16. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions

    PubMed Central

    Valenzuela-Estrada, Luis R.; Richards, James H.; Diaz, Andres; Eissensat, David M.

    2009-01-01

    Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. ‘Bluecrop’ (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about –1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species. PMID:19188275

  17. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions.

    PubMed

    Valenzuela-Estrada, Luis R; Richards, James H; Diaz, Andres; Eissensat, David M

    2009-01-01

    Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. 'Bluecrop' (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about -1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species.

  18. Sediment dynamics in paired High Arctic lakes revealed from high-resolution swath bathymetry and acoustic stratigraphy surveys

    NASA Astrophysics Data System (ADS)

    Normandeau, A.; Lamoureux, S. F.; Lajeunesse, P.; Francus, P.

    2016-09-01

    High Arctic lakes are commonly used for paleoclimatic reconstructions because they are particularly sensitive to climate variability. However, the processes leading to sediment deposition and distribution in these lakes are often poorly understood. Here for the first time in the Canadian High Arctic, we present original data resulting from swath bathymetry and subbottom surveys carried out on two lakes at Cape Bounty, Melville Island. The results reveal the dynamic nature of the lakes, in which mass movement deposits and bedforms on the deltas reflect frequent slope instabilities and hyperpycnal flow activity. The analysis of the mass movement deposits reveals that small blocky debris flows/avalanches, debris flows, and a slide occurred during the Holocene. These mass movements are believed to have been triggered by earthquakes and potentially by permafrost thawing along the shoreline. Altogether, these mass movement deposits cover more than 30% of the lake floors. Additionally, the river deltas on both lakes were mapped and reveal the presence of several gullies and bedforms. The presence of gullies along the delta front indicates that hyperpycnal flows generated at the river mouth can transport sediment in different trajectories downslope, resulting in a different sediment accumulation pattern and record. The dynamic nature of these two lakes suggests that further analysis on sediment transport and distribution within Arctic lakes is required in order to improve paleoclimatic reconstructions.

  19. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic.

    PubMed

    Zheng, Jiancheng

    2015-03-15

    This study reports total Hg concentration and atmospheric flux data from ice cores and snow/ice shallow pits from two Canadian Arctic and one Greenland glaciers, with the aim of reconstructing a high resolution record of THg deposition extending back into the pre-industrial period. An 88-m ice core (653 samples) from the NEEM glacier site in Northwest Greenland was retrieved in August 2010. The bottom sample was dated to 1748, resulting in a 262 year archive. Snow and ice samples (143 samples) were recovered from a 10.3-m pit dug on the Mt. Oxford Icefield, Nunavut, in May 2008, covering 30 years. Another 15.5-m short core drilled on the Agassiz Ice Cap, Nunavut, in April 2009 yielded 191 samples covering 74 years. Net rates of atmospheric THg deposition (FTHg) were calculated based on THg concentrations and snow accumulation rates. Results from NEEM site show that THg and FTHg range from sub-pg g(-1) to 120.6 pg g(-1) (mean=1.5 pg g(-1), n=653) and from 0.06 to 1.42 μg m(-2) year(-1) (mean=0.25 μg m(-2) year(-1), n=218) respectively, much lower than those found in other natural media such as sediments, peat bogs and wet precipitation. The discrepancy of FTHg found in glaciers from other natural media could mainly be due to the more severe photo-reduction and reemission of deposited oxidized Hg. This study also demonstrates that reproducible THg archives can be reconstructed with glacier ice and snow samples from Greenland and the Canadian High Arctic. The THg archive reconstructed with the short core from NEEM site is so far the longest with the highest resolution in Greenland and the Canadian High Arctic.

  20. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  1. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-02-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  2. Increased peak-growing season GPP in a Greenlandic high-Arctic fen 1992-2008

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Mastepanov, M.; Tamstorf, M. P.; Eklundh, L.; Schubert, P.; Ekberg, A.; Sigsgaard, C.; Christensen, T. R.; Strom, L.

    2010-12-01

    Arctic ecosystems play a key role in the terrestrial carbon cycle. Recent studies have shown a greening trend and indicated an increase in CO2 uptake in boreal and sub- to low-Arctic areas. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with ground-based flux measurements of CO2 to investigate possible changes in gross primary production (GPP) for the peak of the growing season between 1992 and 2008 in the high-Arctic. As study area we used a 1.4 km2 rectangle surrounding Rylekaerene, a wet tundra ecosystem situated in the Zackenberg Research Area (74o28 N 20o34 W), North Eastern Greenland. We combined the light use efficiency (LUE) model (GPP= ɛ × PAR × FAPAR, where ɛ is the light use efficiency of the vegetation, PAR is the incoming photosynthetically active radiation and FAPAR the PAR absorbed by the green vegetation) with NDVI data derived from a set of peak growing season satellite images from 1992 to 2008. The LUE-modelled results show a substantial increase in peak-growing season GPP in Rylekaerene during the period. The GPP increase was accompanied by a strong increase in CO2 concentration and air temperature. Possibly, indicating that the increase in GPP was due to the substantial increase in local air temperature, possibly in combination with CO2 fertilization. To model GPP, we first parameterized the LUE-model for the vegetation types dominating the Rylekaerene for the peak of the growing season (peak). Average noon-time PAR measured on the days with satellite images was used as incoming PAR in the model. We found a significant linear relationship between ground-based FAPARpeak and NDVI. The ɛpeak was on average 1.78 g CO2 MJ-1 for this high-Arctic wet tundra ecosystem, which is reasonable for high-Arctic ecosystems. The model was evaluated against field-measured GPP. There were large model uncertainties. This was caused by large natural variation in the field measurements which the model was based upon and

  3. Airborne fission products in the High Arctic after the Fukushima nuclear accident.

    PubMed

    Paatero, Jussi; Vira, Julius; Siitari-Kauppi, Marja; Hatakka, Juha; Holmén, Kim; Viisanen, Yrjö

    2012-12-01

    High-volume aerosol samples were collected at the Mt. Zeppelin Global Atmosphere Watch station, Ny-Ålesund, Svalbard (78°58'N, 11°53'E). The samples were analysed to find out if the radionuclide emissions from the Fukushima nuclear power plant accident in March 2011 could be detected also in the atmosphere of the High Arctic. Iodine-131 and (134)Cs and (137)Cs were observed from 25 March 2011 onwards. The maximum (131)I, (134)Cs and (137)Cs activity concentrations were 810 ± 20, 659 ± 13, and 675 ± 7 μBq/m(3), respectively. The comparison between the measured (131)I activity concentrations at Mt. Zeppelin and those calculated with the SILAM dispersion model revealed that the timing of plume movements could be rather well predicted with the model. The activity concentration levels between the measurements and the model calculations deviated. This can be due to the inaccuracies in the source term. The (134)Cs:(137)Cs activity ratio recorded in Svalbard was high compared to earlier incidents. The ratio was close to 1 which is in agreement with other studies of the Fukushima releases. This distinctive activity ratio in the Fukushima debris could be used as a tracer in Arctic radioecology studies if the activity concentrations are high enough to be detected.

  4. Black carbon sources constrained by observations in the Russian high Arctic.

    PubMed

    Popovicheva, Olga Borsovna; Evangeliou, Nikolaos; Eleftheriadis, Konstantinos; Kalogridis, Athina Cerise; Movchan, Vadim Vadimovich; Sitnikov, Nikolay; Eckhardt, Sabine; Makshtas, Alexander; Stohl, Andreas

    2017-02-24

    Understanding the role of short-lived climate forcers like black carbon (BC) at high northern latitudes in climate change is hampered by the scarcity of surface observations in the Russian Arctic. In this study, highly time resolved Equivalent BC (EBC) measurements during a ship campaign in the White, Barents and Kara Seas in October 2015 are presented. The measured EBC concentrations are compared with BC concentrations simulated with a Lagrangian particle dispersion model coupled with a recently completed global emission inventory to quantify the origin of the Arctic BC. EBC showed increased values (100-400 ng m-3) in the Kara Strait, Kara Sea, and Kola Peninsula, and an extremely high concentration (1000 ng m-3) in the White Sea. Assessment of BC origin throughout the expedition showed that gas flaring emissions from the Yamal/Khanty-Mansiysk and Nenets/Komi regions contributed the most when the ship was close to the Kara Strait, north of 70˚N. Near Arkhangelsk (White Sea), biomass burning in mid-latitudes, surface transportation, and residential and commercial combustion from Central and Eastern Europe were found to be important BC sources. The model reproduced observed EBC concentrations efficiently, building credibility in the emission inventory for BC emissions at high northern latitudes.

  5. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  6. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  7. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic.

    PubMed

    Niederberger, Thomas D; Perreault, Nancy N; Lawrence, John R; Nadeau, Jay L; Mielke, Randall E; Greer, Charles W; Andersen, Dale T; Whyte, Lyle G

    2009-03-01

    The perennial springs at Gypsum Hill (GH) and Colour Peak (CP), situated at nearly 80 degrees N on Axel Heiberg Island in the Canadian high Arctic, are one of the few known examples of cold springs in thick permafrost on Earth. The springs emanate from deep saline aquifers and discharge cold anoxic brines rich in both sulfide and sulfate. Grey-coloured microbial streamers form during the winter months in snow-covered regions of the GH spring run-off channels (-1.3 degrees C to 6.9 degrees C, approximately 7.5% NaCl, 0-20 p.p.m. dissolved sulfide, 1 p.p.m. dissolved oxygen) but disappear during the Arctic summer. Culture- and molecular-based analyses of the 16S rRNA gene (FISH, DGGE and clone libraries) indicated that the streamers were uniquely dominated by chemolithoautotrophic sulfur-oxidizing Thiomicrospira species. The streamers oxidized both sulfide and thiosulfate and fixed CO(2) under in situ conditions and a Thiomicrospira strain isolated from the streamers also actively oxidized sulfide and thiosulfate and fixed CO(2) under cold, saline conditions. Overall, the snow-covered spring channels appear to represent a unique polar saline microhabitat that protects and allows Thiomicrospira streamers to form and flourish via chemolithoautrophic, phototrophic-independent metabolism in a high Arctic winter environment characterized by air temperatures commonly below -40 degrees C and with an annual average air temperature of -15 degrees C. These results broaden our knowledge of the physical and chemical boundaries that define life on Earth and have astrobiological implications for the possibility of life existing under similar Martian conditions.

  8. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    PubMed

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  9. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic

    PubMed Central

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0–21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere. PMID:26376204

  10. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  11. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    PubMed

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux.

  12. Next generation sequencing of rabbiteye blueberry (Vaccinium virgatum 'Premier') and transcriptome comparisons to highbush (Vaccinium corymbosum) genomic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium virgatum (syn V. ashei) is commonly known as rabbiteye blueberry and native to the Southeastern United States. Cultivars are typically grown from North Carolina south to Florida and west to Texas for commercial blueberry production. In the Southeast, plants exhibit superior environmental ...

  13. The Canadian Arctic ACE/OSIRIS Validation Project at PEARL: Validating Satellite Observations Over the High Arctic

    NASA Astrophysics Data System (ADS)

    Walker, Kaley A.; Strong, Kimberly; Fogal, Pierre F.; Drummond, James R.

    2016-04-01

    Ground-based measurements provide critical data for the validation of satellite retrievals of atmospheric trace gases and for the assessment of long-term stability of these measurements. As of February 2016, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has been making measurements of the Earth's atmosphere for nearly twelve years and Canada's Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite has been operating for fourteen years. As ACE and OSIRIS operations have extended beyond their planned two-year missions, there is an ongoing need to validate the trace gas data profiles from the ACE-Fourier Transform Spectrometer (ACE-FTS), the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) and OSIRIS. In particular, validation comparisons are needed during Arctic springtime to understand better the measurements of species involved in stratospheric ozone chemistry. To this end, thirteen Canadian Arctic ACE/OSIRIS Validation Campaigns have been conducted during the spring period (February - April in 2004 - 2016) at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80N, 86W). For the past decade, these campaigns have been undertaken in collaboration with the Canadian Network for the Detection of Atmospheric Change (CANDAC). The spring period coincides with the most chemically active time of year in the Arctic, as well as a significant number of satellite overpasses. A suite of as many as 12 ground-based instruments, as well as frequent balloon-borne ozonesonde and radiosonde launches, have been used in each campaign. These instruments include: a ground-based version of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a terrestrial version of the ACE-MAESTRO, a SunPhotoSpectrometer, two CANDAC zenith-viewing UV-visible grating spectrometers, a Bomem DA8 Fourier transform spectrometer

  14. Mechanism of tolerance of blueberry (Vaccinium sp) to hexazinone

    SciTech Connect

    Baron, J.J.

    1985-01-01

    Hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-trazine-2,4(1H,3H)-dione) was applied as a soil drench to 1-year-old rooted hardwood cuttings of highbush (Vaccinium corymbosum L.) and rabbiteye (V. ashei Reade) blueberry plants. No differences in susceptibility to hexazinone were detected among 10 highbush and 3 rabbiteye cultivars grown in a fine sandy soil. The tolerance of two highbush and two rabbiteye cultivars to hexazinone were studied in low, medium, and high organic matter soils. Hexazinone at 1 or 2 kg/ha had no inhibitory effect on blueberry growth in the high organic matter soil, inhibited growth slightly on the medium organic matter soil, and caused severe injury in the low organic matter soil. Hexazinone toxicity, absorption, translocation, metabolism, and effect on photosynthesis were investigated with highbush and rabbiteye blueberry and goldenrod (Solidago fistulosa Miller), which were growing in hydroponic culture. Highbush and rabbiteye blueberry plants were three times more tolerant to root applications of hexazinone than was goldenrod. Blueberry plants absorbed an average of 7.9% of the root applied /sup 14/C-hexazinone and the goldenrod absorbed an average of 10.1%. An average of 6.8% of the root absorbed hexazinone (/sup 14/C-label) was translocated from the root system of the blueberry plants to stem and leaves. Radioactivity in the goldenrod plants was equally distributed between the roots and shoots. The majority of the radioactivity in blueberry and goldenrod plants was recovered in the form of hexazinone. Root absorbed hexazinone caused a rapid inhibition of photosynthesis in intact goldenrod leaves at rates of 10 ..mu..M. Root absorbed hexazinone inhibited photosynthesis in intact blueberry leaves at hexazinone concentrations of 100 ..mu..M.

  15. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    PubMed

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  16. A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications

    PubMed Central

    Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald

    2016-01-01

    Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary. PMID:27991515

  17. Managing scientific diving operations in a remote location: the Canadian high Arctic.

    PubMed

    Sayer, Martin D J; Küpper, Frithjof C; van West, Pieter; Wilson, Colin M; Brown, Hugh; Azzopardi, Elaine

    2013-12-01

    Global climate change is expected to alter the Arctic bioregion markedly in coming decades. As a result, monitoring of the expected and actual changes has assumed high scientific significance. Many marine science objectives are best supported with the use of scientific diving techniques. Some important keystone environments are located in extremely remote locations where land-based expeditions offer high flexibility and cost-effectiveness over ship-based operations. However, the extreme remoteness of some of these locations, coupled with complex and unreliable land, sea and air communications, means that there is rarely quick access (< 48 h) to any specialized diving medical intervention or recompression. In 2009, a land based expedition to the north end of Baffin Island was undertaken with the specific aim of establishing an inventory of the diversity of seaweeds and their pathogens that was broadly representative of a high Arctic marine environment. This account highlights some of the logistical considerations taken on that expedition; specifically it outlines the non-recompression treatment pathway that would have been adopted in the event of a diver suffering decompression illness.

  18. High tolerance of protozooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Ludwig, A.; Riebesell, U.

    2012-09-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal protozooplankton (PZP in the following) community during the post-bloom period in the Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on PZP composition and diversity. Both, the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of protozoans remained unaffected by changes in pCO2/pH. The different pCO2 treatments did not have any effect on food availability and phytoplankton composition and thus no indirect effects e.g. on the total carrying capacity and phenology of PZP could be observed. Our data points at a high tolerance of this Arctic PZP community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include PZP in order to test whether the observed low sensitivity of protozoans to OA is typical for coastal communities where changes in seawater pH occur frequently.

  19. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Malzahn, A. M.; Ludwig, A.; Riebesell, U.

    2013-03-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal microzooplankton community during the post-bloom period in Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on microzooplankton composition and diversity. Both the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of microzooplankton remained unaffected by changes in pCO2/pH. Although the different pCO2 treatments affected food availability and phytoplankton composition, no indirect effects (e.g. on the total carrying capacity and phenology of microzooplankton) could be observed. Our data point to a high tolerance of this Arctic microzooplankton community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include microzooplankton in order to test whether the observed low sensitivity to OA is typical for coastal communities where changes in seawater pH occur frequently.

  20. Seasonal shift in factors controlling net ecosystem production in a high Arctic terrestrial ecosystem.

    PubMed

    Uchida, Masaki; Kishimoto, Ayaka; Muraoka, Hiroyuki; Nakatsubo, Takayuki; Kanda, Hiroshi; Koizumi, Hiroshi

    2010-01-01

    We examined factors controlling temporal changes in net ecosystem production (NEP) in a high Arctic polar semi-desert ecosystem in the snow-free season. We examined the relationships between NEP and biotic and abiotic factors in a dominant plant community (Salix polaris-moss) in the Norwegian high Arctic. Just after snowmelt in early July, the ecosystem released CO(2) into the atmosphere. A few days after snowmelt, however, the ecosystem became a CO(2) sink as the leaves of S. polaris developed. Diurnal changes in NEP mirrored changes in light incidence (photosynthetic photon flux density, PPFD) in summer. NEP was significantly correlated with PPFD when S. polaris had fully developed leaves, i.e., high photosynthetic activity. In autumn, NEP values decreased as S. polaris underwent senescence. During this time, CO(2) was sometimes released into the atmosphere. In wet conditions, moss made a larger contribution to NEP. In fact, the water content of the moss regulated NEP during autumn. Our results indicate that the main factors controlling NEP in summer are coverage and growth of S. polaris, PPFD, and precipitation. In autumn, the main factor controlling NEP is moss water content.

  1. A mass balance model describing multiyear fate of organochlorine compounds in a high Arctic lake.

    PubMed

    Helm, Paul A; Diamond, Miriam L; Semkin, Ray; Strachan, William M J; Teixeira, Camilla; Gregor, Dennis

    2002-03-01

    Data collected over a 3-year study of a high arctic watershed and lake are used to understand the fate of organochlorine compounds (OCs) and form the basis of a mass balance contaminant fate model. The model uses the fugacity/aquivalence approach to describe OC dynamics between air, stream inflows and outflow, the water column, and surficial sediments. The steady-state model results indicate that stream inflows contributed from 96 to >99% of total chemical loadings, but 57-98% of total loadings were lost from the lake via the outlet, the percentage of which is controlled by the hydrologic regime of the high arctic lake. Conversely, only 0.4-3.4% of loadings were retained within the sediments due to the high export rate, minimal scavenging from the water column and low organic carbon fraction of the sediments. Using the unsteady-state model, which includes year-round processes, degradation was estimated to account for losses of 7-32% for the more persistent OCs and 42-50% for the less persistent OCs (alpha-HCH, gamma-HCH, and endosulfan I). If loadings were eliminated, water column concentrations would decline with half-lives <1 year for less persistent OCs and 1-2 years for the more persistent OCs, whereas the half-lives for OCs in sediment are 8-25 years.

  2. A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications.

    PubMed

    Bono, Richard K; Clarke, Julia; Tarduno, John A; Brinkman, Donald

    2016-12-19

    Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.

  3. A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications

    NASA Astrophysics Data System (ADS)

    Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald

    2016-12-01

    Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.

  4. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of

  5. Arctic sea ice leads from advanced very high resolution radiometer images

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1995-01-01

    A large number of advanced very high resolution radiometer (AVHRR) images from throughout 1989 are analyzed to determine lead characteristics. The units of analysis are square 200-km cells, and there are 270 such cells in the data set. Clouds are masked manually. Leads determine from images of the potential open water delta, a scaled version of the surface temperature or albedo that weights thin ice by its thermal or brightness impact. The lead fraction is determined as the mean delta, the monthly mean lead fraction ranges from 0.02 in winter to 0.06 in summer in the central Arctic and is near 0.08 in the winter in the peripheral seas. A method of accounting for lead width sampling errors due to the finite sample areas is introduced. In the central Arctic the observed mean lead width for a threshold of delta = 0.1 ranges from 2 or 3 km (near the resolution of the instrument) in the winter to 6 km in the summer. In the peripheral seas it is about 5 km in the winter. Width distributions are often more heavily weighted in the tail than exponential distributions and are well approximated by a power law. The along-track, number density power law N = aw(exp -6) has a mean exponent of b = 1.60 (standard deviation 0.18) and shows some seasonal variability. Mean floe widths in the central Arctic are 40 to 50 km in the winter, dropping to about 10 km in the summer. For floes the power law has a mean exponent of 0.93 and exhibits a clearer annual cycle. Lead orientation is determined with a method based on the direction of maximum extent.

  6. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  7. Freshwater discharges drive high levels of methylmercury in Arctic marine biota

    PubMed Central

    Schartup, Amina T.; Balcom, Prentiss H.; Soerensen, Anne L.; Gosnell, Kathleen J.; Calder, Ryan S. D.; Mason, Robert P.; Sunderland, Elsie M.

    2015-01-01

    Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25–200%, overwhelming climate-driven changes over the next decade. PMID:26351688

  8. Freshwater discharges drive high levels of methylmercury in Arctic marine biota.

    PubMed

    Schartup, Amina T; Balcom, Prentiss H; Soerensen, Anne L; Gosnell, Kathleen J; Calder, Ryan S D; Mason, Robert P; Sunderland, Elsie M

    2015-09-22

    Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.

  9. High renesting rates in arctic-breeding Dunlin (Calidris alpina): a clutch-removal experiment

    USGS Publications Warehouse

    Gates, H. River; Lanctot, Richard B.; Powell, Abby N.

    2013-01-01

    The propensity to replace a clutch is a complex component of avian reproduction and poorly understood. We experimentally removed clutches from an Arctic-breeding shorebird, the Dunlin (Calidris alpina arcticola), during early and late stages of incubation to investigate replacement clutch rates, renesting interval, and mate and site fidelity between nesting attempts. In contrast to other Arctic studies, we documented renesting by radiotracking individuals to find replacement clutches. We also examined clutch size and mean egg volume to document changes in individual females’ investment in initial and replacement clutches. Finally, we examined the influence of adult body mass, clutch volume, dates of clutch initiation and nest loss, and year on the propensity to renest. We found high (82–95%) and moderate (35–50%) rates of renesting for early and late incubation treatments. Renesting intervals averaged 4.7–6.8 days and were not different for clutches removed early or late in incubation. Most pairs remained together for renesting attempts. Larger females were more likely to replace a clutch; female body mass was the most important parameter predicting propensity to renest. Clutches lost later in the season were less likely to be replaced. We present evidence that renesting is more common in Arctic-breeding shorebirds than was previously thought, and suggest that renesting is constrained by energetic and temporal factors as well as mate availability. Obtaining rates of renesting in species breeding at different latitudes will help determine when this behavior is likely to occur; such information is necessary for demographic models that include individual and population-level fecundity estimates.

  10. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-01-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008, particulate and dissolved organic matter (POM, DOM) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  11. High levels of PCBs in breast milk of Inuit women from arctic Quebec

    SciTech Connect

    Dewailly, E. ); Nantel, A.; Weber, J.P. ); Meyer, F. )

    1989-11-01

    In the last twenty years polychlorinated biphenyls (PCBs) have been identified as major contaminants of the natural environment. More recently, the presence of such toxic compounds was described in arctic regions. In this regions, PCBs have been found in water, snow, ice and air. The level of PCB contamination was significantly lower than that found at midlatitudes. PCB levels are often monitored because they could also reflect exposure to several other chemical contaminants such as other organochlorines. Other highly toxic compounds such as polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were found in the blubber from arctic ringed seals caught near the west coast of Spitzbergen. Since the closest known sources of PCDD and PCDF were several thousands of kilometers away, these results were surprising. The consumption of fish and marine mammals by the Inuit people is markedly higher than in the rest of the Canadian population and in some communities, sea mammals represent a significant part of the diet. It is possible that Inuit are exposed to an undesirably high of PCBs and other organochlorinated compounds. Levels of PCBs in the Inuit diet were assessed in Broughton Island, North West Territories, Canada. The present study was designed to assess the PCB levels in the breast milk of lactating Inuit women from the Hudson Bay region of Northern Quebec and of women from Southern Quebec.

  12. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic.

    PubMed

    Kim, Mincheol; Jung, Ji Young; Laffly, Dominique; Kwon, Hye Young; Lee, Yoo Kyung

    2017-01-01

    Primary succession after glacier retreat has been widely studied in plant communities, but bacterial succession is still poorly understood. In particular, few studies of microbial succession have been performed in the Arctic. We investigated the shifts in bacterial community structure and soil physicochemical properties along a successional gradient in a 100-year glacier foreland of the High Arctic. Multivariate analyses revealed that time after glacier retreat played a key role in associated bacterial community structure during succession. However, environmental filtering (i.e. pH and soil temperature) also accounted for a different, but substantial, proportion of the bacterial community structure. Using the functional trait-based approach, we found that average rRNA operon (rrn) copy number of bacterial communities is high in earlier successional stages and decreased over time. This suggests that soil bacterial taxa with higher rrn copy number have a selective advantage in early successional stages due to their ability of rapidly responding to nutrient inputs in newly exposed soils after glacier retreat. Taken together, our results demonstrate that both deglaciation time and environmental filters play key roles in structuring bacterial communities and soil bacterial groups with different ecological strategies occur in different stages of succession in this glacier foreland.

  13. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    PubMed

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  14. Ukpik: testbed for a miniaturized robotic astronomical observatory on a high Arctic mountain

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric; Leckie, Brian; Hardy, Tim; Caputa, Kris; Fletcher, Murray

    2012-09-01

    Mountains along the northwestern coast of Ellesmere Island, Canada, possess the highest peaks nearest the Pole. This geography, combined with an atmospheric thermal inversion restricted to below ~1000 m during much of the long arctic night, provides excellent opportunities for uninterrupted cloud-free astronomy - provided the challenges of these incredibly remote locations can be overcome. We present a miniaturized robotic observatory for deployment on a High Arctic mountaintop. This system tested the operability of precise optical instruments during winter, and the logistics of installation and maintenance during summer. It is called Ukpik after the Inuktitut name for the snowy owl, and was deployed at two sites accessible only by helicopter, each north of 82 degrees latitude; one on rock at 1100 m elevation and another on a glacier at 1600 m. The instrument suite included at first an all-sky-viewing camera, with the later addition of a small telescope to monitor Polaris, both protected by a retractable weather-proof enclosure. Expanding this to include a narrow-field drift-scanning camera for studying extra-solar planet transits was also investigated, but not implemented. An unique restriction was that all had to be run on batteries recharged primarily by a wind turbine. Supplementary power came from a methanol fuel-cell electrical generator. Communications were via the Iridium satellite network. The system design, and lessons learned from three years of operation are discussed, along with prospects for time-domain astronomy from isolated, high-elevation polar mountaintops.

