Science.gov

Sample records for high beta frequency

  1. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  2. Beta-thalassemia mutations in Rome. A high frequency of the IVSII-745 allele in subjects of latium origin.

    PubMed

    Massa, A; Cianciulli, P; Cianetti, L; Iazzone, R; Cenci, A; Sorrentino, F; Franco, G; Pecci, G; Papa, G; Peschle, C

    1994-01-01

    We studied the molecular bases of beta-thalassemia in Rome, a city centrally located in Latium, which is a region with a low incidence of beta-carriers. People also come to Rome from other regions for specific or prenatal diagnostic assessment. Only 11 patients (20%) out of 62 characterized beta-thalassemia subjects were of Latium family origin. They presented five mutations with an uncommonly high frequency of the IVSII-745 allele, that was found in homozygosis in 4 unrelated patients from a southeastern area in the province of Frosinone. These data may indicate a founder effect.

  3. Excitation of high frequency pressure driven modes by non-axisymmetric equilibrium at high {beta}{sub pol} in PBX-M

    SciTech Connect

    Sesnic, S.; Kaita, R.; Kaye, S.; Okabayashi, M.; Takahashi, H.; Bell, R.E.; Bernabei, S.; Chance, M.S.; Hatcher, R.E.; Jardin, S.C.; Kessel, C.E.; Kugel, H.W.; LeBlanc, B.; Manickam, J.; Ono, M.; Paul, S.F.; Sauthoff, N.R.; Holland, A.; Asakura, N.; Duperrex, P.A.; Fonck, R.J.; Gammel, G.M.; Greene, G.J.; Jiang, T.W.; Levinton, F.M.; Powell, E.T.; Roberts, D.W.; Qin, Y.

    1993-06-01

    High-frequency pressure-driven modes have been observed in high-poloidal-{beta} discharges in the Princeton Beta Experiment-Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency m{sub 1}=1/n{sub 1}=1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q=1 surface, and have mode numbers with either m{sub h}=n{sub h} or (less probably) m{sub h}/n{sub h}=m{sub h}/(m{sub h}-1), with m{sub h} varying between 3 and 10. Occasionally, these modes are, simultaneously localized in the vicinity of the m{sub 1}=2/n{sub 1}=1 island. The high frequency modes near the q=1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large m{sub 1}=1/n{sub 1}=1 island is present the mode is poloidally localized in the immediate vicinity of the x-point of the island. The modes, which occur exclusively in high-{beta} discharges, appear to be driven by the plasma pressure or pressure gradient. They can thus be a manifestation of either a toroidicity-induced shear Alfven eigenmode (TAE) at q=(2m{sub h}+ 1)/2n{sub h}, a kinetic ballooning mode (KBM), or some other type of pressure-driven mode. Theory predicts that the TAE mode is a gap mode, but the high frequency modes in PBX-M are found exclusively on or in the immediate neighborhood of magnetic surfaces with low rational numbers.

  4. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  5. Calculation of the Lattice Frequencies of Alpha and Beta Oxygen.

    DTIC Science & Technology

    The optically active lattice frequencies of alpha- and beta-O2 have been calculated using an atom-atom Lennard - Jones potential, with and without the...agreement is obtained between the observed librational frequency and its temperature dependence in beta-O2 and the results calculated using the Lennard - Jones potential... Lennard - Jones atom-atom interaction is a satisfactory model for the potential function in solid oxygen, provided that the packing is such that electronic overlap effects are small. (Author)

  6. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  7. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  8. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  9. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  10. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals.

    PubMed

    Jamieson, Graham A; Burgess, Adrian P

    2014-01-01

    Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz) alpha (8-12.9 Hz), beta1 (13-19.9 Hz), beta2 (20-29.9 Hz) and gamma (30-45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized "hypnotic-state."

  11. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals

    PubMed Central

    Jamieson, Graham A.; Burgess, Adrian P.

    2014-01-01

    Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1–3.9 Hz), theta (4–7.9 Hz) alpha (8–12.9 Hz), beta1 (13–19.9 Hz), beta2 (20–29.9 Hz) and gamma (30–45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized “hypnotic-state.” PMID:25104928

  12. RWM Critical Rotation Frequency and Beta Dependence in NSTX

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron; Sabbagh, S. A.; Menard, J. E.; Battaglia, D. J.

    2005-10-01

    The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (φφ) above a critical rotation frequency (φcrit). Recent experiments on NSTX seek to determine φcrit and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining φφ at the q = 2 surface above φA/4q^2 is a necessary condition for RWM stability where φA is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the φcrit scaling. When φφ at the q = 2 surface drops below φcrit, the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops φcrit, accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining βN> βN^no-wall.

  13. High-frequency broadband transformers

    NASA Astrophysics Data System (ADS)

    London, S. E.; Tomashevich, S. V.

    1981-05-01

    A systematic review of the theory and design principles of high-frequency broadband transformers is presented. It is shown that the transformers of highest performance are those whose coils consist of strips of double-wire and multiwire transmission lines. Such devices are characterized by a wide operating frequency range, and make possible operation at microwave frequencies at high levels of transmitted power.

  14. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  15. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  16. High-{beta} disruption in tokamaks

    SciTech Connect

    Park, W.; Fredrickson, E.D.; Janos, A.

    1995-07-01

    Three dimensional MHD simulations of high-{beta} plasmas show that toroidally localized high-n ballooning modes can be driven unstable by the local pressure steepening which arises from the evolution of low-n modes. Nonlinearly, the high-n mode becomes even more localized and produces a strong local pressure bulge which destroys the flux surfaces resulting in a thermal quench. The flux surfaces then recover temporarily but now contain large magnetic islands. This scenario is supported by experimental data.

  17. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  18. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  19. High beta and confinement studies on TFTR

    SciTech Connect

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. ); Kesner, J. )

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run.

  20. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

    PubMed Central

    Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim

    2016-01-01

    Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089

  1. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  2. High frequency fishbones excited by near perpendicular neutral beam injection

    SciTech Connect

    Zhou Deng

    2006-07-15

    The high frequency fishbone instability observed in experiments with near perpendicular neutral beam injection is interpreted as the ideal internal kink mode destabilized by circulating energetic ions. The mode frequency is close to the transit frequency of circulating ions. The beta value of the circulating ions is required to peak on the magnetic axis and the average value within the q=1 magnetic surface must exceed a critical value for the mode to grow up.

  3. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  4. Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus.

    PubMed

    Foffani, G; Bianchi, A M; Baselli, G; Priori, A

    2005-10-15

    Event-related changes of brain electrical rhythms are typically analysed as amplitude modulations of local field potential (LFP) oscillations, like radio amplitude modulation broadcasting. In telecommunications, frequency modulation (FM) is less susceptible to interference than amplitude modulation (AM) and is therefore preferred for high-fidelity transmissions. Here we hypothesized that LFP rhythms detected from deep brain stimulation (DBS) electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease could represent movement-related activity not only in AM but also in FM. By combining adaptive autoregressive identification with spectral power decomposition, we were able to show that FM of low-beta (13-20 Hz) and high-beta (20-35 Hz) rhythms significantly contributes to the involvement of the human STN in movement preparation, execution and recovery, and that the FM patterns are regulated by the dopamine levels in the system. Movement-related FM of beta oscillatory activity in the human subthalamic nucleus therefore provides a novel informational domain for rhythm-based pathophysiological models of cortico-basal ganglia processing.

  5. Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus

    PubMed Central

    Foffani, G; Bianchi, AM; Baselli, G; Priori, A

    2005-01-01

    Event-related changes of brain electrical rhythms are typically analysed as amplitude modulations of local field potential (LFP) oscillations, like radio amplitude modulation broadcasting. In telecommunications, frequency modulation (FM) is less susceptible to interference than amplitude modulation (AM) and is therefore preferred for high-fidelity transmissions. Here we hypothesized that LFP rhythms detected from deep brain stimulation (DBS) electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease could represent movement-related activity not only in AM but also in FM. By combining adaptive autoregressive identification with spectral power decomposition, we were able to show that FM of low-beta (13–20 Hz) and high-beta (20–35 Hz) rhythms significantly contributes to the involvement of the human STN in movement preparation, execution and recovery, and that the FM patterns are regulated by the dopamine levels in the system. Movement-related FM of beta oscillatory activity in the human subthalamic nucleus therefore provides a novel informational domain for rhythm-based pathophysiological models of cortico-basal ganglia processing. PMID:16123109

  6. Increase of TCR V beta accessibility within E beta regulatory region influences its recombination frequency but not allelic exclusion.

    PubMed

    Senoo, Makoto; Wang, Lili; Suzuki, Daisuke; Takeda, Naoki; Shinkai, Yoichi; Habu, Sonoko

    2003-07-15

    Seventy percent of the murine TCRbeta locus (475 kb) was deleted to generate a large deleted TCRbeta (beta(LD)) allele to investigate a possible linkage between germline transcription, recombination frequency, and allelic exclusion of the TCR Vbeta genes. In these beta(LD/LD) mice, the TCRbeta gene locus contained only four Vbeta genes at the 5' side of the locus, and consequently, the Vbeta10 gene was located in the original Dbeta1-Jbeta1cluster within the Ebeta regulatory region. We showed that the frequency of recombination and expression of the Vbeta genes are strongly biased to Vbeta10 in these mutant mice even though the proximity of the other three 5'Vbeta genes was also greatly shortened toward the Dbeta-Jbeta cluster and the Ebeta enhancer. Accordingly, the germline transcription of the Vbeta10 gene in beta(LD/LD) mice was exceptionally enhanced in immature double negative thymocytes compared with that in wild-type mice. During double negative-to-double positive transition of thymocytes, the level of Vbeta10 germline transcription was prominently increased in beta(LD/LD) recombination activating gene 2-deficient mice receiving anti-CD3epsilon Ab in vivo. Interestingly, however, despite the increased accessibility of the Vbeta10 gene in terms of transcription, allelic exclusion of this Vbeta gene was strictly maintained in beta(LD/LD) mice. These results provide strong evidence that increase of Vbeta accessibility influences frequency but not allelic exclusion of the TCR Vbeta rearrangement if the Vbeta gene is located in the Ebeta regulatory region.

  7. A rationale for an individualized administration frequency of epoetin beta: a pharmacological perspective.

    PubMed

    Locatelli, F; Baldamus, C; Villa, G; Ganea, A; De Francisco, A M

    2002-01-01

    Several studies have compared the efficacy of once-weekly subcutaneous (s.c.) epoetin treatment with two or three times weekly treatment in renal anaemia. Epoetin administration frequency has attracted a high level of attention in recent years, and numerous small-scale studies have shown comparable efficacy and tolerability of once-weekly vs more frequent administration. The results of two large-scale, randomized, controlled trials of once-weekly administration of epoetin beta became available recently. One of these studies, by Locatelli et al., was the first to be designed specifically to demonstrate therapeutic equivalence between once-weekly and three times weekly epoetin beta treatment, using rigorous statistical methods. This was a large, multicentre, randomized, parallel group, 24-week study in 173 chronic renal failure patients. Treatment regimens were considered equivalent if: (i) the 90% confidence interval (CI) of the difference between treatment groups was within +/-2% for the time-adjusted area under the haematocrit (Hct) curve (AUC); and (ii) for mean weekly epoetin beta dose, the 90% CI of the ratio of the groups was between 0.8 and 1.25. As recommended by current guidelines for statistical analysis of clinical trial data, multiple analysis populations were examined in order to demonstrate robustness of the results with regard to the population chosen for analysis. Findings from the primary analysis, the per-protocol population, were confirmed by both the intent-to-treat analysis and an exploratory analysis that examined the influence of five patients who received dose increases above the mean. In all three analyses, the 90% CIs were within the pre-specified equivalence ranges for both the difference between treatment groups for Hct AUC and the ratio of mean weekly epoetin beta dose. In conclusion, once-weekly and three times weekly s.c. epoetin beta treatment regimens are statistically equivalent in terms of maintaining stable Hct levels and dose

  8. Interaction of high-energy trapped particles with ballooning modes in a tokamak with a high-. beta. plasma

    SciTech Connect

    Mikhailovskii, A. B.; Novakovaskii, S. V.; Smolyakov, A. I.

    1988-12-01

    A theory is derived for the interaction of high-energy trapped particleswith ballooning modes in a tokamak with a high-..beta.. plasma. A dispersionrelation is derived to describe the ballooning modes in the presence ofsuch particles; the effects of the high plasma ..beta.. are taken into account.The stability boundary for ballooning modes with zero and finite frequenciesis studied. The effects of finite bananas on the stability of ballooningmodes with zero frequencies are determined.

  9. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  10. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  11. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  12. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  13. Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation.

    PubMed

    Harrewijn, A; Van der Molen, M J W; Westenberg, P M

    2016-12-01

    The goal of the present study was to examine whether frontal alpha asymmetry and delta-beta cross-frequency correlation during resting state, anticipation, and recovery are electroencephalographic (EEG) measures of social anxiety. For the first time, we jointly examined frontal alpha asymmetry and delta-beta correlation during resting state and during a social performance task in high (HSA) versus low (LSA) socially anxious females. Participants performed a social performance task in which they first watched and evaluated a video of a peer, and then prepared their own speech. They believed that their speech would be videotaped and evaluated by a peer. We found that HSA participants showed significant negative delta-beta correlation as compared to LSA participants during both anticipation of and recovery from the stressful social situation. This negative delta-beta correlation might reflect increased activity in subcortical brain regions and decreased activity in cortical brain regions. As we hypothesized, no group differences in delta-beta correlation were found during the resting state. This could indicate that a certain level of stress is needed to find EEG measures of social anxiety. As for frontal alpha asymmetry, we did not find any group differences. The present frontal alpha asymmetry results are discussed in relation to the evident inconsistencies in the frontal alpha asymmetry literature. Together, our results suggest that delta-beta correlation is a putative EEG measure of social anxiety.

  14. Nonlinear Frequency Chirping of beta-induced Aflven eigenmode

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen

    2011-10-01

    The β-induced Alfvén eigenmode (BAE) is studied using global gyrokinetic toroidal code GTC. Linear simulations show that kinetic effects modify BAE mode structure and reduce the frequency relative to the MHD theory. Both passing and trapped energetic particles contribute to BAE excitation through transit and bounce- precessional resonance, respectively. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interaction with both thermal and energetic particles. The saturated amplitude exhibits a coherent oscillation with an asymmetric growing and damping phase. Wavelet analysis shows that the mode frequency has a strong chirping associated with the oscillation of the mode amplitude. Analysis of nonlinear wave-particle interaction shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of toroidal angle and precessional frequency. Controlled simulations further find that thermal particle nonlinearity plays a key role in controlling the saturation amplitude. We will also report self-consistent energetic particle transport from turbulence simulation with wave-particle and wave-wave nonlinearity treated on the same footing for the first time. Work in collaboration with W. Deng, I. Holod, Z. Lin, Y. Xiao and supported by DOE SciDAC GSEP Center and INCITE Program.

  15. AE activity during transient beta drops in high poloidal beta discharges

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.

    2016-10-01

    Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.

  16. Progress of High-Beta Experiments in Stellarator/Heliotron

    SciTech Connect

    Watanabe, Kiyomasa Y.; Weller, Arthur; Sakakibara, Satoru; Narushima, Yoshiro; Ohdachi, Satoshi; Narihara, Kazumichi; Tanaka, Kenji; Ida, Katsumi; Toi, Kazuo; Yamada, Hiroshi; Suzuki, Yasuhiro; Kaneko, Osamu

    2004-07-15

    Recently, dramatic progress has been achieved in the study of helical systems with high-beta experiments. Discharges with more than 3% beta plasmas have been achieved in Large Helical Device (LHD) and Wendelstein 7-AS (W7-AS). Although magnetohydrodynamic (MHD) instabilities affect local pressure gradients, the global transport property does not seem to limit the achieved beta value in either device. We summarize the LHD high-beta properties in MHD stability, equilibrium, and transport, and we show the relationship between the experimentally achieved parameters and theoretical predictions. We contrast the LHD results with the W7-AS high-beta properties. In both devices, stationary discharges in the definitely MHD unstable region have not been observed. We mention the key issue for achievement of the beta values >5%.

  17. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  18. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  19. Destabilization of Internal Kink Modes at High Frequency by Energetic Circulating Ions

    SciTech Connect

    Wang, Shaojie

    2001-06-04

    A theoretical model is proposed to interpret the high-frequency fishbone instability observed in tangential neutral-beam-injection discharges in a tokamak. It is shown that, when the beam ion beta exceeds a critical value, energetic circulating ions can indeed destabilize the internal kink mode through circulation resonance at a high frequency comparable to the circulation frequency of the energetic ions. The critical beta value of the energetic ions, the real frequency, and the growth rate of the mode are in general agreement with the high-frequency fishbone instability observed in experiments.

  20. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  1. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  2. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  3. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  4. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  5. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  6. Resistive MHD studies of high-. beta. -tokamak plasmas

    SciTech Connect

    Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.

    1981-01-01

    Numerical calculations have been performed to study the MHD activity in high-..beta.. tokamaks such as ISX-B. These initial value calculations built on earlier low ..beta.. techniques, but the ..beta.. effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low ..beta.. to predominantly pressure driven modes at high ..beta.. is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment.

  7. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  8. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  9. High-beta equilibria of drift-optimized compact stellarators.

    PubMed

    Ware, A S; Hirshman, S P; Spong, D A; Berry, L A; Deisher, A J; Fu, G Y; Lyon, J F; Sanchez, R

    2002-09-16

    Compact stellarator configurations have been obtained with good neoclassical confinement that are stable to both pressure- and current-driven modes for high values of beta. These configurations are drift-optimized tokamak-stellarator hybrids with a high-shear tokamak-like rotational transform profile and /B/ that is approximately poloidally symmetric. The bootstrap current is consistent with the required equilibrium current and, while larger than that in existing stellarators, is typically only a small fraction (1/3-1/5) of that in an equivalent tokamak. These configurations have strong magnetic wells and consequently high interchange stability beta limits up to beta=23%. Because of the reduced bootstrap current, these configurations are stable to low-n ideal MHD kink modes with no wall stabilization for values of beta ( approximately 7%-11%) significantly larger than in an equivalent advanced tokamak.

  10. Beta-frequency EEG activity increased during transcranial direct current stimulation.

    PubMed

    Song, Myeongseop; Shin, Yungjae; Yun, Kyongsik

    2014-12-17

    Transcranial direct current stimulation (tDCS) is a technique for noninvasively stimulating specific cortical regions of the brain with small (<2 mA) and constant direct current on the scalp. tDCS has been widely applied, not only for medical treatment, but also for cognitive and somatosensory function enhancement, motor learning improvement, and social behavioral change. However, the mechanism that underlies the effect of tDCS is unclear. In this study, we performed simultaneous electroencephalogram (EEG) monitoring during tDCS to understand the dynamic electrophysiological changes throughout the stimulation. A total of 10 healthy individuals participated in this experiment. We recorded EEGs with direct current stimulation, as well as during a 5-min resting state before and after the stimulation. All participants kept their eyes closed during the experiment. Anode and cathode patches of tDCS were placed on the left and the right dorsolateral prefrontal cortex, respectively. In addition, an EEG electrode was placed on the medial prefrontal cortex. The beta-frequency power increased promptly after starting the stimulation. The significant beta-power increase was maintained during the stimulation. Other frequency bands did not show any significant changes. The results indicate that tDCS of the left dorsolateral prefrontal cortex changed the brain to a ready state for efficient cognitive functioning by increasing the beta-frequency power. This is the first attempt to simultaneously stimulate the cortex and record the EEG and then systematically analyze the prestimulation, during-stimulation, and poststimulation EEG data.

  11. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  12. High-beta extended MHD simulations of stellarators

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.

    2016-10-01

    The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  13. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  14. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band.