  15. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia.

    PubMed

    Klaassen, M; Agrell, J; Lindström, A

    2002-07-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada, and the BMR of D. torquatus, D. groenlandicus, L. sibiricus, L. bungei and L. trimucronatus in Siberia. In contrast to previous studies the data were collected on animals that had spent only a limited time in captivity. All parameters were analysed in relation to the variations in body mass (20-90 g). Body temperature and BMR were lower in D. groenlandicus than L. trimucronatus, which coincides with greater longevity in the former species. Wet and dry thermal conductances of both species were similar and comparable with those of other Myomorpha (mouse-type rodents), indicating no evidence for a previously claimed lower thermal conductance in lemmings. BMR in lemmings appeared to be higher than in other Arvicolidae (voles, lemmings and muskrats), which could relate to their typically high-latitude distribution. However, the more southerly living Lemmus species had higher BMR than the more northerly living Dicrostonyx species, which may be explained by the former having a relatively low-quality diet.

  16. The High-Resolution Arctic; The Ubiquity of Sub-Meter Imagery in American Science

    NASA Astrophysics Data System (ADS)

    Morin, P. J.

    2014-12-01

    There has been significant progress in the access and use of sub-meter commercial imagery and derived high-level products for use in US federally funded Arctic science. All imagery from six DigitalGlobe satellites has been licensed by the US Federal Government including everything collected in the Arctic. In the past year, a number of new capabilities have become available. The restriction of the minimum civilian resolution of 50cm has been reduced to 25cm. A sixth satellite, WorldView-3, is scheduled for launch in August 2014. Automated production of 2m posting Digital Elevation Models (DEMs) has been developed and is part of the Polar Geospatial Center (PGC) workflow. In fact, 2m posting DEMs are considered an "on-demand" product at PGC and are available almost anywhere at the poles. The PGC has developed automated procedures to produce a number of standardized high-value products. This includes imagery that is orthorectified using best available DEMs, mosaics of this imagery for large geographic areas, and 2m posting DEMs for key areas in Alaska, Siberia and Greenland. The volume of the imagery collection and data flow from the satellites illustrates a number of questions that will follow us for the foreseeable future: e.g., How does the science community take advantage of petabytes of unprocessed imagery? Which products should be delivered? How much accuracy and precision is enough for first processing pass?

  17. Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae).

    PubMed

    Radulović, Niko; Blagojević, Polina; Palić, Radosav

    2010-09-02

    The first GC and GC/MS analyses of the essential oils hydrodistilled from dry leaves of Arctostaphylos uva-ursi and Vaccinium vitis-idaea enabled the identification of 338 components in total (90.4 and 91.7% of the total GC peak areas, respectively). Terpenoids, fatty acids, fatty acid- and carotenoid derived compounds were predominant in the two samples. Both oils were characterized by high relative percentages of α-terpineol and linalool (4.7-17.0%). Compositional data on the volatiles of the presently analyzed and some other Ericaceae taxa (literature data) were mutually compared by means of multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis). This was done in order to determine, based on the essential oil profiles, possible mutual relationships of the taxa within the family, especially that of species from the genera Arctostaphylos and Vaccinium. Results of the chemical and statistical analyses pointed to a strong relation between the genera Vaccinium and Arctostaphylos.

  18. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia.

    PubMed

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  19. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia

    NASA Astrophysics Data System (ADS)

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10°C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  20. Temperature and the sulfur cycle control monomethylmercury cycling in high Arctic coastal marine sediments from Allen Bay, Nunavut, Canada.

    PubMed

    St Pierre, K A; Chétélat, J; Yumvihoze, E; Poulain, A J

    2014-01-01

    Monomethylmercury (MMHg) is a neurotoxin of concern in the Canadian Arctic due to its tendency to bioaccumulate and the importance of fish and wildlife in the Inuit diet. In lakes and wetlands, microbial sediment communities are integral to the cycling of MMHg; however, the role of Arctic marine sediments is poorly understood. With projected warming, the effect of temperature on the production and degradation of MMHg in Arctic environments also remains unclear. We examined MMHg dynamics across a temperature gradient (4, 12, 24 °C) in marine sediments collected in Allen Bay, Nunavut. Slurries were spiked with stable mercury isotopes and amended with specific microbial stimulants and inhibitors, and subsampled over 12 days. Maximal methylation and demethylation potentials were low, ranging from below detection to 1.13 pmol g(-1) h(-1) and 0.02 pmol g(-1) h(-1), respectively, suggesting that sediments are likely not an important source of MMHg to overlying water. Our results suggest that warming may result in an increase in Hg methylation - controlled by temperature-dependent sulfate reduction, without a compensatory increase in demethylation. This study highlights the need for further research into the role of high Arctic marine sediments and climate on the Arctic marine MMHg budget.

  1. Circumpolar contamination in eggs of the high-Arctic ivory gull Pagophila eburnea.

    PubMed

    Lucia, Magali; Verboven, Nanette; Strøm, Hallvard; Miljeteig, Cecilie; Gavrilo, Maria V; Braune, Birgit M; Boertmann, David; Gabrielsen, Geir W

    2015-07-01

    The ivory gull Pagophila eburnea is a high-Arctic species threatened by climate change and contaminants. The objective of the present study was to assess spatial variation of contaminant levels (organochlorines [OCs], brominated flame retardants [BFRs], perfluorinated alkyl substances [PFASs], and mercury [Hg]) in ivory gulls breeding in different areas across the Arctic region as a baseline for potential future changes associated with climate change. Contaminants were already determined in eggs from Canada (Seymour Island; except PFASs), Svalbard in Norway (Svenskøya), and 3 sites in Russia (Nagurskoe, Cape Klyuv, and Domashny). New data from Greenland allowed the investigation of a possible longitudinal gradient of contamination. The most quantitatively abundant OCs were p,p'-dichlorodiphenyldichloroethylene (DDE) and polychlorobiphenyls. Mercury concentrations were higher in Canada compared with other colonies. Eggs from Nagurskoe often were characterized by higher OC and BFR concentrations. Concentrations gradually decreased in colonies situated east of Nagurskoe. In contrast, PFAS concentrations, especially perfluorooctanoate and perfluorononanoate, were higher in Greenland. Some of the contaminants, especially Hg and p,p'-DDE, exceeded published thresholds known to disrupt the reproductive success of avian species. Overall, the levels of OCs, BFRs, and PFASs did not suggest direct lethal exposure to these compounds, but their potential synergetic/additive sublethal effects warrant monitoring.

  2. On the Non-Stationary Relationship between the Siberian High and Arctic Oscillation

    PubMed Central

    Huang, Wenyu; Wang, Bin; Wright, Jonathon S.; Chen, Ruyan

    2016-01-01

    An area-weighted k-means clustering method based on pattern correlations is proposed and used to explore the relationship between the Siberian High (SH) and Arctic Oscillation (AO) during the winter months (December-January-February) of 1948–2014. Five regimes are identified. Four of these five regimes (comprising 171 of 201 months) show a negative correlation between the SH and AO indices, while the last regime (30 months) shows a positive correlation. The location of the SH shifts southward into China under two of the four negative-correlation regimes (117 months), with pressure variations over the center of activity for the SH opposite to pressure variations over the climatological center of the SH (which is used to define the SH index). Adjusting the SH index to account for these spatial shifts suggests positive rather than negative correlations between major variations in the SH and AO under these regimes. Under one of the two remaining negative-correlation regimes, pressure anomalies are weak over the Arctic Ocean. In total, only one regime comprising 21 of 201 months strictly obeys the negative correlation between the SH and AO reported by previous studies. The climate regime characterized by an intensified SH is associated with a greater frequency of cold surges over northern and southeastern China, and the weakening of the East Asian winter monsoon during the 1980s was accompanied by a sharp reduction in the occurrence of this regime. PMID:27362556

  3. Springtime surface ozone fluctuations at high Arctic latitudes and their possible relationship to atmospheric bromine

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Sheridan, Patrick J.; Schnell, Russell C.; Winchester, John W.

    1988-01-01

    At high Arctic stations such as Barrow, Alaska, springtime near-surface ozone amounts fluctuate between the highest and lowest values seen during the course of the year. Episodes when the surface ozone concentration is essentially zero last up to several days during this time of year. In the Arctic Gas and Aerosol Sampling Program (AGASP-I and AGASP-II) in 1983 and 1986, it was found that ozone concentrations often showed a very steep gradient in altitude with very low values near the surface. The cold temperatures, and snow-covered ground make it unlikely that the surface itself would rapidly destroy significant amounts of ozone. The AGASP aircraft measurements that found low ozone concentrations in the lowest layers of the troposphere also found that filterable excess bromine (the amount of bromine in excess of the sea salt component) in samples collected wholly or partially beneath the temperature inversion had higher bromine concentrations than other tropospheric samples. Of the four lowest ozone minimum concentrations, three of them were associated with the highest bromine enrichments. Surface measurements of excess filterable bromine at Barrow show a strong seasonal dependence with values rising dramatically early in March, then declining in May. The concentration of organic bromine gases such as bromoform rise sharply during the winter and then begin to decline after March with winter and early spring values at least three times greater than the summer minimum.

  4. Highly individualistic rates of plant phenological advance associated with arctic sea ice dynamics.

    PubMed

    Post, Eric; Kerby, Jeffrey; Pedersen, Christian; Steltzer, Heidi

    2016-12-01

    We analysed 12 years of species-specific emergence dates of plants at a Low-Arctic site near Kangerlussuaq, Greenland to investigate associations with sea ice dynamics, a potential contributor to local temperature variation in near-coastal tundra. Species displayed highly variable rates of phenological advance, from a maximum of -2.55 ± 0.17 and -2.93 ± 0.51 d yr(-1) among a graminoid and forb, respectively, to a minimum of -0.55 ± 0.19 d yr(-1) or no advance at all in the two deciduous shrub species. Monthly Arctic-wide sea ice extent was a significant predictor of emergence timing in 10 of 14 species. Despite variation in rates of advance among species, these rates were generally greatest in the earliest emerging species, for which monthly sea ice extent was also the primary predictor of emergence. Variation among species in rates of phenological advance reshuffled the phenological community, with deciduous shrubs leafing out progressively later relative to forbs and graminoids. Because early species advanced more rapidly than late species, and because rates of advance were greatest in species for which emergence phenology was associated with sea ice dynamics, accelerating sea ice decline may contribute to further divergence between early- and late-emerging species in this community.

  5. Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic.

    PubMed

    MacInnis, John J; French, Katherine; Muir, Derek C G; Spencer, Christine; Criscitiello, Alison; De Silva, Amila O; Young, Cora J

    2017-01-25

    To improve understanding of long-range transport of perfluoroalkyl substances to the High Arctic, samples were collected from a snow pit on the Devon Ice Cap in spring 2008. Snow was analyzed for perfluoroalkyl acids (PFAAs), including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), as well as perfluorooctane sulfonamide (FOSA). PFAAs were detected in all samples dated from 1993 to 2007. PFAA fluxes ranged from <1 to hundreds of ng per m(2) per year. Flux ratios of even-odd PFCA homologues were mostly between 0.5 and 2, corresponding to molar ratios expected from atmospheric oxidation of fluorotelomer compounds. Concentrations of perfluorobutanoic acid (PFBA) were much higher than other PFCAs, suggesting PFBA loading on the Devon Ice Cap is influenced by additional sources, such as the oxidation of heat transfer fluids. All PFCA fluxes increased with time, while PFSA fluxes generally decreased with time. No correlations were observed between PFAAs and the marine aerosol tracer, sodium. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected for the first time in an atmospherically - derived sample, and its presence may be attributed to aircraft hydraulic system leakage. Observations of PFAAs from these samples provide further evidence that atmospheric oxidation of volatile precursors is an important source of PFAAs to the Arctic environment.

  6. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  7. AOAC SMPR 2014.007: Authentication of selected Vaccinium species (Anthocyanins) in dietary ingredients and dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This AOAC Standard Method Performance Requirements (SMPR) is for authentication of selected Vaccinium species in dietary ingredients and dietary supplements containing a single Vaccinium species using anthocyanin profiles. SMPRs describe the minimum recommended performance characteristics to be used...

  8. Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds.

    PubMed

    Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S V; Smol, John P

    2017-01-01

    Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated ice cover changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups ("warm", "cool", "cold", and "oasis") based on local elevation and microclimatic differences that result in differing lengths of the ice-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in ice cover with warming. The "warm" sites are amongst the first to lose their ice covers in summer and recorded the earliest and highest magnitude changes. The "cool" sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the "warm" sites. Meanwhile some of the "cold" sites, which until recently still retained an ice raft in summer, only exhibited this shift in the upper-most sediments. The warmer "oasis" ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the "oasis" sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the ice-free season is the principal driver of diatom assemblage responses to climate in the High Arctic, largely driven by the establishment of new

  9. Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds

    PubMed Central

    Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S. V.; Smol, John P.

    2017-01-01

    Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated ice cover changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups (“warm”, “cool”, “cold”, and “oasis”) based on local elevation and microclimatic differences that result in differing lengths of the ice-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in ice cover with warming. The “warm” sites are amongst the first to lose their ice covers in summer and recorded the earliest and highest magnitude changes. The “cool” sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the “warm” sites. Meanwhile some of the “cold” sites, which until recently still retained an ice raft in summer, only exhibited this shift in the upper-most sediments. The warmer “oasis” ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the “oasis” sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the ice-free season is the principal driver of diatom assemblage responses to climate in the High Arctic

  10. Methylated mercury species in Canadian high Arctic marine surface waters and snowpacks.

    PubMed

    St Louis, Vincent L; Hintelmann, Holger; Graydon, Jennifer A; Kirk, Jane L; Barker, Joel; Dimock, Brian; Sharp, Martin J; Lehnherr, Igor

    2007-09-15

    We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute

  11. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms.

    PubMed

    Butinar, Lorena; Spencer-Martins, Isabel; Gunde-Cimerman, Nina

    2007-04-01

    Recently a new habitat for microbial life has been discovered at the base of polythermal glaciers. In ice from these subglacial environments so far only non-photosynthetic bacterial communities were discovered, but no eukaryotic microorganisms. We found high numbers of yeast cells, amounting to a maximum of 4,000 CFU ml(-1) of melt ice, in four different high Arctic glaciers. Twenty-two distinct species were isolated, including two new yeast species. Basidiomycetes predominated, among which Cryptococcus liquefaciens was the dominant species (ca. 90% of total). Other frequently occurring species were Cryptococcus albidus, Cryptococcus magnus, Cryptococcus saitoi and Rhodotorula mucilaginosa. The dominant yeast species were psychrotolerant, halotolerant, freeze-thaw resistant, unable to form mycelium, relatively small-sized and able to utilize a wide range of carbon and nitrogen sources. This is the first report on the presence of yeast populations in subglacial ice.

  12. Nonlinear thermal and moisture dynamics of high Arctic wetland polygons following permafrost disturbance

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.; Lévesque, E.

    2015-07-01

    Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover), eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.

  13. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    NASA Astrophysics Data System (ADS)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003–2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  14. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  15. High Arctic paleoenvironmental and Paleoclimatic changes in the Mid-Cretaceous

    NASA Astrophysics Data System (ADS)

    Herrle, Jens; Schröder-Adams, Claudia; Selby, David; Du Vivier, Alice; Flögel, Sascha; McAnena, Alison; Davis, William; Pugh, Adam; Galloway, Jennifer; Hofmann, Peter; Wagner, Thomas

    2014-05-01

    Although major progress in Cretaceous (145-66 Ma) paleoclimate and paleoceanography has been made during the last decades (e.g., Hay, 2008, 2011; Föllmi, 2012 and references therein), our knowledge of high latitudinal environmental change remains largely unknown compared to low- and mid-latitude marine and terrestrial environments. Drilling the Arctic Ocean remains challenging and expensive, whereas the Sverdrup Basin provides excellent exposures on land. To fully understand the climate and paleoceanographic dynamics of the warm, equable greenhouse world of the Cretaceous Period it is important to determine polar paleotemperatures and to study paleoceanographic changes in a well-established and continuous bio- and chemostratigraphic context. Exceptional exposures of Cretaceous sediments on the central to southern part of Axel Heiberg Island at a Cretaceous paleolatitude of about 71°N (Tarduno et al., 1998) provide a unique window on the Cretaceous Arctic paleoenvironment and climate history (Schröder-Adams et al., 2014). Here we present high-resolution records combining sedimentological studies, U-Pb zircon geochronology, marine organic carbon isotopes and initial 187Os/188Os data, TEX86-derived sea-surface temperatures (SST) and climate modelling, that constrain the timing and magnitude of major Oceanic Anoxic Events (OAEs) and climate events constructed from a ~1.8 km sedimentary succession exposed on Axel Heiberg and Ellef Ringnens islands in the Canadian Arctic Archipelago. The first high latitude application of initial 187Os/188Os data are agreeable with global profiles (Du Vivier et al., 2014) indicating the widespread magmatic pulse of the Caribbean Large Igneous Province (LIP) at the onset of OAE2 but also record the emplacement of local High Arctic LIP prior to the OAE2 in the Sverdrup Basin. Initial SST data suggest a slightly lower meridional temperature gradient during the Middle/Late Albian compared to present and a similar to the present one during

  16. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  17. Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic.

    PubMed

    Singh, Purnima; Kapse, Neelam; Arora, Preeti; Singh, Shiv Mohan; Dhakephalkar, Prashant K

    2015-06-01

    Obligate psychrophilic, Cryobacterium sp. MLB-32, was isolated from cryoconite holes of high Arctic glaciers. Here, we report the first draft genome sequence of the putative novel species of the genus Cryobacterium, providing opportunities for biotechnological and agricultural exploitation of its genome features.

  18. High Arctic tundra greenhouse gas fluxes: new insights from Adventdalen, Svalbard

    NASA Astrophysics Data System (ADS)

    Pirk, N.; Parmentier, F. J. W.; Mastepanov, M.; Christiansen, H. H.; Christensen, T. R.

    2014-12-01

    Data on greenhouse gas (GHG) exchange in high Arctic environments is rare but badly needed, as the environment in these places will likely respond early and most rapidly to climate warming. Also, the high Arctic holds carbon stocks in permafrost that is most likely to be made vulnerable to decomposition as ecosystems get warmer. In 2011 we established a long-term GHG flux-monitoring site in the Adventdalen valley on the Svalbard archipelago. The site is characterised by little precipitation (about 200 mm/year), a strong marine influence (summer air temperatures predominantly around 5 degrees Celsius), and a continuous permafrost ground with low-centered ice wedge polygons at the surface. The measurement equipment features an eddy-covariance tower and an automatic chamber system, both set up in accordance with already existing monitoring programs (INTERACT, ICOS and the Greenland Ecosystem Monitoring program). Here, we present the first results of this multi-year campaign, such as the pattern of carbon dioxide and methane fluxes during the growing and shoulder seasons, including the recently discovered autumn burst, as well as carbon dioxide fluxes during wintertime. Carbon dioxide fluxes measured with eddy-covariance agree well with the automatic chamber data, and indicate that the site acts as a sink for carbon dioxide. Methane fluxes measured by the automatic chamber system indicate a significant methane source, which is, however, weaker than at comparable sites in Greenland. There is a high degree of inter-annual variation in methane emissions, which seems to be driven by the amount of precipitation in summer. On top of that, there is a strong spatial variability resembling the polygonal ground pattern. This variability is also reflected in the occurrence of the methane autumn burst, which could be detected and is spatially and temporally distributed at a few locations and years.

  19. Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach

    NASA Astrophysics Data System (ADS)

    Bradley, James A.; Arndt, Sandra; Šabacká, Marie; Benning, Liane G.; Barker, Gary L.; Blacker, Joshua J.; Yallop, Marian L.; Wright, Katherine E.; Bellas, Christopher M.; Telling, Jonathan; Tranter, Martyn; Anesio, Alexandre M.

    2016-10-01

    Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model-data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem.

  20. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra.

    PubMed

    Li, Fangfang; Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua

    2016-12-01

    Many environmental factors affecting methane (CH4) and nitrous oxide (N2O) fluxes have been investigated during the processes of carbon and nitrogen transformation in the boreal tundra. However, effects of sunlight on CH4 and N2O fluxes and their budgets were neglected in the boreal tundra. Here, summertime CH4 and N2O fluxes in the presence and total absence of sunlight were investigated at the six tundra sites (DM1-DM6) on Ny-Ålesund in the High Arctic. The mean CH4 fluxes at the tundra sites ranged from -4.7 to -158.6μg CH4 m(-2)h(-1) in the presence of light, indicating that a large CH4 sink occurred in the tundra soils. However, enhanced CH4 emission in total absence of light occurred at all the tundra sites. The mean N2O fluxes ranged from 7.4 to 14.6μg N2O m(-2)h(-1) in the presence of light, whereas in the absence of light all the tundra sites generally released less N2O, and even significant N2O uptake occurred there. Soil temperature, chamber temperature and soil moisture showed no significant correlations with tundra CH4 and N2O flux. The presence of sunlight increased tundra CH4 uptake by 114.2μg CH4 m(-2)h(-1) and N2O emission by 10.9μg N2O m(-2)h(-1) compared with total absence of light. Overall our results showed that tundra ecosystem switched from CH4 sink and N2O emission source in the presence of light to CH4 emission source and N2O sink in the absence of light. Therefore sunlight had an important effect on CH4 and N2O budgets in the High Arctic tundra. The exclusion of sunlight might overestimate CH4 budgets, but underestimate N2O budgets in the Arctic tundra ecosystem.

  1. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that

  2. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.).

    PubMed

    Liu, Pengzhan; Lindstedt, Anni; Markkinen, Niko; Sinkkonen, Jari; Suomela, Jukka-Pekka; Yang, Baoru

    2014-12-10

    Leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) are potential raw materials for food and health care products. Targeted (HPLC-DAD, HPLC-MS, and GC-FID) and nontargeted ((1)H NMR) approaches were applied to study the metabolomic profiles of these leaves. Chlorogenic acid was the major phenolic compound in bilberry leaves and arbutin in lingonberry leaves. Flavonol glycosides were another major group of phenolics in bilberry [5-28 mg/g DM (dry mass)] and lingonberry (15-20 mg/g DM) leaves. Contents of fatty acids were analyzed using GC-FID. The changes in the metabolomics profile during the season were apparent in bilberry but not lingonberry leaves. Negative correlation was found between the contents of lipids and phenolics. The consistency between the key results obtained by targeted and nontargeted analyses suggests nontargeted metabolomic analysis is an efficient tool for fast screening of various leaf materials.

  3. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: Age and geological constraints from North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Tappe, S.; Heaman, L.; Knudsen, M. F.

    2013-12-01

    Age, compositional and geological data show the High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan orogeny. New 40Ar-39Ar and U-Pb dating provides emplacement ages of 71-68 Ma for most of the Kap Washington alkaline volcanics of North Greenland, but with activity continuing down to 61 Ma. A thermal resetting age of 49-47 Ma is also identified in 40Ar-39Ar whole-rock data for trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting, interpreted as a result of Eurekan compressional tectonism. The formation of the tholeiitic suite (130-80 Ma) appears to be associated with the opening of the Canada Basin and may have involved mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay. The alkaline and tholeiitic suites of the High Arctic may therefore be unrelated. It is striking that High Arctic volcanism terminates at about the same time (c. 60 Ma) as magmatism in the North Atlantic Large Igneous Province begins. We suggest this is a corollary of a change from extensional to compressional tectonism in the High Arctic. In the period when Greenland moved together with Eurasia (>60 Ma), the separation from North America resulted in rift-related alkaline magmatism in the High Arctic. When Greenland subsequently moved as a separate plate (60-35 Ma), overlapping spreading on both sides pushed it northwards and volcanism in the High Arctic stopped due to compression. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  4. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats.

    PubMed

    Omelon, Christopher R; Pollard, Wayne H; Ferris, F Grant

    2007-11-01

    Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.

  5. Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Whiticar, Michael J; Galand, Pierre E; Xu, Xiaomei; Lovejoy, Connie

    2013-01-01

    Thawing permafrost in the Canadian Arctic tundra leads to peat erosion and slumping in narrow and shallow runnel ponds that surround more commonly studied polygonal ponds. Here we compared the methane production between runnel and polygonal ponds using stable isotope ratios, ¹⁴C signatures, and investigated potential methanogenic communities through high-throughput sequencing archaeal 16S rRNA genes. We found that runnel ponds had significantly higher methane and carbon dioxide emissions, produced from a slightly larger fraction of old carbon, compared to polygonal ponds. The methane stable isotopic signature indicated production through acetoclastic methanogenesis, but gene signatures from acetoclastic and hydrogenotrophic methanogenic Archaea were detected in both polygonal and runnel ponds. We conclude that runnel ponds represent a source of methane from potentially older C, and that they contain methanogenic communities able to use diverse sources of carbon, increasing the risk of augmented methane release under a warmer climate.

  6. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic

    PubMed Central

    Negandhi, Karita; Laurion, Isabelle; Whiticar, Michael J.; Galand, Pierre E.; Xu, Xiaomei; Lovejoy, Connie

    2013-01-01

    Thawing permafrost in the Canadian Arctic tundra leads to peat erosion and slumping in narrow and shallow runnel ponds that surround more commonly studied polygonal ponds. Here we compared the methane production between runnel and polygonal ponds using stable isotope ratios, 14C signatures, and investigated potential methanogenic communities through high-throughput sequencing archaeal 16S rRNA genes. We found that runnel ponds had significantly higher methane and carbon dioxide emissions, produced from a slightly larger fraction of old carbon, compared to polygonal ponds. The methane stable isotopic signature indicated production through acetoclastic methanogenesis, but gene signatures from acetoclastic and hydrogenotrophic methanogenic Archaea were detected in both polygonal and runnel ponds. We conclude that runnel ponds represent a source of methane from potentially older C, and that they contain methanogenic communities able to use diverse sources of carbon, increasing the risk of augmented methane release under a warmer climate. PMID:24236014

  7. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    PubMed

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.