    PubMed

    Li, Tianning; Wen, Peng

    2016-09-01

    This paper presents a new method to apply timing characteristics of electroencephalograph (EEG) beta frequency bands to assess the depth of anaesthesia (DoA). Firstly, the measured EEG signals are denoised and decomposed into 20 different frequency bands. The Mobility (M), permutation entropy (PE) and Lempel-Ziv complexity (LCZ) of each frequency band are calculated. The M, PE and LCZ values of beta frequency bands (21.5-30 Hz) are selected to derive a new index. The new index is evaluated and compared with measured bispectral (BIS). The results show that there is a very close correlation between the proposed index and the BIS during different anaesthetic states. The new index also shows a 25-264 s earlier time response than BIS during the transient period of anaesthetic states. In addition, the proposed index is able to continuously assess the DoA when the quality of signal is poor and the BIS does not have any valid outputs.

  15. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  16. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  17. High-. beta. operation and MHD (magnetohydrodynamic) activity on TFTR

    SciTech Connect

    McGuire, K.

    1990-04-01

    Magnetohydrodynamic (MHD) activity within three zones (core, half- radius, and edge) of TFTR (Plasma Physics and Controlled Nuclear Fusion Research (1986), (IAEA, Vienna, 1987), Vol. 1, P. 51) tokamak plasmas are discussed. Near the core of the plasma column, sawteeth are often observed. Two types of sawteeth are studied in detail: one with complete, and the other with incomplete magnetic reconnection. Their characteristics are determined by the shape of the q profile. Near the half-radius the m/n = 3/2 and 2/1 resistive ballooning modes are found to correlate with a beta collapse. The pressure and the pressure gradient at the mode rational surface are found to play an important role in stability. MHD activity is also studied at the plasma edge during limiter H-modes. The Edge Localized Mode (ELMs) are found to have a precursor mode with a frequency between 50--200 kHz and a mode number m/n = 1/0. The mode does not show a ballooning structure. While these instabilities have been studied on many other machines, on TFTR the studies have been extended to high pressure (plasma pressure greater than 4 {times} 10{sup 5} Pa) and low collisionality. 16 refs., 3 figs.

  18. A high frequency silicon pressure sensor

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.; Gross, C.

    1980-01-01

    Theoretical and design considerations as well as fabrication and experimental work involved in the development of high-frequency silicon pressure sensors with an ultra-small diaphragm are discussed. A sensor is presented with a rectangular diaphragm of 0.0127 cm x 0.0254 cm x 1.06 micron; the sensor has a natural frequency of 625 kHz and a sensitivity of 0.82 mv/v-psi. High-frequency results from shock tube testing and low-frequency (less than 50 kHz) comparison with microphones are given.

  19. Microphysics of a multidimensional high beta low Mach number shock

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Matsumoto, Y.

    2014-12-01

    It is generally thought that a high beta shock is weak so that its structre is relatively laminar and stationary. Such low Mach number shocks have not been paid much attention in terms of particle acceleration. However, Voyager spacecraft revealed that the fluxes of not only the non-thermal ions, which are called as the termination shock particles, but also of the non-thermal electrons are enhanced at the crossings of the termination shock. The heliospheric termination shock has a high effective beta due to the presence of pickup ions which are the component having rather high thermal energy. Radio synchrotron emissions from relics of galaxy cluster mergers imply the presence of relativistic electrons accelerated in merger shocks. A plasma beta of such a merger shock is also thought to be rather high so that the merger shocks are usually assumed to have low Mach numbers. These observational facts imply that even a low Mach number shock can be a good accelerator of non-thermal particles. Here, we perform two-dimensional full particle-in-cell simulation to study microstructure of a high beta low Mach number shock and the associated electron acceleration process. Although the effective magnotosonic Mach number is rather low, ~2.6, the structure of the transition region is highly complex. Ion and electron scale structures coexist. Furthermore, some electrons are accelerated to high energy. We will discuss the mechanisms of producing those two-dimensional microstructures and high energy electrons.

  20. MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX

    SciTech Connect

    Kugel, H.W.; Sesnic, S.; Bol, K.; Chance, M.; Fishman, H.; Fonck, R.; Gammel, G.; Kaita, R.; Kaye, S.; LeBlanc, B.

    1987-10-01

    High-..beta.. experiments, in medium to high-q tokamak plasmas, exhibit a temporal ..beta.. saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs.

  1. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  2. Conductivity of normal and pathological human erythrocytes (homozygous beta-thalassemia) at radiowave frequencies.

    PubMed

    Ballario, C; Bonincontro, A; Cametti, C; Rosi, A; Sportelli, L

    1984-01-01

    The conductivity of normal and homozygous beta-thalassemic erythrocyte suspensions has been measured over the frequency range from 5 KHz to 100 MHz in the temperature interval from 5 to 45 degrees C. The electrical parameters of the membrane, i.e., the capacitance CM and the conductance GM per unit surface have been calculated from an expression given by Hanai for the conductivity of a suspension of ellipsoidal particles covered with a shell. Some interesting differences between the normal and pathological state are evidentiated.

  3. Study of the {beta}-{alpha} phase transformations of a Ti-64 sheet induced from a high-temperature {beta} state and a high-temperature {alpha} + {beta} state

    SciTech Connect

    Moustahfid, H.; Gey, N.; Humbert, M.; Philippe, M.J.

    1997-01-01

    The room-temperature {alpha} textures of Ti-64 sheets, inherited from the {beta}-{alpha} phase transformation of high-temperature {beta} textures of the material in the {beta} and {alpha} + {beta} fields, respectively, have been studied. The corresponding high-temperature {beta} textures were also determined by a method developed in their laboratory. The knowledge of the high-temperature {beta} textures allows discussions of the variant selections through transformation modeling. As a result, a variant selection occurs in the presence of the stable {alpha} grains of the {alpha} + {beta} field.

  4. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  5. An introduction to high frequency radioteletype systems

    NASA Astrophysics Data System (ADS)

    Pinnau, Roger R.

    1989-10-01

    A basic introductory guide is provided to modern High Frequency (HF) data communications systems. Described are modern commercial radioteletype systems, data communication protocols, and various secrets of the trade.

  6. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  7. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  8. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  9. Internal Kink Mode Dynamics in High-{beta} NSTX Plasmas

    SciTech Connect

    J.E. Menard; R.E. Bell; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; S.S. Medley; W. Park; S.A. Sabbagh; A. Sontag; D. Stutman; K. Tritz; W. Zhu; the NSTX Research Team

    2004-12-22

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data.

  10. Internal Kink Mode Dynamics in High-beta NSTX Plasmas

    SciTech Connect

    J.E. Menard; R.E. Bell; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; S.S. Medley; W. Park; S.A. Sabbagh; A. Sontag; D. Stutman; K. Tritz; W. Zhu; the NSTX Research Team

    2004-12-22

    Saturated internal kink modes have been observed in many of the highest toroidal {beta} discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-{beta} may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data.

  11. Ballooning mode stability of elongated high-beta tokamaks

    NASA Astrophysics Data System (ADS)

    Mauel, Michael E.

    1987-12-01

    The variational principle derived by Choe and Freidberg [Phys. Fluids 29, 1766 (1986)] and used to estimate the geometry of high-beta tokamak equilibria is extended to include elongation. Ballooning mode stability is then investigated, illustrating the influence of elongation on local and global stability.

  12. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  13. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  14. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  15. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  16. High beta plasma operation in a toroidal plasma producing device

    DOEpatents

    Clarke, John F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

  17. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  18. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  19. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  20. RF Breakdown in High Frequency Accelerators

    SciTech Connect

    Doebert, S

    2004-05-27

    RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, operating frequency and fabrication material will be described. Since reliability is extremely important for large scale accelerators such as a linear collider, the measurements of breakdown rate as a function of the operating gradient will be highlighted.

  1. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  2. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  3. Experimental studies of linear high-beta heliac plasma configurations

    SciTech Connect

    Greenfield, C.M.; Koepke, M.E.; Ribe, F.L. )

    1990-01-01

    The formation and quasi-equilibrium of a high-beta heliac plasma are investigated in the High-Beta Q Machine (Phys. Fluids {bold 30}, 2885 (1987)), a linear high-beta {ital l}=1 stellarator with an internal current carrying conductor (hardcore). The hardcore current rise time is varied from 9 {mu}sec to smaller values comparable with that of the main compression field (450 nsec). Flux contours and plasma pressure calculated from internal magnetic-probe measurements are used to distinguish between nearly axisymmetric plasma confined near the hardcore and the heliac plasma confined near the magnetic axis. For the shorter hardcore rise times, the axisymmetric plasma pressure becomes small compared to that of the heliac. Further analysis of the data allows calculation of the currents flowing in the plasma, the rotational transform, and the magnetic well depth. Appreciable axial current is observed, consistent with induction by the changing magnetic fields during the heliac formation. The observed relationship between the axial current and rotational transform is confirmed by computer modeling using the HASE magnetohydrodynamic equilibrium code (Nucl. Fusion {bold 23}, 1061 (1983)).

  4. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  5. Advanced Extremely High Frequency Satellite (AEHF)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-261 Advanced Extremely High Frequency Satellite (AEHF) As of FY 2017 President’s Budget...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  6. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  7. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  8. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  9. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  10. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  11. Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions.

    PubMed

    Andersson, L; Lundén, A; Sigurdardottir, S; Davies, C J; Rask, L

    1988-01-01

    Class II genes of the bovine major histocompatibility complex (MHC) have been investigated by Southern blot analysis using human DNA probes. Previous studies revealed the presence of bovine DO beta, DQ alpha, DQ beta, DR alpha, and DR beta genes, and restriction fragment length polymorphisms for each of these genes were documented. In the present study, the presence of three additional class II genes, designated DZ alpha, DY alpha, and DY beta, are reported. DZ alpha was assumed to correspond to the human DZ alpha gene while the other two were designated DY because their relationship to human class II genes could not be firmly established. The linkage relationships among bovine class II genes and two additional loci, TCP1B and C4, were investigated by family segregation analysis and analysis of linkage disequilibrium. The results clearly indicated that all these loci belong to the same linkage group. This linkage group is divided into two subregions separated by a fairly high recombination frequency. One region includes the C4, DQ alpha, DQ beta, DR alpha, and DR beta loci and the other one is composed of the DO beta, DY alpha, DY beta, and TCP1B loci. No recombinant was observed within any of these subregions and there was a strong or fairly strong linkage disequilibrium between loci within groups. In contrast, as many as five recombinants among three different families were detected in the interval between these subregions giving a recombination frequency estimate of 0.17 +/- 0.07. The fairly high recombination frequency observed between class II genes in cattle is strikingly different from the corresponding recombination estimates in man and mouse. The finding implies either a much larger molecular distance between some of the bovine class II genes or alternatively the presence of a recombinational "hot spot" in the bovine class II region.

  12. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  13. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  14. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  15. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  16. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  17. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  18. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  19. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  20. Frequency dependent polarization analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  1. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  2. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  3. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  4. High Frequency Guided Wave Virtual Array SAFT

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  5. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  6. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  7. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  8. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  9. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  10. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  11. Evaluating Acupuncture Point and Nonacupuncture Point Stimulation with EEG: A High-Frequency Power Spectrum Analysis

    PubMed Central

    Choi, Kwang-Ho; Cho, Seong Jin; Kang, Suk-Yun; Ahn, Seong Hun

    2016-01-01

    To identify physical and sensory responses to acupuncture point stimulation (APS), nonacupuncture point stimulation (NAPS) and no stimulation (NS), changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG). A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP), relative high beta power (RHBP), absolute gamma power (AGP), and relative gamma power (RGP) tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body. PMID:27818695

  12. High-power femtosecond Raman frequency shifter.

    PubMed

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  13. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  14. High temperature plasma in beta Lyrae, observed from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.

    1975-01-01

    High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.

  15. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  16. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  17. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  18. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  19. High Frequency Self-pulsing Microplasmas

    NASA Astrophysics Data System (ADS)

    Lassalle, John; Pollard, William; Staack, David

    2014-10-01

    Pulsing behavior in high-pressure microplasmas was studied. Microplasmas are of interest because of potential application in plasma switches for robust electronics. These devices require fast switching. Self-pulsing microplasmas were generated in a variable-length spark gap at pressures between 0 and 220 psig in Air, Ar, N2, H2, and He for spark gap lengths from 15 to 1810 μm. Resulting breakdown voltages varied between 90 and 1500 V. Voltage measurements show pulse frequencies as high as 8.9 MHz in argon at 100 psig. These findings demonstrate the potential for fast switching of plasma switches that incorporate high-pressure microplasmas. Work was supported by the National Science Foundation, Grant #1057175, and the Department of Defense, ARO Grant #W911NF1210007.

  20. Survey of CTX-M Gene Frequency in Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Isolates Using the Combination Disk and PCR Methods in Ahvaz, Iran

    PubMed Central

    Moosavian, Mojtaba; Ahmadkhosravy, Nazanin

    2016-01-01

    Background A common mechanism of resistance to beta-lactam antibiotics is the production of beta-lactamase by Gram-negative bacteria. Recently, nonderivative extended-spectrum beta-lactamases (ESBLs) from the TEM and SHV enzymes, such as CTX-M, that were related to different geographical regions have been recognized. Objectives The aim of this study was to determine the frequency of the CTX-M gene in ESBL-producing Enterobacteriaceae isolates in hospitalized patients in the teaching hospitals of Ahvaz, Iran. Methods Enterobacteriaceae isolates from clinical specimens (other than stool), such as wounds, blood, urine, trachea, discharge, and abscess, were collected and examined. All the isolates were identified using standard biochemical tests. The combination test was carried out based on CLSI criteria for the phenotypic detection of ESBL-producing isolates. After DNA extraction, the CTX-M and CTX-M-1 genes were amplified using PCR among phenotypically positive ESBL isolates. Results Among 240 Enterobacteriaceae isolates, Escherichia coli and Enterobacter were the most common isolates with 171 (71.3%) and 65 (27.1%), respectively. The combination test results also showed that 108 (45%) Enterobacteriaceae isolates were phenotypic ESBL producers, but 104 (96%) isolates were positive for the blaCTX-M gene and 99 (92%) were positive for the blaCTX-M-1 gene according to the PCR method. Conclusions The results of this study phenotypically and genotypically confirmed the high frequency of ESBL-producing strains, such as the CTX-M and CTX-M-1 genes, among Enterobacteriaceae isolates in our region. Therefore, use of antibiotic susceptibility testing for the detection of ESBL isolates prior to the prescription of beta-lactam antibiotics is recommended. This could help prevent the spread of bacteria strains that are resistant to beta-lactam antibiotics. PMID:28138376

  1. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  2. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  3. High temperature oxidation of beta-NiAl

    NASA Technical Reports Server (NTRS)

    Koychak, J. K.; Mitchell, T. E.; Smialek, J. L.

    1985-01-01

    The oxidation of single crystal beta-NiAl has been studied primarily using electron microscopy. Oriented metastable Al2O3 phases form during transient oxidation at 800 C. Specific orientation relationships exist on all metal orientations studied and are a result of the small mismatch along aligned close-packed directions in the cation sublattices of the metal and oxide. Transformation of the metastable Al2O3 phases at 1100 C results in an oxide morphology described as the 'lacey' structure of alpha-Al2O3 scales. This structure results from impingement of oriented patches of alpha-Al2O3 as the transformation initiates and moves radially parallel to the surface. Scale growth occurs by diffusion along high angle grain boundaries. A drastic reduction in oxidation rate accompanies the change in oxide morphology.

  4. Observation of the hot electron interchange instability in a high beta dipolar confined plasma

    NASA Astrophysics Data System (ADS)

    Ortiz, Eugenio Enrique

    In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.

  5. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  6. High frequency oscillators for chaotic radar

    NASA Astrophysics Data System (ADS)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  7. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  8. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  9. Equilibrium and Stability of High-{beta} Plasmas in Wendelstein 7-AS

    SciTech Connect

    Geiger, Joachim E.; Weller, Arthur; Zarnstorff, Michael C.; Nuehrenberg, Carolin; Werner, Andreas Horst Franz; Kolesnichenko, Yaroslav I.

    2004-07-15

    One of the major goals for Wendelstein 7-AS (W7-AS) was the testing of the theoretical basis for the optimized configuration of Wendelstein 7-X (W7-X), currently under construction in Greifswald, Germany. In the last experimental campaign of W7-AS, volume-averaged {beta} values >3% have been achieved. The underlying experimental changes leading to these results are briefly reviewed. The equilibrium characteristics expected from magnetohydrodynamic (MHD) theory are modeled in a simplified picture and compared with three-dimensional equilibrium calculations. A wide range of parameters has been covered in the experiments with and without net toroidal currents. Experimental data are compared with free-boundary equilibrium calculations and exhibit good agreement. The high-{beta} equilibria usually showed only small MHD activity. The most prominent activities are low-frequency pressure-driven modes connected with low-order rationals also expected from numerical calculations using the CAS3D code, and Alfv and eacute;n modes driven by energetic particles from the tangential neutral beam injection. Comparison of experimentally measured frequencies and mode structures from soft-X-ray tomography with theoretical predictions also shows the improving understanding of these modes in stellarators. The agreement of experiment and theory gives confidence in the predictions for W7-X.

  10. Analysis of betaS and betaA genes in a Mexican population with African roots.

    PubMed

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  11. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Krasheninnikov, Sergei I.; Umansky, Maxim V.; Angus, J. R.

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  12. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; Krasheninnikov, Sergei I.

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.

  13. Electromagnetic effects on dynamics of high-beta filamentary structures

    DOE PAGES

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; ...

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less

  14. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  15. Clinical Utilisation of High-frequency DPOAEs.

    PubMed

    Poling, Gayla; Lee, Jungmee; Siegel, Jonathan; Dhar, Sumitrajit

    2012-01-01

    The value of assessing auditory function at frequencies above 8kHz to detect age-related changes and ototoxic damage in the cochlea is well established but not commonplace. Physiological changes in the auditory periphery due to age and ototoxicity are initially evident, and most prominent, at frequencies above 8kHz [1]. The most well investigated use of hearing thresholds and otoacoustic emissions above 8kHz is in monitoring auditory function in patients undergoing chemotherapy [2]. Ototoxic changes in hearing thresholds at frequencies between 10-14kHz prior to the manifestation of any changes at lower frequencies have been consistently documented in these patients. Age-related changes in hearing also appear at frequencies above 8kHz prior to any observable changes at regular audiometric frequencies [3]. The value of using hearing thresholds at frequencies above 8kHz to detect noise-induced hearing loss is debated in the literature with some reports of hearing thresholds at frequencies above 8kHz demonstrating more sensitivity to noise-induced damage than others [4].

  16. High Frequency Electromagnetic Propagation/Scattering Codes

    DTIC Science & Technology

    2000-09-01

    Journal of Mathematical Analysis and Applications , 77...Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [12] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory...Widom, Eigenvalue Distribution of Time and Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [20] D.

  17. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  18. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  19. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  20. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  1. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  2. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  3. Fibre Bragg gratings subject to high strain at high frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.

    2011-05-01

    A simple optical interrogation scheme based on an erbium doped fibre super-fluorescent source and a high Finesse Fabry Perot driven at effective frequencies of 20 kHz over ~ 60nm range is used to recover the output signals from Fibre Bragg Gratings (FBG) that can be deployed in a serial array. The FBG were modulated at frequencies up to 10 kHz and strains up to ~4000μstrain. These signals were recovered in the time domain with a very high bandwidth digital scope using a two dimensional waterfall display consisting of a number of segments where the time between segments is equal to the inverse of the system scanning frequency; essentially the sequential 'x' axis tick markers in a conventional x-y graph format. The amplitude induced changes in the wavelength of the FBG are converted to different times and observed as sequential horizontal scans along the time axis of the waterfall, correspond to the variations in the wavelength of the FBG (y axis). Signals from serial FBG arrays appear at different time slices on the time axis enabling near simultaneous determination of the induced strain of each grating.

  4. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  5. High-Frequency and Very-high-Frequency (HF&VHF) above-groundelectromagnetic impedance measurements

    SciTech Connect

    Frangos, William; Becker, Alex; Lee, K.H.

    2002-09-20

    We have field-tested an apparatus for measuring the electromagnetic impedance above the ground at a plurality of frequencies in the 0.3 - 30 MHz range. This window in the frequency spectrum, which lies between frequencies used for GPR and those used for conventional loop-loop EM soundings, has not been used because of difficulties in fielding equipment for making absolute and accurate measurements. Model and physical parameter studies however confirm that data in this frequency band can be used to construct high-resolution maps of electrical conductivity and permittivity of near-surface material. Our equipment was assembled using commercial electric and magnetic antennas. The magnetic loop source is excited by a conventional signal generator - power amplifier assembly. Signal detection is accomplished using RF lock-in amplifiers. All system elements are appropriately isolated by optic - fiber links. We estimate a measurement accuracy of about {+-} 10% for an 8-m separation between source and detector. Field tests were done at the University of California Richmond Field Station where the near surface electrical structure is well known. The experimental data at this site are mainly a function of electrical conductivity. In this context, we have obtained good agreement with the known local variations in resistivity both with depth and with position along a 35-m traverse. Additional tests in more resistive regimes where dielectric permittivity is not negligible yield spectral data compatible with the less well known near-surface electrical properties.

  6. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    SciTech Connect

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  7. Untranslated region-dependent exclusive expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nicotinic acetylcholine receptors.

    PubMed

    Briggs, Clark A; Gubbins, Earl J; Marks, Michael J; Putman, C Brent; Thimmapaya, Rama; Meyer, Michael D; Surowy, Carol S

    2006-07-01

    alpha4beta2 nicotinic acetylcholine receptors (nAChRs) are recognized as the principal nicotine binding site in brain. Recombinant alpha4beta2 nAChR demonstrate biphasic concentration-response relationships with low- and high-EC50 components. This study shows that untranslated regions (UTR) can influence expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nAChR. Oocytes injected with alpha4 and beta2 RNA lacking UTR expressed biphasic concentration-response relationships for acetylcholine with high-sensitivity EC50 values of 0.5 to 2.5 microM (14-24% of the population) and low-sensitivity EC50 values of 110 to 180 microM (76-86%). In contrast, message with UTR expressed exclusively the high-sensitivity alpha4beta2 nAChR subform with an acetylcholine EC50 value of 2.2 microM. Additional studies revealed pharmacological differences between high- and low-sensitivity alpha4beta2 subforms. Whereas the antagonists dihydro-beta-erythroidine (IC50 of 3-6 nM) and methyllycaconitine (IC50 of 40-135 nM) were not selective between high- and low-sensitivity alpha4beta2, chlorisondamine, mecamylamine, and d-tubocurarine were, respectively, 100-, 8-, and 5-fold selective for the alpha4beta2 subform with low sensitivity to acetylcholine. Conversely, agonists that selectively activated the high-sensitivity alpha4beta2 subform with respect to efficacy as well as potency were identified. Furthermore, two of these agonists were shown to activate mouse brain alpha4beta2 as well as the ferret high-sensitivity alpha4beta2 expressed in Xenopus laevis oocytes. With the use of UTR-containing RNA, exclusive expression of a novel high-sensitivity alpha3beta2 nAChR was also achieved. These studies 1) provide further evidence for the existence of multiple subforms of alpha4beta2 nAChR, 2) extend that to alpha3beta2 nAChR, 3) demonstrate UTR influence on beta2-containing nAChR properties, and 4) reveal compounds that interact with alpha4beta2 in a subform-selective manner.

  8. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  9. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  10. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  11. Development and application of nonflammable, high-temperature beta fibers

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.

    1989-01-01

    Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.

  12. [Beta amyloid in blood and cerebrospinal fluid is associated with high density lipoproteins].

    PubMed

    Kudinova, N V; Kudinov, A R; Berezov, T T

    1996-01-01

    Cerebrovascular and parenchymal amyloid deposits found in brains of Alzheimer's disease, Down's syndrome and normal aging are mainly composed of aggregated amyloid beta protein (A beta), a unique peptide 39 to 44 amino acids long. A similar but soluble A beta (s A beta) has been identified in plasma, cerebrospinal fluid (CSF) and cell supernatants, indicating that it is a normal protein. We report here that s A beta in normal human plasma and CSF is complexed to high density lipoprotein (HDL) 3 and very high density lipoprotein (VHDL). Biotinylated synthetic peptide A beta 1-40 was traced in normal human plasma in in vitro experiments. Both tracer biotin-labeled A beta 1-40 and native s A beta were specifically recovered in HDL3 and VHDL as it was assessed in immunoprecipitation experiments of purified plasma lipoproteins and lipoprotein depleted plasma. This fact prompted us to ascertain whether the interaction of s A beta with HDL does occur in normal human CSF in vivo. For this purpose normals human CSF was fractionated by means of sequential flotation ultracentrifugation. The presence of s A beta in the resulting lipoprotein fractions as well as in the lipoprotein depleted CSF was analysed by immunoblot analysis, electron and immune-electron microscopy and native size exclusion chromatography. Immunoblot analysis with 6E10 monoclonal anti-A beta antibodies revealed s A beta association with all HDL subspecies of CSF, primarily HDL3 and VHDL and immunoelectron microscopy confirmed an association of s A beta with CSF-HDL particles of 16.8 + 3.2 nm. Native size exclusion chromatography followed by immunoblot analysis with antibodies against A beta and different apoliproproteins indicated an association of s A beta with HDL complexes of approximately 200 kDa molecular weight. Soluble A beta association with HDL3 and VHDL may be involved in maintaining the solubility of A beta in biological fluids and points to a possible role of lipoproteins and lipoprotein lipid

  13. High-performance iodine fiber frequency standard.

    PubMed

    Lurie, Anna; Baynes, Fred N; Anstie, James D; Light, Philip S; Benabid, Fetah; Stace, Thomas M; Luiten, Andre N

    2011-12-15

    We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude.

  14. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency.

    PubMed

    Lansbergen, Marieke M; Arns, Martijn; van Dongen-Boomsma, Martine; Spronk, Desirée; Buitelaar, Jan K

    2011-01-15

    Attention-deficit/hyperactivity disorder (ADHD) was found to be characterized by a deviant pattern of electrocortical activity during resting state, particularly increased theta and decreased beta activity. The first objective of the present study is to confirm whether individuals with slow alpha peak frequency contribute to the finding of increased theta activity in ADHD. The second objective is to explore the relation between resting-state brain oscillations and specific cognitive functions. From 49 boys with ADHD and 49 healthy control boys, resting-state EEG during eyes open and eyes closed was recorded, and a variety of cognitive tasks were administered. Theta and beta power and theta/beta ratio were calculated using both fixed frequency bands and individualized frequency bands. As expected, theta/beta ratio, calculated using fixed frequency bands, was significantly higher in ADHD children than control children. However, this group effect was not significant when theta/beta ratio was assessed using individualized frequency bands. No consistent relation was found between resting-state brain oscillations and cognition. The present results suggest that previous findings of increased theta/beta ratio in ADHD may reflect individuals with slow alpha peak frequencies in addition to individuals with true increased theta activity. Therefore, the often reported theta/beta ratio in ADHD can be considered a non-specific measure combining several distinct neurophysiological subgroups such as frontal theta and slowed alpha peak frequencies. Future research should elucidate the functional role of resting-state brain oscillations by investigating neurophysiological subgroups, which may have a clearer relation to cognitive functions than single frequency bands.

  15. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    NASA Astrophysics Data System (ADS)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to <3 × 1018 m-3, while an argon fill pressure was varied from ˜0.02 Pa to 0.75 Pa as well as the magnetic field mentioned above, with the fixed radio frequency (rf) and power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  16. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    PubMed

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  17. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  18. Beta Blockers

    MedlinePlus

    Diseases and Conditions High blood pressure (hypertension) Beta blockers, also called beta-adrenergic blocking agents, treat a variety of conditions, such as high blood pressure and migraines. Find out more about this ...

  19. High frequency model of stacked film capacitors

    NASA Astrophysics Data System (ADS)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  20. Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS

    PubMed Central

    Romei, Vincenzo; Bauer, Markus; Brooks, Joseph L.; Economides, Marcos; Penny, Will; Thut, Gregor; Driver, Jon; Bestmann, Sven

    2016-01-01

    Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta peak frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency. Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation. PMID:26584867

  1. Alexandrite laser frequency doubling in. beta. -BaB/sub 2/O/sub 4/ crystals

    SciTech Connect

    Chen, D.; Yeh, J.

    1988-10-01

    Efficient and tunable coherent ultraviolet (360--390 nm) generation in ..beta..-BaB/sub 2/O/sub 4/ crystals using type-I phase matching at room temperature is presented. The phase-matching angle is characterized with an alexandrite laser with a wavelength tuning range of 725--785 nm. The crystal angular bandwidth of 0.9 mrad-cm and spectral bandwidth of 1.15 nm-cm are also measured. UV output pulse energy of 105 mJ at 378 nm with 31% energy conversion efficiency is achieved.

  2. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  3. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  4. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  5. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  6. Analysis of High Frequency Seismic Data

    DTIC Science & Technology

    1990-10-01

    2 -4 iv 2.3 Relative noise power ia, narrow frequency bands as a function of time for noise segments at NORESS and KKL...Central Sweden Figure 2. The upper perspective diagram shows the number of events (ill all 5946) as a function of geograp ~hical location out to 1500 kml...al. (1986) obtained 1-18 I~igure i2. Number of events with magnitude ML>2.O and ML>3.Q as a fUnction of geograp ~hical location in relation to NORr.SS

  7. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  8. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  9. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  10. A high frequency resonance gravity gradiometer.

    PubMed

    Bagaev, S N; Bezrukov, L B; Kvashnin, N L; Krysanov, V A; Oreshkin, S I; Motylev, A M; Popov, S M; Rudenko, V N; Samoilenko, A A; Skvortsov, M N; Yudin, I S

    2014-06-01

    A new setup OGRAN--the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events--gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  11. Observation of an Energetic-Particle-Driven Instability in the Wall-Stabilized High-beta Plasmas in the JT-60U Tokamak

    SciTech Connect

    Matsunaga, G.; Aiba, N.; Shinohara, K.; Sakamoto, Y.; Isayama, A.; Takechi, M.; Suzuki, T.; Oyama, N.; Asakura, N.; Kamada, Y.; Ozeki, T.

    2009-07-24

    We have observed a bursting mode in the high-beta plasmas above the ideal beta limit without a conducting wall. The mode frequency is chirping down as the mode amplitude increases, and its initial value is close to the precession frequency of the trapped energetic particle from the perpendicular neutral beams. The mode structure is radially extended with a peak around the q=2 surface. This mode can finally trigger the resistive wall mode (RWM) despite enough plasma rotation for RWM stabilization. It is concluded that the mode is driven by trapped energetic particles. The mode is attributed to the interaction between the trapped energetic particles and a marginally stable mode in the wall-stabilized high-beta{sub N} region.

  12. Operating experience with high beta superconducting rf cavities

    SciTech Connect

    Dylla, H.F.; Doolittle, L.R.; Benesch, J.F.

    1993-06-01

    The number of installed and operational {beta} = 1 superconducting rf cavities has grown significantly over the last two years in accelerator laboratories in Europe, Japan and the US. The total installed acceleration capability as of mid-1993 is approximately 1 GeV at nominal gradients. Major installations at CERN, DESY, KEK and CEBAF have provided large increments to the installed base and valuable operational experience. A selection of test data and operational experience gathered to date is reviewed.

  13. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    SciTech Connect

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  14. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  15. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  16. Order-disorder transition in conflicting dynamics leading to rank-frequency generalized beta distributions

    NASA Astrophysics Data System (ADS)

    Alvarez-Martinez, R.; Martinez-Mekler, G.; Cocho, G.

    2011-01-01

    The behavior of rank-ordered distributions of phenomena present in a variety of fields such as biology, sociology, linguistics, finance and geophysics has been a matter of intense research. Often power laws have been encountered; however, their validity tends to hold mainly for an intermediate range of rank values. In a recent publication (Martínez-Mekler et al., 2009 [7]), a generalization of the functional form of the beta distribution has been shown to give excellent fits for many systems of very diverse nature, valid for the whole range of rank values, regardless of whether or not a power law behavior has been previously suggested. Here we give some insight on the significance of the two free parameters which appear as exponents in the functional form, by looking into discrete probabilistic branching processes with conflicting dynamics. We analyze a variety of realizations of these so-called expansion-modification models first introduced by Wentian Li (1989) [10]. We focus our attention on an order-disorder transition we encounter as we vary the modification probability p. We characterize this transition by means of the fitting parameters. Our numerical studies show that one of the fitting exponents is related to the presence of long-range correlations exhibited by power spectrum scale invariance, while the other registers the effect of disordering elements leading to a breakdown of these properties. In the absence of long-range correlations, this parameter is sensitive to the occurrence of unlikely events. We also introduce an approximate calculation scheme that relates this dynamics to multinomial multiplicative processes. A better understanding through these models of the meaning of the generalized beta-fitting exponents may contribute to their potential for identifying and characterizing universality classes.

  17. Analysis of MHD instabilities limiting high normalized beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Kim, J.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; in, Y. K.; Choi, M. J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Yun, G. S.; Jardin, S. C.

    2016-10-01

    H-mode plasma operation in KSTAR reached high normalized beta up to 4.3 that significantly surpassed the computed n = 1 ideal no-wall beta limit by a factor of 1.6. Pulse lengths at maximum normalized beta were extended to longer pulses by new, more rapid equilibrium control resulting in normalized beta greater than 3 sustained for 1 s. Analysis of these plasmas shows that low- n global kink/ballooning or resistive wall modes (RWMs) were not the cause of the plasma termination. Kinetic modification of the ideal MHD n = 1 stability criterion computed by the MISK code shows the kinetic RWM to be stable, which is consistent with the observed high normalized beta operation. An m/ n = 2/1 tearing mode onsets at high normalized beta greater than 3 that experimentally reduces normalized beta by more than 30%. The stability of the observed 2/1 tearing mode examined by using the M3D-C1 code coupled with the EFIT reconstruction shows a stable 2/1 mode while the equilibrium is experimentally unstable to the 2/1 mode This result may imply that the mode is classically stable, and the pressuredriven neoclassical terms dominate over the current gradient term. Advances in the analysis from the recent run campaign will be reported. Supported by U.S. DOE Grant DE-FG02-99ER54524.

  18. Phase velocity limit of high-frequency photon density waves

    NASA Astrophysics Data System (ADS)

    Haskell, Richard C.; Svaasand, Lars O.; Madsen, Sten; Rojas, Fabio E.; Feng, T.-C.; Tromberg, Bruce J.

    1995-05-01

    In frequency-domain photon migration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, high frequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to re-examine the derivation of the standard diffusion equation (SDE) from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, can be significant above 1 GHz for some biological tissue. The revised diffusion equation, including the second-order time-derivative, is often termed the P1 equation. We compare the dispersion relation of the P1 equation with that of the SDE. The P1 phase velocity is slower than that predicted by the SDE; in fact, the SDE phase velocity is unbounded with increasing modulation frequency, while the P1 phase velocity approaches c/sqrt(3) is attained only at modulation frequencies with periods shorter than the mean time between scatterings of a photon, a frequency regime that probes the medium beyond the applicability of diffusion theory. Finally we caution that values for optical properties deduced from FDPM data at high frequencies using the SDE can be in error by 30% or more.

  19. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness

    PubMed Central

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5–13 Hz) and low-beta (13–20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital

  20. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    PubMed

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound

  1. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  2. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  3. Effect immunization with highly purified alpha- and beta-toxins on staphylococcal mastitis in rabbits.

    PubMed

    Adlam, C; Ward, P D; McCartney, A C; Arbuthnott, J P; Thorley, C M

    1977-08-01

    Experiments were carried out to determine whether immunization of female rabbits with highly purified staphylococcal alpha- or beta-toxins would protect them against intramammary challenge with staphylococci. High circulating anti-alpha-toxin titers reduced the lethal hemorrhagic edematous form of the disease ("blue-breast") produced by strains BB and Compton 201 to a localized chronic abscess form. No such protection was afforded by high anti-beta-toxin titers. Immunization with alpha- or beta-toxins produced no change in the clinical picture of the disease produced by CN.6708, a strain of Staphylococcus responsible for a natural outbreak of abscess-type rabbit mastitis. From these experiments it would appear that alpha-toxin is a key antigen in the blue-breast form of rabbit mastitis. Since the abscess form of the disease was not prevented by immunization with either alpha- or beta-toxin, other virulence factors must be acting to produce this more localized disease.

  4. Environmentally Assisted Cracking of High Strength Beta Titanium Alloys

    DTIC Science & Technology

    1993-11-01

    financially supported by the Virginia Center for Innovative Technology TDC on Electrochemical Science and Engineering (Grant CIT- TDC -88-01) and by the Office...Material Behayir, N.R. Moody and A.W. Thompson, eds., TMS -AIME, Warrendale, PA, p. 891(1990). 18. 0. Vosikovsky, J.Tt. EyaL, Vol. 6, p. 175 (1978). 19...acknowledged. 3 23 REFERENCES 1. Beta Titanium Alloys in the 80’s R.R. Boyer and H.W. Rosenberg, eds., TMS -AIME,3 Warrendale, PA. pp. 209-229, 1983. 2

  5. (Confinement and heating of high beta plasmas. Annual progress report)

    SciTech Connect

    Not Available

    1986-01-01

    Final measurements have been made of flux surfaces and equilibrium pressure balance with improved magnetic probes on the ''steady'' hardcore system with 6 msec risetime. These measurements were made with the power crowbar on the main B/sub z/ and l = 1 stellarator fields. Pressure balance measurements show a ..beta.. distribution peaking at about 40% (centered on the ''bean''). Theoretical work that shows the equivalence of a hardcore shift of 2.5 cm (with respect to the l = 1 axis) and toroidal effects corresponding to aspect ratios >17. Some operational results of the coaxial slow source for compact toroids are described.

  6. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  7. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  8. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  9. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  10. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  11. Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101.

    PubMed

    Iguchi, S; Iwamura, H; Nishizaki, M; Hayashi, A; Senokuchi, K; Kobayashi, K; Sakaki, K; Hachiya, K; Ichioka, Y; Kawamura, M

    1992-06-01

    A novel, highly cardioselective ultra short-acting beta-blocker, ONO-1101, has been developed for application in the emergency treatment of tachycardia and better control of heart rate in surgery. This agent is approximately nine times more potent in beta-blocking activity in vivo and eight times more cardioselective in vitro than esmolol. This beta-blocking drug has a short duration of activity, enabling rapid recovery after cessation of administration if side effects occur. It can be used safely in patients suffering from acute heart disease and represents a major therapeutic advance in the treatment of heart disease.

  12. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  13. Theta and high-beta networks for feedback processing: a simultaneous EEG–fMRI study in healthy male subjects

    PubMed Central

    Andreou, C; Frielinghaus, H; Rauh, J; Mußmann, M; Vauth, S; Braun, P; Leicht, G; Mulert, C

    2017-01-01

    The reward system is important in assessing outcomes to guide behavior. To achieve these purposes, its core components interact with several brain areas involved in cognitive and emotional processing. A key mechanism suggested to subserve these interactions is oscillatory activity, with a prominent role of theta and high-beta oscillations. The present study used single-trial coupling of simultaneously recorded electroencephalography and functional magnetic resonance imaging data to investigate networks associated with oscillatory responses to feedback during a two-choice gambling task in healthy male participants (n=19). Differential associations of theta and high-beta oscillations with non-overlapping brain networks were observed: Increase of high-beta power in response to positive feedback was associated with activations in a largely subcortical network encompassing core areas of the reward network. In contrast, theta-band power increase upon loss was associated with activations in a frontoparietal network that included the anterior cingulate cortex. Trait impulsivity correlated significantly with activations in areas of the theta-associated network. Our results suggest that positive and negative feedback is processed by separate brain networks associated with different cognitive functions. Communication within these networks is mediated by oscillations of different frequency, possibly reflecting different modes of dopaminergic signaling. PMID:28140398

  14. Theta and high-beta networks for feedback processing: a simultaneous EEG-fMRI study in healthy male subjects.

    PubMed

    Andreou, C; Frielinghaus, H; Rauh, J; Mußmann, M; Vauth, S; Braun, P; Leicht, G; Mulert, C

    2017-01-31

    The reward system is important in assessing outcomes to guide behavior. To achieve these purposes, its core components interact with several brain areas involved in cognitive and emotional processing. A key mechanism suggested to subserve these interactions is oscillatory activity, with a prominent role of theta and high-beta oscillations. The present study used single-trial coupling of simultaneously recorded electroencephalography and functional magnetic resonance imaging data to investigate networks associated with oscillatory responses to feedback during a two-choice gambling task in healthy male participants (n=19). Differential associations of theta and high-beta oscillations with non-overlapping brain networks were observed: Increase of high-beta power in response to positive feedback was associated with activations in a largely subcortical network encompassing core areas of the reward network. In contrast, theta-band power increase upon loss was associated with activations in a frontoparietal network that included the anterior cingulate cortex. Trait impulsivity correlated significantly with activations in areas of the theta-associated network. Our results suggest that positive and negative feedback is processed by separate brain networks associated with different cognitive functions. Communication within these networks is mediated by oscillations of different frequency, possibly reflecting different modes of dopaminergic signaling.