  8. Reconstruction of a high-resolution late holocene arctic paleoclimate record from Colville River delta sediments.

    SciTech Connect

    Schreiner, Kathryn Melissa; Lowry, Thomas Stephen

    2013-10-01

    This work was partially supported by the Sandia National Laboratories, Laboratory Directed Research and Development (LDRD) fellowship program in conjunction with Texas A&M University (TAMU). The research described herein is the work of Kathryn M. Schreiner (Katie) and her advisor, Thomas S. Bianchi and represents a concise description of Katies dissertation that was submitted to the TAMU Office of Graduate Studies in May 2013 in partial fulfillment of her doctorate of philosophy degree. High Arctic permafrost soils contain a massive amount of organic carbon, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This project investigated long term, fine scale particulate organic carbon (POC) delivery by the high-Arctic Colville River into Simpsons Lagoon in the near-shore Beaufort Sea. Modern POC was determined to be a mixture of three sources (riverine soils, coastal erosion, and marine). Downcore POC measurements were performed in a core close to the Colville River output and a core close to intense coastal erosion. Inputs of the three major sources were found to vary throughout the last two millennia, and in the Colville River core covary significantly with Alaskan temperature reconstructions.

  9. Aerosol Size and Chemical Composition in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  10. Observations of Dynamics in the High Arctic Mesopause Region and Thermosphere

    NASA Astrophysics Data System (ADS)

    Ward, William E.; Meek, Chris; Manson, Alan; Hocking, Wayne; Kristoffersen, Samuel; Wu, Qian; Vail, Christopher; Shepherd, Marianna

    2016-07-01

    The Dynamics of the Neutral Thermosphere project is a three site, multiple instrument observatory. The instruments are located in the Canadian Arctic at Resolute Bay (75 N, 95 W), Eureka (80 N, 85 W at the Polar Environment Atmospheric Research Laboratory) and Yellowknife (62 N, 114 W)and include meteor radars, high resolution interferometers, and all sky imagers. Measurements include wind, temperature and airglow irradiance at both sites. Inter-instrument and inter-site comparisons of time series are being undertaken and provide insights into the dynamical processes in the high Arctic mesopause region and thermosphere, and information on the various observing techniques. Differences between the daily wind variations are seen between the mesopause region and thermosphere. Studies are under way, to determine whether common tidal and gravity wave signatures can be observed at both sites and in the mesopause region and thermosphere. Airglow irradiance, winds and temperatures are observed with several different instruments and comparisons between the associated time series are revealing the consequences of the different observing processes. For example, Doppler shift wind measurements in airglow using interferometers are irradiance weighted averages of the wind in each airglow layer whereas the meteor radar provide wind profiles. Comparisons between the winds measured by these techniques do not always agree to the extent expected and detailed examinations of whether weighted averages of the meteor radar winds improve the comparisons are being undertaken. Irradiance time series taken with the all sky imagers, interferometers and a Spectral Airglow Temperature Imager (SATI) are being combined to provide more extensive coverage of the mesopause region. This paper will describe the instrument complement and the initial results of these comparisons.

  11. Snowpack fluxes of methane and carbon dioxide from high Arctic tundra

    NASA Astrophysics Data System (ADS)

    Pirk, Norbert; Tamstorf, Mikkel P.; Lund, Magnus; Mastepanov, Mikhail; Pedersen, Stine H.; Mylius, Maria R.; Parmentier, Frans-Jan W.; Christiansen, Hanne H.; Christensen, Torben R.

    2016-11-01

    Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra.

  12. Effects of substrate differences on water availability for Arctic lichens during the snow-free summers in the High Arctic glacier foreland

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Kudoh, Sakae; Uchida, Masaki; Tanabe, Yukiko; Inoue, Masakane; Kanda, Hiroshi

    2014-12-01

    We used observational and experimental analyses to investigate the photosynthetic activity and water relationships of five lichen species attached to different substrates in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard (79°N) during the snow-free season in 2009 and 2010. After the rains ceased, lichens and their attached substrates quickly dried, whereas photosynthetic activity in the lichens decreased gradually. The in situ photosynthetic activity was estimated based on the relative electron transportation rate (rETR) in four fruticose lichens: Cetrariella delisei, Flavocetraria nivalis, Cladonia arbuscula ssp. mitis, and Cladonia pleurota. The rETR approached zero around noon, although the crustose lichen Ochrolechia frigida grown on biological soil crust (BSC) could acquire water from the BSC and retain its WC to perform positive photosynthesis. The light-rETR relationship curves of the five well-watered lichens were characterized into two types: shade-adapted with photoinhibition for the fruticose lichens, and light-adapted with no photoinhibition for O. frigida. The maximum rETR was expected to occur when they could acquire water from the surrounding air or from substrates during the desiccation period. Our results suggest that different species of Arctic lichens have different water availabilities due to their substrates and/or morphological characteristics, which affect their photosynthetic active periods during the summer.

  13. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  14. Resource utilisation by deep-sea megabenthos in the Canadian High Arctic (Baffin Bay and Parry Channel)

    NASA Astrophysics Data System (ADS)

    Bourgeois, Solveig; Witte, Ursula; Harrison, Ailish M.; Makela, Anni; Kazanidis, Georgios; Archambault, Philippe

    2016-04-01

    Ongoing climate change in the Arctic is causing drastic alteration of the Arctic marine ecosystem functioning, such as shifts in patterns of primary production, and modifying the present tight pelagic-benthic coupling. Subsequently benthic communities, which rely upon organic matter produced in the top layers of the Ocean, will also be affected by these changes. The benthic megafaunal communities play a significant role in ecological processes and ecosystem functioning (i.e. organic matter recycling, bioturbation, food source for the higher trophic levels…). Yet, information is scarce regarding the main food sources for dominant benthic organisms, and therefore the impact of the ongoing changes is difficult to assess. The goal of this study is to investigate the preferential feeding of different carbon sources by megabenthic organisms in the Canadian High Arctic and to identify environmental drivers which explain the observed trends. In summer 2013, benthic megafauna was collected at 9 stations spread along latitudinal (58 to 81°N) and longitudinal (62 to 114°W) transects in the Baffin Bay and Parry Channel, respectively. Carbon and nitrogen bulk stable isotope analyses (δ13C and δ15N) were performed on several species divided into groups according to their feeding type. This study highlights distinct trends in δ13C values of benthic organisms suggesting the importance of both phytoplankton and ice algae as carbon sources for megafauna in the Canadian High Arctic. The importance of physical and biological parameters as drivers of food web structure will be furthermore discussed.

  15. Nitrous oxide production and emission in high arctic soils of NW Greenland

    NASA Astrophysics Data System (ADS)

    Stills, A.; Lupascu, M.; Czimczik, C. I.; Sharp, E. D.; Welker, J. M.; Schaeffer, S. M.

    2010-12-01

    Nitrous oxide (N2O) is a potent ozone depleting greenhouse gas with a global warming potential 298 times larger than carbon dioxide (CO2 on a 100-year time scale. Recent studies identified arctic soils undergoing thawing and changes in drainage as potentially large sources of N2O to the atmosphere. More in situ2O production in and emission from arctic soils are needed to understand ecosystem feedbacks to climate change in high arctic tundra, and the role of high latitudes in the global N2O budget. We monitored the concentration of N2O in soils and emissions of N2O to the atmosphere from prostrate shrub tundra in NW Greenland under current and future climate conditions. Measurements were made monthly from June to August 2010 at a long-term climate change experiment started in 2003 consisting of +2oC warming (T1), +4oC warming (T2), +50% summer precipitation (W), +4oC × +50% summer precipitation (T2W), and control (C). In each treatment, N2O was monitored from vegetated and barren soils. In addition, we quantified nitrogen (N) mineralization rates. The concentration of N2O in soils was measured by sampling air from permanent wells ranging from 20 to 90 cm soil depth. N2O emissions were measured every 15 minutes for one hour using opaque, static chambers. Nitrous oxide samples were collected manually with syringes and stored in pre-evacuated glass vials with butyl rubber septa and aluminum crimp. The vials were sealed with silicon, shipped to UC Irvine, and analyzed by GC-ECD (Shimadzu GC-2014). To determine soil N mineralization rates, resin bags were installed under PVC cores from 8 to 10 cm in early spring in all treatments. Bags were removed at peak season. A second set was installed to capture end-of-season mineralization rates. Resin bags were extracted for future analysis of total accumulated ammonium and nitrate. Soil cores concurrently collected with resin bag installation and removal will be analyzed for % C and N, and were extracted for future analysis

  16. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  17. A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Cox, Christopher J.; Rowe, Penny M.; Neshyba, Steven P.; Walden, Von P.

    2016-05-01

    Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm-1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of ˜ 0.01 cm-1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).

  18. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    PubMed

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.

  19. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  20. Correlation between species-specific metabolite profiles and bioactivities of blueberries (Vaccinium spp.).

    PubMed

    Lee, Sarah; Jung, Eun Sung; Do, Seon-Gil; Jung, Ga-Young; Song, Gwanpil; Song, Jung-Min; Lee, Choong Hwan

    2014-03-05

    Metabolite profiling of three blueberry species (Vaccinium bracteatum Thunb., V. oldhamii Miquel., and V. corymbosum L.) was performed using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) combined multivariate analysis. Partial least-squares discriminant analysis clearly showed metabolic differences among species. GC-TOF-MS analysis revealed significant differences in amino acids, organic acids, fatty acids, sugars, and phenolic acids among the three blueberry species. UPLC-Q-TOF-MS analysis indicated that anthocyanins were the major metabolites distinguishing V. bracteatum from V. oldhamii. The contents of anthocyanins such as glycosides of cyanidin were high in V. bracteatum, while glycosides of delphinidin, petunidin, and malvidin were high in V. oldhamii. Antioxidant activities assessed using ABTS and DPPH assays showed the greatest activity in V. oldhamii and revealed the highest correlation with total phenolic, total flavonoid, and total anthocyanin contents and their metabolites.

  1. Vaccinium corymbosum L. (blueberry) extracts exhibit protective action against cadmium toxicity in Saccharomyces cerevisiae cells.

    PubMed

    Oprea, Eliza; Ruta, Lavinia L; Nicolau, Ioana; Popa, Claudia V; Neagoe, Aurora D; Farcasanu, Ileana C

    2014-01-01

    Blueberries (Vaccinium corymbosum L.) are a rich source of antioxidants and their consumption is believed to contribute to food-related protection against oxidative stress. In the present study, the chemoprotective action of blueberry extracts against cadmium toxicity was investigated using a cadmium-hypersensitive strain of Saccharomyces cerevisiae. Four varieties of blueberries were used in the study, and it was found that the extracts with high content of total anthocyanidins exhibited significant protective effect against the toxicity of cadmium and H2O2. Both the blueberry extracts and pure cyanidin exhibited protective effects against cadmium in a dose-dependent manner, but without significantly interfering with the cadmium accumulation by the yeast cells. The results imply that the blueberry extracts might be a potentially valuable food supplement for individuals exposed to high cadmium.

  2. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    NASA Astrophysics Data System (ADS)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  3. Migration patterns of Western High Arctic (Grey-belly) Brant Branta bernicla

    USGS Publications Warehouse

    Boyd, W. Sean; Ward, David H.; Kraege, Donald K.; Gerick, Alyssa A.

    2014-01-01

    This study describes the seasonal migration patterns of Western High Arctic Brant (WHA, or Grey-belly Brent Geese), Branta bernicla, an admixed population that breeds in the Canadian High Arctic and winters along the Pacific coast of North America. Adult WHA Brant were captured in family groups on Melville Island (75°23'N, 110°50'W) in 2002 and 2005 and marked with satellite platform transmitting terminal (PTT) transmitters or very high frequency (VHF) transmitters. During autumn migration, all PTT-tagged Brant followed a coastal route around Alaska and staged for variable lengths of time at the following sites on the north and west coasts of Alaska: Kasegaluk Lagoon (69°56'N, 162°40'W), Ikpek Lagoon (65°55'N, 167°03'W), and Izembek Lagoon (55°19'N, 162°50'W). Izembek Lagoon was the most important staging area in terms of length of stay (two months on average) and the majority (67-93%) of PTT and VHF detections occurred in Moffet Bay (55°24'N, 162°34'W). After departing Izembek Lagoon, the PTT-tagged geese followed a c. 2,900 km trans-oceanic route to overwinter in the southern part of the Salish Sea (i.e. from north Puget Sound, Washington to south Strait of Georgia, British Columbia; centred at c. 48°45'N, 122°40'W). Most (c. 45%) PTT detections in the southern Salish Sea occurred in Samish Bay (48°36'N, 22°30'W) followed by Padilla Bay (48°30'N, 122°31'W; c. 26%). Brant migrated north from the Salish Sea along the coast to southeast Alaska and then followed either an interior route across the Yukon or a coastal route around Alaska. The "interior" birds staged for c. four days at Liverpool Bay (69°20'N, 133°55'W) in the Northwest Territories before flying on to Melville Island. They also departed the Salish Sea two weeks later than the coastal migrants and arrived at Melville Island two weeks earlier. This study and previous research suggest that WHA Brant use similar migration routes each year and are faithful to their breeding, staging, and

  4. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods.

    PubMed

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart; Abermann, Jakob; Skov, Kirstine; Elberling, Bo

    2017-02-15

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m(3)y(-1). The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty(-1) and 61,000±16,000ty(-1). Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty(-1), which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies <±10%, using 7year averages. The specific annual method-agreements were <±10% for all years and the specific annual accuracies <±20% for 6years out of 7. The rating curves were less sensitive to day-to-day variations in the measured suspended sediment concentrations. The discharge weighted mean was not recommended in the high-Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

  5. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish.

    PubMed

    Magnanou, Elodie; Noirot, Celine; Falcón, Jack; Jørgensen, Even Hjalmar

    2016-10-01

    The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000bp with an average length (1690bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture.

  6. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  7. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  8. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  9. Impacts of Human Activity on the Microbial Communities of Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bywaters, K. B.; Burton, A. S.; Wallace, S. L.; Glass, B. J.

    2016-09-01

    The impacts of human activities on microbial communities in arctic environments are poorly understood. This project compares the distribution of microbes at the HMP Mars analog site prior to and after human settlement.

  10. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    NASA Astrophysics Data System (ADS)

    Bourgeois, Solveig; Kerhervé, Philippe; Calleja, Maria Ll.; Many, Gaël; Morata, Nathalie

    2016-12-01

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions such as supplies of organic matter (OM) from the water column. In the last decade, Kongsfjorden (79°N), a high Arctic fjord in Svalbard influenced by several glaciers and Atlantic water inflow, has been a site of great interest owing to its high sensitivity to climate change, evidenced by a reduction in ice cover and an increase in melting freshwater. To investigate how spatial and seasonal changes in vertical fluxes can impact the benthic compartment of Kongsfjorden, we studied the organic matter characteristics (in terms of quantity and quality) and prokaryotic distribution in sediments from 3 stations along a transect extending from the glacier into the outer fjord in 4 different seasons (spring, summer, autumn and winter) in 2012-2013. The biochemical parameters used to describe the sedimentary organic matter were organic carbon (OC), total nitrogen, bulk stable isotope ratios, pigments (chorophyll-a and phaeopigments) and biopolymeric carbon (BPC), which is the sum of the main macromolecules, i.e. lipids, proteins and carbohydrates. Prokaryotic abundance and distribution were estimated by 4‧,6-diamidino-2-phenylindole (DAPI) staining. This study identifies a well-marked quantitative gradient of biogenic compounds throughout all seasons and also highlights a discrepancy between the quantity and quality of sedimentary organic matter within the fjord. The sediments near the glacier were organic-poor (< 0.3%OC), however the high primary productivity in the water column displayed during spring was reflected in summer sediments, and exhibited higher freshness of material at the inner station compared to the outer basin (means C-chlorophyll-a/OC 5 and 1.5%, respectively). However, sediments at the glacier front were depleted in BPC

  11. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    NASA Astrophysics Data System (ADS)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  12. Timing, Magnitude and Sources of Ecosystem Respiration in High Arctic Tundra of NW Greenland

    NASA Astrophysics Data System (ADS)

    Lupascu, M.; Xu, X.; Lett, C.; Maseyk, K. S.; Lindsey, D. S.; Thomas, J. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    High arctic ecosystems with low vegetation density contain significant stocks of organic carbon (C) in the form of soil organic matter that range in age from modern to ancient. How rapidly these C pools can be mineralized and lost to the atmosphere as CO2 (ecosystem respiration, ER) as a consequence of warming and, or changes in precipitation is a major uncertainty in our understanding of current and future arctic biogeochemistry and for predicting future levels of atmospheric CO2. In a 2-year study (2010-2011), we monitored seasonal changes in the magnitude, timing and sources of ER and soil pore space CO2 in the High Arctic of NW Greenland under current and simulated, future climate conditions. Measurements were taken from May to August at a multi-factorial, long-term climate change experiment in prostrate dwarf-shrub tundra on patterned ground with 5 treatments: (T1) +2oC warming, (T2) +4oC warming, (W) +50% summer precipitation, (T2W) +4oC + 50% summer precipitation, and (C) control. ER (using opaque chambers) and soil CO2 concentrations (wells) were monitored daily via infrared spectroscopy (LI-COR 800 & 840). The source of CO2 was inferred from its radiocarbon (14C) content analyzed at the AMS facility in UCI. CO2 was sampled monthly using molecular sieve traps (chambers) or evacuated canisters (wells). Highest rates of ER are observed on vegetated ground with a maximum in mid summer - reflecting a peak in plant productivity and soil temperature. Respiration rates from bare ground remain similar throughout the summer. Additional soil moisture, administered or due to precipitation events, strongly enhances ER from both vegetated and bare ground. Daily ER budget for the sampling period was of 53.1 mmol C m-2 day-1 for the (C) vegetated areas compared to the 60.0 for the (T2), 68.1 for the (T2W) or the 79.9 for the (W) treatment. ER was highly correlated to temperature (eg. C = 0.8; T2W = 0.8) until middle of July, when heavy precipitation started to occur. In

  13. The dynamic response of high Arctic glaciers to global warming and their contribution to sea-level rise

    SciTech Connect

    Lam, J.K.W.; Dowdeswell, J.A.

    1995-06-01

    Simulations with General Circulation Models have indicated that global warming will be enhanced at high latitudes. Regions in the high Arctic are highly sensitive to increased concentrations of greenhouse gases, with an amplified theoretical rise of 8--14 C predicted to take place in winter and a negligible rise of 2 C in summer. Wetter conditions in these regions are quite plausible with global warming due to warmer sea surface temperatures, melting of sea ice and a greater moisture holding capacity of the atmosphere. Recent observations show a marked increase in precipitation in the high Arctic regions during the past decades, particularly in the winters. The notion of whether the increased melting of snow due to global warming would be offset by increased snowfall is investigated in this study. To make reliable predictions of the response of high Arctic glaciers to global warming and hence their contribution to sea-level rise, a numerical model has been developed to investigate the interactions of the glaciers with climate change induced by global warming. The model is a one-dimensional numerical ice-flow model coupled with a surface balance model. Accumulation and ablation at the glacier surface are determined by the surface balance model using an energy balance approach.

  14. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.

  15. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  16. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    SciTech Connect

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  17. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    DOE PAGES

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; ...

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relativemore » abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.« less

  18. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    PubMed Central

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  19. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  20. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors.

    PubMed

    McKay, Diane L; Blumberg, Jeffrey B

    2007-11-01

    The American cranberry (Vaccinium macrocarpon) is one of the three commercially important fruits native to North America. Cranberries are a particularly rich source of phenolic phytochemicals, including phenolic acids (benzoic, hydroxycinnamic, and ellagic acids) and flavonoids (anthocyanins, flavonols, and flavan-3-ols). A growing body of evidence suggests that polyphenols, including those found in cranberries, may contribute to reducing the risk of cardiovascular disease (CVD) by increasing the resistance of LDL to oxidation, inhibiting platelet aggregation, reducing blood pressure, and via other anti-thrombotic and anti-inflammatory mechanisms. Research regarding the bioactivity of cranberries and their constituents on risk factors for CVD is reviewed.

  1. Arctic Haze Analysis

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  2. Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer M.; Tullius, Dylan N.; Evenchick, Carol A.; Swindles, Graeme T.; Hadlari, Thomas; Embry, Ashton

    2015-04-01

    Understanding the behaviour of global climate during relatively warm periods in Earth's history, such as the Cretaceous Period, advances our overall understanding of the climate system and provides insight on drivers of climate change over geologic time. While it has been suggested that the Valanginian Age represents the first episode of Cretaceous greenhouse climate conditions with relatively equable warm temperatures, mounting evidence suggests that this time was relatively cool. A paucity of paleoclimate data currently exists for polar regions compared to mid- and low-latitudes and this is particularly true for the Canadian Arctic. There is also a lack of information about the terrestrial realm as most paleoclimate studies have been based on marine material. Here we present quantitative pollen and spore data obtained from the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, to better understand the long-term vegetation and climate history of polar regions during the warm but variable Early Cretaceous (Valanginian to Early Aptian). Detrended correspondence analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the

  3. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble

  4. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  5. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    PubMed Central

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  6. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light.

    PubMed

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.

  7. Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Vincent, W. F.; Gibson, J. A. E.; Pienitz, R.; Villeneuve, V.; Broady, P. A.; Hamilton, P. B.; Howard-Williams, C.

    The Ward Hunt Ice Shelf (83°N, 74°W) is the largest remaining section of thick (>10m) landfast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (107-108cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes.

  8. Glacier mass balance in high-arctic areas with anomalous gravity

    NASA Astrophysics Data System (ADS)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  9. Volcanic rocks of the Mendeleev Ridge (Arctic Ocean) - evidences for existence of the large igneous provinces within Arctic region: on the data of the High Arctic Russian Expedition "Arctic-2012"

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Kremenetsky, Alexander; Gusev, Evgeny; Shevchenko, Sergey; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Rodionov, Nikolay

    2013-04-01

    rocks and progressive magmas evolution during mixing of asthenospheric substances of the upwelling plume with the lithospheric component. Relatively high-radiogenic osmium isotope composition of the studied basalts (187Os/188Omeas=0.51525-1.07316) indicates the presence of significant share of the enriched lithospheric component in the source of basalt melts and the formation of this source at expense of relatively aged substances (model Re-Os ages from 600 to 1200 Ma). Age determination of the studied basalts effusions by argon-argon method is ongoing process but we have separated about 30 zircon grains mainly magmatic appearance (Th/U=0.6-2.0, long-prismatic grains without any visible signs of digestion and recrystallization, and overgrowths) from 4 samples and determined their U-Pb SHRIMP ages. Obtained age clusters indicate existence of old sialic basement underlying Mendeleev Ridge rocks (captured zircons with the ages of 2.7, 1.9, 1.6 and 0.8-1.2 Ga), which composition could be correlated with continental complexes of the Eurasia margins. At the same time, the finding of the volcanogenic zircons within the basalts with the ages of 127 and 260 Ma does not exclude the plausible existence on the studied territory of Polar Arctic of basalt effusions of two (or more) of igneous complexes corresponded with activities of mantle plumes - Cretaceous-Cenozoic (HALIP) and Triassic-Permian (resembling Siberian traps) ages

  10. Late Quaternary marine records from High Arctic Canada: problems, solutions, and multiproxy perspectives

    NASA Astrophysics Data System (ADS)

    Pienkowski, Anna; Furze, Mark; England, John; MacLean, Brian; von Prause, Markus; Blasco, Steve

    2013-04-01

    The Canadian Arctic Archipelago (= CAA) constitutes a significant geographic region within the Arctic Ocean Basin, influencing its oceanography, biology, ecology, and climate. Yet comparatively little is known about the long-term (post-Late Wisconsinan) environmental history of the marine channels of this region (the "Northwest Passage" = NWP). New marine data emerging from the central CAA extending back to regional deglaciation highlight the potential of multiproxy approaches in high-latitude settings. Five long (piston and trigger-weight) cores in an east-west transect through the NWP, investigated for sedimentological characteristics, microfossils (dinocysts, non-pollen palynomorphs, benthic and planktonic foraminifera, ostracods), and stable isotope ratios, show a dynamic late Quaternary environmental history. Our data suggest grounded glacial ice, rapid deglaciation, and a characteristic progression from ice-proximal to ice-distal conditions. Despite chronological complexities (scarcity of dateable materials, Portlandia Effect), age model extrapolations place deglaciation at ~11.0-10.3 cal ka BP (location dependent). Noticeable biological activity is marked by the appearance of planktonic foraminifera (Neogloboquadrina pachyderma) at ~10.0 cal ka BP. This signals the penetration of (Atlantic-derived) Arctic Intermediate Water (AIW) into the central NWP following deglaciation, likely facilitated by higher sea-levels permitting increased flow across inter-channel sills. Subsequent (~9.0-7.0 cal ka BP) ameliorated conditions (open-water season greater than present) marked by substantial diversification and abundance across all microfossil groups may correspond to a previously postulated "Holocene Thermal Optimum". After ~7.0 cal ka BP increased sea-ice and modern microfossil assemblages imply conditions similar to modern, likely due to the exclusion of AIW due to glacioisostatic shallowing combined with climate cooling. Remaining micropalaeontological challenges

  11. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.

    PubMed

    Legagneux, P; Gauthier, G; Berteaux, D; Bêty, J; Cadieux, M C; Bilodeau, F; Bolduc, E; McKinnon, L; Tarroux, A; Therrien, J F; Morissette, L; Krebs, C J

    2012-07-01

    Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of

  12. Early Cretaceous High Arctic Magmatism and the Oceanic Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Polteau, Stephane; Faleide, Jan Inge; Svensen, Henrik; Myklebust, Reidun; Midtkandal, Ivar; Corfu, Fernando

    2014-05-01

    The High Arctic Large Igneous Province (HALIP) comprises Early and Late Cretaceous igneous deposits extending from the Canadian Arctic Archipelago in the west to the east Siberian Island in the east. It also includes anomalously thick igneous crust in the Canada Basin. We have mapped out the distribution of HALIP volcanic extrusive and intrusive rocks in the Barents Sea based on field work and borehole data in Svalbard and extensive geophysical data in the offshore areas. The volcanic extrusive and intrusive rocks in the Barents Sea Large Igneous Province (BLIP) are present in a 700 000 km2 large region extending across the northern and eastern Barents Sea. The igneous complex is dominated by a large sill complex intruded into organic-rich Jurassic to Permian age sequences in the East Barents Basin, on Svalbard and on Franz Josef Land. Geochemical data suggest that the tholeiitic igneous rocks were likely formed during a short-lived melting event. New geochronology data (U/Pb on zircons) suggest that the igneous event occurred in the Early Aptian or Barremian. Marine and terrestrial Cretaceous shales and sandstones of the Carolinefjellet, Helvetiafjellet, and Rurikfjellet formations have recently been cored in four boreholes on Svalbard (the Longyearbyen CO2 Laboratory). We have completed a comprehensive analytical program of samples from the boreholes, including geochronology (Ar/Ar and zircon U/Pb), biostratigraphy (palynology), and geochemistry (ICP-MS, RockEval, TOC). In the boreholes, the Barremian-early Aptian Helvetiafjellet Formation is overlaid by early Aptian sapropel-rich shales of the Carolinefjellet Formation. Carbon isotope data reveal a negative excursion in this anoxic interval, most likely representing the Oceanic Anoxic Event 1a (OAE1a). The geochronology data suggest that the intrusive BLIP volcanism occurred at the tim e of the early Aptian OAE1a. We propose that the link between the BLIP and the OAE1a is a massive release of thermogenic methane

  13. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian High Arctic.