  15. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  16. [Experiences in high frequency audiometry and possible applications (author's transl)].

    PubMed

    Dieroff, H G

    1976-09-01

    Observations on the ultrasonic perception of noise-impaired persons gave rise to use the high frequency audiometry described by Fletcher for the early recognition of noise-induced damages. Using commercial equipment we found that the earpiece was not adapted to high frequency conditions. The adaptation problem and ways of modification are described in detail. After having improved the coupling features reproducible hearing curves were obtained. Examinations were carried out on workers, whose noise exposure exceeded the critical intensity by only a few dB. The following 3 categories of impairment were found: 1. Normal hearing between 125 and 8,000 Hz as well as in the high frequency region. 2. Unsignificant noise-induced impairments between 125 and 8,000 Hz; no high frequency hearing. 3. Acoustic hearing; no high frequency hearing. The results are discussed. It is supposed that high frequency hearing losses due to noise and chemical noxious exposure (streptomycin) are valuable in diagnostics and prognostics. Accordingly persons are to be assessed as noise sensitive, when there is no more high frequency hearing before practising noise work.

  17. Transient high-frequency ultrasonic water atomization

    NASA Astrophysics Data System (ADS)

    Barreras, F.; Amaveda, H.; Lozano, A.

    2002-06-01

    An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.

  18. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  19. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  20. The ADMX-HF (High Frequency) Experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, K. W.

    2013-04-01

    For many years, the Axion Dark Matter eXperiment (ADMX) has searched for dark-matter axions by their resonant conversion to photons in a high-Q microwave cavity embedded in a strong magnetic field; to date focusing on the ˜1 GHz range, or ma˜ few micro-eV. A second platform, ADMX-HF is now being constructed at Yale University which will focus on technology development and a first look at data in the ˜10 GHz range. Consisting of a 9T superconducting magnet (40 cm long x 14 cm diameter), a dilution refrigerator and a quantum-limited receiver based on Josephson Parametric Amplifiers (JPA) ADMX-HF is projected to achieve sensitivity within the axion model band, despite its smaller volume than ADMX. ADMX-HF is a collaboration of Yale, JILA/Colorado, UC Berkeley and LLNL, and by agreement will create a unified data set with ADMX.

  1. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  2. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  3. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    PubMed

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  4. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.

  5. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  6. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  7. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  8. Radio-frequency (RF) electromagnetic emissions from materials under high-frequency mechanical excitation

    NASA Astrophysics Data System (ADS)

    Sorensen, Christian; Moore, David

    2017-01-01

    Direct contact piezoelectric transducers were used to excite compacted polycrystalline dielectric material samples with high amplitude but short duration ultrasound through a frequency range of 50 kHz to 10 MHz, while near field RF emissions were measured in 12 frequency bands from 18 to 750 GHz using a suite of detectors. Emissions were observed only in three detectors, covering the 40-75 GHz, 110-170 GHz, and 170-260 GHz frequency ranges. Emission amplitudes appear to rise nonlinearly with applied ultrasound amplitude, and the emission amplitudes versus ultrasound frequency are different than the thermal responses of these samples. Data comparing thermal responses and electromagnetic emissions versus ultrasound frequency and amplitude for several sample types (oxidizers and energetic materials) are reported.

  9. Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies.

    PubMed

    Paluch, Katarzyna; Jurewicz, Katarzyna; Rogala, Jacek; Krauz, Rafał; Szczypińska, Marta; Mikicin, Mirosław; Wróbel, Andrzej; Kublik, Ewa

    2017-01-01

    EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning. This might cause different effects in the case of various training protocols and therefore needs to be carefully assessed before designing training protocols and algorithms. In the current experiment a group of healthy adults (n = 14) was trained by professional trainers to up-regulate their beta1 (15-22 Hz) band for eight sessions. The control group (n = 18) underwent the same training regime but without rewards for increasing beta. In half of the participants trained to up-regulate beta1 band (n = 7) a systematic increase in tonic EMG activity was identified offline, implying that muscle activity became a foundation for reinforcement in the trainings. The remaining participants did not present any specific increase of the trained beta1 band amplitude. The training was perceived effective by both trainers and the trainees in all groups. These results indicate the necessity of proper control of muscle activity as a requirement for the genuine EEG-NFB training, especially in protocols that do not aim at the participants' relaxation. The specificity of the information fed back to the participants should be of highest interest to all therapists and researchers, as it might irreversibly alter the results of the training.

  10. Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies

    PubMed Central

    Paluch, Katarzyna; Jurewicz, Katarzyna; Rogala, Jacek; Krauz, Rafał; Szczypińska, Marta; Mikicin, Mirosław; Wróbel, Andrzej; Kublik, Ewa

    2017-01-01

    EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning. This might cause different effects in the case of various training protocols and therefore needs to be carefully assessed before designing training protocols and algorithms. In the current experiment a group of healthy adults (n = 14) was trained by professional trainers to up-regulate their beta1 (15–22 Hz) band for eight sessions. The control group (n = 18) underwent the same training regime but without rewards for increasing beta. In half of the participants trained to up-regulate beta1 band (n = 7) a systematic increase in tonic EMG activity was identified offline, implying that muscle activity became a foundation for reinforcement in the trainings. The remaining participants did not present any specific increase of the trained beta1 band amplitude. The training was perceived effective by both trainers and the trainees in all groups. These results indicate the necessity of proper control of muscle activity as a requirement for the genuine EEG-NFB training, especially in protocols that do not aim at the participants’ relaxation. The specificity of the information fed back to the participants should be of highest interest to all therapists and researchers, as it might irreversibly alter the results of the training. PMID:28373836

  11. A second mutation associated with apparent [beta]-hexosaminidase A pseudodeficiency: Identification and frequency estimation

    SciTech Connect

    Cao, Z.; Chabot, T.; Triggs-Raine, B.L. ); Natowicz, M.R.; Prence, E.M. Harvard Medical School, Boston, MA ); Kaback, M.M.; Lim-Steele, S.T.; Brown, D. Univ. of California, San Diego, CA )

    1993-12-01

    Deficient activity of [beta]-hexosaminidase A (Hex A), resulting from mutations in the HEXA gene, typically causes Tay-Sachs disease. However, healthy individuals lacking Hex A activity against synthetic substrates (i.e., individuals who are pseudodeficient) have been described. Recently, an apparently benign C[sub 739]-to-T (Arg247Trp) mutation was found among individuals with Hex A levels indistinguishable from those of carriers of Tay-Sachs disease. This allele, when in compound heterozygosity with a second [open quotes]disease-causing[close quotes] allele, results in Hex A pseudodeficiency. The authors examined the HEXA gene of a healthy 42-year-old who was Hex A deficient but did not have the C[sub 739]-to-T mutation. The HEXA exons were PCR amplified, and the products were analyzed for mutations by using restriction-enzyme digestion or single-strand gel electrophoresis. A G[sub 805]-to-A (Gly269Ser) mutation associated with adult-onset G[sub m2] gangliosidosis was found on one chromosome. A new mutation, C[sub 745]-to-T (Arg 249Trp), was identified on the second chromosome. This mutation was detected in an additional 4/63 (6%) non-Jewish and 0/218 Ashkenazi Jewish enzyme-defined carriers. Although the Arg249Trp change may result in a late-onset form of G[sub M2] gangliosidosis, any phenotype must be very mild. This new mutation and the benign C[sub 739]-to-T mutation together account for [approximately]38% of non-Jewish enzyme-defined carriers. Because carriers of the C[sub 739]-to-T and C[sub 745]-to-T mutations cannot be differentiated from carriers of disease-causing alleles by using the classical biochemical screening approaches, DNA-based analyses for these mutations should be offered for non-Jewish enzyme-defined heterozygotes, before definitive counseling is provided. 46 refs., 5 figs., 2 tabs.

  12. Yellow maize with high beta-carotene is an effective source of vitamin A in healthy Zimbabwean men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioconversion efficiency of yellow maize beta-carotene to retinol in humans is unknown. Thus, the objective of this study was to determine the vitamin A value of yellow maize beta-carotene in humans. A high beta-carotene containing yellow maize was grown in a hydroponic medium with 23 atom% 2H2O...

  13. Yellow maize with high (beta)-carotene is an effective source of vitamin A in healthy Zimbabwean men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The bioconversion efficiency of yellow maize Beta-carotene to retinol in humans is unknown. OBJECTIVE: The objective of this study was to determine the vitamin A value of yellow maize Beta-carotene in humans. DESIGN: High Beta-carotene-containing yellow maize was grown in a hydroponic...

  14. Deuterium-tritium TFTR plasmas in the high poloidal beta regime

    SciTech Connect

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.

    1995-03-01

    Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H {triple_bond} {tau}{sub E}/{tau}{sub E ITER-89P} > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I{sub p} = 0.85 {minus} 1.46 MA. By peaking the plasma current profile, {beta}{sub N dia} {triple_bond} 10{sup 8} < {beta}{sub t{perpendicular}} > aB{sub 0}/I{sub p} = 3 has been obtained in these plasma,s exceeding the {beta}{sub N} limit for TFTR plasmas with lower internal inductance, l{sub i}. Fusion power exceeding 6.7 MW with a fusion power gain Q{sub DT} = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l{sub i}.

  15. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients

    PubMed Central

    Lim, Manyoel; Kim, June Sic; Kim, Dajung J.; Chung, Chun Kee

    2016-01-01

    Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography (MEG) activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control (HC) subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory (S2) cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM. PMID:27014041

  16. High-performance liquid chromatographic determination of 17beta-estradiol and 17beta-estradiol-3-acetate solubilities and diffusion coefficents in silicone elastromeric intravaginal rings.

    PubMed

    Russell, J A; Malcolm, R K; Campbell, K; Woolfson, A D

    2000-07-07

    A rapid, sensitive reversed-phase high-performance liquid chromatographic method has been developed for the determination of in vitro release of 17beta-estradiol and its ester prodrug, 17beta-estradiol-3-acetate, from silicone intravaginal rings. Partial hydrolysis of the acetate under the aqueous conditions provided by the 1% benzalkonium chloride release medium necessitates its conversion to 17beta-estradiol prior to HPLC analysis. Both steroid peaks have been fully resolved from the benzalkonium chloride peaks by the reported chromatographic method, which employs a C18 bonded reversed-phase column, an acetonitrile-water (50:50, v/v) mobile phase and a UV detection wavelength of 281 nm. The peak area versus 17beta-estradiol concentration was found to be linear over the range of 0.0137-1347 microkg ml(-1). The HPLC method has also been used to determine the silicone solubilities and diffusion coefficients of the two related steroids. The almost 100-fold increase in 17beta-estradiol-3-acetate release from the silicone core-type intravaginal rings compared to 17beta-estradiol is shown to be due to a 60-fold increase in silicone solubility and a one and a half-fold increase in diffusitivity. The results demonstrate that an effective estrogen replacement therapy dose of 17beta-estradiol may be administered from a silicone intravaginal reservoir device containing the labile 17beta-estradiol-3-acetate prodrug.

  17. High beta studies on ISX-B with neutral beam injection

    SciTech Connect

    Sheffield, J.; Bates, S.C.; Bush, C.E.

    1980-01-01

    Injection of H/sup 0/ into D/sup +/ plasmas with beam power P/sub b/ of up to 1.7 MW has produced rms betas of approx. 4%, volume-averaged betas of approx. 3%, and central betas of approx. 10% in the ISX-B tokamak. Although theoretical calculations indicate that the observed equilibria may be unstable to ballooning modes, no catastrophic loss of confinement has been observed, and beta continues to increase with injection power. In these beam-dominated high-beta discharges the electron and ion energy confinement times are still similar to those obtained with ohmic heating: ion energy confinement is neoclassical within a factor of approx. 2, and electron energy confinement follows the usual Alcator scaling. In high-power injection discharges the character of the magnetohydrodynamic (MHD) behavior changes, the particle confinement time decreases, and the inward impurity transport appears to be inhibited. These effects, however, may not be linked directly to beta.

  18. Measurement of high-frequency, small scale density fluctuations in improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Chapman, B. E.; Sarff, J. S.; Carmody, D.; Terry, P. W.; den Hartog, D. J.; Morton, L. A.; Lin, L.; Ding, W. X.; Brower, D. L.; MST Team

    2014-10-01

    In standard MST RFP plasmas, core transport is governed by magnetic fluctuations associated with global tearing modes. Using pulsed parallel current drive, tearing is significantly reduced and smaller-scale fluctuations are likely important to electron particle and heat transport for these improved confinement plasmas. On MST, an 11-chord FIR laser-based interferometry diagnostic, with ~ 8 cm chord spacing, is used to measure electron density fluctuations with wavenumbers k < 1-2 cm-1. An upgrade underway will allow resolution up to k ~ 15 cm-1. A fast magnetic coil array is employed for magnetic fluctuations. High-frequency (>50 kHz) small-scale (n > 15) density and magnetic fluctuations have been observed in the edge plasma, where density and temperature gradients are largest. These fluctuations are distinct from tearing and have amplitudes that correlate with the density gradient and electron beta. The MST is well suited to explore beta scaling given the large dynamic range (9-26%) found in the device. Correlation of the measured density fluctuations with plasma parameters in high beta plasmas will serve to identify the drive and contribute to validation of gyrokinetic codes. Work supported by DOE and NSF.

  19. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  20. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  1. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No Significant Impact (FONSI..., day or night regardless of visibility and in air and water temperatures and thermoclines normal...

  2. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  3. Beta 2-adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage.

    PubMed

    Shiima-Kinoshita, Chisa; Min, Kyong-Yob; Hanafusa, Toshiaki; Mori, Hiroshi; Nakahari, Takashi

    2004-01-15

    Single bronchiolar ciliary cells were isolated from rat lungs. The beta(2)-adrenergic regulation of ciliary beat frequency (CBF) was studied using video-optical microscopy. Terbutaline (a beta(2)-adrenergic agonist) increased CBF in a dose-dependent manner, and it also decreased the volume of the ciliary cells. These terbutaline actions were inhibited by a PKA inhibitor (H-89) and mimicked by forskolin, IBMX and DBcAMP. Ion transport inhibitors were used to isosmotically manipulate the volume of the terbutaline-stimulated bronchiolar ciliary cells. Amiloride (1 microM) and bumetanide (20 microM) potentiated cell shrinkage and the CBF increase, and they shifted the terbutaline dose-response curve to the lower-concentration side. Quinidine (500 microM), in contrast, increased cell volume and suppressed the CBF increase. Moreover, a KCl solution containing amiloride (1 microM) and strophanthidin (100 microM) increased cell volume and suppressed the CBF increase, and then the subsequent removal of either amiloride or strophanthidin decreased cell volume and further increased CBF. NPPB (10 microM) or glybenclamide (200 microM) had no effect on the action of terbutaline. Thus, in terbutaline-stimulated ciliary cells, cell shrinkage enhances the CBF increase; in contrast, cell swelling suppresses it. However, the results of direct manupulation of cell volume by applying osmotic stresses (hyperosmotic shrinkage or hyposmotic swelling) were the opposite of the findings of the isosmotic experiments: hyposmotic cell swelling enhanced the CBF increase, while isosmotic swelling suppressed it. These results suggest that isosmotic and non-isosmotic volume changes in terbutaline-stimulated bronchiolar ciliary cells may trigger different signalling pathways. In conclusion, terbutaline increases CBF and decreases the volume of rat bronchiolar ciliary cells via cAMP accumulation under isosmotic conditions, and the isosmotic cell shrinkage enhances the CBF increase by increasing c

  4. Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation

    DTIC Science & Technology

    2010-06-01

    resurveyed the harbor with both sidescan sonar (on REMUS) and SAS (on the SSAM AUV) provided by NAVSEA Costal Systems Command. NOMWC, NAVOCEANO and...Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation J. R. Dubberley and M. L. Gendron Naval Research...Laboratory Code 7440.1 Building 1005 Stennis Space Center, MS 39529 USA Abstract- Synthetic Aperture Sonar (SAS) bottom mapping sensors are on the

  5. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  6. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  7. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  8. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  9. High and low spatial frequencies in website evaluations.

    PubMed

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  10. Microscale capillary wave turbulence excited by high frequency vibration.

    PubMed

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  11. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  12. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  13. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects

    PubMed Central

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  14. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.

    PubMed

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A; Rasmussen, Søren G F; Thian, Foon Sun; Kobilka, Tong Sun; Choi, Hee-Jung; Yao, Xiao-Jie; Weis, William I; Stevens, Raymond C; Kobilka, Brian K

    2007-11-23

    The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.

  15. High-Technology Companies Often Turn to Colleges for Confidential 'Beta Tests' of New Products.

    ERIC Educational Resources Information Center

    Turner, Judith Axler

    1988-01-01

    Beta testing--the process of trying a product in a real-world setting before releasing it commercially--exploits a natural interface between universities and high-technology industries. High-tech companies need confidential, real-world tests of new products, and universities are eager to get an early look at tomorrow's technology. (MLW)

  16. Beta-lactamase reporter system for selecting high-producing yeast clones.

    PubMed

    Hribar, Gorazd; Smilović, Vanja; Zupan, Ana Lenassi; Gaberc-Porekar, Vladka

    2008-04-01

    In modern production of protein biopharmaceuticals, a good screening and selection method of high-producing clones can dramatically influence the whole production process and lead to lower production costs. We have created a rapid, simple, and inexpensive method for selecting high-producing clones in the yeast Pichia pastoris that is based on the beta-lactamase reporter system. By integrating the reporter gene and the gene of interest into the same genome locus, it was possible to use beta-lactamase activity as a measure of the expression level of the protein of interest. A novel expression vector with two independent expression cassettes was designed and tested using green fluorescent protein (GFP) as a model. The first cassette contained the GFP gene under the control of a strong, inducible AOX1 promoter, while the second cassette consisted of the beta-lactamase reporter gene under the control of a weak constitutive YPT1 promotor. High-producing GFP clones were selected directly on the plates based on the color change after hydrolysis of the beta-lactamase substrate added to the medium. beta-lactamase activity was found to positively correlate with GFP fluorescence. The reporter system described is widely applicable-it can be easily applied to other, also pharmaceutically relevant proteins and to other yeast expression systems, such as Saccharomyces cerevisiae and Hansenula polymorpha.

  17. Dynamic modulation of excitation and inhibition during stimulation at gamma and beta frequencies in the CA1 hippocampal region.