    PubMed

    St Pierre, K A; St Louis, V L; Kirk, J L; Lehnherr, I; Wang, S; La Farge, C

    2015-05-19

    Caribou, which rely on lichens as forage, are a dietary source of monomethylmercury (MMHg) to many of Canada's Arctic Aboriginal people. However, little is understood about the sources of MMHg to lichens in the High Arctic. We quantified MMHg, total mercury (THg) and other chemical parameters (e.g., marine and crustal elements, δ(13)C, δ(15)N, organic carbon, calcium carbonate) in lichen and soil samples collected along transects extending from the coast on Bathurst and Devon islands, Nunavut, to determine factors driving lichen MMHg and THg concentrations in the High Arctic. Lichen MMHg and THg concentrations ranged from 1.41 to 17.1 ng g(-1) and from 36.0 to 361 ng g(-1), respectively. Both were highly enriched over concentrations in underlying soils, indicating a predominately atmospheric source of Hg in lichens. However, MMHg and THg enrichment at coastal sites on Bathurst Island was far greater than on Devon Island. We suggest that this variability can be explained by the proximity of the Bathurst Island transect to several polynyas, which promote enhanced Hg deposition to adjacent landscapes through various biogeochemical processes. This study is the first to clearly show a strong marine influence on MMHg inputs to coastal terrestrial food webs with implications for MMHg accumulation in caribou and the health of the people who depend on them as part of a traditional diet.

  14. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions.

    PubMed

    Piljac-Zegarac, J; Belscak, A; Piljac, A

    2009-06-01

    Antioxidant capacity and polyphenolic content of leaf infusions prepared from six highbush blueberry cultivars (Vaccinium corymbosum L.), one wild lowbush blueberry cultivar (Vaccinium myrtillus L.), and one commercially available mix of genotypes were determined. In order to simulate household tea preparation conditions, infusions were prepared in water heated to 95 degrees C. The dynamics of extraction of polyphenolic antioxidants were monitored over the course of 30 minutes. Extraction efficiency, quantified in terms of the total phenol (TP) content, and antioxidant capacity of infusions, evaluated by the ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, were compared with cultivar type and extraction time. The 30-minute infusions exhibited the highest TP content and antioxidant capacity according to all three assays. Wild blueberry infusion had the highest TP content (1,879 mg/L gallic acid equivalents [GAE]) and FRAP values (20,050 microM). The range of TP values for 30-minute infusions was 394-1,879 mg/L GAE with a mean of 986 mg/L GAE across cultivars; FRAP values fell between 3,015 and 20,050 microM with a mean of 11,234 microM across cultivars. All 30-minute infusions exhibited significant scavenging capacity for DPPH(*) and ABTS(*+) radicals, comparable to different concentrations of catechin, gallic acid, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. Overall, tested infusions showed significant reducing capacity as well as radical scavenging potential, which places blueberry leaf tea high on the list of dietary sources of antioxidants.

  15. Human-induced Arctic moistening.

    PubMed

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  16. Regional seismic wave propagation (Lg & Sn phases) in the Amerasia Basin and High Arctic

    NASA Astrophysics Data System (ADS)

    Chiu, Karen; Snyder, David B.

    2015-03-01

    Observation of Lg seismic waves at regional distances has long been considered indicative of continental crust that is 30-40 km thick. This study updates an earlier assessment of Lg propagation efficiency to characterize continental or non-continental crust and related structures across the Amerasia Basin and surrounding continental areas of the high Arctic. Recent refraction surveys and receiver function studies provide crustal thickness estimates of 18-41 km for comparison. Among 7000 candidate earthquake-station pairs considered, no classic Lg phases (0.14-2 Hz) are observed to cross the Amerasia Basin (Canada Basin, Alpha-Mendeleev Ridge) efficiently, but lower frequency (0.035-0.17 Hz) arrivals with group velocities intermediate between Lg and Sn (sometimes called early Lg) are observed along many ray paths crossing the basin. The characteristic frequencies of these observed arrivals match well with those of synthetic waves propagated within models with thinned or pinched continental crust, such as crust characteristic of the North Sea, and thus suggest that most parts of the Amerasia Basin have a crustal thickness intermediate between that typical of thin continental and oceanic crust.

  17. Dramatic orientation shift of white-crowned sparrows displaced across longitudes in the high Arctic.

    PubMed

    Akesson, Susanne; Morin, Jens; Muheim, Rachel; Ottosson, Ulf

    2005-09-06

    Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.

  18. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  19. Use of High Resolution UAS Imagery to Classify Sub-Arctic Vegetation Types

    NASA Astrophysics Data System (ADS)

    Herrick, C.; Palace, M. W.; Finnell, D. R.; Garnello, A.; Sullivan, F.; Anderson, S. M.; Varner, R. K.

    2014-12-01

    Sub-arctic permafrost regions are now experiencing annual warming with a resulting thaw that induces changes to the vegetative landscape. This warming trend is directly correlated to increases in annual greenhouse gas emissions including methane (CH4). Vegetation species and composition are indirect indicators of CH4 flux, and may serve as a proxy for estimating changes in CH4emission over time. Three WorldView-2 images (2m2 spatial resolution, 8 multispectral bands) were acquired in Jul/Aug of 2012-2014 over the Abisko region in northern Sweden. Color infrared (CIR) sub-meter imagery was also collected over a 4km2 area in 2014 using both a multi-rotor helicopter and a fixed wing unmanned aircraft system (UAS). Fifty 1m2 ground sample plots were established; these plots cover 5 major ground cover vegetation classes and were used in classification efforts. Texture analysis was conducted on both UAS and WV-2 imagery. Both an unsupervised k-means clustering algorithm to predict vegetation classes and a supervised classification using both random forests and neural networks were conducted; similar texture analysis and clustering were also performed on the UAS imagery. Classifications of the two imagery types were compared with promising results, thus supporting the use of UAS and high resolution satellite image collection to provide landscape level characterization of vegetation.

  20. Optical turbulence profiling with SloDAR in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Maire, Jérôme; Mieda, Etsuko; Steinbring, Eric; Murowinski, Richard; Graham, James R.; Carlberg, Raymond; Wright, Shelley A.; Law, Nicholas M.; Sivanandam, Suresh

    2014-07-01

    The Earth's polar regions offer unique advantages for ground-based astronomical observations with its cold and dry climate, long periods of darkness, and the potential for exquisite image quality. We present preliminary results from a site-testing campaign during nighttime from October to November 2012 at the Polar Environment Atmospheric Research Laboratory (PEARL), on a 610-m high ridge near the Eureka weatherstation on Ellesmere Island, Canada. A Shack-Hartmann wavefront sensor was employed, using the Slope Detection and Ranging (SloDAR) method. This instrument (Mieda et al, this conference) was designed to measure the altitude, strength and variability of atmospheric turbulence, in particular for operation under Arctic conditions. First SloDAR optical turbulence profiles above PEARL show roughly half of the optical turbulence confined to the boundary layer, below about 1 km, with the majority of the remainder in one or two thin layers between 2 km and 5 km, or above. The median seeing during this campaign was measured to be 0.65 arcsec.

  1. Effects of Scale on DEM Derived Drainage Networks For a High Arctic Wetland Complex

    NASA Astrophysics Data System (ADS)

    Brown, L. C.; Young, K. L.

    2004-05-01

    The ability to automatically generate drainage patterns is a useful tool in hydrologic studies, especially in remote areas where limited data is available. However drainage patterns derived from digital elevation data can be significantly affected by the scale of the data from which they are generated. This study investigates the effects of scaling on drainage patterns extracted from elevation data for a low gradient wetland area on Somerset Island, Nunavut, in the Canadian High Arctic. A series of Digital Elevation Models (DEM's) were created from digitized topographic information at varying resolutions (2.5 m, 5 m. 10 m, 50 m, 100 m, 200 m). Automated drainage network extractions were performed for each resolution grid, using ESRI ArcInfo software. A series of flow networks were created for each resolution DEM using varying minimum stream lengths in order to examine the effects of this variable on flow pattern and direction. The modelled drainage at each resolution was then compared to the `actual' drainage mapped from aerial photography (air photos and low level oblique photographs) and topographic maps to examine differences as a result of scaling. Preliminary results suggest that reproducing correct flow direction was not possible with the coarser resolution DEMs (10 m and up), while the finer resolutions (2.5 m, 5 m) resulted in drainage networks most similar to the mapped drainage.

  2. Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.

    2015-12-01

    High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.

  3. Sulfur-oxidizing chemolithotrophic proteobacteria dominate the microbiota in high arctic thermal springs on Svalbard.

    PubMed

    Reigstad, Laila Johanne; Jorgensen, Steffen Leth; Lauritzen, Stein-Erik; Schleper, Christa; Urich, Tim

    2011-09-01

    The thermal springs Trollosen and Fisosen, located on the High Arctic archipelago Svalbard, discharge saline groundwaters rich in hydrogen sulfide and ammonium through a thick layer of permafrost. Large amounts of biomass that consist of filamentous microorganisms containing sulfur granules, as analyzed with energy dispersive X-ray analysis, were found in the outflow. Prokaryotic 16S rRNA gene libraries and quantitative polymerase chain reaction (qPCR) analyses reported bacteria of the γ- and ɛ-proteobacterial classes as the dominant organisms in the filaments and the planktonic fractions, closely related to known chemolithoautotrophic sulfur oxidizers (Thiotrix and Sulfurovum). Archaea comprised ∼1% of the microbial community, with the majority of sequences affiliated with the Thaumarchaeota. Archaeal and bacterial genes coding for a subunit of the enzyme ammonia monooxygenase (amoA) were detected, as well as 16S rRNA genes of Nitrospira, all of which is indicative of potential complete nitrification in both springs. 16S rRNA sequences related to methanogens and methanotrophs were detected as well. This study provides evidence that the microbial communities in Trollosen and Fisosen are sustained by chemolithotrophy, mainly through the oxidation of reduced sulfur compounds, and that ammonium and methane might be minor, additional sources of energy and carbon.

  4. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  5. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.

    PubMed

    Møller, Annette K; Barkay, Tamar; Hansen, Martin A; Norman, Anders; Hansen, Lars H; Sørensen, Søren J; Boyd, Eric S; Kroer, Niels

    2014-01-01

    Bacterial reduction in Hg(2+) to Hg(0) , mediated by the mercuric reductase (MerA), is important in the biogeochemical cycling of Hg in temperate environments. Little is known about the occurrence and diversity of merA in the Arctic. Seven merA determinants were identified among bacterial isolates from High Arctic snow, freshwater and sea-ice brine. Three determinants in Bacteriodetes, Firmicutes and Actinobacteria showed < 92% (amino acid) sequence similarity to known merA, while one merA homologue in Alphaproteobacteria and 3 homologues from Betaproteobacteria and Gammaproteobacteria were > 99% similar to known merA's. Phylogenetic analysis showed the Bacteroidetes merA to be part of an early lineage in the mer phylogeny, whereas the Betaproteobacteria and Gammaproteobacteria merA appeared to have evolved recently. Several isolates, in which merA was not detected, were able to reduce Hg(2+) , suggesting presence of unidentified merA genes. About 25% of the isolates contained plasmids, two of which encoded mer operons. One plasmid was a broad host-range IncP-α plasmid. No known incompatibility group could be assigned to the others. The presence of conjugative plasmids, and an incongruent distribution of merA within the taxonomic groups, suggests horizontal transfer of merA as a likely mechanism for High Arctic microbial communities to adapt to changing mercury concentration.

  6. Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic.

    PubMed

    Paré, Maxime C; Bedard-Haughn, Angela

    2013-04-01

    Arctic soils store large amounts of labile soil organic matter (SOM) and several studies have suggested that SOM characteristics may explain variations in SOM cycling rates across Arctic landscapes and Arctic ecosystems. The objective of this study was to investigate the influence of routinely measured soil properties and SOM characteristics on soil gross N mineralization and soil GHG emissions at the landscape scale. This study was carried out in three Canadian Arctic ecosystems: Sub-Arctic (Churchill, MB), Low-Arctic (Daring Lake, NWT), and High-Arctic (Truelove Lowlands, NU). The landscapes were divided into five landform units: (1) upper slope, (2) back slope, (3) lower slope, (4) hummock, and (5) interhummock, which represented a great diversity of Static and Turbic Cryosolic soils including Brunisolic, Gleysolic, and Organic subgroups. Soil gross N mineralization was measured using the (15) N dilution technique, whereas soil GHG emissions (N2 O, CH4 , and CO2 ) were measured using a multicomponent Fourier transform infrared gas analyzer. Soil organic matter characteristics were determined by (1) water-extractable organic matter, (2) density fractionation of SOM, and (3) solid-state CPMAS (13) C nuclear magnetic resonance (NMR) spectroscopy. Results showed that gross N mineralization, N2 O, and CO2 emissions were affected by SOM quantity and SOM characteristics. Soil moisture, soil organic carbon (SOC), light fraction (LF) of SOM, and O-Alkyl-C to Aromatic-C ratio positively influenced gross N mineralization, N2 O and CO2 emissions, whereas the relative proportion of Aromatic-C negatively influenced those N and C cycling processes. Relationships between SOM characteristics and CH4 emissions were not significant throughout all Arctic ecosystems. Furthermore, results showed that lower slope and interhummock areas store relatively more labile C than upper and back slope locations. These results are particularly important because they can be used to produce better

  7. Satellites reveal an increase in gross primary production in a greenlandic high arctic fen 1992-2008

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Mastepanov, M.; Tamstorf, M. P.; Eklundh, L.; Schubert, P.; Ekberg, A.; Sigsgaard, C.; Christensen, T. R.; Ström, L.

    2010-02-01

    Arctic wetlands play a key role in the terrestrial carbon cycle. Recent studies have shown a greening trend and indicated an increase in CO2 uptake in boreal and sub- to low-arctic areas. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with ground-based flux measurements of CO2 to investigate a possible greening trend and potential changes in gross primary production (GPP) between 1992 and 2008 in a high arctic fen area. The study took place in Rylekaerene in the Zackenberg Research Area (74°28' N 20°34' W), located in the National park of North Eastern Greenland. We estimated the light use efficiency (ɛ) for the dominant vegetation types from field measured fractions of photosynthetic active radiation (FAPAR) and ground-based flux measurements of GPP. Measured FAPAR were correlated to satellite-based NDVI. The FAPAR-NDVI relationship in combination with ɛ was applied to satellite data to model GPP 1992-2008. The model was evaluated against field measured GPP. The model was a useful tool for up-scaling GPP and all basic requirements for the model were well met, e.g., FAPAR was well correlated to NDVI and modeled GPP was well correlated to field measurements. The studied high arctic fen area has experienced a strong increase in GPP between 1992 and 2008. The area has during this period also experienced a substantial increase in local air temperature. Consequently, the observed greening trend is most likely due to ongoing climatic change possibly in combination with CO2 fertilization, due to increasing atmospheric concentrations of CO2.

  8. Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; Maslowski, Wieslaw; Semtner, Albert J.

    1999-08-01

    A high-resolution sea ice model is designed for simulating the Arctic. The grid resolution is ˜18 km, and the domain contains the main Arctic Ocean, Nordic Seas, Canadian Archipelago, and the subpolar North Atlantic. The model is based on a widely used dynamic and thermodynamic model with more efficient numerics. The oceanic forcing is from an Arctic Ocean model with the same horizontal resolution as the ice model and 30 levels. The atmospheric forcing is from 3-day average 1990-1994 European Centre for Medium-Range Weather Forecasts operational data. Results from the ice model are compared against satellite passive-microwave observations and drifting buoys. The model realistically simulates ice tongues and eddies in the Greenland Sea. The mesoscale ocean eddies along the East Greenland Current (EGC) are demonstrated to be responsible for the presence of ice eddies and tongues out of the Greenland Sea ice edge. Large shear and divergence associated with the mesoscale ice eddies and strong ice drift, such as the one above the EGC, result in thinner and less compact ice. The mesoscale ocean eddies along the Alaskan Chukchi shelf break, the Northwind Ridge, and the Alpha-Mendeleyev Ridge are major contributors to mesoscale reduction of ice concentration, in addition to atmospheric storms which usually lead to a broad-scale reduction of ice concentration. The existence of mesoscale ocean eddies greatly increases nonuniformity of ice motion, which means stronger ice deformation and more open water. An eddy-resolving coupled ice-ocean model is highly recommended to adequately simulate the small but important percentage of open water in the Arctic pack ice, which can significantly change the heat fluxes from ocean to atmosphere and affect the global climate.

  9. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.

  10. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  11. Validation of High Frequency (HF) Propagation Prediction Models in the Arctic region

    NASA Astrophysics Data System (ADS)

    Athieno, R.; Jayachandran, P. T.

    2014-12-01

    Despite the emergence of modern techniques for long distance communication, Ionospheric communication in the high frequency (HF) band (3-30 MHz) remains significant to both civilian and military users. However, the efficient use of the ever-varying ionosphere as a propagation medium is dependent on the reliability of ionospheric and HF propagation prediction models. Most available models are empirical implying that data collection has to be sufficiently large to provide good intended results. The models we present were developed with little data from the high latitudes which necessitates their validation. This paper presents the validation of three long term High Frequency (HF) propagation prediction models over a path within the Arctic region. Measurements of the Maximum Usable Frequency for a 3000 km range (MUF (3000) F2) for Resolute, Canada (74.75° N, 265.00° E), are obtained from hand-scaled ionograms generated by the Canadian Advanced Digital Ionosonde (CADI). The observations have been compared with predictions obtained from the Ionospheric Communication Enhanced Profile Analysis Program (ICEPAC), Voice of America Coverage Analysis Program (VOACAP) and International Telecommunication Union Recommendation 533 (ITU-REC533) for 2009, 2011, 2012 and 2013. A statistical analysis shows that the monthly predictions seem to reproduce the general features of the observations throughout the year though it is more evident in the winter and equinox months. Both predictions and observations show a diurnal and seasonal variation. The analysed models did not show large differences in their performances. However, there are noticeable differences across seasons for the entire period analysed: REC533 gives a better performance in winter months while VOACAP has a better performance for both equinox and summer months. VOACAP gives a better performance in the daily predictions compared to ICEPAC though, in general, the monthly predictions seem to agree more with the

  12. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  13. Long photoperiods sustain high pH in Arctic kelp forests.

    PubMed

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  14. Long photoperiods sustain high pH in Arctic kelp forests

    PubMed Central

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E.; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M.

    2016-01-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice. PMID:27990490

  15. Evaluation of the biochemical components and chromatic properties of the juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L.

    PubMed

    Cesonienė, Laima; Daubaras, Remigijus; Jasutienė, Ina; Venclovienė, Jonė; Miliauskienė, Inga

    2011-09-01

    Benzoic acid, total anthocyanins, soluble solids, titratable acidity, and colour properties in juice of the American cranberry Vaccinium macrocarpon and the European cranberry Vaccinium oxycoccos were investigated. Berry juices of V. macrocarpon cultivars were distinguished by their higher total anthocyanin and benzoic acid amounts. These cultivars accumulated on average 43.11 mg/l of benzoic acid and 92.45 mg/l of total anthocyanins. The levels of benzoic acid and total anthocyanins in V. oxycoccos cultivars were 17.52 mg/l and 42.54 mg/l, respectively. The V. macrocarpon cultivars 'Franklin', 'Le Munyon', 'Searles', and 'Early Richard' were selected as the best according to the enhanced total anthocyanins and benzoic acid amounts. The separation of anthocyanins by HPLC-UV-VIS revealed the presence of six anthocyanins, with peonidin-3-galactoside being the most prevalent. Galactoside together with glucoside conjugates comprised the largest percentage of total anthocyanins in the juices of V. macrocarpon and V. oxycoccos cultivars.

  16. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits.

    PubMed

    Burdulis, Deividas; Sarkinas, Antanas; Jasutiené, Ina; Stackevicené, Elicija; Nikolajevas, Laurynas; Janulis, Valdimaras

    2009-01-01

    Simultaneous comparison of bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L) fruits for their anthocyanin composition, antimicrobial and antioxidant activity is reported. The aim of this study was to investigate and to compare anthocyanin composition, antimicrobial and antioxidant activity in bilberry and blueberry fruits and their skins. The investigations revealed that the highest amount of total anthocyanins was observed in fruits skins of blueberry cultivars. The results, obtained by chromatographic analysis, indicated that cyanidin is a dominant anthocyanidin in bilberry and malvidin in blueberry samples. Extracts of "Herbert", "Coville", "Toro" blueberry cultivars and bilberry fruits revealed antimicrobial properties. Citrobacter freundii (ATCC 8090) and Enterococcus faecalis (ATCC29212) were the most sensitive among eight tested Gram-negative and Gram-positive bacteria. Significant differences between berry and skin extracts were not established. Studies with fruits showed that the strongest antioxidant activity possesses blueberry cultivar "Berkeley" (82.13 +/- 0.51%). Meanwhile, the amount of quenched free radicals in bilberry samples was 63.72 +/- 1.11%, respectively. The lowest antioxidant activity was estimated in blueberry cultivar "Coville". Accordingly, the strongest antiradical properties were estimated in blueberry cultivar "Ama" fruit skins. Bilberry fruit skin samples possess strong antiradical activity as well (82.69 +/- 0.37%).

  17. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    ecosystem sinks for the 15N tracer in the long-term were organic humus soil, followed by bryophytes and then vascular plants, it is concluded that greater N deposition resulting in greater released of N from melting snowpack could significantly enrich the plant N pool and possibly enhance plant growth (with a potential to increase C storage) in the future. Overall, this study shows that high arctic tundra has considerable short- and long term- capacity for retention of snow-melt deposited N, with very tight internal recycling that allows 100% of the initially sequestered N to be retained over 10 years. Such capacity for pollutant N retention may exacerbate the impact that increased N deposition has on high arctic tundra.

  18. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    PubMed

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but <2% in freshwater and brine. The resistant bacteria belonged to the Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes. Resistance levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains.

  19. Assessing the Utility of Alternate Digital Image Color Space for Deriving Phenological Dynamics in a High-Arctic Tundra Ecosystem

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Oberbauer, S. F.; Ramirez, G.; Ramirez, G. A.; Tweedie, C. E.; Hollister, R. D.; Escarzaga, S. M.; Ochoa, E.

    2015-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level ecosystem properties and processes to the landscape level remains a persistent research challenge in the Arctic. Plant and landscape phenology is sensitive to a number of spatiotemporally variable environmental factors such as soil moisture, temperature, and radiation. Seasonal and inter-annual differences in phenology can affect surface energy balance and land-atmosphere carbon flux. Considering the relative importance of the Arctic to global carbon balance, improved scaling and extrapolation of phenological dynamics from the plot level to the landscape level is important for advancing our understanding of the impact of climate and other environmental change in arctic terrestrial ecosystems. Seasonal and interannual landscape phenology was observed over the Mobile Instrumented Sensor Platform (MISP) grid (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired from kite aerial photography (KAP), a hyperspectral ground-based spectrometer, and a phenocam. These data were analyzed in RGB and non-traditional HSV and l*a*b*color spaces to determine site, plant community seasonal, and inter annual phenological dynamics. Results were also compared to high spatial resolution satellite imagery to determine optimal indices for scaling vegetation dynamics from plot to landscape level. These results show that greenness indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques that could be deployed at multiple sites at low cost.

  20. Ecosystem development and carbon cycle on a glacier foreland in the high Arctic, Ny-Alesund, Svalbard.

    PubMed

    Nakatsubo, Takayuki; Bekku, Yukiko Sakata; Uchida, Masaki; Muraoka, Hiroyuki; Kume, Atsushi; Ohtsuka, Toshiyuki; Masuzawa, Takehiro; Kanda, Hiroshi; Koizumi, Hiroshi

    2005-06-01

    The Arctic terrestrial ecosystem is thought to be extremely susceptible to climate change. However, because of the diverse responses of ecosystem components to change, an overall response of the ecosystem carbon cycle to climate change is still hard to predict. In this review, we focus on several recent studies conducted to clarify the pattern of the carbon cycle on the deglaciated area of Ny-Alesund, Svalbard in the high Arctic. Vegetation cover and soil carbon pools tended to increase with the progress of succession. However, even in the latter stages of succession, the size of the soil carbon pool was much smaller than those reported for the low Arctic tundra. Cryptogams contributed the major proportion of phytomass in the later stages. However, because of water limitation, their net primary production was smaller than that of the vascular plants. The compartment model that incorporated major carbon pools and flows suggested that the ecosystem of the later stages is likely to be a net sink of carbon at least for the summer season. Based on the eco-physiological characteristics of the major ecosystem components, we suggest several possible scenarios of future changes in the ecosystem carbon cycle.

  1. Inorganic carbon in a high latitude estuary-fjord system in Canada's eastern Arctic

    NASA Astrophysics Data System (ADS)

    Turk, D.; Bedard, J. M.; Burt, W. J.; Vagle, S.; Thomas, H.; Azetsu-Scott, K.; McGillis, W. R.; Iverson, S. J.; Wallace, D. W. R.

    2016-09-01

    Rapidly changing conditions in the Arctic can have a significant impact on biogeochemical cycles and can be particularly important in high latitude estuary-fjord systems with abundant and diverse freshwater sources. This study provides a first look into the inorganic carbon system and its relation to freshwater sources in Cumberland Sound in the east coast of Baffin Island, Nunavut, Canada. These data contribute to the very limited set of inorganic carbon measurements in high latitude estuary-fjord systems. During the ice-free conditions in August 2011, the meteoric freshwater fractions (MW) in the upper 40 m ranged from 11 to 21% and no sea ice melt (SIM) was present in the Sound. Surface waters were undersaturated with pCO2 (260 and 300 μatm), and DIC and TA ranged between 1779 and 1966 μmol DIC kg-1, and 1922 and 2140 μmol TA kg-1, respectively. Aragonite saturation (ΩAr) state ranged from 1.9 in the surface to 1.4 in the subsurface waters. Data show decreasing TA and ΩAr with increasing MW fraction and suggest that Cumberland Sound waters would become aragonite undersaturated (ΩAr < 1) at MW = 0.37 (95% CI: 0.29 to 0.56). Estimated local δ18O (-19.2‰) and TA (174 μmol TA kg-1) end-members indicate MW was most likely a mixture of river water and glacial melt. In August 2012, MW fractions at the surface were between 8 and 11.5%, and SIM between 7 and 23%. Significant interannual variability of summertime SIM could potentially result in ΩAr undersaturation.