    PubMed

    Bracci, E; Vreugdenhil, M; Hack, S P; Jefferys, J G

    2001-06-01

    Fast oscillations at gamma and beta frequency are relevant to cognition. During this activity, excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) are generated rhythmically and synchronously and are thought to play an essential role in pacing the oscillations. The dynamic changes occurring to excitatory and inhibitory synaptic events during repetitive activation of synapses are therefore relevant to fast oscillations. To cast light on this issue in the CA1 region of the hippocampal slice, we used a train of stimuli, to the pyramidal layer, comprising 1 s at 40 Hz followed by 2--3 s at 10 Hz, to mimic the frequency pattern observed during fast oscillations. Whole cell current-clamp recordings from CA1 pyramidal neurons revealed that individual stimuli at 40 Hz produced EPSPs riding on a slow biphasic hyperpolarizing-depolarizing waveform. EPSP amplitude initially increased; it then decreased concomitantly with the slow depolarization and with a large reduction in membrane resistance. During the subsequent 10-Hz train: the cells repolarized, EPSP amplitude and duration increased to above control, and no IPSPs were detected. In the presence of GABA(A) receptor antagonists, the slow depolarization was blocked, and EPSPs of constant amplitude were generated by 10-Hz stimuli. Altering pyramidal cell membrane potential affected the time course of the slow depolarization, with the peak being reached earlier at more negative potentials. Glial recordings revealed that the trains were associated with extracellular potassium accumulation, but the time course of this event was slower than the neuronal depolarization. Numerical simulations showed that intracellular chloride accumulation (due to massive GABAergic activation) can account for these observations. We conclude that synchronous activation of inhibitory synapses at gamma frequency causes a rapid chloride accumulation in pyramidal neurons, decreasing the efficacy of inhibitory potentials. The resulting

  18. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SONAR technologies that operate at frequencies of 50 kiloHertz (kHz) and greater from mobile platforms... proposes to use HF and UHF SONAR technology from mobile platforms nationwide. Mobile platforms include...-specific, non-mobile operating scenarios or newly developed technologies fall outside of the scope of...

  19. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  20. Achieving a long-lived high-beta plasma state by energetic beam injection.

    PubMed

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  1. High-density SNP genotyping to define beta-globin locus haplotypes.

    PubMed

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S; Quinn, Charles T; Onyekwere, Onyinye C; Pace, Betty S

    2009-01-01

    Five major beta-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, beta-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the beta-locus, which consists of five functional beta-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the beta-locus using DNA samples from healthy African Americans with either normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the beta-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Ggamma-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high-density SNP mapping may be required to accurately define beta-haplotypes that correlate with the different clinical phenotypes observed in SCD.

  2. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  3. Differential stability of beta-sheets and alpha-helices in beta-lactamase: a high temperature molecular dynamics study of unfolding intermediates.

    PubMed Central

    Vijayakumar, S; Vishveshwara, S; Ravishanker, G; Beveridge, D L

    1993-01-01

    beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general. Images FIGURE 1 FIGURE 4 PMID:8312470

  4. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  5. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  6. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  7. Investigation of iron cobalt nanocomposites for high frequency applications

    NASA Astrophysics Data System (ADS)

    Miller, Kelsy J.

    FeCo-based nanocomposite soft magnetic materials were developed in collaboration with Magnetics, Division of Spang and Co., for high frequency and high temperature application. Excellent soft magnetic properties include: low coercivity, high permeability, low energy losses, etc. These and large saturation inductions make these alloys attractive for fundamental studies and industrial applications. In this thesis, nanocrystalline composites will be developed from amorphous precursors for applications in two frequency regimes: 1) High frequency (0.01-30 MHz) such as high temperature power inductors, pulsed power transformers, and radio frequency (rf) magnetic heating; and 2) Ultra high frequency (30 MHz - 30 GHz) for radio frequency materials and electromagnetic interference (EMI) or radio frequency interference (RFI) absorption. New nanocomposites with higher saturation induction and high-temperature stability were developed with reduced glass forming elements such as Zr, Nb, Si and B. The amounts of the magnetic transition metals and early transition metal growth inhibitors were varied to determine trade-offs between higher inductions and fine microstructures and consequently low magnetic losses. Alloys having (Fe1-xCox)80+y+zNb4-y B13-zSi2Cu1 (25 ≤ x ≤ 50 and y = 0-4 and z = 0-3) nominal compositions were cast using planar flow casting (PFC) at Magnetics. Technical magnetic properties: permeability, maximum induction, remanence ratio, coercive field and high frequency magnetic losses as a function of composition and annealing temperature are reported after primary crystallization for 1 hr in a transverse magnetic field (TMF). Of note is the development of inductor cores with maximum inductions in excess of 1.76 T and 1.67 T in cores that exhibit power losses comparable with state of the art commercial soft magnetic alloys. For application in EMI/RFI absorption, FeCo-based alloys have the largest saturation induction and a tunable magnetic anisotropy which may

  8. High-frequency neural activity predicts word parsing in ambiguous speech streams.

    PubMed

    Kösem, Anne; Basirat, Anahita; Azizi, Leila; van Wassenhove, Virginie

    2016-12-01

    During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept.

  9. Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team

    2016-10-01

    For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.

  10. Fuzzy and conventional control of high-frequency ventilation.

    PubMed

    Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

    1994-07-01

    A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

  11. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  12. Frequency and temperature dependence of high damping elastomers

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1993-08-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between {minus}20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer`s response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between {minus}20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping.

  13. Pressure-driven sound turbulence in a high-beta plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1990-01-01

    LF turbulence is investigated experimentally in a 2-m-long 1-m-diameter magnetized electron fluid with beta(e) = about 0.5 and unmagnetized ions, generated in a double-pulsed linear dc discharge under a uniform external magnetic field of 15 G. The results of measurements with Langmuir probes, electric probes, and a directional particle analyzer are presented in graphs and characterized in detail. It is shown that the strong cross-field sound turbulence observed near the lower hybrid frequency is caused by the electron pressure gradient rather than E x B drift, with (1) temperature-gradient wave refraction as the dominant saturation mechanism, (2) wave-enhanced ion mass flow, and (3) only negligible ion-tail formation. The relevance of the present findings for studies of magnetic shock propagation is indicated.

  14. Reduced length fibre Bragg gratings for high frequency acoustic sensing

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Robertson, David; Brooks, Chris; Norman, Patrick; Rosalie, Cedric; Rajic, Nik

    2014-12-01

    In-fibre Bragg gratings (FBGs) are now well established for applications in acoustic sensing. The upper frequency response limit of the Bragg grating is determined by its gauge length, which has typically been limited to about 1 mm for commercially available Type 1 gratings. This paper investigates the effect of FBG gauge length on frequency response for sensing of acoustic waves. The investigation shows that the ratio of wavelength to FBG length must be at least 8.8 in order to reliably resolve the strain response without significant gain roll-off. Bragg gratings with a gauge length of 200 µm have been fabricated and their capacity to measure low amplitude high frequency acoustic strain fields in excess of 2 MHz is experimentally demonstrated. The ultimate goal of this work is to enhance the sensitivity of acoustic damage detection techniques by extending the frequency range over which acoustic waves may be reliably measured using FBGs.

  15. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  16. Effects of tazobactam on the frequency of the emergence of resistant strains from Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris (beta-lactamase derepressed mutants).

    PubMed

    Higashitani, F; Nishida, K; Hyodo, A; Inoue, M

    1995-09-01

    When Enterobacter cloacae, Citrobacter freundii, and Proteus vulgaris were treated with piperacillin (PIPC) in combination with tazobactam (TAZ), the in vitro frequency of emergence of resistant strains (beta-lactamase producing mutants) was lower than with PIPC or ceftazidime (CAZ) treated bacteria. In a mouse intraperitoneal infection model caused by E. cloacae, beta-lactamase derepressed mutants were detected following therapy with PIPC or CAZ, although no derepressed mutants were detected after treatment with PIPC in combination with TAZ. This suppression of the selection of derepressed mutants, which produce large amounts of beta-lactamases, by the combination of TAZ and PIPC suggests that the combination delays the increase of resistant mutants compared with PIPC alone.

  17. High-frequency audiometric assessment of a young adult population.

    PubMed

    Green, D M; Kidd, G; Stevens, K N

    1987-02-01

    The hearing thresholds of 37 young adults (18-26 years) were measured at 13 frequencies (8, 9,10,...,20 kHz) using a newly developed high-frequency audiometer. All subjects were screened at 15 dB HL at the low audiometric frequencies, had tympanometry within normal limits, and had no history of significant hearing problems. The audiometer delivers sound from a driver unit to the ear canal through a lossy tube and earpiece providing a source impedance essentially equal to the characteristic impedance of the tube. A small microphone located within the earpiece is used to measure the response of the ear canal when an impulse is applied at the driver unit. From this response, a gain function is calculated relating the equivalent sound-pressure level of the source to the SPL at the medial end of the ear canal. For the subjects tested, this gain function showed a gradual increase from 2 to 12 dB over the frequency range. The standard deviation of the gain function was about 2.5 dB across subjects in the lower frequency region (8-14 kHz) and about 4 dB at the higher frequencies. Cross modes and poor fit of the earpiece to the ear canal prevented accurate calibration for some subjects at the highest frequencies. The average SPL at threshold was 23 dB at 8 kHz, 30 dB at 12 kHz, and 87 dB at 18 kHz. Despite the homogeneous nature of the sample, the younger subjects in the sample had reliably better thresholds than the older subjects. Repeated measurements of threshold over an interval as long as 1 month showed a standard deviation of 2.5 dB at the lower frequencies (8-14 kHz) and 4.5 dB at the higher frequencies.

  18. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    PubMed

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease.

  19. High frequency SAW devices based on third harmonic generation.

    PubMed

    Le Brizoual, L; Elmazria, O; Sarry, F; El Hakiki, M; Talbi, A; Alnot, P

    2006-12-01

    We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K(2)) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.

  20. Casimir force between δ -δ' mirrors transparent at high frequencies

    NASA Astrophysics Data System (ADS)

    Braga, Alessandra N.; Silva, Jeferson Danilo L.; Alves, Danilo T.

    2016-12-01

    We investigate, in the context of a real massless scalar field in 1 +1 dimensions, models of partially reflecting mirrors simulated by Dirac δ -δ' point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified δ -δ' point interaction that enables full transparency in the limit of high frequencies. Taking this modified δ -δ' model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  1. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  2. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  3. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  4. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  5. High excretion of beta-aminoisobutyric acid in patients with ketoacidosis.

    PubMed

    Landaas, S; Solem, E

    1983-02-01

    High concentrations of beta-aminoisobutyric acid (BAIBA) were found to be present in the urine from patients with ketoacidosis. The R-form was always the dominating isomer of BAIBA. The finding is discussed, and it is suggested that the mechanism might be a derangement in the degradation of valine.

  6. Near-equilibrium growth of thick, high quality beta-SiC by sublimation

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.; Fekade, Konjit; Spencer, Michael G.

    1993-01-01

    A close spaced near-equilibrium growth technique was used to produce thick, high quality epitaxial layers of beta-silicon carbide. The process utilized a sublimation method to grow morphologically smooth layers. The beta silicon carbide growth layers varied from about 200 to 750 microns in thickness. Chemical vapor deposition grown, 2-10 microns, beta silicon carbide films were used as seeds at 1860 and 1910 C growth temperatures. The respective average growth rates were 20 and 30 microns per hour. The layers are p-type with a 3.1 x 10 exp 17/cu cm carrier concentration. Electrical measurements indicate considerable improvement in the breakdown voltage of Schottky barriers on growth samples. Breakdown values ranged from 25 to 60 V. These measurements represent the highest values reported for 3C-SiC.

  7. MHD instabilities and their control in high-beta plasmas in KSTAR

    SciTech Connect

    In, Yongkyoon

    2013-02-06

    We established 3 specific tasks as follows: Task 1 - Investigate the MHD activity during the current ramp-up phase with shaped plasmas; Task 2 - Develop a theoretical model that may show the hollowness dependent instability; Task 3 - Explore the beta-limiting instabilities. To address each task, FAR-TECH actively participated in the 2012 KSTAR run-campaign, which helped us make productive progress. Specifically, the shaping dependence of MHD activity during current ramp-up phase was investigated using dedicated run-time in KSTAR (October 4 and 9, 2012), which was also attempted to address the hollowness of temperature (or pressure) profiles. Also, a performance-limiting disruption, which occurred in a relatively high intermediate beta plasma (shot 7110) in KSTAR ({beta}{sub N} ~ 1.7), was studied, and the preliminary analysis shows that the disruption might not be stability-limited but likely density-limited.

  8. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.

    PubMed

    Takaura, Kana; Tsuchiya, Naotsugu; Fujii, Naotaka

    2016-01-01

    Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses

  9. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  10. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-06

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.

  11. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    SciTech Connect

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  12. High beta, sawtooth-free tokamak operation using energetic trapped particles

    SciTech Connect

    White, R.B.; Bussac, M.N.; Romanelli, F.

    1988-08-01

    It is shown that a population of high energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high beta. 13 refs., 2 figs.

  13. High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null

    SciTech Connect

    Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A. . Dept. of Applied Physics); Bell, M.G.; Bell, R.; Bitter, M.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Chance, M.S.; Efthimion, P.C.; Fredrickson, E.D.; Hatcher, R.; Hawryluk, R.J.; Hirshman, S.P.; Janos, A.C.; Jardin, S.C.; Jassby, D.L.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Ow

    1991-07-01

    Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of {Lambda} {triple bond} {beta}{sub p eq} + l{sub i}/2 as large as 7, {epsilon}{beta}{sub p dia} {triple bond} 2{mu}{sub 0}{epsilon}/{much lt}B{sub p}{much gt}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta, {beta}{sub N dia} {triple bond} 10{sup 8}<{beta}{sub t}{perpendicular}>aB{sub 0}/I{sub p} as large as 4.7. When {epsilon}{beta}{sub p dia} {approx gt} 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, {tau}{sub E}. The largest values of {epsilon}{beta}{sub p} and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 keV and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and {tau}{sub E} greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain. Q{sub DD}, reached a values of 1.3 {times} 10{sup {minus}3} in a discharge with I{sub p} = 1 MA and {epsilon}{beta}{sub p dia} = 0.85. A large, sustained negative loop voltage during the steady state portion of the discharge indicates that a substantial non-inductive component of I{sub p} exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of I{sup p}. Magnetohydrodynamic (MHD) ballooning stability analysis shows that while these plasmas are near, or at the {beta}{sub p} limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes. 24 refs., 10 figs.

  14. Frequencies and amplitudes of high-degree solar oscillations

    NASA Astrophysics Data System (ADS)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  15. Self-integrating inductive loop for measuring high frequency pulses

    NASA Astrophysics Data System (ADS)

    Rojas-Moreno, Mónica V.; Robles, Guillermo; Martínez-Tarifa, Juan M.; Sanz-Feito, Javier

    2011-08-01

    High frequency pulses can be measured by means of inductive sensors. The main advantage of these sensors consists of non-contact measurements that isolate and protect measuring equipment. The objective of this paper is to present the implementation of an inductive sensor for measuring rapidly varying currents. It consists of a rectangular loop with a resistor at its terminals. The inductive loop gives the derivative of the current according to Faraday's law and the resistor connected to the loop modifies the sensor's frequency response to obtain an output proportional to the current pulse. The self-integrating inductive sensor was validated with two sensors, a non-inductive resistor and a commercial high frequency current transformer. The results were compared to determine the advantages and drawbacks of the probe as an adequate inductive transducer.

  16. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  17. Note: High precision measurements using high frequency gigahertz signals.

    PubMed

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  18. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring.

    PubMed

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  19. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  20. Sensitivity to Error Fields in NSTX High Beta Plasmas

    SciTech Connect

    Park, Jong-Kyu; Menard, Jonathan E.; Gerhardt, Stefan P.; Buttery, Richard J.; Sabbagh, Steve A.; Bell, Steve E.; LeBlanc, Benoit P.

    2011-11-07

    It was found that error field threshold decreases for high β in NSTX, although the density correlation in conventional threshold scaling implies the threshold would increase since higher β plasmas in our study have higher plasma density. This greater sensitivity to error field in higher β plasmas is due to error field amplification by plasmas. When the effect of amplification is included with ideal plasma response calculations, the conventional density correlation can be restored and threshold scaling becomes more consistent with low β plasmas. However, it was also found that the threshold can be significantly changed depending on plasma rotation. When plasma rotation was reduced by non-resonant magnetic braking, the further increase of sensitivity to error field was observed.

  1. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  2. High frequency alternating current chip nano calorimeter with laser heating.

    PubMed

    Shoifet, E; Chua, Y Z; Huth, H; Schick, C

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (~1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm(2)). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10(-3) Hz and 10(6) Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  3. High frequency alternating current chip nano calorimeter with laser heating

    NASA Astrophysics Data System (ADS)

    Shoifet, E.; Chua, Y. Z.; Huth, H.; Schick, C.

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (˜1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm2). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10-3 Hz and 106 Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  4. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  5. Frequency of Guns in the Households of High School Seniors

    ERIC Educational Resources Information Center

    Coker, Ann L.; Bush, Heather M.; Follingstad, Diane R.; Brancato, Candace J.

    2017-01-01

    Background: In 2013, President Obama lifted the federal ban on gun violence research. The current study provides one of the first reports to estimate household gun ownership as reported by youth. Methods: In this cohort study of 3,006 high school seniors from 24 schools, we examined the frequency of household guns ownership. Results: About 65%…

  6. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  7. High temporal frequency measurements of greenhouse gas emissions from soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency,...

  8. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  9. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  10. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  11. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2006-09-30

    with Michael Porter and the ONR High Frequency Initiative and the ONR PLUSNet program. REFERENCES M. B. Porter and H. P. Bucker, “Gaussian...Harrison and Michael Porter , “A passive fathometer for determining bottom depth and imaging seabed layering using ambient noise”, J. Acoust. Soc. Am., 120

  12. Measurement of high frequency waves using a wave follower

    NASA Technical Reports Server (NTRS)

    Tang, S.; Shemdin, O. H.

    1983-01-01

    High frequency waves were measured using a laser-optical sensor mounted on a wave follower. Measured down-wind wave slope spectra are shown to be wind speed dependent; the mean square wave-slopes are generally larger than those measured by Cox and Munk (1954) using the sun glitter method.

  13. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  14. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets

    PubMed Central

    Broca, Christophe; Varin, Elodie; Armanet, Mathieu; Tourrel-Cuzin, Cécile; Bosco, Domenico; Dalle, Stéphane; Wojtusciszyn, Anne

    2014-01-01

    The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes. PMID:24642635

  15. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-wave heating

    SciTech Connect

    Ribe, F.L.; Nelson, B.A.

    1989-01-01

    This paper discusses induced axial current studies in a hardcore Theta-Pinch; nonaxisymmetric RF heating of a high-Beta plasma column; formation of Axisymmetric hardcore theta pinches with notched hardcore current; and externally driven till made experiments on the high-beta Q machine field reversed configuration. (LSP)

  16. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  17. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    SciTech Connect

    Deng, Zhao; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  18. High Precision Digital Frequency Signal Source Based on FPGA

    NASA Astrophysics Data System (ADS)

    Yanbin, SHI; Jian, GUO; Ning, CUI

    The realization method of DDS technology is introduced, and its superior technical characteristics are analyzed in this paper. According to its characteristics, the high accuracy digital frequency signal source based on FPGA is designed. The simulation result indicated, compares with the traditional signal source, this type of signal source realized by the method of FPGA+DDS have many merits such as high precision and fast switch speed, which can satisfies the developing tendency of test facility.

  19. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  20. High frequency plasma generators for ion thruster applications

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Komatsu, G. K.; Christensen, T.

    1981-01-01

    Two concepts for high frequency discharge ion thrusters are described. Both sources are designed for use with 30 cm grid sets and argon propellant and utilize multi-cusp permanent magnet geometries for plasma confinement. The RF induction source is a conventional design representing a synthesis of the RIT and multi-cusp concepts. The preliminary data (without system optimization) indicate a discharge efficiency comparable to that obtained in 30 cm hollow cathode multi-cusp argon thrusters. The electron cyclotron heating source is electrodeless and exhibits plasma characteristics which should lead to greatly reduced discharge chamber and screen sputter rates with the optimization of the magnetic fields, microwave frequency, and feed configuration.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  3. Feasibility of using frequency offset on very high frequency air/ground voice channels

    NASA Astrophysics Data System (ADS)

    Badinelli, Martin; Cushman, Arthur; Randazzo, Philip

    1990-03-01

    In some large Federal Aviation Administration (FAA) air traffic control sectors, the controller manually switches between multiple ground transmitters to communicate with aircraft at opposite ends of the sector. This puts an additional burden on the controller. Aeronautical Radio, Inc. (ARINC) uses a frequency offset system which produces five frequencies from one channel assignment. ARINC provides this service to commercial air carriers who use receivers designed to ARINC specifications. These receivers are capable of eliminating the audio heterodyne generated by the offsetting process. The commercial air carriers use this system for airline business. The testing performed at the FAA Technical Center to evaluate this system as a means of controlling the air traffic in large sectors is described. The tests indicate that a frequency offset system cannot be used with general aviation aircraft receivers because many cannot filter out the audio heterodyne. Use of frequency offset may be possible in high altitude sectors where commercial aviation receivers, which meet ARINC specifications, are used if some additional concerns are resolved.

  4. High-frequency audiometry: test reliability and procedural considerations.

    PubMed

    Stelmachowicz, P G; Beauchaine, K A; Kalberer, A; Kelly, W J; Jesteadt, W

    1989-02-01

    This study compared the reliability of a recently developed high-frequency audiometer (HFA) [Stevens et al., J. Acoust. Soc. Am. 81, 470-484 (1987)] with a less complicated system that uses supraaural earphones (Koss system). The new approach permits calibration on an individual basis, making it possible to express thresholds at high frequencies in dB SPL. Data obtained from 50 normal-hearing subjects, ranging in age from 10-60 years, were used to evaluate the effects on reliability of threshold variance, earpiece/earphone fitting variance, and the variance associated with the HFA calibration process. Without earpiece/earphone replacement, the reliability of thresholds for the two systems is similar. With replacement, the HFA showed poorer reliability than the Koss system above 11 kHz, largely due to errors in estimating the calibration function. HFA reliability is greater for subjects with valid calibration functions over the entire frequency range. When average correction factors are applied to the Koss data in an effort to convert threshold estimates to dB SPL, individual transfer functions are not represented accurately. Thus the benefit of being able to express thresholds at high frequencies in dB SPL must be weighed against the additional source of variability introduced by the HFA calibration process.

  5. Advances in high frequency ultrasound separation of particulates from biomass.

    PubMed

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality.

  6. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  7. Fusion alpha-particle losses in a high-beta rippled tokamak

    SciTech Connect

    Bunno, M.; Nakamura, Y.; Suzuki, Y.; Shinohara, K.; Matsunaga, G.; Tani, K.

    2013-08-15

    In tokamak plasmas, the confinement of energetic ions depends on the magnetic field structure. If the plasma pressure is finite, the equilibrium current (i.e., the Pfirsch-Schlüter current and diamagnetic current) flows in the plasma to maintain the magnetohydrodynamic (MHD) equilibrium. These plasma currents generate poloidal and toroidal magnetic field and alter the field structure. Moreover, if we consider the non-axisymmetry of magnetic field structures such as toroidal field (TF) ripples, the non-axisymmetric component of the equilibrium current can alter TF ripples themselves. When the plasma beta becomes high, the changes in the field structure due to the equilibrium current might affect the confinement of energetic ions significantly. We intend to clarify how these currents alter the field structure and affect the confinement of alpha particles in high-beta plasma. The MHD equilibrium is calculated using VMEC and the orbits of fusion alpha particles are followed by using the fully three-dimensional magnetic field orbit-following Monte Carlo code. In relatively low-beta plasma (e.g., the volume-averaged beta value <β>≤2%), the changes in the magnetic field component due to the plasma current negligibly affect the confinement of alpha particles except for the Shafranov shift effect. However, for <β>≥3%, the diamagnetic effect reduces the magnetic field strength and significantly increases alpha-particle losses. In these high-beta cases, the non-axisymmetric field component generated by the equilibrium current also increases these losses, but not as effectively as compared to the diamagnetic effect.

  8. Highly flexible distributions to fit multiple frequency financial returns

    NASA Astrophysics Data System (ADS)

    BenSaïda, Ahmed; Slim, Skander

    2016-01-01

    Financial data are usually studied via low flexible distributions, independently of the frequency of the data, due to their simplicity and analytical tractability. In this paper we analyze two highly flexible five-parameter distributions into fitting financial returns, these are the skewed generalized t (SGT) and the generalized hyperbolic (GH). Applications carried on two exchange rates (Euro-Dollar and Dollar-Yen), and two indexes (S&P 500 and Nikkei 225) over four frequencies: weekly, daily, 30-min and 5-min, confirm the superiority of the SGT and GH in approximating the distribution of a given data at a remarkable precision. Moreover, as we move from higher to lower frequency, the distribution's overall shape does indeed change radically, and the estimated parameters refute the tendency to normality, which calls into question the aggregational Gaussianity's stylized fact.

  9. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  10. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  11. High-frequency measurements of multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Lafferty, R. E.; Maher, J. P.

    1981-06-01

    A resonant coaxial transmission line, short circuited at one end and open circuited at the other, whose fundamental resonant frequency and Q factor are known, is perturbed with a test capacitor connected either in series at the shorted end of the line, or in shunt at the open end. Measuring the Q factor of the system with the delta f technique yields the effective series resistance, capacitance, and the Q factor of the test specimen. This method of measurement has the advantage that there are no adjustable elements to alter circuit conditions in an unprescribed way, the only variable is the frequency which can be measured with an uncertainty of less than 1 ppm, the loss of the line as a function of frequency is quite predictable, and the Q factor of the line can be made sufficiently high to support accurate measurements of low loss capacitors.

  12. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  13. Frequency of the codon 807 mutation in the cGMP phosphodiesterase beta-subunit gene in Irish setters and other dog breeds with hereditary retinal degeneration.

    PubMed

    Aguirre, G D; Baldwin, V; Weeks, K M; Acland, G M; Ray, K

    1999-01-01

    Rod-cone dysplasia 1 (rcd1) in Irish setters is caused by a nonsense mutation in the cGMP phosphodiesterase beta-subunit gene (PDE6B). We examined the frequency of the mutant allele in the Irish setter population and determined if the defect is present in dogs of other breeds which are affected with other inherited photoreceptor diseases. Between 1994 and 1997, samples were obtained from 436 clinically normal Irish setters, a red wolf, and dogs from 23 different breeds. The mutation in codon 807 of PDE6B was detected in genomic DNA by heteroduplex analysis, allele-specific PCR, or restriction enzyme digestion. Of the 436 samples from clinically normal setters, 34 contained the mutation in one of the two PDE6B alleles (carrier rate = 7.8%). In contrast, the same mutation was not found in the red wolf or dogs of other breeds affected with PRA or inherited photoreceptor diseases. The high percentage of tested carriers, however, is not representative of the number of carriers in the population since some dogs tested were closely related and did not represent a random sample of the Irish setter breed.

  14. Recent Improvements in High-Frequency Eddy Current Conductivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2008-02-01

    Due to its frequency-dependent penetration depth, eddy current measurements are capable of mapping near-surface residual stress profiles based on the so-called piezoresistivity effect, i.e., the stress-dependence of electric conductivity. To capture the peak compressive residual stress in moderately shot-peened (Almen 4-8A) nickel-base superalloys, the eddy current inspection frequency has to go as high as 50-80 MHz. Recently, we have reported the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz. Unfortunately, spurious self- and stray-capacitance effects render the complex coil impedance variation with lift-off more nonlinear as the frequency increases, which makes it difficult to achieve accurate apparent eddy current conductivity (AECC) measurements with the standard four-point linear interpolation method beyond 25 MHz. In this paper, we will demonstrate that reducing the coil size reduces its sensitivity to capacitive lift-off variations, which is just the opposite of the better known inductive lift-off effect. Although reducing the coil size also reduces its absolute electric impedance and relative sensitivity to conductivity variations, a smaller coil still yields better overall performance for residual stress assessment. In addition, we will demonstrate the benefits of a semi-quadratic interpolation scheme that, together with the reduced lift-off sensitivity of the smaller probe coil, minimizes and in some cases completely eliminates the sensitivity of AECC measurements to lift-off uncertainties. These modifications allow us to do much more robust measurements up to as high as 80-100 MHz with the required high relative accuracy of +/-0.1%.

  15. High-performing vapor-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Godone, A.; Levi, F.; Calosso, C. E.; Micalizio, S.

    2015-03-01

    Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1×10-13 at 1s (short term) and in the range of 10-15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.

  16. Software for Displaying High-Frequency Test Data

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  17. High-speed frequency-domain terahertz coherence tomography.

    PubMed

    Yahng, Ji Sang; Park, Choon-Su; Lee, Hwi Don; Kim, Chang-Seok; Yee, Dae-Su

    2016-01-25

    High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm(2) by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system.

  18. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  19. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  20. Magnetoencephalography study of different relationships among low- and high-frequency-band neural activities during the induction of peaceful and fearful audiovisual modalities among males and females.

    PubMed

    Yang, Chia-Yen; Lin, Ching-Po

    2017-01-02

    Our previous study estimated the bias from the match attributes of the auditory and visual modalities related to a peaceful mood in the male brain. However, the interactions among the four main frequency bands of neural activity remain unknown. Therefore, this study uses magnetoencephalography to explore gender differences in the perceptions of auditory and visual modalities related to peaceful and fearful moods. Instead of analyzing single frequencies, this study analyzes interactions between low-frequency phase and high-frequency amplitude to reflect neural communication. The top four values in each of the 10 brain regions were averaged to give a representative value for further analysis with repeated-measures ANOVA. The results from the cross-frequency analyses suggest that delta-theta, delta-alpha, delta-beta, and delta-gamma couplings are associated with interactions between emotion and modality; theta-alpha, theta-beta, and theta-gamma couplings are associated with interactions between gender and emotion/time; alpha-beta and alpha-gamma couplings are associated with time; and beta-gamma coupling is associated with interactions between gender and modality. Although no obvious hemispheric lateralization of emotion in the macroscopic neural activity was found, these results reveal that males have stronger couplings (e.g., beta-gamma coupling) in the visual modality related to peaceful mood, whereas females have stronger couplings (e.g., beta-gamma coupling) in the audiovisual modality related to fearful mood. Gender differences become much more apparent when analysis is based on cross-frequency coupling. © 2016 Wiley Periodicals, Inc.

  1. Clonal analysis of human tumors with M27 beta, a highly informative polymorphic X chromosomal probe.

    PubMed Central

    Fey, M F; Peter, H J; Hinds, H L; Zimmermann, A; Liechti-Gallati, S; Gerber, H; Studer, H; Tobler, A

    1992-01-01

    The clonality of human tumors can be studied by X inactivation/methylation analysis in female patients heterozygous for X-linked DNA polymorphisms. We present a detailed study on clonal tumor analysis with M27 beta, a highly informative probe detecting a polymorphic X chromosomal locus, DXS255. The polymorphism detected at this locus is due to variable numbers of tandem repeats. The rate of constitutional heterozygosity detected by M27 beta was 88%. Normal tissue from gastrointestinal mucosa and thyroid showed random, hence polyclonal, patterns. Nonrandom clonal X inactivation was detected in all 22 malignant neoplasms that had been shown to be clonal by other DNA markers, such as antigen receptor gene rearrangements or clonal loss of heterozygosity at 17p and other loci. 16/48 normal blood leukocyte samples (33%) showed considerably skewed X inactivation patterns. Comparison of blood leukocytes and normal tissue indicated that in a given individual, X inactivation patterns may be tissue specific. M27 beta was used to study the clonal composition of 13 benign thyroid nodules from 12 multinodular goiters with rapid recent growth, traditionally termed "adenomas." Nine of them were clonal, whereas four nodules and tissue from a case of Graves' goiter were not, indicating that some, but not all, such thyroid nodules may represent true clonal neoplasms. The M27 beta probe permits one to study the clonal composition by the X inactivation approach of a wide variety of solid tumors from most female patients. As a control, normal tissue homologous to the tumor type of interest is preferable to DNA from blood leukocytes, since the latter may show nonrandom X inactivation patterns in a fairly high proportion of cases. M27 beta may, therefore, be of limited use for the clonal analysis of neoplasms derived from hematopoietic cells. Images PMID:1349026

  2. Effects of guanidine hydrochloride and high pressure on subsite flexibility of beta-amylase.

    PubMed

    Tanaka, Naoki; Kajimoto, Sachie; Mitani, Daisuke; Kunugi, Shigeru

    2002-04-29

    We investigated the effects of guanidine hydrochloride (GuHCl) and high pressure on the conformational flexibility of the active site of sweet potato beta-amylase by monitoring the sulfhydryl reaction and the enzymatic activity. The reactivity of Cys345 at the active site, one of six inert half cystine residues of this enzyme, was enhanced by GuHCl at concentrations below 0.5 M. A GuHCl-induced change of the active site was also observed through an intensity change in the near-UV circular dichroism (CD) spectrum. On the other hand, the native conformation of sweet potato beta-amylase observed through fluorescence polarization, far-UV CD spectrum and intrinsic fluorescence was not influenced by GuHCl at concentrations below 0.5 M. Therefore, Cys345 reaction caused by GuHCl was due to an alteration of the local conformation of the active site. GuHCl-induced reaction of Cys345, located in the vicinity of subsites 3 and 4, is attributed to enhanced subsite flexibility, which is responsible for substrate slipping in a single-chain attack mechanism. Due to the flexible conformation, the local region of the subsite is more susceptible to GuHCl perturbation than the molecule overall. The enzymatic activity of sweet potato beta-amylase was reversibly inhibited by GuHCl at concentrations below 0.5 M, and kinetic analysis of the enzymatic mechanism showed that GuHCl decreases the kcat value. High pressure below 400 MPa also inactivated sweet potato beta-amylase with an increase in Cys345 reactivity. These findings indicated that excessively enhanced subsite flexibility reduced the enzymatic activity of sweet potato beta-amylase.

  3. DC and High-Frequency Characteristics of GaN Schottky Varactors for Frequency Multiplication

    NASA Astrophysics Data System (ADS)

    Jin, Chong; Pavlidis, Dimitris; Considine, Laurence

    The design, fabrication and characterization of GaN based varactor diodes are presented. MOCVD was used for layer growth and the DC characteristic of 4µm diameter diodes showed a turn-on voltage of 0.5V, a breakdown voltage of 21V and a modulation ratio of 1.63. High frequency characterization allowed obtaining the diode equivalent circuit and observed the bias dependence of the series resistance. The diode cutoff frequency was 900GHz. A large-signal model was developed for the diode and the device power performance was evaluated. A power of 7.2dBm with an efficiency of 16.6% was predicted for 47GHz to 94GHz doubling.

  4. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  5. High-frequency BiCMOS transconductance integrators

    NASA Astrophysics Data System (ADS)

    Beards, R. Douglas

    1990-10-01

    The capabilities of a fine-line bipolar complementary metal oxide semiconductor (BiCMOS) process in the design of wideband transconductance integrators for precision monolithic continuous time filtering are explored. The design considerations of such an integrator are examined in detail, with an emphasis on tunability and phase compensation as a means for realizing a precision wideband design. The concept of open-loop transconductance filtering is described and possible circuit topologies are investigated. Detailed small-signal and large-signal analysis of one proposed circuit which has both tunable bandwidth and tunable phase compensation is presented. Application of such an integrator to open-loop transconductance filtering in the 10-50 MHz frequency range is studied. Simulation results show specific performance expectations of the proposed circuit. The tunable compensation circuit was seen to restrict the amplitude of signals which the integrator can pass without severe distortion or even instability occurring. A potential solution to this problem is deemed to be unsuitable for high frequency applications. The general design philosophy of applying low-frequency techniques to realize a high frequency circuit was seen to result in several fundamental problems.

  6. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  7. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  8. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  9. Physics Basis for High-Beta, Low-Aspect-Ratio Stellarator Experiments

    SciTech Connect

    A. Brooks; A.H. Reiman; G.H. Neilson; M.C. Zarnstorff; et al

    1999-11-01

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.

  10. Resent developments in high-frequency surface-wave techniques

    NASA Astrophysics Data System (ADS)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  11. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  12. High-Frequency Resonance in the Gerbil Medial Superior Olive

    PubMed Central

    Mikiel-Hunter, Jason; Kotak, Vibhakar; Rinzel, John

    2016-01-01

    A high-frequency, subthreshold resonance in the guinea pig medial superior olive (MSO) was recently linked to the efficient extraction of spatial cues from the fine structure of acoustic stimuli. We report here that MSO neurons in gerbil also have resonant properties and, based on our whole-cell recordings and computational modeling, that a low-voltage-gated potassium current, IKLT, underlies the resonance. We show that resonance was lost following dynamic clamp replacement of IKLT with a leak conductance and in the model when voltage-gating of IKLT was suppressed. Resonance was characterized using small amplitude sinusoidal stimuli to generate impedance curves as typically done for linear systems analysis. Extending our study into the nonlinear, voltage-dependent regime, we increased stimulus amplitude and found, experimentally and in simulations, that the subthreshold resonant frequency (242Hz for weak stimuli) increased continuously to the resonant frequency for spiking (285Hz). The spike resonance of these phasic-firing (type III excitable) MSO neurons and of the model is of particular interest also because previous studies of resonance typically involved neurons/models (type II excitable, such as the standard Hodgkin-Huxley model) that can fire tonically for steady inputs. To probe more directly how these resonances relate to MSO neurons as slope-detectors, we presented periodic trains of brief, fast-rising excitatory post-synaptic potentials (EPSCs) to the model. While weak subthreshold EPSC trains were essentially low-pass filtered, resonance emerged as EPSC amplitude increased. Interestingly, for spike-evoking EPSC trains, the threshold amplitude at spike resonant frequency (317Hz) was lower than the single ESPC threshold. Our finding of a frequency-dependent threshold for repetitive brief EPSC stimuli and preferred frequency for spiking calls for further consideration of both subthreshold and suprathreshold resonance to fast and precise temporal processing

  13. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  14. Recording and analysis techniques for high-frequency oscillations.

    PubMed

    Worrell, G A; Jerbi, K; Kobayashi, K; Lina, J M; Zelmann, R; Le Van Quyen, M

    2012-09-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.

  15. Recording and analysis techniques for high-frequency oscillations

    PubMed Central

    Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.M.; Zelmann, R.; Le Van Quyen, M.

    2013-01-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions. PMID:22420981

  16. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  17. Aftershock Prediction for High-Frequency Financial Markets' Dynamics

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio; Camana, Francesco; Caraglio, Michele; Stella, Attilio L.; Zamparo, Marco

    The occurrence of aftershocks following a major financial crash manifests the critical dynamical response of financial markets. Aftershocks put additional stress on markets, with conceivable dramatic consequences. Such a phenomenon has been shown to be common to most financial assets, both at high and low frequency. Its present-day description relies on an empirical characterization proposed by Omori at the end of 1800 for seismic earthquakes. We point out the limited predictive power in this phenomenological approach and present a stochastic model, based on the scaling symmetry of financial assets, which is potentially capable to predict aftershocks occurrence, given the main shock magnitude. Comparisons with S&P high-frequency data confirm this predictive potential.

  18. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  19. Status asthmaticus treated by high-frequency oscillatory ventilation.

    PubMed

    Duval, E L; van Vught, A J

    2000-10-01

    We present a 2.5-year-old girl in severe asthma crisis who clinically deteriorated on conventional mechanical ventilation, but was successfully ventilated with high-frequency oscillatory ventilation (HFOV). Although HFOV is accepted as a technique for managing pediatric respiratory failure, its use in obstructive airway disease is generally thought to be contraindicated because of the risk of dynamic air-trapping. However, we suggest that obstructive airway disease can safely be managed with HFOV, provided certain conditions are met. These include the application of sufficiently high mean airway pressures to open and stent the airways ("an open airway strategy"), lower frequencies to overcome the greater attenuation of the oscillatory waves in the narrowed airways, permissive hypercapnia to enable reducing pressure swings as much as possible, longer expiratory times, and muscle paralysis to avoid spontaneous breathing.

  20. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  1. Low frequency/high sensitivity triaxial monolithic sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100 mHz with large band (10-7 Hz - 10 Hz), high quality factor (Q < 1500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/√Hz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  2. Very low frequency/high sensitivity triaxial monolithic inertial sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2014-03-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100mHz), with large band (10-7 Hz - 10Hz), high quality factor (Q > 2500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/√Hz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  3. Low frequency/high sensitivity triaxial monolithic inertial sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, Rocco; Barone, F.