  2. Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic.

    PubMed

    Tashyreva, Daria; Elster, Josef

    2016-05-01

    Cyanobacteria form extensive macroscopic mats in shallow freshwater environments in the High Arctic and Antarctic. In these habitats, the communities are exposed to seasonal freezing and desiccation as well as to freeze-thawing and drying-rewetting cycles. Here, we characterized the annual cycles of two Phormidium communities in very shallow seepages located in central Svalbard. We observed the structure of the communities and the morphology, ultrastructure, metabolic activity, and viability of filaments and single cells. The communities overwintered as frozen mats, which were formed by long filaments enclosed in thick multilayered polysaccharide sheaths. No morphologically and/or ultrastructurally distinct spore-like cells were produced for surviving the winter, and the winter survival of the communities was not provided by a few resistant cells, which did not undergo visible morphological and ultrastructural transformations. Instead, a high proportion of cells in samples (85%) remained viable after prolonged freezing. The sheaths were the only morphological adaption, which seemed to protect the trichomes from damage due to freezing and freeze-associated dehydration. The cells in the overwintering communities were not dormant, as all viable cells rapidly resumed respiration after thawing, and their nucleoids were not condensed. During the whole vegetative season, defined by the presence of water in a liquid state, the communities were constantly metabolically active and contained <1% of dead and injured cells. The morphology and ultrastructure of the cells remained unaltered during observations throughout the year, except for light-induced changes in thylakoids. The dissemination events are likely to occur in spring as most of the trichomes were split into short fragments (hormogonia), a substantial proportion of which were released into the environment by gliding out of their sheaths, as well as by cracking and dissolving their sheaths. The short fragments

  3. Multi-Sensor Investigation of a Regional High-Arctic Cloudy Event

    NASA Astrophysics Data System (ADS)

    Ivanescu, L.; O'Neill, N. T.; Blanchet, J. P.; Baibakov, K.; Chaubey, J. P.; Perro, C. W.; Duck, T. J.

    2014-12-01

    A regional high-Arctic cloud event observed in March, 2011 at the PEARL Observatory, near the Eureka Weather Station (80°N, 86°W), was investigated with a view to better understanding cloud formation mechanisms during the Polar night. We analysed the temporal cloud evolution with a suite of nighttime, ground-based remote sensing (RS) instruments, supplemented by radiosonde profiles and surface weather measurements. The RS suite included Raman lidar, cloud radar, a star-photometer and microwave-radiometers. In order to estimate the spatial extent and vertical variability of the cloud mass, we employed satellite-based lidar (CALIPSO) and radar (CloudSat) profiles in the regional neighbourhood of Eureka (at a latitude of 80°N, Eureka benefits from a high frequency of CALIPSO and CloudSat overpasses). The ground-based and satellite-based observations provide quantitative measurements of extensive (bulk) properties (cloud and aerosol optical depths), and intensive (per particle properties) such as aerosol and cloud particle size as well as shape, density and aggregation phase of the cloud particulates. All observations were then compared with the upper atmosphere NCEP/NCAR reanalyses in order to understand better the synoptic context of the cloud mass dynamics as a function of key meteorological parameters such as upper air temperature and water vapor circulation. Preliminary results indicated the presence of a particular type of thin ice cloud (TIC-2) associated with a deep and stable atmospheric low. A classification into small and large ice crystal size (< 40 μm and > 40 μm, respectively), identifies the clouds as TIC-1 or TIC-2. This classification is hypothesized to be associated with the nature of the aerosols (non-anthropogenic versus anthropogenic) serving as ice nuclei in their formation. Such a distinction has important implications on the initiation of precipitation, removal rate of the cloud particles and, in consequence, the radiative forcing

  4. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic.

    PubMed

    Perreault, Nancy N; Andersen, Dale T; Pollard, Wayne H; Greer, Charles W; Whyte, Lyle G

    2007-03-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of -325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments.

  5. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    PubMed Central

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified. PMID:24347997

  6. Synchronous polar winter starphotometry and lidar measurements at a High Arctic station

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Ivanescu, L.; Duck, T. J.; Perro, C.; Herber, A.; Schulz, K.-H.; Schrems, O.

    2015-09-01

    We present recent progress on nighttime retrievals of aerosol and cloud optical properties over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, a star photometer was employed to acquire aerosol optical depth (AOD) data, while vertical aerosol and cloud backscatter profiles were measured using the CANDAC Raman Lidar (CRL). We used a simple backscatter coefficient threshold (βthr) to distinguish aerosols from clouds and, assuming that aerosols were largely fine mode (FM)/sub-micron, to distinguish FM aerosols from coarse mode (CM)/super-micron cloud or crystal particles. Using prescribed lidar ratios, we computed FM and CM AODs that were compared with analogous AODs estimated from spectral star photometry. We found (βthr dependent) coherences between the lidar and star photometer for both FM events and CM cloud and crystal events with averaged, FM absolute differences being <∼0.03 when associated R2 values were between 0.2 and 0.8. A βthr sensitivity study demonstrated that zero crossing absolute differences and R2 peaks were in comparable regions of the βthr range (or physical reasons were given for their disparity). The utility of spectral vs. temporal cloud screening of star photometer AODs was also illustrated. In general our results are critical to building confidence in the physical fidelity of derived, weak amplitude, star photometry AODs and, in turn, towards the development of AOD climatologies and validation databases for polar winter models and satellite sensors.

  7. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia.

    PubMed

    Forbes, Bruce C; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-12-29

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience.

  8. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    PubMed

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  9. Molecular analysis of bacterial communities from a Canadian high Arctic polythermal glacier

    NASA Astrophysics Data System (ADS)

    Bhatia, M.; Sharp, M.; Foght, J.

    2003-04-01

    The goal of this study is to characterize the bacterial communities beneath, on, and adjacent to a high Arctic polythermal glacier, with a view to understanding the origins of the subglacial microbial population. The study site is John Evans Glacier (JEG), Ellesmere Island, Canada. JEG is a polythermal glacier consisting of a core of ice at the pressure melting point, surrounded by an outer layer of cold ice. Basal melting and seasonal inputs of meltwater from the glacier surface provide liquid water for subglacial microbial life. Samples were collected from the subglacial, supraglacial, and proglacial environments at JEG. Subglacial samples included basal ice and water that had been stored beneath the glacier. Dry snow, wet snow, and water from supraglacial streams were collected as representatives of the supraglacial environment, which changes in character through the melt season. Sediments and algal mats were collected from an area directly in front of the glacier terminus and along a transect adjacent to the glacier to reflect the developing proglacial environment. Hydrochemical analyses were conducted to assess the role of microbial activity in biogeochemical processes. To compare the bacterial communities, molecular techniques were applied to total community DNA that was released from the samples by a physical cell disruption technique. The polymerase chain reaction (PCR) was used with bacterial-specific primers, one of which was fluorescently labeled, to amplify community 16S rDNA genes. Single digestions with the restriction enzymes HaeIII and HhaI were performed to conduct inter- and intra-community comparisons of the terminal restriction fragment length polymorphisms (tRFLPs) of the fluorescently tagged amplified 16S rDNA genes. Preliminary results indicate that although some species are present throughout the different environments, several species are unique to each particular habitat. Further study of replicate tRFLP data and statistical analyses will

  10. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.

    PubMed

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-02-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH(4) and CO(2) in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH(4)-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO(2) sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH(4) emissions will critically depend on the response of the methanotrophic bacteria.

  11. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean

    PubMed Central

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-01-01

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m3 to 4.58 ng/m3), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m3. The highest frequency range was 1.0–1.5 ng/m3, lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss. PMID:25125264

  12. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms

    PubMed Central

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-01-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH4 and CO2 in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH4-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO2 sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH4 emissions will critically depend on the response of the methanotrophic bacteria. PMID:22955232

  13. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    PubMed

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  14. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry Cultivars.

    PubMed

    Tsuda, Hirotoshi; Kunitake, Hisato; Kawasaki-Takaki, Ryoko; Nishiyama, Kazuo; Yamasaki, Masao; Komatsu, Haruki; Yukizaki, Chizuko

    2013-02-15

    Antioxidants are abundant in blueberries, and while there are many studies concerning the bioactive compound of fruit, it is only recently that the wild Vaccinium species has attracted attention for their diverse and abundant chemical components. The aim of this study was to investigate the bioactive compounds of blueberry cultivars and wild species found in Japan. Among the five extracts of the Vaccinium species, Natsuhaze (Vaccinium oldhamii Miq.) was found to be the most effective at inhibiting the growth of HL-60 human leukemia cells in vitro. Although all ethanol extracts showed a growth inhibitory effect on HL-60 cells, the degree of the effects differed among the species. The extract of Natsuhaze induced apoptotic bodies and nucleosomal DNA fragmentation in the HL-60 cells. Of the extracts tested, that of Natsuhaze contained the largest amount of total polyphenols and showed the greatest antioxidant activity, but the anthocyanin content of Natsuhaze was similar to that of rabbiteye blueberry (V. virgatum Ait.). The results showed that total polyphenols contributed to the high antioxidant activity and growth inhibitory effect on HL-60 human leukemia cells of Natsuhaze extract.

  15. Multiple climatic signals inferred from the varved sediments of a coastal lake in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.

    2016-04-01

    The Arctic is extremely sensitive to climate change, and an influential part of the global climate system. However, the assessment of climate change and impacts from the Arctic remains a challenge mainly due to short and sparse meteorological records. In this context, data from natural paleoclimate archives are fundamental to place climate variability into perspective and assess the sensitivity of Earth's climate to natural and anthropogenic forcings. In particular, Arctic lakes are excellent potential archives. They are sensitive to extreme seasonal variations in surface processes and have a limited direct human impact. Nevertheless, the study of Arctic lakes is an analytical and technical challenge because: (i) limnological information are often lacking due to difficult accessibility; (ii) 210Pb inventories are low and terrestrial macrofossils for 14C dating are rare, which limits the development of precise sediment chronologies; and (iii) sediment accumulation rates are often low, which may restrict the temporal resolution and length of the paleoclimate records. Here, we present a high-resolution record from the varved sediments (annual laminations) of a saline coastal lake located in the Canadian High Arctic (unofficial name Chevalier Lake; Melville Island, NT). The particular interest of this location is the catchment area: 152 times larger than the lake area (Ac = 350 km²; AL = 2.3 km²). This particularity generates high sedimentation rates, atypical of previously studied arctic lakes. Two sediment cores were recovered from the centre and a more proximal zone of the lake. We used microstratigraphy supported by X-ray fluorescence data (Zr/K for particle size, Fe/Rb for the winter clay cap distinction) to develop a precise and cross-dated varve chronology covering the last 400 years. Dating of the uppermost section could be validated with preliminary 137Cs data. Stratigraphical analysis reveals the presence of three sediment units within the meter

  16. The formation of deep basins in High Arctic from metamorphism in continental crust

    NASA Astrophysics Data System (ADS)

    Artyushkov, Eugene; Belyaev, Igor; Chekhovich, Peter; Petrov, Eugene; Poselov, Viktor

    2014-05-01

    In the East Barents and North Chukchi basins, 16-20 km deep, the crystalline crust is attenuated to 12-18 km (reference profiles 2-AR, 4-AR and 5-AR). P-wave velocities and densities in this layer are characteristic of the oceanic crust. However, the subsidence history in the basins is quite different from that typical of the oceanic crust. In both basins the subsidence continued for several hundred million years and one half of the deposits or more was formed long after the start of the subsidence when cooling of the oceanic plate would be already over. Moreover, the basins are 4-5 km deeper than it could be expected according to the thickness of the crystalline crust above the Moho boundary. In the absence of large free-air gravity anomalies, joint analysis of the gravity and seismic data indicates the existence under the Moho of thick layers of high-density and high-velocity eclogites. As can be seen in high resolution seismic profiles, the intensity of crustal stretching did not exceed 10% in the basins, and their formation can be predominantly attributed to a high-grade metamorphism in the mafic lower part of continental crust. At some episodes, strong increase in the rate of subsidence occurred in the basins. This indicates acceleration of metamorphism catalyzed by infiltration of mantle fluids. A set of the above features, abnormally large depth, long subsidence history with its acceleration at the late stages, and episodes of pronounced acceleration of the subsidence represent characteristic features of some other large hydrocarbon basins, e.g., of the North and South Caspian basins. These features can be used for prospecting new prolific provinces on the Arctic shelf. The Lomonosov ridge, Mendeleev high and the Makarov basin pertain to the same structural type. In the Oligocene they underwent erosion near to sea level with the formation of pronounced unconformity. Then at the end of Oligocene deep-water basins were formed in these regions. Rapid crustal

  17. Combined genetic and telemetry data reveal high rates of gene flow, migration, and long-distance dispersal potential in Arctic ringed seals (Pusa hispida).

    PubMed

    Martinez-Bakker, Micaela E; Sell, Stephanie K; Swanson, Bradley J; Kelly, Brendan P; Tallmon, David A

    2013-01-01

    Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies.

  18. Combined Genetic and Telemetry Data Reveal High Rates of Gene Flow, Migration, and Long-Distance Dispersal Potential in Arctic Ringed Seals (Pusa hispida)

    PubMed Central

    Martinez-Bakker, Micaela E.; Sell, Stephanie K.; Swanson, Bradley J.; Kelly, Brendan P.; Tallmon, David A.

    2013-01-01

    Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies. PMID:24130843

  19. Coumaroyl iridoids and a depside from cranberry (Vaccinium macrocarpon).

    PubMed

    Turner, Allison; Chen, Shao-Nong; Nikolic, Dejan; van Breemen, Richard; Farnsworth, Norman R; Pauli, Guido F

    2007-02-01

    Cranberry (Vaccinium macrocarpon) juice has been used for urinary tract infections for approximately 50 years. Recent research suggests that this botanical blocks adherence of pathogenic E. coli to urinary tract cells, thus preventing infection. While current evidence indicates that proanthocyanidins are responsible for this activity, these compounds may not reach the urinary tract; thus further investigation is warranted. Fractionation of cranberry juice concentrate was guided by a recently published antiadherence assay, and the resulting fractions were phytochemically characterized. Two new coumaroyl iridoid glycosides, 10-p-trans- (1) and 10-p-cis-coumaroyl-1S-dihydromonotropein (2), and a depside, 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenylmethylacetate (3), were isolated, and although these compounds did not have antiadherent activity in isolation, they might constitute a new group of marker compounds for this active fraction of cranberry.

  20. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2 specification

    NASA Astrophysics Data System (ADS)

    Themens, David; Jayachandran, Thayyil

    2016-07-01

    It is well known that the IRI suffers reduced accuracy in its representation of monthly median ionospheric variability at high latitudes (Themens et al. 2014, Themens et al. 2016). These inaccuracies are believed to stem from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radars systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. For this purpose, we here introduce the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM), which will incorporate all of the above datasets, as well as the older observation records, into a new climatological representation of the high latitude ionosphere. In this presentation, we introduce the NmF2 and hmF2 portions of the model and present a validation of the new model with respect to ionosonde observations in Alert, Canada. A comparison with respect to IRI performance will also be presented.

  1. An improved methodology for deriving high-resolution surface shortwave radiative fluxes from MODIS in the Arctic region

    NASA Astrophysics Data System (ADS)

    Niu, Xiaolei; Pinker, Rachel T.

    2015-03-01

    The Arctic is experiencing an unprecedented increase in surface air temperature and decrease in sea ice extent. The causes of these changes are still being debated; radiative fluxes are believed to play an important role in this warming. The primary motivation for this study is to advance the quality and resolution of currently available information on surface shortwave (solar) irradiance (SWR) for the Arctic. Such information is needed to meet the challenge for accurate estimates of heat input into the open waters. An inference scheme that utilizes the Moderate Resolution Imaging Spectroradiometer (MODIS) observations is optimized for high latitudes and implemented at 5 km for 2007 at an hourly time scale. Evaluation of the 5 km based SWR estimates against hourly ground observations at Barrow site shows a mean bias of 7.9 W m-2 (3% of mean values), a standard deviation of 58.2 W m-2 (23% of mean value), and a high correlation of 0.95. Evaluation of the SWR estimates against daily ground measurements at these latitudes shows good agreement with surface observations at three sites, with a mean bias of 1.9 W m-2 (1.1% of mean values), a standard deviation of 31.5 W m-2 (17.8% of mean value), and a high correlation of 0.96. Information at this high resolution and good quality can lead to improved estimates of heat input into the complex Arctic domain. For the Beaufort Sea domain (70°N-80°N, 120°E-50°E), the differences can amount to 116 MJ m-2 (~7%) of the total solar input of this region.

  2. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  3. Atmospheric aspects of Arctic change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2011-12-01

    Three important features of recent Arctic change are the rather uniform pattern of Arctic temperature amplification in response to greenhouse gas forcing, the modification of atmospheric temperature and wind patterns over newly sea-ice-free regions, and the possible increased linkage between Arctic climate and sub-arctic weather. An important argument for anthropogenic forcing of recent Arctic change is the model predicted rather uniform increases in Arctic temperatures, in contrast to more regional temperature maximums associated with intrinsic climate variability patterns such as those which occurred during the 1930s Arctic warming. Sea-ice-free areas at the end of summer are allowing: added heat and moisture transport into the troposphere as documented during the recent Japanese vessel Mirai cruises, decreased boundary layer stratification, and modification of wind flow through thermal wind processes. Winter 2009-2010 and December 2010 showed a unique connectivity between the Arctic and more southern weather when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a Warm Arctic-Cold Continents pattern. A major challenge of Arctic meteorology is to understand the interaction of forced changes such as loss of sea ice and land impacts with intrinsic climate patterns such as the North Atlantic Oscillation and Pacific North American climate patterns. Could persistent shifts in Arctic climate be triggered by a combination of a gradual upward trend in temperature, an extreme event e.g. fortuitous timing in the natural variability of the atmospheric or ocean general circulation, and Arctic specific feedbacks? Scientific progress on both issues requires sustained decadal observations.

  4. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  5. Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.).

    PubMed

    Schlautman, Brandon; Fajardo, Diego; Bougie, Tierney; Wiesman, Eric; Polashock, James; Vorsa, Nicholi; Steffan, Shawn; Zalapa, Juan

    2015-01-27

    The American cranberry, Vaccinium macrocarpon Ait., is an economically important North American fruit crop that is consumed because of its unique flavor and potential health benefits. However, a lack of abundant, genome-wide molecular markers has limited the adoption of modern molecular assisted selection approaches in cranberry breeding programs. To increase the number of available markers in the species, this study identified, tested, and validated microsatellite markers from existing nuclear and transcriptome sequencing data. In total, new primers were designed, synthesized, and tested for 979 SSR loci; 697 of the markers amplified allele patterns consistent with single locus segregation in a diploid organism and were considered polymorphic. Of the 697 polymorphic loci, 507 were selected for additional genetic diversity and segregation analyses in 29 cranberry genotypes. More than 95% of the 507 loci did not display segregation distortion at the p < 0.05 level, and contained moderate to high levels of polymorphism with a polymorphic information content >0.25. This comprehensive collection of developed and validated microsatellite loci represents a substantial addition to the molecular tools available for geneticists, genomicists, and breeders in cranberry and Vaccinium.

  6. Geophysical analysis of the Alpha-Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Oakey, G. N.; Saltus, R. W.

    2016-11-01

    The Alpha-Mendeleev ridge complex is a first-order physiographic and geological feature of the Arctic Amerasia Basin. High amplitude "chaotic" magnetic anomalies (the High Arctic Magnetic High Domain or HAMH) are associated with the complex and extend beyond the bathymetric high beneath the sediment cover of the adjacent Canada and Makarov-Podvodnikov basins. Residual marine Bouguer gravity anomalies over the ridge complex have low amplitudes implying that the structure has minimal lateral density variability. A closed pseudogravity (magnetic potential) contour around the ridge complex quantifies the aerial extent of the HAMH at 1.3 × 106 km2. We present 2D gravity/magnetic models for transects across the Alpha Ridge portion of the complex constrained with recently acquired seismic reflection and refraction data. The crustal structure is modeled with a simple three-layer geometry. Large induced and remanent magnetization components were required to fit the observed magnetic anomalies. Density values for the models were based on available seismic refraction P-wave velocities. The 3000 kg/m3 lower crustal layer is interpreted as a composite of the original crustal protolith and deep (ultramafic) plutonic intrusions related to a plume sourced (High Arctic) LIP. The 2900 kg/m3 mid-crustal and 2600 kg/m3 upper-crustal layers are interpreted as the combined effect of sills, dikes, and flows. Volumetric estimates of the volcanic composition include (at least) 6 × 106 km3 for the mid- and upper-crust and between 13 × 106 and 17 × 106 km3 within the lower crust - for a total of 20 × 106 km3. We compare the magnetic structure, pseudogravity, and volumetric estimates for the HAMH portion of the HALIP with global large igneous province analogs and discuss implications for Arctic tectonics. Our results show that the closest analog to the HAMH/HALIP is the Kerguelen Plateau, which is considered a continental plateau intensively modified by plume-related volcanism.

  7. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic.

    PubMed

    St Louis, Vincent L; Sharp, Martin J; Steffen, Alexandra; May, Al; Barker, Joel; Kirk, Jane L; Kelly, David J A; Arnott, Shelley E; Keatley, Bronwyn; Smol, John P

    2005-04-15

    We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield nearthe North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHgCl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the

  8. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  9. Cloud identification in the Canadian High Arctic using the UV-visible colour index

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyi; Adams, Cristen; Strong, Kimberly; Duck, Thomas; Perro, Chris; Hudak, David; Rodriguez, Peter

    2014-05-01

    In UV-visible spectroscopy, Rayleigh and Mie scattering contribute to the broadband extinction seen in spectra of scattered sunlight. The relative intensity of these two components of scattering is highly dependent on the cloud condition of the sky. The colour index, defined as the ratio of light intensities at different wavelengths, typically 350 nm and 550 nm, provides a means of determining the cloud conditions. A UV-visible triple-grating spectrometer, the UT-GBS (University of Toronto Ground-Based Spectrometer), was installed at the Polar Environment Atmospheric Research Laboratory (PEARL), at Eureka in the Canadian High Arctic (86.4°W, 80.1°N) in 1999. Since then, the instrument has made daily measurements during spring from 1999-2009, and year-round, with the exception of polar night, from 2010-2013. The UT-GBS measures vertical column densities of ozone, NO2, and BrO, as well as slant column densities of enhanced OClO, by using the Differential Optical Absorption Spectroscopy (DOAS) technique. We use the colour index data from the UT-GBS to distinguish polar stratospheric clouds and tropospheric clouds. The UV-visible measurements are supplemented by vertically resolved lidar and radar cloud data products. The CANDAC (Canadian Network for the Detection of Atmospheric Change) Rayleigh-Mie-Raman Lidar (CRL) and the Millimetre Cloud Radar (MMCR) are located at the Zero Altitude PEARL Auxiliary Laboratory (0PAL), which is about 15 km away from PEARL. The CRL uses ultra-short pulses of light from two lasers, operating at ultraviolet (355 nm) and visible (532 nm) wavelengths. The CRL measures the vertical distribution of aerosols, temperature, and water vapour in the troposphere and lower stratosphere. The zenith-pointing MMCR measures equivalent radar reflectivity, Doppler velocity, spectral width, and Doppler spectra, from which information about cloud heights, thicknesses, internal structure and vertical motions can be determined. Polar stratospheric cloud

  10. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008

    NASA Astrophysics Data System (ADS)

    Hamacher-Barth, Evelyne; Leck, Caroline; Jansson, Kjell

    2016-05-01

    The representation of aerosol properties and processes in climate models is fraught with large uncertainties. Especially at high northern latitudes a strong underprediction of aerosol concentrations and nucleation events is observed and can only be constrained by in situ observations based on the analysis of individual aerosol particles. To further reduce the uncertainties surrounding aerosol properties and their potential role as cloud condensation nuclei this study provides observational data resolved over size on morphological and chemical properties of aerosol particles collected in the summer high Arctic, north of 80° N. Aerosol particles were imaged with scanning and transmission electron microscopy and further evaluated with digital image analysis. In total, 3909 aerosol particles were imaged and categorized according to morphological similarities into three gross morphological groups: single particles, gel particles, and halo particles. Single particles were observed between 15 and 800 nm in diameter and represent the dominating type of particles (82 %). The majority of particles appeared to be marine gels with a broad Aitken mode peaking at 70 nm and accompanied by a minor fraction of ammonium (bi)sulfate with a maximum at 170 nm in number concentration. Gel particles (11 % of all particles) were observed between 45 and 800 nm with a maximum at 154 nm in diameter. Imaging with transmission electron microscopy allowed further morphological discrimination of gel particles in "aggregate" particles, "aggregate with film" particles, and "mucus-like" particles. Halo particles were observed above 75 nm and appeared to be ammonium (bi)sulfate (59 % of halo particles), gel matter (19 %), or decomposed gel matter (22 %), which were internally mixed with sulfuric acid, methane sulfonic acid, or ammonium (bi)sulfate with a maximum at 161 nm in diameter. Elemental dispersive X-ray spectroscopy analysis of individual particles revealed a prevalence of the monovalent

  11. Synchronous starphotometry and lidar measurements at Eureka in High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Ivanescu, L.; Duck, T. J.; Perro, C.; Herber, A.; Schulz, K.-H.; Schrems, O.

    2015-02-01

    We present recent progress related to the night-time retrievals of aerosol and cloud optical depth using starphotometry over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, the SPSTAR starphotometer was employed to acquire aerosol optical depth (AOD) measurements while vertical aerosol and cloud backscatter coefficient profiles were acquired using the CANDAC Raman Lidar (CRL). Several events were detected and characterized using starphotometry-lidar synergy: aerosols (short term aerosol events on 9 and 10 March 2011); a potential multi-night aerosol event across three polar nights (13-15 March 2012), a thin cloud event (21 February 2011) and a very low altitude ice crystals (10 March 2011). Using a simple backscatter coefficient threshold criterion we calculated fine and coarse (sub and super-micron) mode AODs from the vertically integrated CRL profiles. These were compared with their starphotometry analogues produced from a spectral deconvolution algorithm. The process-level analysis showed, in general, good agreement in terms of the physical coherence between high frequency starphotometry and lidar data. We argue that R2 (coefficient of determination) is the most robust means of comparing lidar and starphotometer data since it is sensitive to significant optico-physical variations associated with these two independent data sources while being minimally dependent on retrieval and calibration artifacts. Differences between the fine and course mode components of the starphotometry and lidar data is clearly also useful but is more dependent on such artifacts. Studying climatological seasonal aerosol trends necessitates effective cloud-screening procedures: temporal and spectral cloud screening of starphotometry data was found to agree moderately well with temporal cloud screening results except in the presence of thin homogeneous cloud. We conclude

  12. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic.