    2013-10-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100mHz), with large band (10-7 Hz - 10Hz), high quality factor (Q < 2500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/pHz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  4. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  5. Fluctuations in high {beta}{sub p} plasmas in DIII-D

    SciTech Connect

    Casper, T.A.; Chu, M.S.; Gohil, P.

    1994-07-01

    In our investigation of improved confinement in high poloidal beta ({beta}{sub p}= 2 to 4) advanced tokamak experiments, we observe that the internal MHD activity evolves from an m/n = 2/1 to a 3/1 structure coincident with q{sub o} rising above 2, and consistent with the GATO code stability analysis. The plasma eventually evolves to a quiescent state at which time the stored energy increases, mostly as a result of improved particle confinement. The bootstrap fraction rises to 80%. The measured plasma pressure profiles during this time are calculated to be stable to high-n ballooning modes consistent with operation of the core in the second stable regime. The sustained improvement in confinement is ultimately limited by our ability to control the toroidal current profile.

  6. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus

    PubMed Central

    Luo, Feng

    2015-01-01

    Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca2+-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS. PMID:26334006

  7. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2011-09-01

    scattering in ocean environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of...TYPE 3 . DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE High Frequency Acoustic Reflection and Transmission in Ocean Sediments...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3

  8. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  9. Automated composite ellipsoid modelling for high frequency GTD analysis

    NASA Technical Reports Server (NTRS)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  10. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  11. Modeling high-frequency capacitance in SOI MOS capacitors

    NASA Astrophysics Data System (ADS)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  12. Direct frequency comb spectroscopy and high-resolution coherent control

    NASA Astrophysics Data System (ADS)

    Stowe, Matthew C.

    We present the first experiments demonstrating absolute frequency measurements of one- and two-photon transitions using direct frequency comb spectroscopy (DFCS). In particular we phase stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creating a broad-bandwidth optical frequency comb. By referencing the optical comb directly to the cesium microwave frequency standard, we were able to measure absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the phase coherence between wavelengths spanning from 741 nm to 795 nm. As an initial demonstration of DFCS we studied transitions from the 5S to 5P, 5D, and 7S states in Rb. To reduce Doppler broadening the atoms were laser cooled in a magneto-optical trap. We present an overview of several systematic error sources that perturb the natural transition frequencies, magnitudes, and linewidths. These include radiation pressure from the probe beam, AC-Stark shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After careful study and suppression of these systematic error sources, we measured transition linewidths as narrow as 1.1 MHz FWHM and 10 kHz linecenter uncertainties. Our measurements of the 5S to 7S two-photon transition frequency demonstrated the ability to determine the comb mode order numbers when the initial transition frequency is not known to better than the comb mode frequency spacing. By modifying the spectral phase of the pulses we demonstrated high-resolution coherent control. Our first coherent control experiment utilized a grating based pulse stretcher/compressor to apply a large chirp to the pulses. We measured the two-photon transition rate as a function of linear frequency chirp. The results illustrate the differences between similar classic coherent experiments done with a single femtosecond pulse and ours conducted with multiple pulses. Furthermore, we show that it is possible to reduce the two

  13. Estimating the frequency of high microbial counts in commercial food products using various distribution functions.

    PubMed

    Corradini, M G; Normand, M D; Nussinovitch, A; Horowitz, J; Peleg, M

    2001-05-01

    Industrial microbial count records usually form an irregular fluctuating time series. If the series is truly random or weakly autocorrelated, the fluctuations can be considered as the outcome of the interplay of numerous factors that promote or inhibit growth. These factors usually balance each other, although not perfectly, hence, the random fluctuations. If conditions are unchanged, then at least in principle the probability that they will produce a coherent effect, i.e., an unusually high (or low) count of a given magnitude, can be calculated from the count distribution. This theory was tested with miscellaneous industrial records (e.g., standard plate count, coliforms, yeasts) of various food products, including a dairy-based snack, frozen foods, and raw milk, using the normal, log normal, Laplace, log Laplace, Weibull, extreme value, beta, and log beta distribution functions. Comparing predicted frequencies of counts exceeding selected levels with those actually observed in fresh data assessed their efficacy. No single distribution was found to be inherently or consistently superior. It is, therefore, suggested that, when the probability of an excessive count is estimated, several distribution functions be used simultaneously and a conservative value be used as the measure of the risk.

  14. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  15. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    PubMed Central

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. Catalase<-->Abeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro. PMID:10567208

  16. Capacitor Characterization Study for a High Power High Frequency Converter Application (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    Bixel, W.C. Lanter, B.Ray, “Evaluation of Fluorene Polyester Film Capacitors ”, CARTS USA-2010, 15-18 Mar 2010 New Orleans LA. 16 H. Kosai, S...AFRL-RZ-WP-TP-2010-2099 CAPACITOR CHARACTERIZATION STUDY FOR A HIGH POWER, HIGH FREQUENCY CONVERTER APPLICATION (PREPRINT) William Lanter...Paper Preprint 04 August 2009 – 01 April 2010 4. TITLE AND SUBTITLE CAPACITOR CHARACTERIZATION STUDY FOR A HIGH POWER, HIGH FREQUENCY CONVERTER

  17. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  18. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    NASA Astrophysics Data System (ADS)

    Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee

    2015-08-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  19. Collisionless shock waves in space - A very high beta structure. [solar wind measurements

    NASA Technical Reports Server (NTRS)

    Formisano, V.; Russell, C. T.; Means, J. D.; Greenstadt, E. W.; Scarf, F. L.; Neugebauter, M.

    1975-01-01

    Measurements from six OGO-5 particle and field experiments are used to examine the structure of the earth's bow shock during a period of extremely high beta (the ratio of plasma thermal to magnetic energy density), as determined from simultaneous measurements of the upstream plasma on board the HEOS satellite. Even though the interplanetary field is nearly perpendicular to the shock normal, the shock is extremely turbulent. Large field increases are observed up to a factor of 20 above the upstream values. Ahead of these large enhancements, smaller magnetic effects accompanied by electrostatic noise, electron heating, and ion deflection are observed for several minutes. These observations suggest that a steady-state shock may not be able to form at very high beta. Further, they show that while the magnetic energy density may be relatively unimportant in the upstream flow, it can become very significant within the shock structure, and hence the magnetic field should not be ignored in theoretical treatments of very high beta shocks.

  20. High-precision branching ratio measurement for the superallowed {beta}{sup +} emitter {sup 62}Ga

    SciTech Connect

    Finlay, P.; Svensson, C. E.; Bandyopadhyay, D.; Grinyer, G. F.; Hyland, B.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Wong, J.; Ball, G. C.; Chakrawarthy, R. S.; Hackman, G.; Kanungo, R.; Morton, A. C.; Pearson, C. J.; Savajols, H.; Leslie, J. R.; Towner, I. S.; Austin, R. A. E.; Chaffey, A.

    2008-08-15

    A high-precision branching ratio measurement for the superallowed {beta}{sup +} decay of {sup 62}Ga was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8{pi} spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the {gamma} rays emitted following Gamow-Teller and nonanalog Fermi {beta}{sup +} decays of {sup 62}Ga, and the SCEPTAR plastic scintillator array was used to detect the emitted {beta} particles. Thirty {gamma} rays were identified following {sup 62}Ga decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for {sup 62}Ga, this branching ratio yields an ft value of 3074.3{+-}1.1 s, making {sup 62}Ga among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected Ft value allows the large nuclear-structure-dependent correction for {sup 62}Ga decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A{>=}62 superallowed decays.

  1. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library

    PubMed Central

    1994-01-01

    Our previous studies showed that the alpha 5 beta 1 integrin selects cysteine pair-containing RGD peptides from a phage display library based on a random hexapeptide. We have therefore searched for more selective peptides for this integrin using a larger phage display library, where heptapeptides are flanked by cysteine residues, thus making the inserts potentially cyclic. Most of the phage sequences that bound to alpha 5 beta 1 (69 of 125) contained the RGD motif. Some of the heptapeptides contained an NGR motif. As the NGR sequence occurs in the cell-binding region of the fibronectin molecule, this sequence could contribute to the specific recognition of fibronectin by alpha 5 beta 1. Selection for high affinity peptides for alpha 5 beta 1 surprisingly yielded a sequence RRETAWA that does not bear obvious resemblance to known integrin ligand sequences. The synthetic cyclic peptide GACRRETAWACGA (*CRRETAWAC*) was a potent inhibitor of alpha 5 beta 1-mediated cell attachment to fibronectin. This peptide is nearly specific for the alpha 5 beta 1 integrin, because much higher concentrations were needed to inhibit the alpha v beta 1 integrin, and there was no effect on alpha v beta 3- and alpha v beta 5-mediated cell attachment to vitronectin. The peptide also did not bind to the alpha IIb beta 3 integrin. *CRRETAWAC* appears to interact with the same or an overlapping binding site in alpha 5 beta 1 as RGD, because cell attachment to *CRRETAWAC* coated on plastic was divalent cation dependent and could be blocked by an RGD-containing peptide. These results reveal a novel binding specificity in the alpha 5 beta 1 integrin. PMID:7507494

  2. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  3. Characterizing the Frequency of High Flows in Rivers

    NASA Astrophysics Data System (ADS)

    Basso, S.; Schirmer, M.; Botter, G.

    2014-12-01

    Probability density functions and related cumulative distributions are widely used to describe magnitude and frequency of river flows at-a-station. They constitute important tools in hydrological and engineering applications for their ability to quantify in a condensed fashion the overall flow availability and variability, and properly describe the underlying hydrologic regime. The river flow regime is a pivotal driver of natural and industrial processes occurring in riverine environments, like e.g. riparian vegetation dynamics and hydropower production. Nonetheless, some processes are strongly influenced by specific ranges of streamflows, namely high flows, whose features are described in the right-tail of the probability distribution. For this reason, an accurate description of high flow frequencies represents an important task to study fluvial processes such as sediment transport and floods. Recently, a physically-based stochastic model of streamflow dynamics has been developed and applied to a variety of catchments. The model provides an analytical expression for the streamflow distribution, which proved able to reproduce the frequencies of observed discharges and characterize in a meaningful way river flow regimes. This work focuses on the model capability to reproduce observed patterns in the tail of the flow distribution. In particular, a new method for the estimate of flow recession rates (based on analysis of single recessions) proved more effective in representing the cumulative distribution function, especially for high flows. At the same time, the model proves able to capture the emergence of heavy tailed distributions with divergent moments. The correlation between the peak flows and recession features, particularly accentuated in some cases, is extremely important for a correct representation of the tail of the streamflow distribution. The results constitute a basis for a physically-based study of hydrologic and sediment transport regimes, and poses

  4. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  5. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    NASA Astrophysics Data System (ADS)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  6. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  7. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  8. High frequency noise studies at the Hartousov mofette area (CZE)

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  9. Modeling electron cloud dynamics in high-frequency accelerators

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Stoltz, Peter H.

    2017-03-01

    The dynamics of electron cloud buildup, saturation, and dissipation represent a complex interaction between accelerator and beam parameters. In many accelerators bunch charges are large and beam frequencies are small. In this case electrons have a good probability of being accelerated to the opposite side of the beam pipe before the next bunch crossing. If the time for electrons to drift across the beam pipe is less than the time to the next bunch crossing the cloud density can build up rapidly under this scenario. However, in accelerators where buch charges are small and beam frequencies are large, electrons created by secondary electron emission will not be accelerated to the opposite wall before the next bunch crossing. In this case the time for a cloud to build up is larger, but the amount of electron cloud that exists close to the beam may be increased. In this paper, we report simulation results for modeling of electron cloud buildup and dynamics in high-frequency accelerators. We model parameters relevant to the JLab Electron-Ion Collider (JLEIC) that is currently being designed. We consider beam frequencies up to 476 MHz for a variety of different ions, from protons up to Pb (82+), and with bunch charges ranging from 4.2 × 109 (p) to 0.05 × 109 (Pb) ions per bunch, and ion energies from 100 (p) - 40 (Pb) GeV/u. We compare simulations of electron cloud buildup and dynamics for these different cases, and contrast with similar simulations of proton-driven electron cloud buildup in the Fermilab recycler under the PIP-II upgrade scenario, with a frequency of 52.8 MHz, bunch charge of 80 × 109 p/bunch, and energies ranging from 8 - 20 GeV.

  10. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  11. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats.

    PubMed

    Zhou, Jiyin; Zhou, Shiwen; Tang, Jianlin; Zhang, Kebin; Guang, Lixia; Huang, Yongping; Xu, Ying; Ying, Yi; Zhang, Le; Li, Dandan

    2009-03-15

    Oxidative stress in diabetes coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. Berberine is one of the main alkaloids of Rhizoma coptidis which has been used to treat diabetes for more than 1400 years in China. The present study was designed to evaluate the protective effects of berberine against beta cell damage and antioxidant of pancreas in diabetic rats. Diabetic rats with hyperlipidemia were induced by intraperitoneally injection 35 mg/kg streptozotocin and a high-carbohydrate/high-fat diet. Rats were divided into 7 groups at the end of week 16: untreated control, untreated diabetic, 75, 150, 300 mg/kg berberine-treated diabetic, 100 mg/kg fenofibrate-treated, and 4 mg/kg rosiglitazone-treated. After 16 weeks treatment, serum insulin level, insulin expression in pancreas, and malonaldehyde content, superoxide dismutase activity in pancreatic homogenate were assayed. Pancreas was examined by hematoxylin/eosin staining and transmission electron microscope. Pancreas to body weight ratio, insulin level, insulin sensitivity index, malonaldehyde content and superoxide dismutase activity were altered in diabetic rats, and were near control levels treated with 150, 300 mg/kg berberine. Mitochondrial vacuolization and swelling, dilatation of the endoplasmic reticulum were observed in beta cells of diabetic rats. The pancreatic islet area atrophied and secretory granules of beta cells decreased in diabetic rats. Slight pathological changes existed in beta cells of 150, 300 mg/kg berberine-treated diabetic pancreas. These findings suggest that berberine has protective effect for diabetes through increasing insulin expression, beta cell regeneration, antioxidant enzyme activity and decreasing lipid peroxidation.

  12. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  13. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  14. Planck early results. VI. The High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck HFI Core Team; Ade, P. A. R.; Aghanim, N.; Ansari, R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Banday, A. J.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bradshaw, T.; Bucher, M.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, C.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Couchot, F.; Coulais, A.; Cressiot, C.; Crill, B. P.; Crook, M.; de Bernardis, P.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Dole, H.; Doré, O.; Douspis, M.; Dunkley, J.; Efstathiou, G.; Filliard, C.; Forni, O.; Fosalba, P.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; Gispert, R.; Górski, K. M.; Gratton, S.; Griffin, M.; Guyot, G.; Haissinski, J.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Kaplan, J.; Kneissl, R.; Knox, L.; Kunz, M.; Lagache, G.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leroy, C.; Lesgourgues, J.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.; Masi, S.; Matsumura, T.; McAuley, I.; McGehee, P.; Melin, J.-B.; Mercier, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mortlock, D.; Murphy, A.; Nati, F.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Osborne, S.; Pajot, F.; Patanchon, G.; Peacocke, T.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Ponthieu, N.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Saha, R.; Santos, D.; Savini, G.; Schaefer, B. M.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Vibert, D.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.

    2011-12-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4'. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. Corresponding author: F. R. Bouchet, e-mail: bouchet@iap.fr

  15. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  16. KSTAR equilibrium operating space and projected stabilization at high normalized beta

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Jeon, Y. M.; Hahn, S. H.; Eidietis, N.; Evans, T. E.; Yoon, S. W.; Ahn, J.-W.; Kim, J.; Yang, H. L.; You, K.-I.; Bae, Y. S.; Chung, J.; Kwon, M.; Oh, Y. K.; Kim, W.-C.; Kim, J. Y.; Lee, S. G.; Park, H. K.; Reimerdes, H.; Leuer, J.; Walker, M.

    2011-05-01

    Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83 kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the

  17. KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta

    SciTech Connect

    Park, Y. S.; Sabbagh, S. A.; Berkery, J.W.; Bialek, J.; Jeon, Y. M.; Hahn, S. H.; Eidietis, N. W.; Evans, T. E.; Yoon, S. W.; Ahn, Joonwook; Kim, J.; Yang, H. L.; You, K. I.; Soukhanovskii, V. A.; Bae, Y. S.; Chung, J. I.; Kwon, M.; Oh, Y. K.; Kim, W. C.; Kim, J. Y.; Lee, S. G.; Park, H.; Reimerdes, H.; Leuer, J. A.; Walker, M. L.

    2011-01-01

    Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the

  18. Frequency and diversity of CTX-M enzymes among extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates from Caracas, Venezuela.

    PubMed

    Redondo, Carlos; Chalbaud, Adriana; Alonso, Guillermina

    2013-02-01

    CTX-M-type extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have been previously reported in Venezuela. We assessed the frequency and diversity of CTX-M enzymes among 97 ESBL-producing Enterobacteriaceae isolates as well as to establish the genetic relationship among CTX-M producers collected from six hospitals in Caracas. Polymerase chain reaction (PCR) assays identified the bla(CTX-M) genes in 42 isolates (43.3%). The bla(CTX-M-1) group was the most common in Escherichia coli (91 %) and the bla(CTX-M-2) in Klebsiella pneumoniae (56.6%). Presence of bla(CTX-M-1), bla(CTX-M-2), bla(CTX-M-15), and bla(CTX-M-14) was revealed by sequencing analysis. The CTX-M producers were mainly isolated from urine samples (46%). Antimicrobial susceptibility tests showed that a high proportion of CTX-M-producing isolates was resistant to ciprofloxacin and trimethoprim-sulfamethoxazole. Analysis of enterobacterial repetitive intergenic consensus PCR and repetitive extragenic palindromic PCR profiles revealed several genetic clusters between isolates carrying the bla(CTX-M-1) group, while complete genotypic diversity among isolates carrying the bla(CTX-M-2) group was observed. This study documented that CTX-M has achieved a citywide distribution, with the CTX-M-1 group as the most frequent (66.7%). The CTX-M clusters detected suggest that patient-patient transmission may have played an important role in the widespread and high prevalence of the CTX-M-1 group. To our knowledge, this is the first report of the CTX-M-15 in Venezuela.

  19. Effect of high-frequency modes on singlet fission dynamics.

    PubMed

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-28

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  20. Toward high-frequency operation of spin lasers

    NASA Astrophysics Data System (ADS)

    Junior, Paulo E. Faria; Xu, Gaofeng; Lee, Jeongsu; Gerhardt, Nils C.; Sipahi, Guilherme M.; Žutić, Igor

    2015-08-01

    Injecting spin-polarized carriers into semiconductor lasers provides important opportunities to extend what is known about spintronic devices, as well as to overcome many limitations of conventional (spin-unpolarized) lasers. By developing a microscopic model of spin-dependent optical gain derived from an accurate electronic structure in a quantum-well-based laser, we study how its operation properties can be modified by spin-polarized carriers, carrier density, and resonant cavity design. We reveal that by applying a uniaxial strain, it is possible to attain a large birefringence. While such birefringence is viewed as detrimental in conventional lasers, it could enable fast polarization oscillations of the emitted light in spin lasers, which can be exploited for optical communication and high-performance interconnects. The resulting oscillation frequency (>200 GHz) would significantly exceed the frequency range possible in conventional lasers.

  1. Effect of high-frequency modes on singlet fission dynamics

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-01

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  2. MultiView High Precision VLBI Astrometry at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Rioja, María J.; Dodson, Richard; Orosz, Gabor; Imai, Hiroshi; Frey, Sandor

    2017-03-01

    The arrival of the Square Kilometer Array (SKA) will revitalize all aspects of Very Long Baseline Interferometry (VLBI) astronomy at lower frequencies. In the last decade, there have been huge strides toward routinely achieving high precision VLBI astrometry at frequencies dominated by tropospheric contributions, most notably at 22 GHz, using advanced phase-referencing techniques. Nevertheless, to increase the capability for high precision astrometric measurements at low radio frequencies (<8 GHz), an effective calibration strategy of the systematic ionospheric propagation effects that is widely applicable is required. Observations at low frequencies are dominated by distinct direction-dependent ionospheric propagation errors, which place a very tight limit on the angular separation of a suitable phase-referencing calibrator. The MultiView technique holds the key to compensating for atmospheric spatial-structure errors, by using observations of multiple calibrators and two-dimensional interpolation in the visibility domain. In this paper we present the first demonstration of the power of MultiView using three calibrators, several degrees from the target, along with a comparative study of the astrometric accuracy between MultiView and phase-referencing techniques. MultiView calibration provides an order of magnitude improvement in astrometry with respect to conventional phase referencing, achieving ∼100 μas astrometry errors in a single epoch of observations, effectively reaching the thermal noise limit. MultiView will achieve its full potential with the enhanced sensitivity and multibeam capabilities of SKA and the pathfinders, which will enable simultaneous observations of the target and calibrators. Our demonstration indicates that the 10 μas goal of astrometry at ∼1.6 GHz using VLBI with SKA is feasible using the MultiView technique.