    PubMed

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei

    2013-11-01

    Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m(3) levels with the highest atmospheric loadings present in the mid-latitudes (30°-60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  13. Measurements of an Intrusion of Water Vapor into the High Arctic and its Effect on Wintertime Radiation

    NASA Astrophysics Data System (ADS)

    Nott, G. J.; Doyle, J. G.; Lesins, G. B.; Thackray, C. P.; Perro, C. W.; Duck, T. J.; Drummond, J. R.

    2010-12-01

    Water vapor is the most important greenhouse gas, yet little is known about it in the High Arctic during winter due to a historic lack of measurements and difficulties associated with satellite retrievals. With cold temperatures and a very stable boundary layer, the water vapor mixing ratio peaks around only 0.3 g kg-1. Any influxes of moist air from more moderate latitudes are thus likely to have a significant impact on Arctic tropospheric processes and the radiation budget. With lidar and accompanying radiometer measurements at Eureka (79°59'N, 85°56'W) we present one highly dynamic instance of such an intrusion from the winter of 2009/10. Measurements with the Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh/Mie/Raman lidar, shown in the figure, display distinct and seperate wet and dry air parcels during the case study. Two significant influxes of moist air (mixing ratio peaking at 1.2 g kg-1) are observed while aerosol profiles show associated cloud and precipitation. An animated map of precipitable water measured by the Microwave Humidity Sounder will be presented that shows the moist air originating over the Bering Sea and sweeping north-east into the Arctic, reaching Eureka on Feburary 9. Radiometer measurements of downwelling radiation during this time period show that the influx of water vapor alone caused a 13% increase in longwave radiation at the surface. A radiative transfer model (SBDART) has been used to isolate the effect of the water vapor, temperature, and cloud cover variations associated with this intrusion, on the overall radiation flux. Only the single event will be presented in detail however longer term data sets of water vapor indicate that such intrusions happen once or twice a month each winter. With such significant influxes of water vapor it is possible that these intrusions significantly affect the average wintertime radiation budget. Lidar measurements of water vapor mixing ratio over Eureka showing two

  14. The Impact of Enhanced Summer Thaw, Hillslope Disturbances, and Late Season Rainfall on Solute Fluxes from High Arctic Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Lafreniere, M. J.; Lamoureux, S. F.

    2011-12-01

    This study examines variations in the composition and total seasonal fluxes of dissolved solutes in several small High Arctic headwater catchments at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Nunavut (74°54'N, 109°35'W) over multiple snowmelt seasons (2007, 2008, 2009) with contrasting climate and permafrost active layer conditions. Climate warming in the High Arctic will affect a number processes that will alter the hydrological and biogeochemical exports from the landscape. Climate change is projected to alter precipitation regimes, resulting in increases in both winter and summer precipitation in the High Arctic, thereby altering hydrological regimes. Warming will result in thickening of the seasonal active layer, which will alter hydrological flow paths and water and solute sources. Additionally, active layer thickening and permafrost warming is also project to enhance the development of thermokarst features, including hillslope disturbances, such as active layer detachment slides and retrogressive thaw slumps. This research compares the flux of inorganic and organic solutes emanating from a group of catchments that were subject to a range hillslope disturbances, or active layer detachment slides (ALDs), at the end of summer 2007. One of the catchments, Goose, was not subject to any disturbance, while active layer slides covered between 6% and 46% of the catchment area in the disturbed catchments. It was hypothesised that solute fluxes would increase primarily with increasing extent and degree of disturbance. This however, was not observed. Rather, comparing five sites with varying degrees of disturbance in 2009 illustrates that on a specific area and specific volume of runoff basis, solute fluxes were unrelated to disturbance extent. Comparing two catchments that were monitored from 2007 (pre-disturbance) through to 2009 (2 yrs post disturbance), shows that both catchments were subject to solute flux increases, however the solute

  15. High-Resolution Aerosol Mass Spectrometric Measurements of the Arctic Troposphere on-board the NASA DC-8 during ARCTAS

    NASA Astrophysics Data System (ADS)

    Cubison, M. J.; Jimenez, J. L.

    2009-04-01

    A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, DeCarlo et al., Anal. Chem., 2006) was deployed aboard the NASA DC-8 research aircraft as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign during the spring and summer of 2008. The main focus of the spring phase, operated out of Fairbanks, Alaska, was to investigate the composition and sources of Arctic Haze (e.g. Quinn et al., Tellus B, 2007), a persistent pollution layer that accumulates under the stable springtime Polar High anti-cyclonic weather pattern. The sulphate-dominated aerosol in the Arctic Haze almost always contained smaller amounts of organic matter. Multiple biomass-burning plumes and some plumes from North-American pollution were observed. Comparison of tracers for biomass-burning in both the gas- and aerosol-phases show good correlation and point to the long-term persistence of organic aerosol of biomass-burning origin in the springtime Arctic. The organic aerosol was typically highly oxidized. During the summer phase, operated out of Palmdale, California, and Cold Lake, Canada, the focus was investigating California pollution and the composition and evolution of the outflow from large-scale boreal forest fires, respectively. However, the numerous fires burning in Northern California during the project timeframe allowed for the sampling of biomass-burning plumes from both locations. The persistence and correlation of the gas- and aerosol-phase fire markers observed during the spring phase was once again apparent. This observation, over a range of transport timescales and geographical locations, suggests that certain components of the AMS mass spectrum can be used as robust markers for biomass-burning in the organic aerosol composition. Measurements from multiple fires of aerosol chemical composition, including volatility profiles of important organic components, are compared to monitor the evolution of biomass

  16. Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic.

    PubMed

    Mundra, Sunil; Bahram, Mohammad; Tedersoo, Leho; Kauserud, Håvard; Halvorsen, Rune; Eidesen, Pernille Bronken

    2015-12-01

    Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.

  17. Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Leck, Caroline; Bigg, E. Keith

    2008-02-01

    Marine aerosol was collected in September 1998 and July 2005 on the upwind coast of an island at latitude 15°S, about 15 km downwind from the outer edge of the Great Barrier Reef, Australia, and examined by electron microscopy. Exopolymer gels, aggregates of organic particles, marine micro-organisms and fragments of marine life formed a substantial part of the accumulation mode aerosol. Differences in transparency, firmness of outlines and shape of gels and the influence of organic vapours on them, suggested progressive physical and chemical changes with atmospheric residence time. The organic aggregate components had a size distribution remarkably close to that found in similar particles over the central Arctic Ocean peaking at diameters of 30-40 nm. Single components or small groups of these aggregates were found within at least 75% of particles resembling ammonium sulphate in appearance, indicating that aggregates fragmented in the atmosphere. Sea salt was not detected in particles <200 nm diameter unlike many observations showing it to be a major component, a result that was entirely consistent with the Arctic findings. The deduced sequence of changes to particles entering the atmosphere from the ocean is also very similar to that found in the Arctic, suggesting that it is a common pattern over the oceans. That conclusion would require modification of the parametrization of the marine aerosol used in climate models and of possible climate feedback effects.

  18. Late-Quaternary glaciation and postglacial emergence, southern Eureka Sound, high-Arctic Canada

    NASA Astrophysics Data System (ADS)

    O Cofaigh, Colm Seamus

    Eureka Sound is the inter-island channel separating Ellesmere and Axel Heiberg islands, High Arctic Canada. This thesis reconstructs the glacial and sea level history of southern Eureka Sound through surficial geological mapping, studies of glacial sedimentology and geomorphology, surveying of raised marine shorelines, radiocarbon dating of marine shells and driftwood and surface exposure dating of erratics and bedrock. Granite dispersal trains, shelly till and ice-moulded bedrock record westerly-flow of warm-based, regional ice into Eureka Sound from a source on southeastern Ellesmere Island during the late Wisconsinan. Regional ice was coalescent with local ice domes over Raanes and northern Svendsen peninsulas. Marine limit (dating <=9.2 ka BP; <=9.9 ka cal BP) is inset into the dispersal trains and records early Holocene deglaciation of regional ice. Collectively these data indicate an extensive ice-cover in southern Eureka Sound during the Last Glacial Maximum. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice converged on Eureka Sound, and subsequently flowed north and south along the channel. Deglaciation was characterised by a two-step retreat pattern, likely triggered by eustatic sea level rise and abrupt early Holocene warming. Initial break-up and radial retreat of ice in Eureka Sound and the larger fiords, preceded terrestrial stabilisation along coastlines and inner fiords. Location of deglacial depocentres was predominantly controlled by fiord bathymetry. Regionally, two-step deglaciation is reflected by prominent contrasts in glacial geomorphology between the inner and outer parts of many fiords. Glacial sedimentological and geomorphological evidence indicates spatial variation in basal thermal regime between retreating trunk glaciers. Holocene emergence of up to 150 m asl along southern Eureka Sound is recorded by raised marine deltas, beaches and washing limits. Emergence curves exhibit

  19. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, Melissa; Pollard, Wayne

    2015-04-01

    On Axel Heiberg Island in the Canadian High Arctic, many low temperature perennial saline springs occur despite cold polar desert climate conditions marked by a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally, but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cool water temperatures triggering rapid precipitation of various salt minerals [mainly hydrohalite (NaCl*2H2O)]. These newly formed salt minerals subsequently alter the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow.This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23"N; 90°14'39"W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30"N; 87°04'30"W). In this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are up to 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite. In addition, spring water and snowmelt dissolve various parts of the accumulations, changing the morphology of the deposits. This presentation will focus on results from four periods of fieldwork (two in spring for winter conditions and two in summer) including results from time

  20. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    PubMed Central

    Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

    2007-01-01

    Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion

  1. Persistent observations of the Arctic from highly elliptical orbits using multispectral, wide field of view day-night imagers

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Johnson, David; Miller, Steven

    2014-09-01

    Persistent satellite observations are essential for monitoring and understanding Earth's environmentally sensitive and rapidly changing Arctic region. Compact wide-field-of-view imagers aboard satellites in Highly Elliptical Orbit (HEO) could stare at the Arctic and collect multispectral, high dynamic range visible and near-infrared imagery with sensitivity similar to that of the Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) in sun synchronous polar orbit. These HEO Day/Night Imagers (HDNIs) provide high contrast visible wavelength imagery through the long polar night. Their dynamic range -- extending from the brightest sunlit clouds, ice and snow to reflected moonlight from open water -- enables cloud, ice and sea surface discrimination even under very low light and low thermal contrast conditions. Rapidly refreshed HDNI data results in frequent updates to key environmental products such as cloud imagery and microphysical properties, ice and open water distribution (including real-time maps of where leads are opening and new ice is forming), vector ice motion and vector polar winds from cloud motion. The relatively small size of HDNIs makes them ideal for deployment as a hosted payload or as the primary payload onboard a small satellite.

  2. Migratory Connectivity at High Latitudes: Sabine’s Gulls (Xema sabini) from a Colony in the Canadian High Arctic Migrate to Different Oceans

    PubMed Central

    Davis, Shanti E.; Maftei, Mark; Mallory, Mark L.

    2016-01-01

    The world's Arctic latitudes are some of the most recently colonized by birds, and an understanding of the migratory connectivity of circumpolar species offers insights into the mechanisms of range expansion and speciation. Migratory divides exist for many birds, however for many taxa it is unclear where such boundaries lie, and to what extent these affect the connectivity of species breeding across their ranges. Sabine’s gulls (Xema sabini) have a patchy, circumpolar breeding distribution and overwinter in two ecologically similar areas in different ocean basins: the Humboldt Current off the coast of Peru in the Pacific, and the Benguela Current off the coasts of South Africa and Namibia in the Atlantic. We used geolocators to track Sabine’s gulls breeding at a colony in the Canadian High Arctic to determine their migratory pathways and wintering sites. Our study provides evidence that birds from this breeding site disperse to both the Pacific and Atlantic oceans during the non-breeding season, which suggests that a migratory divide for this species exists in the Nearctic. Remarkably, members of one mated pair wintered in opposite oceans. Our results ultimately suggest that colonization of favorable breeding habitat may be one of the strongest drivers of range expansion in the High Arctic. PMID:27973614

  3. Possible Origin of High-Amplitude Reflection Packages (HARPs) in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, Nina; Hutchinson, Deborah; Shimeld, John; Chian, Deping; Hart, Patrick; Jackson, Ruth; Saltus, Richard; Mosher, David

    2013-04-01

    The Canada Basin (CB) of the Arctic Ocean is a semi-enclosed ocean basin surrounded by the Alaskan and Canadian margins to the south and east, the Alpha-Mendeleev Large Igneous Province (AMLIP) to the north and the subsided continental Chukchi Borderland (ChB) to the west. During 2007-2011, US-Canada expeditions collected ~15,000 km multichannel seismic data and sonobuoy reflection and refraction seismic data with average spacing of ~80 km mostly over the CB and AMLIP. High-amplitude reflective packages (HARPs) underlie the mostly flat-lying sediments of CB. Although HARPs are discontinuous in the central CB, they become more continuous toward ChB and AMLIP. HARPs are often the most reflective events in the seismic section, exceeding even the seafloor reflection. Only rarely are reflections seen beneath HARPs. Where best developed, HARPs are ~100-300 ms TWTT, consisting of several high-amplitude wavelets with a pronounced narrow frequency band within the limits of ~10-30 Hz. This character of HARPs is consistent with patterns produced by constructive interference of thin beds (Widess, 1973). Forward modeling of sonobuoy data, synthetic tests, and frequency analysis of the tuning effect suggest that HARPs are composed of a series of alternating high- and low-velocity layers. The high-velocity layers are ~100-200 m thick with P-velocities of ~3.5-4.5 km/s. The low-velocity layers are about half as thick with velocities of ~2-3 km/s. A broad range of possible interpretations of rock composition exists from these velocities, e.g. sandstone and interbedded shale (Prince Patrick Island, Harrison and Brent, 2005); or tholeiitic basalts flows and sediments (Voring volcanic margin, Olanke and Eldholm, 1994); or sills and sediments (Newfoundland margin, Peron-Pinvidic et all, 2010). HARP can be associated with several origins. In the central and southern CB, where oceanic spreading is interpreted, HARPs are discontinuous among high-relief, but otherwise low

  4. Comparative responses of Dryas octopetala to simulated changes in climate from alpine, low- and high arctic ITEX sites

    SciTech Connect

    Welker, J.M.; Parsons, A.N.; Walker, M.D. |||

    1995-06-01

    Field manipulations of environmental conditions have been established in dry tundra sites on Niwot Ridge, CO, Toolik Lake, AK and on Svalbard, Norway as part of the International Tundra Experiment (ITEX). Dryas octopetala is the dominant species at all three sites where we have examined organismic and ecosystem responses to similar increases in temperature. Leaf and seed mass differ significantly between all sites and warmer temperatures resulted in reductions in leaf mass at both the high and low arctic sites in the initial year, but this was not observed at the alpine site. Reductions in leaf mass were accompanied by changes in leaf demography. Seed masses were inherently different between sites, being largest from plants in the alpine tundra. Plants in the alpine and in the high arctic had higher seed weights when warmed. By the end of the second year, leaf C:N ratios were higher in alpine plants which were warmed. These organismic responses may set the stage for altered colonization of bare ground while changes in C:N ratios may modify decomposition rates linking organismic and ecosystem dynamics.

  5. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity

    NASA Astrophysics Data System (ADS)

    Semenchuk, Philipp R.; Gillespie, Mark A. K.; Rumpf, Sabine B.; Baggesen, Nanna; Elberling, Bo; Cooper, Elisabeth J.

    2016-12-01

    The duration of specific periods within a plant’s life cycle are critical for plant growth and performance. In the High Arctic, the start of many of these phenological periods is determined by snowmelt date, which may change in a changing climate. It has been suggested that the end of these periods during late-season are triggered by external cues, such as day length, light quality or temperature, leading to the hypothesis that earlier or later snowmelt dates will lengthen or shorten the duration of these periods, respectively, and thereby affect plant performance. We tested whether snowmelt date controls phenology and phenological period duration in High Arctic Svalbard using a melt timing gradient from natural and experimentally altered snow depths. We investigated the response of early- and late-season phenophases from both vegetative and reproductive phenological periods of eight common species. We found that all phenophases follow snowmelt patterns, irrespective of timing of occurrence, vegetative or reproductive nature. Three of four phenological period durations based on these phenophases were fixed for most species, defining the studied species as periodic. Periodicity can thus be considered an evolutionary trait leading to disadvantages compared with aperiodic species and we conclude that the mesic and heath vegetation types in Svalbard are at risk of being outcompeted by invading, aperiodic species from milder biomes.

  6. a-glucosidase inhibitory activity and antioxidant capacities in peel and pulp of mixed species blueberry (Vaccinium spp.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variation in inhibition of a-glucosidase inhibitory activity, phenolic levels, anthocyanin levels, and antioxidant activity of peel and pulp was investigated in 19 blueberry genotypes [16 rabbiteye hybrid derivatives (Vaccinium ashei × Vaccinium spp.), 1 rabbiteye cultivar (V. ashei Reade) and 2 hig...

  7. High-density baiting with ONRAB® rabies vaccine baits to control Arctic-variant rabies in striped skunks in Ontario, Canada.

    PubMed

    Rosatte, R C; Donovan, D; Davies, J C; Brown, L; Allan, M; von Zuben, V; Bachmann, P; Sobey, K; Silver, A; Bennett, K; Buchanan, T; Bruce, L; Gibson, M; Purvis, M; Beresford, A; Beath, A; Fehlner-Gardiner, C

    2011-04-01

    The Arctic variant of rabies virus has been maintained in striped skunks in small foci in southwestern Ontario, Canada, despite the control of the disease in red foxes. To control the disease in skunks, high-density baiting with ONRAB(®) oral rabies vaccine baits was conducted by air and by hand distribution of baits in the vicinity of skunk cases. During 2009, antibody prevalences in skunks were higher in areas baited at a density of 300 baits/km(2) and flight-line spacing of 0.25 km than at 0.5-km spacing. Once an area containing Arctic-variant cases was treated with high densities of ONRAB baits, the disease did not reoccur in skunks in those areas. During 2009, only eight skunks were diagnosed with the Arctic variant of rabies virus in Ontario.

  8. Arctic Watch

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  9. Communicating climate science to high school students in the Arctic: Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Hougham, R. J.; Miller, B.; Cox, C. J.

    2012-12-01

    Adventure Learning @ Greenland (AL@GL) engaged high school students in atmospheric research in the Arctic and in local environments to enhance climate literacy. The overarching objective for this project was to support climate literacy in high school students, specifically the concept of energy exchange between the Earth, atmosphere, and space. The goal then is to produce a model of education and outreach for remote STEM research that can be used to meaningfully engage K-12 and public communities. Over the course of the program experience, students conducted scientific inquiry associated with their place that supported a more focused science content at a field location. Approximately 45 students participated in the hybrid learning environments as part of this project at multiple locations in Idaho, USA, and Greenland. In Greenland, the Summit Camp research station located on the Greenland Ice Sheet was the primary location. The AL@GL project provided a compelling opportunity to engage students in an inquiry-based curriculum alongside a cutting-edge geophysical experiment at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) experiment. ICECAPS measures parameters that are closely tied to those identified in student misconceptions. Thus, ICECAPS science and the AL@ approach combined to create a learning environment that was practical, rich, and engaging. Students participating in this project were diverse, rural, and traditionally underrepresented. Groups included: students participating in a field school at Kangerlussuaq, Greenland and Summit Station as members of the JSEP; students at MOSS will were part of the Upward Bound Math Science (UBMS) and HOIST (Helping Orient Indian Students and Teachers) project. These project serve high school students who are first college generation and from low-income families. JSEP is an international group of students from the United States, Greenland, and Denmark

  10. Composition and meteorological changes associated with a strong stratospheric intrusion event in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyi; Strong, Kimberly; Conway, Stephanie; Tarasick, David; Osman, Mohammed; Richter, Andreas; Blechschmidt, Anne; Manney, Gloria

    2015-04-01

    Stratosphere-troposphere exchange (STE) provides a mechanism for trace gas transport between the lower stratosphere and the troposphere. Intense downward stratospheric intrusions may significantly affect the oxidizing capacity of the troposphere. Most STE events occur in tropical and mid-latitude regions, with less known about STE in the polar regions. In this work, we present an observation and modelling study of a strong stratospheric intrusion in the high Arctic (Eureka, 80°N) in March 2013, which led to an increase of total ozone and BrO columns observed by both ground-based and satellite instruments. The meteorological conditions for this event were similar to those observed for STEs associated with cold fronts. Before the cold front arrived at Eureka, the surface temperature first increased from -25.3°C (25 March 13:00 UTC) to -14.5°C (27 March 20:00 UTC) and then dropped to -36.4°C (29 March 6:00 UTC) after the front passed by. Meanwhile, the ground-level pressure decreased from 103.8 kPa to 101.8 kPa, then rose back to 102.6 kPa. Ozonesonde data (27 March 23:15 UTC) showed unusually high ozone (>100 ppbv) above ~3 km altitude, while the relative humidity profile indicated that the airmass was of stratospheric origin (very low relative humidity). The thermal tropopause height was ~9 km, based on a uniform lapse rate of 3.9 K/km from surface to 9 km. From ECMWF Interim data, the airmass with high relative potential vorticity (4 pvu) extended down to 3 km. In addition, HYSPLIT model ensemble back-trajectories show a clear Rossby wave signature in the upper troposphere during this event, which could explain the intrusion. However, there are no strong downwelling layers along the trajectories, which indicates that the intrusion may have occurred close to Eureka. Trace gas composition data from three ground-based spectrometers and the GOME-2 satellite instrument are presented in this work. Ozone vertical column densities (VCDs) measured by two Zenith

  11. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  12. Characterizing Arctic sea ice topography and atmospheric form drag using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.

    2015-12-01

    Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.

  13. Diversity and distribution of cultured endolichenic fungi in the Ny-Ålesund Region, Svalbard (High Arctic).

    PubMed

    Zhang, Tao; Wei, Xin-Li; Wei, Yu-Zhen; Liu, Hong-Yu; Yu, Li-Yan

    2016-07-01

    Endolichenic fungi within 17 lichen species in the area near Ny-Ålesund (Svalbard, High Arctic) were studied by a culture-based method. The 247 fungal isolates were obtained from 2712 lichen thallus segments. The colonization rate of endolichenic fungi ranged from 1.6 to 26.5 %, respectively. These isolates were identified to 40 fungal taxa, including 35 Ascomycota (10 orders), 4 Basidiomycota (3 orders), and 1 unidentified fungus. Thelebolales was the most abundant order, while Sordariales were the most diverse order. The common fungal taxa shared by more than 3 lichen species were Thelebolus microsporus (93 isolates), Coniochaeta hoffmannii (7 isolates), Sarocladium kiliense (33 isolates), Coniochaeta sp. 1 (5 isolates), Coniochaeta sp. 4 (28 isolates), and Coniochaeta sp. 2 (5 isolates). Low Sorenson's similarity coefficients were observed among different lichen species, indicating that host-related factor may shape the endolichenic fungal communities in this region. In addition, no endolichenic fungal taxa were previously found in the Antarctica and Austrian Alps, suggesting endolichenic fungal communities in this region might be also shaped by the Arctic climate. The results demonstrate the existence of specific cultured endolichenic fungal species, which may be suitable objects for further study of their possible functional roles in the lichen thalli.

  14. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Five Years of Insights into the High Latitude Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    2015-12-01

    CARVE is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis. In 2015 CARVE completed its 5-year mission. CARVE campaigns across the 2012-2015 growing seasons have established a baseline for monthly, regional scale estimates for surface-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4), and begun to elucidate their environmental and biogeochemical controls. We find that large interannual variability in biogenic CH4 and CO2 fluxes, fire, and significant cold season fluxes complicate attempts to estimate accurate annual C budgets or C balance trends for high latitude ecosystems. We discuss our current estimates for seasonal to interannual CH4 and CO2 fluxes as well as lessons learned from CARVE to guide future investigations of carbon cycling and ecosystem vulnerability in the Arctic-Boreal region with particular emphasis on NGEE-Arctic and ABoVE.

  15. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  16. Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gready, Benjamin P.

    The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback

  17. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, M. K.; Pollard, W. H.

    2013-12-01

    On Axel Heiberg Island in the Canadian High Arctic a number of low temperature perennial saline springs occur despite being subject to a cold polar desert climate with a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cools water temperatures triggering rapid precipitation of various salt minerals (mainly hydrohalite, NaCl*2H2O) which subsequently alters the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow. This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23'N; 90°14'39'W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30'N; 87°04'30'W), in this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite; spring water and snowmelt dissolves various parts of the accumulations, changing the morphology of the deposits. The aim of this poster is to present preliminary observations characterising the processes driving tufa formation in a permafrost environment, a process that has not been described in detail in

  18. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    article title:  A Vortex Street in the Arctic     View Larger Image ... 650 kilometers northeast of Iceland in the north Atlantic Ocean. Jan Mayen's Beerenberg volcano rises about 2.2 kilometers above the ...

  19. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey

    2016-04-01

    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the

  20. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)--denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures.

    PubMed

    Wartiainen, Ingvild; Hestnes, Anne Grethe; Svenning, Mette M

    2003-10-01

    The methanotrophic community in arctic soil from the islands of Svalbard, Norway (78 degrees N) was analysed by combining group-specific PCR with PCR of the highly variable V3 region of the 16S rRNA gene and then by denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced for identification. The analyses were performed with DNA extracted directly from soil and from enrichment cultures at 10 and 20 degrees C. The two genera Methylobacter and Methylosinus were found in all localities studied. The DGGE band patterns were simple, and DNA fragments with single base differences were separated. The arctic tundra is a potential source of extensive methane emission due to climatic warming because of its large reservoirs of stored organic carbon. Higher temperatures due to climatic warming can cause increased methane production, and the abundance and activity of methane-oxidizing bacteria in the arctic soil may be important regulators for methane emission to the atmosphere.

  1. Trophic dynamics in marine nearshore systems of the Alaskan high arctic

    SciTech Connect

    Dunton, K.H.

    1985-01-01

    This dissertation describes two ecological studies in the arctic Alaskan nearshore zone: the productivity and growth strategies of arctic kelp and the use of natural carbon isotope abundances to examine food web structure and energy flow in the marine ecosystem. Linear growth of the kelp, Laminaria solidungula is greatest in winter and early spring when nutrients are available for new tissue growth. Since over 90% of this growth occurs in complete darkness beneath a turbid ice canopy, the plant draws on stored food reserves and is in a carbon deficit during the ice covered period. Annual productivity of L. solidungula under these conditions is about 6 g C m/sup -2/ compared to about 10 g c m/sup -2/ if light penetrates the ice canopy. Carbon isotope abundances were used to assess food web structure and energy flow in the Boulder Patch, an isolated kelp bed community, and in the Alaskan Beaufort Sea fauna. Isotopic analyses of the resident fauna of the Boulder Patch revealed that kelp carbon contributes significantly to the diet of many benthic animals, including suspension feeders. Across the shelf of the Alaskan Beaufort Sea, a distinct gradient in the isotopic composition of marine zooplankton and benthic fauna was related to the intrusion of the Bering Sea water and upwelling in the eastern Beaufort Sea near Barter Island. The /sup 13/C depletion in fauna of the eastern Beaufort Sea is presumed due to the cycling of /sup 13/C depleted inorganic carbon into the euphotic zone.

  2. Anthocyanin Profile in Berries of Wild and Cultivated Vaccinium spp. along Altitudinal Gradients in the Alps.

    PubMed

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-10-07

    Vaccinium spp. berries provide some of the best natural sources of anthocyanins. In the wild bilberry (Vaccinium myrtillus L.), a clear increasing trend in anthocyanin biosynthesis has been reported toward northern latitudes of Europe, but studies related to altitude have given contradictory results. The present study focused on the anthocyanin composition in wild bilberries and highbush blueberry (Vaccinium corymbosum L. cv. Brigitta Blue) growing along altitudinal gradients in the Alps of northern Italy. Our results indicate an increasing accumulation of anthocyanins in bilberries along an altitudinal gradient of about 650 m. The accumulation was due to a significant increase in delphinidin and malvidin glycosides, whereas the accumulation of cyanidin and peonidin glycosides was not affected by altitude. Seasonal differences, especially temperature, had a major influence on the accumulation of anthocyanins in blueberries.

  3. Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by Vaccinium.

    PubMed

    Grelet, Gwen-Aëlle; Meharg, Andrew A; Duff, Elizabeth I; Anderson, Ian C; Alexander, Ian J

    2009-01-01

    Ericoid mycorrhizal fungi have been shown to differ in their pattern of nitrogen (N) use in pure culture. Here, we investigate whether this functional variation is maintained in symbiosis using three ascomycetes from a clade not previously shown to include ericoid mycorrhizal taxa. Vaccinium macrocarpon and Vaccinium vitis-idaea were inoculated with three fungal strains known to form coils in Vaccinium roots, which differed in their patterns of N use in liquid culture. (15)N was used to trace the uptake of -N, -N and glutamine-N into shoots. (15)N transfer differed among the three fungal strains, including two that had identical internal transcribed spacer (ITS) sequences, and was quantitatively related to fungal growth in liquid culture at low carbon availability. These results demonstrate that functional differences among closely related ericoid mycorrhizal fungi are maintained in symbiosis with their hosts, and suggest that N transfer to plant shoots in ericoid mycorrhizas is under fungal control.

  4. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  5. Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea).

    PubMed

    Ek, Sari; Kartimo, Heikki; Mattila, Sampo; Tolonen, Ari

    2006-12-27

    Phenolic compounds from the lingonberry (Vaccinium vitis-idaea) were identified using LC-TOFMS, LC-MS/MS, and NMR experiments. The compounds were extracted from the plant material using methanol in an ultrasonicator and further isolated and purified using solid-phase extraction and preparative liquid chromatographic techniques. A total of 28 phenolic compounds were at least tentatively identified, including flavonols, anthocyanidins, catechins and their glycosides, and different caffeoyl and ferulic acid conjugates. This is apparently the first report of coumaroyl-hexose-hydroxyphenol, caffeoyl-hexose-hydroxyphenol, coumaroyl-hexose-hydroxyphenol, quercetin-3-O-alpha-arabinofuranoside, kaempferol-pentoside, and kaempferol-deoxyhexoside in the plant, and the flavonol acylglycosides quercetin-3-O-[4' '-(3-hydroxy-3-methylglutaroyl)]-alpha-rhamnose and kaempferol-3-O-[4' '-(3-hydroxy-3-methylglutaroyl)]-alpha-rhamnose are presented here for the first time ever. In addition, more detailed structure in comparison to earlier reports is described for some compounds previously known to exist in lingonberry.

  6. Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland

    NASA Astrophysics Data System (ADS)

    Godin, Etienne; Fortier, Daniel; Lévesque, Esther

    2016-03-01

    Low-center polygonal terrains with gentle sloping surfaces and lowlands in the high Arctic have a potential to retain water in the lower central portion of ice-wedge polygons and are considered high-latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies were rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. Intact polygons were characterized by a relative homogeneity in terms of topography, snow cover, maximum active layer thaw depth, ground moisture content and vegetation cover (where eroded polygons responded nonlinearly to perturbations, which resulted in differing conditions in the latter elements). The heterogeneous nature of disturbed terrains impacted active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture, vegetation dynamics and carbon storage.

  7. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus) and Coexisting Fishes in a High-Elevation Lake System.

    PubMed

    Cutting, Kyle A; Cross, Wyatt F; Anderson, Michelle L; Reese, Elizabeth G

    2016-01-01

    Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts.

  8. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus) and Coexisting Fishes in a High-Elevation Lake System

    PubMed Central

    Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.

    2016-01-01

    Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901

  9. Arctic Climate Forcing Observations to Improve Earth System Models: Measurements at High Frequency, Fine Spatial Resolution, and Climatically Relevant Spatial Scales with the use of the Recently Deployed NGEE-Arctic Tram

    NASA Astrophysics Data System (ADS)

    Curtis, J. B.; Serbin, S.; Dafflon, B.; Raz Yaseef, N.; Torn, M. S.; Cook, P. J.; Lewin, K. F.; Wullschleger, S. D.

    2014-12-01

    In order to improve the representation of the land surface and subsurface properties and their associated feedbacks with climate forcings, climate change, and drivers in Earth System Models (ESMs), detailed observations need to be made at climatically relevant spatial and temporal scales. Pan-Arctic spatial heterogeneity and temporal variation present major challenges to the current generation of ESMs. To enable highly spatially resolved and high temporal frequency measurements for the independent validation of modeled energy and greenhouse gas surface fluxes at core to intermediate scales, we have developed, tested, and deployed an automated observational platform, the Next Generation Ecosystem Experiment (NGEE)-Arctic Tram. The NGEE-Arctic Tram, installed on the Barrow Environmental Observatory (BEO) near Barrow, AK in mid May 2014, consists of 65 meters of elevated track and a fully automated cart carrying a suite of radiation and remote sensing instrumentation. The tram transect is located within the NGEE eddy covariance tower footprint to help better understand the relative contribution of different landforms (e.g. low center vs high center polygonal tundra and associated vegetation) to the overall energy budget of the footprint. Electrical resistivity tomography (ERT), soil moisture, and soil temperature sensors are acquired autonomously and co-located with the tram to link subsurface properties with surface observations. To complement the high frequency and fine spatial resolution of the tram, during the summer field seasons of 2013 and 2014 a portable version of the NGEE-Arctic Tram (also know as the portable energy pole or PEP); was used to characterize surface albedo, NDVI, surface temperature, and photosynthetically active radiation (PAR) across two ~500 m BEO transects co-located with subsurface ERT and ground penetrating radar (GPR) measurements. In addition, a ~ 3 Km transect across three drained thaw-lake basins (DTLB) of different climate

  10. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (<15cm) in different tundra types varied considerably but the tundra age was similar in the whole area, <450 cal BP. The only exception was Ornithocoprophilous bird-N rich tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110 cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015

  11. Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Lemmetyinen, J.; Toose, P.; Silis, A.; Pulliainen, J.; Sturm, M.

    2014-06-01

    Two unique observational data sets are used to evaluate the ability of multi-layer snow emission models to simulate passive microwave brightness temperatures (TB) in high latitude, observation sparse, snow-covered environments. Data were utilized from a coordinated series of 18 sites measured across the subarctic Northwest Territories and Nunavut, Canada in April 2007 during a 1000 km segment of a 4200 km snowmobile traverse from Fairbanks, Alaska to Baker Lake, Nunavut (~64°N). In April 2011, a network of 22 high Arctic sites was sampled across a 60 × 60 km study area on the Fosheim Peninsula, Ellesmere Island (~80°N). In comparison to sites across the subarctic, high Arctic snow was more spatially variable, thinner (site averages between 15 and 25 cm versus 30 to 40 cm), colder (-25°C versus -10°C), composed of fewer layers, had a proportionally higher fraction of wind slabs (storing 57% of the snow water equivalent (SWE) versus 15%), with these slabs comparatively denser (often exceeding 450 g/cm3, compared to 350 g/cm3 in the subarctic). The physical snow measurements were used as inputs to snow emission model simulations. The radiometric difference between simulations of "typical" arctic and subarctic snow reached 30 K at 37 GHz. Sensitivity analysis showed that this TB difference could be partitioned between the effects of physical temperature (~5 K between -25°C and -10°C), wind slab density (~5 K between 0.40and 0.35 g/cm3), and vertical depth hoar fraction (~20 K between 70% and 30% vertical fraction of total snow depth). Model simulations at the satellite scale (625 km2) were produced using the observational spread for snow depth and snow stratigraphy. The range of TB from simulations with varied stratigraphy extended unrealistically far below the magnitude of satellite measured TB, illustrating that the snow depth first guess is very important for SWE retrieval schemes that are based on forward emission model simulations.

  12. Metabolic adaptation to prolonged anoxia in leaves of American cranberry (Vaccinium macrocarpon).

    PubMed

    Schlüter, Urte; Crawford, Robert M. M.

    2003-04-01

    The indigenous North American Cranberry (Vaccinium macrocarpon), when cultivated in specially constructed cranberry bogs, is normally flooded in winter to prevent frost injury. This protection under ice can give rise to prolonged periods of anoxia, which depending on the state of the vines and environmental conditions, can cause severe oxygen-deprivation injury. An experimental study of the tolerance of cranberry vines to controlled total anoxia reveals that mature dark-green perennating leaves with high carbohydrate levels are able to survive prolonged periods of total oxygen-deprivation while younger newly formed leaves are readily damaged. During the anoxic treatment the mature leaves exhibit a marked downregulation of metabolism. Carbohydrate consumption and energy metabolism stabilize at low levels soon after the switch from aerobic to anaerobic pathways. Pathways such as TCA cycle or photosynthesis, which are non-operating during the anoxia treatment, are severely affected but still measurable after 28 days anoxia. In the post-anoxic period the perennating leaves rapidly re-establish their capacity for aerobic respiration and photosynthesis.

  13. Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx.

    PubMed

    Kosola, Kevin R; Workmaster, Beth Ann A; Spada, Piero A

    2007-01-01

    Despite the ubiquitous presence of ericoid mycorrhizal (ERM) fungi in cranberry (Vaccinium macrocarpon), no prior studies have examined the effect of ERM colonization on NO(3)(-) influx kinetics. Here, (15)NO(3)(-) influx was measured in nonmycorrhizal and mycorrhizal cranberry in hydroponics. Mycorrhizal cranberry were inoculated with the ERM fungus Rhizoscyphus (syn. Hymenoscyphus) ericae. (15)NO(3)(-) influx by R. ericae in solution culture was also measured. Rhizoscyphus ericae NO(3)(-) influx kinetics were linear when mycelium was exposed for 24 h to 3.8 mm NH(4)(+), and saturable when pretreated with 3.8 mm NO(3)(-), 50 microm NO(3)(-), or 50 microm NH(4)(+). Both low-N pretreatments induced greater NO(3)(-) influx than either of the high-N pretreatments. Nonmycorrhizal cranberry exhibited linear NO(3)(-) influx kinetics. By contrast, mycorrhizal cranberry had saturable NO(3)(-) influx kinetics, with c. eightfold greater NO(3)(-) influx than nonmycorrhizal cranberry at NO(3)(-) concentrations from 20 microm to 2 mm. There was no influence of pretreatments on cranberry NO(3)(-) influx kinetics, regardless of mycorrhizal status. Inoculation with R. ericae increased the capacity of cranberry to utilize NO(3)(-)-N. This finding is significant both for understanding the potential nutrient niche breadth of cranberry and for management of cultivated cranberry when irrigation water sources contain nitrate.

  14. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.

  15. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.

    PubMed

    Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun

    2016-12-01

    Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca(2+) and at high temperature, while it increased in the presence of Na(+) and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods.

  16. Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St Helens, Washington.

    PubMed

    Yang, S; Bishop, J G; Webster, M S

    2008-02-01

    Population founding and spatial spread may profoundly influence later population genetic structure, but their effects are difficult to quantify when population history is unknown. We examined the genetic effects of founder group formation in a recently founded population of the animal-dispersed Vaccinium membranaceum (black huckleberry) on new volcanic deposits at Mount St Helens (Washington, USA) 24 years post-eruption. Using amplified fragment length polymorphisms and assignment tests, we determined sources of the newly founded population and characterized genetic variation within new and source populations. Our analyses indicate that while founders were derived from many sources, about half originated from a small number of plants that survived the 1980 eruption in pockets of remnant soil embedded within primary successional areas. We found no evidence of a strong founder effect in the new population; indeed genetic diversity in the newly founded population tended to be higher than in some of the source regions. Similarly, formation of the new population did not increase among-population genetic variance, and there was no evidence of kin-structured dispersal in the new population. These results indicate that high gene flow among sources and long-distance dispersal were important processes shaping the genetic diversity in this young V. membranaceum population. Other species with similar dispersal abilities may also be able to colonize new habitats without significant reduction in genetic diversity or increase in differentiation among populations.

  17. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  18. Manitoba Lingonberry (Vaccinium vitis-idaea) Bioactivities in Ischemia-Reperfusion Injury.

    PubMed

    Isaak, Cara K; Petkau, Jay C; O, Karmin; Debnath, Samir C; Siow, Yaw L

    2015-06-17

    Evidence for the efficacy of dietary interventions in protecting against cardiovascular disease has grown significantly, with flavonoids and anthocyanins receiving special attention. Lingonberry (Vaccinium vitis-idaea L.) is a good source of these compounds, and this study examined the protective effects of wild lingonberry found in Manitoba, Canada, against ischemia-reperfusion (IR) injury. Manitoba lingonberry contained 3793 ± 27 mg gallic acid equiv, 120,501 ± 7651 μmol trolox equiv, and 575 ± 20 mg cyanidin-3-glucoside equiv per 100 g dry weight, which correspond with high total phenolic content, antioxidant activity, and anthocyanin content, respectively. A complete methanolic extract and both anthocyanin-rich and phenolic-rich fractions inhibited apoptosis in H9c2 cells during simulated IR. Lingonberry extract and fractions significantly inhibited several markers of apoptosis induced by IR, including nuclei condensation, caspase-3 activation, and MAP kinase signaling. These results provide the first analysis of Manitoba lingonberry and highlight the mechanistic importance of dietary berry compounds for cardiovascular health.

  19. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Wullschleger, Stan [ORNL

    2016-07-12

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  20. Gullies on Mars: Origin by Snow and Ice Melting and Potential for Life Based on Possible Analogs from Devon Island, High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Cockell, Charles S.; McKay, Christopher P.

    2004-01-01

    Gullies on Devon Island, High Arctic, which form by melting of transient surface ice and snow covers and offer morphologic and contextual analogs for gullies reported on Mars are reported to display enhancements in biological activity in contrast to surrounding polar desert terrain.

  1. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    PubMed

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.

  2. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Wullschleger, Stan

    2012-03-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  3. FRAM-2012: Norwegians return to the High Arctic with a Hovercraft for Marine Geophysical Research

    NASA Astrophysics Data System (ADS)

    Hall, J. K.; Kristoffersen, Y.; Brekke, H.; Hope, G.

    2012-12-01

    After four years of testing methods, craft reliability, and innovative equipment, the R/H SABVABAA has embarked on its first FRAM-201x expedition to the highest Arctic. Named after the Inupiaq word for 'flows swiftly over it', the 12m by 6m hovercraft has been home-based in Longyearbyen, Svalbard since June 2008. In this, its fifth summer of work on the ice pack north of 81N, the craft is supported by the Norwegian Petroleum Directorate (NPD) via the Nansen Environmental and Remote Sensing Center (NERSC) in Bergen, and the Norwegian Scientific Academy for Polar Research. FRAM-2012 represents renewed Norwegian interest in returning to the highest Arctic some 116 years after the 1893-96 drift of Fridtjof Nansen's ship FRAM, the first serious scientific investigation of the Arctic. When replenished by air or icebreaker, the hovercraft Sabvabaa offers a hospitable scientific platform with crew of two, capable of marine geophysical, geological and oceanographic observations over long periods with relative mobility on the ice pack. FRAM-2012 is the first step towards this goal, accompanying the Swedish icebreaker ODEN to the Lomonosov Ridge, north of Greenland, as part of the LOMROG III expedition. The science plan called for an initial drive from the ice edge to Gakkel Ridge at 85N where micro-earthquakes would be monitored, and then to continue north to a geological sampling area on the Lomonosov Ridge at about 88N, 65W. The micro-earthquake monitoring is part of Gaute Hope's MSc thesis and entails five hydrophones in a WiFi-connected hydrophone array deployed over the Gakkel Rift Valley, drifting with the ice at up to 0.4 knots. On August 3 the hovercraft was refueled from icebreaker ODEN at 84-21'N and both vessels proceeded north. The progress of the hovercraft was hampered by insufficient visibility for safe driving and time consuming maneuvering in and around larger fields of rubble ice impassable by the hovercraft, but of little concern to the icebreaker. It

  4. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis.

    PubMed

    Brown, Paula N; Turi, Christina E; Shipley, Paul R; Murch, Susan J

    2012-04-01

    There is a long history of use and modern commercial importance of large and small cranberries in North America. The central objective of the current research was to characterize and compare the chemical composition of 2 west coast small cranberry species traditionally used (Vaccinium oxycoccos L. and Vaccinium vitis-idaea L.) with the commercially cultivated large cranberry (Vaccinium macrocarpon Ait.) indigenous to the east coast of North America. V. oxycoccos and V. macrocarpon contained the 5 major anthocyanins known in cranberry; however, the ratio of glycosylated peonidins to cyanidins varied, and V. vitis-idaea did not contain measurable amounts of glycosylated peonidins. Extracts of all three berries were found to contain serotonin, melatonin, and ascorbic acid. Antioxidant activity was not found to correlate with indolamine levels while anthocyanin content showed a negative correlation, and vitamin C content positively correlated. From the metabolomics profiles, 4624 compounds were found conserved across V. macrocarpon, V. oxycoccoS, and V. vitis-idaea with a total of approximately 8000-10 000 phytochemicals detected in each species. From significance analysis, it was found that 2 compounds in V. macrocarpoN, 3 in V. oxycoccos, and 5 in V. vitis-idaea were key to the characterization and differentiation of these cranberry metabolomes. Through multivariate modeling, differentiation of the species was observed, and univariate statistical analysis was employed to provide a quality assessment of the models developed for the metabolomics data.

  5. Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic.

    PubMed

    Sharp, Elizabeth D; Sullivan, Patrick F; Steltzer, Heidi; Csank, Adam Z; Welker, Jeffrey M

    2013-06-01

    The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future

  6. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    PubMed Central

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons. PMID:22253877

  7. The diagnosis and treatment of Helicobacter pylori infection in Arctic regions with a high prevalence of infection: Expert Commentary.

    PubMed

    McMahon, B J; Bruce, M G; Koch, A; Goodman, K J; Tsukanov, V; Mulvad, G; Borresen, M L; Sacco, F; Barrett, D; Westby, S; Parkinson, A J

    2016-01-01

    Helicobacter pylori infection is a major cause of peptic ulcer and is also associated with chronic gastritis, mucosa-associated lymphoid tissue (MALT) lymphoma, and adenocarcinoma of the stomach. Guidelines have been developed in the United States and Europe (areas with low prevalence) for the diagnosis and management of this infection, including the recommendation to 'test and treat' those with dyspepsia. A group of international experts performed a targeted literature review and formulated an expert opinion for evidenced-based benefits and harms for screening and treatment of H. pylori in high-prevalence countries. They concluded that in Arctic countries where H. pylori prevalence exceeds 60%, treatment of persons with H. pylori infection should be limited only to instances where there is strong evidence of direct benefit in reduction of morbidity and mortality, associated peptic ulcer disease and MALT lymphoma and that the test-and-treat strategy may not be beneficial for those with dyspepsia.

  8. Connecting process to high resolution paleorecords: long term investigations of linked Arctic climate-hydrology-lacustrine sedimentary processes

    NASA Astrophysics Data System (ADS)

    Lamoureux, S. F.; Normandeau, A.

    2015-12-01

    High resolution lacustrine sedimentary sequences hold substantial potential for paleoenvironmental analyses, particularly in regions where few alternatives are available. Increased attention to quantifying processes that generate sedimentary facies has yielded increasingly detailed environmental interpretations but these efforts have been limited by available field data. The Cape Bounty Arctic Watershed Observatory (CBAWO) was initiated in 2003 to develop a long term site to evaluate the controls over sediment transport and the formation of clastic sedimentary records. This program in the Canadian Arctic has supported 13 years of research in paired watersheds and lakes, both of which contain clastic varves. Results from 2003-14 demonstrate how multiple climatic factors delivery sediment in a complex manner. This comparatively simple hydroclimatic system is dominated by runoff and sediment transport from spring snowmelt, with clear associations between catchment snow water equivalence (or total runoff) and sediment yield, with discharge limited by snow exhaustion as the season progresses. Major rainfall can constitute a dominant contribution to seasonal sediment yield, but antecedent conditions can significantly reduce runoff markedly. Hence, these results indicate two primary competing hydroclimatic factors that control catchment sediment yield, both with independent climatic and hydrological factors. Additionally, the impact of landscape disturbance on downstream sediment yield has been evaluated following a major episode of permafrost thaw in 2007. Results show that localized slope disturbances resulted in enhanced erosion but downstream fluvial storage reduced the magnitude of transport. Sediment from disturbances will be gradually released and may generate decadal-scale sediment delivery changes in the downstream record. Collectively, this research indicates multiple controls over the formation of clastic varves. Advances in high resolution sedimentary

  9. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming

    NASA Astrophysics Data System (ADS)

    Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.

    2016-11-01

    The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.

  10. Total Summer Precipitation Estimated for the Early Eocene Arctic from High-Resolution Intra-ring Analyses of Fossil Wood

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, A.

    2010-12-01

    During the Early Eocene (~53 - 54.5 Ma) Ellesmere Island was home to a forested ecosystem north of the Arctic Circle (ca. 76o N paleolatitude). Although several estimates exist for Eocene pCO2 levels, temperature, and relative humidity in Arctic environments, quantitative estimates of precipitation have been elusive. We present here a new method for estimating mean-annual precipitation levels from the amplitude of the annual shift in δ13C values seen across the rings of evergreen trees. Both temperature and precipitation affect the δ13C value of plant tissue, and a combination of these factors is recorded in bulk wood. Inspection of high-resolution δ13C profiles across tree-rings from nine evergreen species growing in ten different locations around the world revealed a strong relationship (R2 = 0.98) between the mean δ13C peak-height and the ratio of total summer precipitation (cm) to mean summer temperature (oC). Application of this relationship to nearly 700 measurements of δ13C in bulk wood from high-resolution (i.e., ~40 µm) sampling of evergreen fossil wood, in combination with temperature estimates from geochemical proxies, yielded estimates for total summer precipitation in excess of 90 cm. These conditions are considerably wetter than evergreen forests found at today's mid-latitudes (e.g., the pine forests of Siberia have ~30 cm of total summer precipitation; the spruce forests of Germany and Northern Italy have ~40 - 60 cm of total summer precipitation). We compare our results to Eocene paleoprecipitation estimates based on leaf area analysis of fossil leaves collected from similar sites and discuss the implications for global water transport.

  11. Coupled ecosystem carbon and nutrient cycling in a High Arctic ecosystem are altered by long-term experimental warming and higher rainfall

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Schimel, J.; Welker, J. M.

    2013-12-01

    The rapid changes in temperature and precipitation in High Arctic tundra ecosystems are altering the biogeochemical cycles of nitrogen (N) and carbon (C), but in ways that are difficult to anticipate. The challenge grows from the complexity of tundra soil organic matter, the uncertainty of N cycle responses and the extent to which shifts in soil N processes are coupled with the C cycle, including leaf-level photosynthesis, gross ecosystem photosynthesis (GEP-productivity) and net CO2 exchange (NEE-C sequestration). Understanding the processes that are leading to changes in High Arctic biogeochemical processes are especially important today as soil organic C pools in the High Arctic are up to 6 times greater than previously estimated, and are sensitive to being oxidized to the atmosphere through changes in microbial decomposition associated with warmer and wetter conditions. We used a long-term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland to determine the impact of interactions between temperature, water availability, and microbial metabolism on the cycling of C and plant-available N in High Arctic tundra soil. We have found that water availability plays a critical role in these cycles in High Arctic tundra, over and above that from temperature increases. On seasonal time scales, we observed greater net N mineralization under both global change scenarios, yet water addition also significantly increased net nitrification rates, loss of NO3--N via leaching from surface soil layers, and lowered rates of labile organic C and N production. We also expected the chronic warming and watering would lead to long-term changes in soil N-cycling that would be reflected in soil δ15N values. However, we found that soil δ15N decreased under the different climate change scenarios. Our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these

  12. The Arctic zone: possibilities and risks of development

    NASA Astrophysics Data System (ADS)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  13. Comparative vessel anatomy of arctic deciduous and evergreen dicots.

    PubMed

    Gorsuch, D M; Oberbauer, S F; Fisher, J B

    2001-09-01

    Arctic tundra plant species exhibit striking variation in leaf character and growth form. Both are likely related to differences in vessel anatomy, and all may affect responses to climate changes in the Arctic. To investigate the relationships among leaf character, growth form, vessel anatomy, and susceptibility to freeze-thaw-induced xylem cavitation, xylem vessel characteristics were compared among six deciduous and six evergreen arctic dicot species of erect and prostrate growth forms. We hypothesized that deciduous and erect species would have larger and longer vessels than evergreen and cushion/mat-forming species. Vessel lengths, diameters, and densities were measured for each species. Theoretical vessel flow rates were calculated using Poiseuille's law for ideal capillaries. Flow rates were used to determine the susceptibility of vessels to cavitation induced by freeze-thaw events that may become more frequent with global warming. Vessel diameters were larger in deciduous species compared to evergreens, and in shrubs/trees vs. cushion/mat-forming plants. Vessel length distributions, however, did not differ for growth form or leaf character. Vessel density was greater in cushion/mat-forming species than in shrub/tree species. Deciduous plants showed a greater contribution to total conductivity by relatively larger vessels than evergreens. One of the deciduous species, Vaccinium uliginosum, is predicted to be susceptible to freeze-thaw-induced cavitation. These results have important implications for future arctic species composition and plant community structure.

  14. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing.

    PubMed

    Zhang, Tao; Wei, Xin-Li; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2015-10-14

    This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic.

  15. Stable Isotope Probing Analysis of the Diversity and Activity of Methanotrophic Bacteria in Soils from the Canadian High Arctic

    PubMed Central

    Martineau, Christine; Whyte, Lyle G.; Greer, Charles W.

    2010-01-01

    The melting of permafrost and its potential impact on CH4 emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH4 emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH4 at 4°C and at room temperature (RT), but the oxidation rates were greater at RT than at 4°C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH4 degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment. PMID:20622133

  16. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-01-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice-ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.

  17. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    NASA Astrophysics Data System (ADS)

    Surdu, C. M.; Duguay, C. R.; Fernández Prieto, D.

    2015-11-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than ten months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons, greater biological production and diversity, are confined from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath and Landsat acquisitions were analysed. Results show that melt onset (MO) occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer-ice minimum and water-clear-of-ice dates (WCI), with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes that preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  18. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    NASA Astrophysics Data System (ADS)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  19. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  20. Cutting type affects rooting percentage of asexually propagated Sparkleberry (Vaccinium arborem)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial blueberries, particularly Vaccinium corymbosum, have very specific needs for optimum growth; hence, growing sites are limited. They require acidic soil (pH 4.0-5.5), good drainage, thorough aeration, and a constant moderate amount of moisture. To overcome these restrictions, they could be...

  1. Antioxidant capacities vary substantially among cultivars of rabbiteye blueberry (Vaccinium ashei Reade)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit from forty-two blueberry cultivars, including thirty-six rabbiteye (Vaccinium ashei Reade), three V. ashei hybrid derivatives and three northern highbush (V. corymbosum L.) were evaluated for their antioxidant activities against peroxyl free radicals, hydroxyl radicals, hydrogen peroxide, supe...

  2. Vaccinium Species of Section Hemimyrtillus: Their value to cultivated blueberry and approaches to utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Section Hemimyrtillus represents species that are part of the tertiary gene pool of Vaccinium. Two species of Section Hemimyrtillus, native to the Portuguese islands of Madeira (V. padifolium Smith), and the Azores (V. cylindraceum Smith) have features of notable value to conventional blueberry deve...

  3. Construction of a blueberry (Vaccinium corymbosum) draft genomic sequence using multiple platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry (Vaccinium spp. section Cyanococcus) production and value has steadily increased over the past decade as both researchers and the general public have come to recognize the health benefits associated with its consumption. Genetic improvement of blueberry, however, has been hampered by a lim...

  4. Developmental anatomy of blueberry (Vaccinium corymbosum L. ‘Aurora’) shoot regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The culture of Vaccinium corymbosum L. ’Aurora’ leaves on regeneration medium results in the regeneration of adventitious shoots. We present anatomical evidence that these new shoot apices are directly regenerated from the cultured blades. Mounds of densely staining cells, which formed from epidermi...

  5. Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple sequence repeats (SSRs) in chloroplast and mitochondrial DNA, which have not been previously developed or explored in the Ericaceae family or Vaccinium genus, can be powerful tools for determining evolutionary relationships between taxa. In this study, 30 chloroplast and 23 mitochondria, and ...

  6. Beyond botany to genetic resource preservation: the S. P. Vander Kloet Vaccinium L. collections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. S. P. Vander Kloet, botanist, traveled the world examining and obtaining specimens to redefine infrageneric taxonomic units within Vaccinium L., family Ericaceae. Besides his botanical treatises, his legacy includes herbarium voucher specimens and ex situ genetic resource collections including a...

  7. The spatial genetic structure of lowbush blueberry, Vaccinium angustifolium Ait., in four fields in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expressed Sequence Tag-Polymerase Chain Reaction (EST-PCR) molecular markers were used to infer spatial genetic structure (SGS) of four lowbush blueberry (Vaccinium angustifolium Ait.) fields in Maine. Genetic structure was quantified at three spatial scales: 1) within apparent clones (or intrapat...

  8. Propagation of Vaccinium arboreum for use as a rootstock for commercial blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been an increase in consumer demand for fresh blueberries throughout the year, which also increases the demand for sites suitable for growing blueberries. Commercial blueberries, particularly Vaccinium corymbosum, have very specific needs for optimum growth; hence, growing...

  9. Cutting type affects rooting percentage of asexually propagated Sparkleberry (Vaccinium arboreum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial blueberries, particularly Vaccinium corymbosum, have very specific needs for optimum growth; hence, growing sites are limited. They require acidic soil (pH 4.0-5.5), good drainage, thorough aeration, and a constant moderate amount of moisture. To overcome these restrictions, they could be...

  10. Isoprene derivatives from the leaves and callus cultures of Vaccinium corymbosum var. bluecrop.

    PubMed

    Migas, Piotr; Cisowski, Wojciech; Dembińska-Migas, Wanda

    2005-01-01

    The phytochemical analysis of Vaccinium corymbosum var bluecrop leaves and callus biomass revealed ursolic acid, oleanolic acid, alpha-amyrin and beta-amyrin in both plant materials. Beta-sitosterol was determined only in callus biomass. The structure of isolated compounds was elucidated by TLC co-chromatography with standards and with spectroscopic methods (1H NMR, 13C NMR, EI-MS).

  11. Evaluating the relationship between diploid and tetraploid Vaccinium oxycoccos (Ericaceae) in eastern Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium oxycoccos s. l. is a complex of diploid and polyploid plants. The evolutionary relationship between the cytotypes is uncertain, with conflicting treatments in recent taxonomic studies. To clarify this situation, we investigated the relationships among ploidy, morphology and genetic diversi...

  12. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord-Different from subarctic fjords?

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2016-02-01

    The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.

  13. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    NASA Astrophysics Data System (ADS)

    Stibal, M.; Anesio, A. M.; Blues, C. J. D.; Tranter, M.

    2009-05-01

    Arctic glacier surfaces harbour abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P) is deficient in the supraglacial environment on a Svalbard glacier, we quantify the enzymatic activity of phosphatases in the system and we estimate the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19-67 nmol MUP g-1 h-1). It was inhibited by inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity measured at near-in situ temperature and substrate concentration suggests that the available dissolved organic P can be turned over by microbes within ~3-11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes.

  14. Small birds, big effects: the little auk (Alle alle) transforms high Arctic ecosystems.

    PubMed

    González-Bergonzoni, Ivan; Johansen, Kasper L; Mosbech, Anders; Landkildehus, Frank; Jeppesen, Erik; Davidson, Thomas A

    2017-02-22

    In some arctic areas, marine-derived nutrients (MDN) resulting from fish migrations fuel freshwater and terrestrial ecosystems, increasing primary production and biodiversity. Less is known, however, about the role of seabird-MDN in shaping ecosystems. Here, we examine how the most abundant seabird in the North Atlantic, the little auk (Alle alle), alters freshwater and terrestrial ecosystems around the North Water Polynya (NOW) in Greenland. We compare stable isotope ratios (δ(15)N and δ(13)C) of freshwater and terrestrial biota, terrestrial vegetation indices and physical-chemical properties, productivity and community structure of fresh waters in catchments with and without little auk colonies. The presence of colonies profoundly alters freshwater and terrestrial ecosystems by providing nutrients and massively enhancing primary production. Based on elevated δ(15)N in MDN, we estimate that MDN fuels more than 85% of terrestrial and aquatic biomass in bird influenced systems. Furthermore, by using different proxies of bird impact (colony distance, algal δ(15)N) it is possible to identify a gradient in ecosystem response to increasing bird impact. Little auk impact acidifies the freshwater systems, reducing taxonomic richness of macroinvertebrates and truncating food webs. These results demonstrate that the little auk acts as an ecosystem engineer, transforming ecosystems across a vast region of Northwest Greenland.

  15. Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.

    PubMed

    Gillespie, Mark A K; Jónsdóttir, Ingibjörg S; Hodkinson, Ian D; Cooper, Elisabeth J

    2013-12-01

    Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed.

  16. Adverse foraging conditions may impact body mass and survival of a high Arctic seabird

    USGS Publications Warehouse

    Harding, A.M.A.; Welcker, J.; Steen, H.; Hamer, K.C.; Kitaysky, A.S.; Fort, J.; Talbot, S.L.; Cornick, L.A.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.

    2011-01-01

    Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005-2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species. ?? 2011 Springer-Verlag.

  17. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic.

    PubMed

    Cooper, Elisabeth J; Dullinger, Stefan; Semenchuk, Philipp

    2011-01-01

    In tundra areas where the growing season is short, any delay in the start of summer may have a considerable effect on plant development, growth and reproductive success. Climate models suggest long-term changes in winter precipitation in the Arctic, which may lead to deeper snow cover and a resultant delay in date of snow melt. In this paper, we investigated the role of snow depth and melt out date on the phenological development and reproductive success of vascular plants in Adventdalen, Svalbard (78° 10'N, 16° 06'E). Effects of natural variations in snow accumulation were demonstrated using two vegetation types (snow depth: meadow 21 cm, heath 32 cm), and fences were used to experimentally increase snow depth by over 1m. Phenological delay was greatest directly after snowmelt in the earlier phenological phases, and had the largest effect on the early development of those species which normally green-up early (i.e. Dryas, Papaver, Salix, Saxifraga). Compressed growing seasons and length of the reproductive period led to a reduced reproductive success in some of the study species. There were fewer flowers, fewer plots with dispersing seeds, and lower germination rates. This can have consequences for plant establishment and community composition in the long-term.

  18. Arctic technology awaiting big discovery

    SciTech Connect

    Machemehl, J.L.

    1985-02-01

    Exploratory drilling structures for the Arctic are now safely operating in this tough environment. Continued development of new high arctic offshore structures is contingent upon the industry's ability to find new oil in commercial quantities. The lack of success in this very costly region of the world will dampen this spirit of technological development. A third decade of developing exploration and production structures to support this program will depend on the exposure risk and economical health of the industry in general. Offshore exploration and production structures for the high arctic can be divided into two categories: bottom-founded and floating. The bottom-founded structures can be further divided into (1) artificial fill islands, (2) caisson retained islands, (3) caissons, (4) cones and monocones and (5) monopods and monoleg jackups. These high arctic exploration and production drilling structures are described.

  19. Dramatic Contrasts in Arctic vs Antarctic Sea Ice Trends in 3-D Visualizations and Compilations of Monthly Record Highs and Lows

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    New visualizations dramatically display the decreases in Arctic sea ice coverage over the years 1979-2015, apparent in each month of the year, with not a single record high in ice extents occurring in any month since 1986, a time period with 75 monthly record lows. Results are less dramatic in the Antarctic, but intriguingly in the opposite direction, with only 6 record lows since 1986 and 45 record highs.

  20. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    SciTech Connect

    Hunke, E.C.; Zhang, Y.

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).

  1. Effects of light and prey availability on Arctic freshwater protist communities examined by high-throughput DNA and RNA sequencing.

    PubMed

    Charvet, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2014-06-01

    Protists in high-latitude lakes are constrained by cold temperatures, low inorganic nutrient supply and low light availability for much of the year due to ice cover and polar darkness. The lengthening ice-free periods in these freshwater ecosystems due to a warming climate results in increased light availability, but the overall impacts on phytoplankton and other protists are unknown. We experimentally investigated protist community responses to changes in light and prey availability in a dilution series in Ward Hunt Lake (latitude 83°05'N), in the Canadian High Arctic. The communities at the end of the experiment were characterized using high-throughput pyrosequencing of the V4 region of the 18S rRNA gene as a measure of taxonomic presence, and of 18S rRNA (from RNA converted to cDNA) as a taxon-specific indicator of community response. At the end of the experiment under low irradiance, cDNA reads were dominated by photosynthetic dinoflagellate genera, except at the greatest dilution where Cercozoa were most abundant. In contrast, the cDNA reads in the high light treatments were dominated by chrysophytes. Given the known trophic differences among dinoflagellates, cercozoans and chrysophytes, this apparent environmental selection implies that the rise in underwater irradiance associated with increasing ice-free conditions may affect microbial food web structure and function in polar lakes.

  2. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  3. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    ... The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest ... 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was ...

  4. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the High Arctic.

    PubMed

    Chen, Qingqing; Zhu, Renbin; Wang, Qing; Xu, Hua

    2014-07-01

    During the summers of 2008 and 2009, net methane (CH₄) and nitrous oxide (N₂O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra (LT), bird sanctuary tundra (BT), the tundra in an abandoned coal mine (CT) and the tundra in scientific bases (ST) in Ny-Ålesund of the High Arctic. Tundra soils in CT (184.5 ± 40.0 μg CH4/(m²·hr)) and ST (367.6 ± 92.3μg CH4/(m²·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT. The lowland tundra soils (mean, -4.4-4.3μg N₂O/(m²·hr)) were weak N₂O sources and even sinks. Bird activity increased N₂O emissions from BT with the mean flux of 7.9μgN2O/(m(2)·hr). The mean N₂O fluxes from CT (45.4 ± 10.2 μg N₂O/(m²·hr)) and ST (78.8 ± 18.5μg N₂O/(m²·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N₂O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH₄ fluxes from tundra soils. The N₂O fluxes showed a significant positive correlation with ammonia nitrogen (NH₄(+)-N) contents (r=0.66, p<0.001) at all the observation sites, indicating that ammonia nitrogen (NH₄(+)-N) content acted as a strong predictor for N₂O emissions from tundra soils. The CH4 and N₂O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths. Overall our results implied that human activities might have greater effects on soil CH₄ and N₂O emissions than current climate warming in Ny-Ålesund, High Arctic.

  5. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  6. High-resolution analysis of the terrestrial influence on DOC and POC export in a Siberian Arctic River during the spring freshet

    NASA Astrophysics Data System (ADS)

    Myers-Pigg, A.; Teisserenc, R.; Tananaev, N.; Louchouarn, P.

    2015-12-01

    Arctic Rivers transport vast amounts of terrestrial organic material (TOM) to the Arctic Ocean. The Yenisei River delivers ~18% of total dissolved organic carbon (DOC) exported to the Arctic Ocean each year during peak river discharge (May-June), known as the spring freshet. Previously published DOC fluxes for the freshet period extrapolate from relatively few data points, due to the uniquely difficult sampling conditions during this dynamic period. Here, we present new high resolution data collected from an extensive sampling campaign from April-July 2014 using a reverse osmosis system for DOC isolation. The similarity between the calculated DOC load delivered during the 2014 freshet (2.94 TgC) and the ten-year average from the previous decade (2.92 TgC for 1999-2008) validates the methodological approach used here. In contrast, the total measured load of polymeric lignin phenols (∑8: 643 Gg), an indicator of TOM input, was one order of magnitude higher than a previously estimated load (42 Gg) for May-June. Hence, we may need to re-evaluate the magnitude of terrestrial carbon exported, including the efficiencies of different sampling methods. Additionally, we present the first simultaneous particulate and dissolved lignin analyses in a major Arctic river. Approximately 30% of the total lignin flux in the Yenisei River is delivered in the particulate phase. Particulate lignin export is decoupled from dissolved lignin during the freshet; the initial flush is dominated by dissolved lignin, while the latter portion of the freshet is dominated by particulate lignin. The chemical signatures of lignin in both phases are similar throughout the freshet, suggesting a mobilization of the same source of carbon each spring. This conclusion is at odds with reported isotopic sources signatures (14C age) of bulk organic matter and lignin in these rivers, requiring a multi-faceted approach to fully understand the sources and ages of terrestrial organic matter in Arctic rivers.

  7. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    NASA Astrophysics Data System (ADS)

    Bjerke, Jarle W.; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Jepsen, Jane U.; Lovibond, Sarah; Vikhamar-Schuler, Dagrun; Tømmervik, Hans

    2014-08-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32-39%) of the Arctic, but much of the Arctic shows stable (57-64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011-September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000-11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research.

  8. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects.

    PubMed

    Jungfer, Elvira; Zimmermann, Benno F; Ruttkat, Axel; Galensa, Rudolf

    2012-09-26

    Cranberry procyanidins have been associated with an effect against urinary tract infections (UTI) for decades, and European health claims are requested. This study compares the procyanidin profiles and concentrations of American cranberry ( Vaccinium macrocarpon Ait.), European cranberry ( Vaccinium oxycoccus L.), and lingonberry ( Vaccinium vitis-idaea L.) analyzed using ultrahigh-performance liquid chromatoraphy coupled to a triple-quadrupole mass spectrometer with electrospray interface (UHPLC-MS(2)). Concentrations of A-type trimers, procyanidin A2, catechin, epicatechin, and B-type dimers and trimers have been evaluated and compared for the first time in the three berries. The data clearly show remarkable differences in the procyanidin profiles and concentrations, especially the lack of A-type trimers in V. oxycoccus; thus, the effectiveness against UTI may vary among the Vaccinium species. These differences can be used to prove authenticity.

  9. New host records for four species of tortricid moths (Lepidoptera: Tortricidae) on cultivated blueberries, Vaccinium corymbosum (Ericaceae), in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four species of tortricids were reared from cultivated blueberries, Vaccinium corymbosum L. (Ericaceae), from four field sites in the province of Buenos Aires, Argentina: Clarkeulia bourquini (Clarke, 1949), Clarkeulia deceptiva (Clarke, 1949), Argyrotaenia spheralopa (Meyrick, 1909), and Platynota ...

  10. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the antimicrobial effects of berry extracts obtained from four cultivars (Elliott, Darrow, Bluecrop and Duke) of blueberry (Vaccinium corymbosum L.) on the growth of Listeria monocytogenes and Salmonella Enteritidis. The minimal inhibitory concentration (MIC) and minimal bactericidal conc...

  11. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.

    PubMed

    Niederberger, Thomas D; Perreault, Nancy N; Tille, Stephanie; Lollar, Barbara Sherwood; Lacrampe-Couloume, Georges; Andersen, Dale; Greer, Charles W; Pollard, Wayne; Whyte, Lyle G

    2010-10-01

    We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 °C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ∼84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (∼50%) with the low CH(4)/C(2+) ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.

  12. Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow

    NASA Astrophysics Data System (ADS)

    Poulain, Alexandre J.; Garcia, Edenise; Amyot, Marc; Campbell, Peter G. C.; Ariya, Parisa A.

    2007-07-01

    Atmospheric mercury deposition on snow at springtime has been reported in polar regions, potentially posing a threat to coastal and inland ecosystems receiving meltwaters. However, the post-depositional fate of Hg in snow is not well known, and no data are available on Hg partitioning in polar snow. During snowmelt, we conducted a survey of Hg concentrations, partitioning and speciation in surface snow and at depth, over sea ice and over land along a 100 km transect across Cornwallis Island, NU, Canada. Total Hg concentrations [THg] in surface snow were low (less than 20 pmol L -1) and were significantly higher in marine vs. inland environments. Particulate Hg in surface snow represented up to 90% of total Hg over sea ice and up to 59% over land. At depth, [THg] at the snow/sea ice interface (up to 300 pmol L -1) were two orders of magnitude higher than at the snow/lake ice interface (ca. 2.5 pmol L -1). Integrated snow columns, sampled over sea-ice and over land, showed that particulate Hg was mostly bound to particles ranging from 0.45 to 2.7 μm. Moreover, melting snowpacks over sea ice and over lake ice contribute to increase [THg] at the water/ice interfaces. This study indicates that, at the onset of snowmelt, most of the Hg in snow is in particulate form, particularly over sea ice. Low Hg levels in surface snow suggest that Hg deposited through early spring deposition events is partly lost to the atmosphere from the snowpack before snowmelt. The sea ice/snow interface may constitute a site for Hg accumulation, however. Further understanding of the cycling of mercury at the sea ice/snow and sea ice/seawater interfaces is thus warranted to fully understand how mercury enters the arctic food webs.

  13. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes

    NASA Astrophysics Data System (ADS)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy

    2016-12-01

    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  14. Poles Apart: Arctic and Antarctic Octadecabacter strains Share High Genome Plasticity and a New Type of Xanthorhodopsin

    PubMed Central

    Vollmers, John; Voget, Sonja; Dietrich, Sascha; Gollnow, Kathleen; Smits, Maike; Meyer, Katja; Brinkhoff, Thorsten; Simon, Meinhard; Daniel, Rolf

    2013-01-01

    The genus Octadecabacter is a member of the ubiquitous marine Roseobacter clade. The two described species of this genus, Octadecabacter arcticus and Octadecabacter antarcticus, are psychrophilic and display a bipolar distribution. Here we provide the manually annotated and finished genome sequences of the type strains O. arcticus 238 and O. antarcticus 307, isolated from sea ice of the Arctic and Antarctic, respectively. Both genomes exhibit a high genome plasticity caused by an unusually high density and diversity of transposable elements. This could explain the discrepancy between the low genome synteny and high 16S rRNA gene sequence similarity between both strains. Numerous characteristic features were identified in the Octadecabacter genomes, which show indications of horizontal gene transfer and may represent specific adaptations to the habitats of the strains. These include a gene cluster encoding the synthesis and degradation of cyanophycin in O. arcticus 238, which is absent in O. antarcticus 307 and unique among the Roseobacter clade. Furthermore, genes representing a new subgroup of xanthorhodopsins as an adaptation to icy environments are present in both Octadecabacter strains. This new xanthorhodopsin subgroup differs from the previously characterized xanthorhodopsins of Salinibacter ruber and Gloeobacter violaceus in phylogeny, biogeography and the potential to bind 4-keto-carotenoids. Biochemical characterization of the Octadecabacter xanthorhodopsins revealed that they function as light-driven proton pumps. PMID:23671678

  15. Distribution, transport, and production of volatile halocarbons in the upper waters of the ice-covered high Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Karlsson, A.; Theorin, M.; Abrahamsson, K.

    2013-12-01

    halogenated compounds (CHBr3, CH2Br2, CHBr2Cl, and CH2ClI) were measured in the water column and in sea ice brine across the Arctic Ocean, from Barrow, Alaska, to Svalbard, during the Beringia 2005 expedition (August-September) with RV/IB Oden. High concentrations of brominated compounds (up to 42 pmol kg-1 of bromoform) were found under multiyear ice in the surface waters over the Makarov Basin and the Lomonosov Ridge, near the North Pole. Even higher concentrations (bromoform up to 160 pmol kg-1) were found in sea ice brine. We propose that the high load of riverine dissolved organic matter that is transported in the Transpolar Drift is a main factor responsible for the high concentration of brominated volatile compounds found in sea ice brine and upper waters and that cycles of freezing and thawing during the transport enhance the transfer of halocarbons to the seawater. The iodinated compound (CH2ClI) showed a completely different distribution with highest concentrations in water of Pacific origin in the mixed layer and upper halocline of the northern Canada Basin and over the Alpha Ridge. In the southern Canada Basin, low concentrations of halocarbons were found in upper waters. Higher concentrations in water of Pacific origin, especially on the continental shelf, indicate production in the shelf regions, likely in the Chukchi Sea and the East Siberian Sea.

  16. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.

    2016-04-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE = -0.1 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.4 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m-2, while the disturbed tundra released 12.5 g C m-2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m-2 s-1 and +0.55 µmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.19 µmol m-2 s-1 and +1.04 µmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).

  17. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Cassidy, A. E.; Christen, A.; Henry, G. H. R.

    2015-12-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming, and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, have increased in frequency and magnitude across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season the undisturbed tundra was a small net sink (NEE = -0.12 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.39 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.84 g C m-2, while the disturbed tundra released 12.48 g C m-2. Before full leaf out in early July, the undisturbed tundra was a small source of CO2, but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.41 μmol m-2 s-1 and +0.50 μmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.21 μmol m-2 s-1 and +1.00 μmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the growing season.

  18. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  19. The U.S. Navy’s Arctic Roadmap: Adapting to Climate Change in the High North

    DTIC Science & Technology

    2011-05-01

    Potential increase in Humanitarian Assistance/Disaster Response Wild-cards  Ocean acidification  Abrupt climate change  Geoengineering Challenges and...Content from 1950 (Murphy 2009). Ocean data taken from Domingues et al 2008 The Ocean is Storing Most of the Heat Mean surface temperature 2001-2007...UNCLASSIFIED 8 Arctic Considerations One Scenario Native Perspectives The Arctic is an ocean , a challenge, but NOT a vacuum + = Unalakleet, 2040Gulf Coast

  20. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover

    DTIC Science & Technology

    2014-09-30

    of sea ice, glaciers, and ice sheets. These observations are critical for predicting the response of Earth’s polar ice to climate change and sea...phone: (301) 683-3332 fax: (301) 683-3330 email: sineadf@umd.edu Award Number: N000141410599 Dr. Jennifer K. Hutchings Oregon State...the Arctic Ocean, and the processes that define it. OBJECTIVES Our goal is to assess changes in the characteristics of the Arctic sea ice pack

  1. Soviet Arctic yields big hydrocarbons

    SciTech Connect

    Not Available

    1983-01-10

    Despite the huge hydrocarbon resources lying in Arctic areas of the USSR, the Soviets are expected to postpone offshore development there until the 1990s, focusing primarily on more accessible onshore Arctic reserves. They have already shown impressive ability to develop Arctic gas fields - such as the Urengoi and Yamburg fields - drilling through thick permafrost into pay zones with abnormally high pressures. The key to continued gains in Arctic production lies in the development of high-capacity, large-diameter pipe that would greatly reduce the number of pipelines required to carry the gas to western markets. The USSR recently reported successful tests on a 56-in. laminar pipe designed for operating pressures of 1500-1800 psi instead of the conventional 1100 psi.

  2. [Quantitative determination of arbutin and hydroquinone in leaves of Arctostaphylos, Vaccinium vitis-idaea, and the plant preparations].

    PubMed

    Chukarina, E V; Vlasov, A M; Eller, K I

    2007-01-01

    The optimal conditions of arbutin and hydroquinone extraction from plant raze, materials and biologically active supplements based on Vaccinium vitis-idaea and Arctostaphylos uva-ursi leaves were developed. 25% ethanol was used for extract