  3. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  4. Spatial Structures and Temporal Evolutions of High-Beta Plasma in RT-1

    NASA Astrophysics Data System (ADS)

    Yano, Yoshihisa; Yoshida, Zensho; Morikawa, Junji; Saitoh, Haruhiko; Kobayashi, Masaya; Kawai, Yosuke

    2010-11-01

    The Ring Trap-1 (RT-1) device can sustain an ultra high beta plasma in the artificial magnetosphere which is realized by the superconducting magnet levitated in the vacuum chamber. By optimizing the operation conditions, we have achieved the confinement of the high beta plasma whose diamagnetic signal is 4.0 mWb, which we estimate that the maximum local beta value exceeds 70%. In order to improve the estimate accuracy of the plasma pressure and to evaluate the temporal evolution of the pressure profiles, we have developed a fast Hall probe array in RT-1. In contrast to the existing magnetic measurement located outside the magnetic separatrix on the equatorial plane, the new system is installed from a bottom port of RT-1, close to the plasma boundary, is more sensitive to the pressure of the plasma near the dipole coil. We have observed not only an equilibrium structures of a stably generated plasma but also the time evolution of the pressure profile during the events which involve a change of the confined energy such as the ``afterglow'' or a mode transition.

  5. RESISTIVE WALL STABILIZATION OF HIGH BETA PLASMAS IN DIII-D

    SciTech Connect

    STRAIT,EJ; BIALEK,J; BOGATU,N; CHANCE,M; CHU,MS; EDGELL,D; GAROFALO,AM; JACKSON,GL; JENSEN,TH; JOHNSON,LC; KIM,JS; LAHAYE,RJ; NAVRATIL,G; OKABAYASHI,M; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WALKER,ML

    2002-09-01

    OAK A271 RESISTIVE WALL STABILIZATION OF HIGH BETA PLASMAS IN DIII-D. Recent DIII-D experiments show that ideal kink modes can be stabilized at high beta by a resistive wall, with sufficient plasma rotation. However, the resonant response by a marginally stable resistive wall mode to static magnetic field asymmetries can lead to strong damping of the rotation. Careful reduction of such asymmetries has allowed plasmas with beta well above the ideal MHD no-wall limit, and approaching the ideal-wall limit, to be sustained for durations exceeding one second. Feedback control can improve plasma stability by direct stabilization of the resistive wall mode or by reducing magnetic field asymmetry. Assisted by plasma rotation, direct feedback control of resistive wall modes with growth rates more than 5 times faster than the characteristic wall time has been observed. These results open a new regime of tokamak operation above the free-boundary stability limit, accessible by a combination of plasma rotation and feedback control.

  6. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  7. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  8. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    SciTech Connect

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N.

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  9. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  10. Source Analysis of Beta-Synchronisation and Cortico-Muscular Coherence after Movement Termination Based on High Resolution Electroencephalography

    PubMed Central

    Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan

    2012-01-01

    We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena. We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated. High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems. PMID

  11. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea

    PubMed Central

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C. J.

    2017-01-01

    Abstract Objective: The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Design: Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Study sample: Five participants (eight ears) with extensive high-frequency DRs were tested. Results: Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Conclusions: Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants. PMID:27724057

  12. Ionospheric heating with oblique high-frequency waves

    SciTech Connect

    Field, E.C. Jr.; Bloom, R.M. ); Kossey, P.A. )

    1990-12-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions.

  13. Characteristics of high-frequency precursors to edge-localized activity in the PBX-M tokamak

    SciTech Connect

    Kaye, S.M.; Manickam, J.; Bell, R.; LeBlanc, B.; Kessel, C.; Kugel, H.; Paul, S.; Sesnic, S.; Takahashi, H. . Plasma Physics Lab.); Asakura, N. ); Lau, Y.T. )

    1990-03-01

    High {beta}{sub pol} H-mode plasmas in the PBX-M tokamak often exhibit periods of Edge Localized Mode (ELM) activity, with each ELM preceded by a short duration ({le} 350 {mu}sec) burst of high frequency (200 to 250 kHz) magnetic activity. The burst grows on a time scale of 10 {mu}sec, and disappears just prior to the rapid increase in the D{sub {alpha}} emission that is characteristic of the ELM. The burst of activity is observed at all poloidal locations, with the largest amplitudes seen on the coils on the inner major radius side, indicating that the mode is not outward ballooning in character. Stability calculations indicate that a likely candidate for this high frequency ELM precursor is the pressure-driven ideal kink. 12 refs., 4 figs.

  14. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  15. Maximization of the effective impulse delivered by a high-frequency/low-frequency planetary drill tool.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2011-11-01

    Ultrasonic tools are used for a variety of cutting applications in surgery and the food industry, but when they are applied to harder materials, such as rock, their cutting performance declines because of the low effective impulse delivered by each vibration cycle. To overcome this problem, a technique known as high-frequency/low-frequency (or alternatively, ultrasonic/sonic) drilling is employed. In this approach, an ultrasonic step-horn is used to deliver an impulse to a free mass which subsequently moves toward a drilling bit, delivering the impulse on contact. The free mass then rebounds to complete the cycle. The horn has time between impacts to build significant vibration amplitude and thus delivers a much larger impulse to the free mass than could be delivered if it were applied directly to the target. To maximize the impulse delivered to the target by the cutting bit, both the momentum transfer from the ultrasonic horn to the free mass and the dynamics of the horn/free mass/cutting bit stack must be optimized. This paper uses finite element techniques to optimize the ultrasonic horns and numerical propagation of the stack dynamics to maximize the delivered effective impulse, validated in both cases by extensive experimental analysis.

  16. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  17. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  19. Spectroscopic measurements of high frequency plasma in supercritical carbon dioxide

    SciTech Connect

    Maehara, T.; Mukasa, S.; Takemori, T.; Watanabe, T.; Kurokawa, K.; Toyota, H.; Nomura, S.; Kawashima, A.; Iwamae, A.

    2009-03-15

    Spectroscopic measurements of high frequency (hf) plasma were performed under high pressure conditions (5 and 7 MPa) and supercritical (sc) CO{sub 2} conditions (8-20 MPa). Temperature evaluated from C{sub 2} Swan bands (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) increased from 3600 to 4600 K with an increase in pressure. The first observation of broadening and shifting of the O I line profile (3p {sup 5} P{sub 3,2,1}{yields}3s {sup 5} S{sub 2}{sup 0}) of hf plasma under sc CO{sub 2} conditions was carried out. However, the origin of broadening and the shifting cannot be understood because the present theory explaining them is not valid for such high pressure conditions.

  20. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  1. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  2. Attenuation of High-Frequency Seismic Waves in Eastern Iran

    NASA Astrophysics Data System (ADS)

    Mahood, M.

    2014-09-01

    We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5-25 km. We estimated the quality factor of coda waves ( Q c) and body waves ( Q p and Q s) in the frequency band of 1.5-24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships ( Q = Q o f n ) estimated for the region are Q c = (108 ± 10) f (0.96±0.01), Q p = (50 ± 5) f (1.01±0.04), and Q s = (75 ± 6) f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.

  3. Alfvén acoustic channel for ion energy in high-beta tokamak plasmas.

    PubMed

    Bierwage, Andreas; Aiba, Nobuyuki; Shinohara, Kouji

    2015-01-09

    When the plasma beta (ratio of thermal to magnetic pressure) in the core of a tokamak is raised to values of several percent, as required for a thermonuclear fusion reactor, continuous spectra of long-wavelength slow magnetosonic waves enter the frequency band occupied by continuous spectra of shear Alfvén waves. It is found that these two branches can couple strongly, so that Alfvén modes that are resonantly driven by suprathermal ions transfer some of their energy to sound waves. Since sound waves are heavily damped by thermal ion Landau resonances, these results reveal a new energy channel that contributes to the damping of Alfvénic instabilities and the noncollisional heating of bulk ions, with potentially important consequences for confinement and fusion performance.

  4. Plasma-Based Tunable High Frequency Power Limiter

    NASA Astrophysics Data System (ADS)

    Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios

    2016-09-01

    Power limiters are often employed to protect sensitive receivers from being damaged or saturated by high-power incoming waves. Although wideband low-power limiters based on semiconductor technology are widely available, the options for high-power frequency-selective ones are very few. In this work, we study the application of a gas discharge tube (GDT) integrated in an evanescent-mode (EVA) cavity resonator as a plasma-based power limiter. Plasmas can inherently handle higher power in comparison with semiconductor diodes. Also, using a resonant structure provides the ability of having both lower threshold power and frequency-selective limiting, which are important if only a narrowband high-power signal is targeted. Higher input RF power results in stronger discharge in the GDT and consequently higher electron density which results in larger reflection. It is also possible to tune the threshold power by pre-ionizing the GDT with a DC bias voltage. As a proof of concept, a 2-GHz EVA resonator loaded by a 90-V GDT was fabricated and measured. With reasonable amount of insertion loss, the limiting threshold power was successfully tuned from 8.3 W to 590 mW when the external DC bias was varied from 0 to 80 V. The limiter performed well up to 100 W of maximum available input power.

  5. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  6. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  7. Multi-frequency metal detector in high mineralization

    NASA Astrophysics Data System (ADS)

    Stamatescu, Laurence; Harmer, Gregory; Nesper, Oliver; Bordean, Dorin; Tkachenko, Yuri

    2009-05-01

    The successful detection and discrimination of mines is very difficult in areas of high soil mineralization. In these areas, the soil can make a significant contribution to the received signal that causes false detections or masks the true mine response. To address this problem, Minelab has developed a continuous wave (CW) multi-frequency digital detector (MFDD). It transmits four frequencies (between 1 kHz and 45 kHz) and each has a high dynamic range that approaches 120 dB. The mineralized soil with high magnetic susceptibility affects the characteristics of the sensor-head, in particular the inductance of the transmitting and receiving windings. These in turn affect the front-end electronics and measuring circuits and can lead to excessive ground noise that makes detection difficult. Minelab has modeled the effect that the soil has on the sensor-head and developed methods to monitor these effects. By having a well calibrated detector, which is demonstrated by the tight agreement of raw ground signals with theoretical ground models, the tasks of ground balance and discrimination become much more reliable and robust.

  8. [High-frequency transistor tract for UHF therapy device].

    PubMed

    Tamarchak, D Ia

    1998-01-01

    The paper deals with the specific features of construction of a common circuit and individual units of high-frequency transistor tracts for physiotherapeutic UHF apparatuses whose design is a possible way of conversion of radioelectron equipment. The design of UHF tracts gives rise to some radio engineering problems due to the low output resistance of bipolar transistors and to the operational characteristics of physiotherapeutic equipment and, as a result, the load of the tract is a two-conductor long line loaded with complex resistance whose active part changes slightly and the reactive one varies very greatly. The structure of a high-frequency, which transfers power from the generator with external excitement to the active part of complex load by changing its reactive part in the wide range, was analyzed. It is shown that for reliable operation of the UHF apparatus, its tract should have a multichannel structure with subsequent summation of the power and automatic compensation of the reactive component of alternating load. This provides a measuring mode for the power connected to the patient. The tract structure in question may serve the basis for the designing transistor physiotherapy apparatuses of average and high power (Poutput = 50-400 W).

  9. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  10. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  11. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  12. High frequency atmospheric gravity wave damping in the mesosphere

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Liu, A. Z.; Li, F.; Tang, J.

    2003-09-01

    Correlative measurements of temperature and winds by Na lidar and brightness in OH and O 2 Atmospheric band airglow have been made at Albuquerque, NM and Maui, HI for a study of high frequency (period less than 30 minutes) Atmospheric Gravity Waves. Wave studies from four nights have been made and the correlative information describes the intrinsic wave properties with altitude, their damping characteristics, and resulting accelerations to the large scale circulation in the 85-100 km altitude region. Generally, saturated to super-saturated conditions were observed below 95 km. Above this altitude, they were less saturated to freely propagating.

  13. Acoustic trapping with a high frequency linear phased array

    PubMed Central

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array. PMID:23258939

  14. Fluctuation patterns in high-frequency financial asset returns

    NASA Astrophysics Data System (ADS)

    Preis, T.; Paul, W.; Schneider, J. J.

    2008-06-01

    We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.

  15. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  16. Observations and modeling of dynamically triggered high frequency burst events

    NASA Astrophysics Data System (ADS)

    Fischer, Adam David

    2008-10-01

    A series of high-frequency (>20Hz) bursts of energy are observed on strong motion records during the 1999 Chi-Chi, Taiwan Earthquake Mw7.6. We hypothesized that these bursts originated near the individual stations as small, shallow events that were dynamically triggered by the P- and S-waves generated by the Chi-Chi mainshock. These bursts were originally interpreted as a mainshock source signal by Chen et al., [2006] but our observations of events on strong motion records recorded at stations up to 170 km from the mainshock epicenter is consistent with the local triggering hypothesis. If the bursts originated on the Chi-Chi fault plane, as hypothesized by Chen et al. [2006] based on their analysis of recordings within 20Km from the Chelungpu fault, then they should not be observable at this distance assuming any reasonable value of crustal attenuation. The bursts on all strong motion stations in the Taiwan Central Weather Bureau network (TWCB) were identified using a numerical algorithm approach. This data set was analyzed in the context of local dynamic triggering which resulted in a stress threshold for triggering in the range 0.03 to 0.05 MPa for S-wave triggering and 0.0013 to 0.0033 MPa for P-wave triggering, consistent with prior observations of surface wave triggering. In an attempt to better characterize the nature of high frequency bursts, similar analysis of strong motion records was performed on the records of the 2004 Parkfield, CA earthquake (Mw6) at the USGS UPSAR array. The average array spacing was relatively small compared to the instruments in Taiwan so that further constraint of the location of bursts was possible. Bursts were found to be incoherent even for stations spaced 40m apart, suggesting that they occur in a region approximately 20m from the stations. The triggering threshold was found to be ~0.02Mpa, consistent with the observations from Taiwan. To test the possibility of nucleating unstable slip events in the very shallow crust we

  17. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  18. The optimization of super-high resolution frequency measurement techniques based on phase quantization regularities between any frequencies.

    PubMed

    Li, Zhiqi; Zhou, Wei; Zhou, Hui; Zhang, Xueping; Zhao, Jie

    2013-02-01

    Step phase quantization regularity between different nominal frequency signals is introduced in this paper. Based on this regularity, an optimized high resolution frequency measurement technique is presented. The key features and issues of phase quantization characteristics and measurements are described. Based on the relationship between the same or multiple nominal signals with a certain differences, the resolution of frequency measurements is developed and the range is widened. Several measurement results are provided to support the concepts with experimental evidence. The resolution of frequency measurement can reach 10(-12) (s(-1)) over a wide range or higher for specific frequency signals.

  19. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  20. Investigation of excited states in 47Ca through a high-statistics beta-decay study

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; Griffin Collaboration

    2015-10-01

    Recent developments in nuclear many-body calculation methods have extended the application of ab initio interactions to the calcium isotopes (e.g. Refs.). Detailed nuclear data for these isotopes are necessary to evaluate the many-body calculation methods and to test the predictive power of the interactions. Transfer reactions from 48Ca have identified many excited states of 47Ca, but only four states have been identified in previous beta-decay experiments. High-statistics beta-decay studies using modern detection systems can provide detailed information on level energies, branching ratios, and spin/parity assignments, while comparison to other population methods can yield information about the structure of these states. A recent experiment at TRIUMF-ISAC used the GRIFFIN spectrometer to investigate the levels populated by beta decay in more detail. The decay scheme has been considerably extended and angular correlations between cascading gamma-ray transitions allow spin and parity assignments to be made for some of the observed excited states. An overview of the experimental apparatus as well as a discussion of the results from preliminary analysis will be presented.

  1. Alpha plus beta annealed and aged Ti-15 Mo alloy for high strength implant applications.

    PubMed

    Disegi, John A; Roach, Michael D; McMillan, Rod D; Shultzabarger, Brian T

    2016-07-04

    Management of femur fractures requires titanium alloy implants that provide a good combination of static strength and ductility plus sufficient high cycle fatigue strength to resist repetitive loading. A research program was initiated to determine whether aging treatments could increase the strength of alpha + beta Ti-15Mo while maintaining acceptable tensile ductility. A pilot heat treating study indicated the best combination of strength and ductility was obtained using an α + β annealing temperature of 705°C ± 10°C followed by an aging treatment of 482°C ± 10°C. EBSD data for four suppliers revealed that the alpha phase ratios ranged from 16.3% to 18.6% and the beta phase ratios ranged from 81.4% to 83.7%. Mean beta grain size diameters ranged between 1.42 and 1.78 µm. Tensile testing qualification data from four suppliers was statistically analyzed and reviewed. Minimum reproducible tensile values were established and incorporated into ASTM F2066-13 implant material standard. Cantilever fatigue testing was performed with proximal femoral nail implants that were fabricated into fully finished implant constructs. Fatigue results for 125°, 130°, and 135° implant constructs met the acceptance criteria regarding the fatigue runout load limits and failure modes that were identified. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  2. Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter.

    PubMed

    Burenkov, Ivan A; Gerrits, Thomas; Lita, Adriana; Nam, Sae Woo; Krister Shalm, L; Polyakov, Sergey V

    2017-01-23

    We demonstrate an efficient and inherently ultra-low noise frequency conversion via a parametric sum frequency generation. Due to the wide separation between the input and pump frequencies and the low pump frequency relative to the input photons, the upconversion results in only ≈100 background photons per hour. To measure such a low rate, we introduced a dark count reduction algorithm for an optical transition edge sensor.

  3. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  4. High-frequency phenomena in magnetic recording and inductive devices

    NASA Astrophysics Data System (ADS)

    Jury, Jason Charles

    At high frequencies (>1 GHz), ferromagnetic materials and associated electronic circuitry show interesting and sometimes undesirable behavior. In this dissertation, we examine high-frequency effects in magnetic recording and magnetic inductive devices. We analyze "impedance profiling" of the disk drive interconnect, as a way of shaping the write current waveform. This proves to be useful under somewhat limited conditions (for write head with low impedance, characteristic time of the shaped waveform less than the one-way interconnect propagation delay). We then analyze a buffer amplifier (consisting of a single transistor in an emitter-follower configuration) as a means of improving the electronic signal to noise ratio (SNR) associated with high-resistance read sensors. We develop and utilize a "matched filter bound" SNR for assessing the performance of the disk drive read-path. For a hypothetical recording system at an areal density of 1 terabit/in2, the buffer amplifier improves SNR anywhere from 0.5 dB for 670 Mb/s up to 1 dB for 4.17 Gb/s. We then present measurements and quantitative analysis for magnetic fluctuation noise in read sensors. The analysis is enabled by rigorous calibration of the noise measurement setup. We are able to explain the behavior of the mag-noise (primary) resonance frequency versus bias current and externally-applied field, by using a micromagnetic model (NIST-OOMMF) where we also account for sensor heating and associated reduction in free-layer and biasing magnet saturation moment. We then analyze the behavior of multi-domain magnetic materials and the associated inductive device behaviors. First we utilize micromagnetic modeling to calculate the spin-resonance modes associated with multi-domain films. We find agreement in trend between the modeling results and experimentally-observed sub-FMR permeability resonances, particularly that both model and experiment predict a power-law dependence of frequency on the ratio of thickness to

  5. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  6. Investigation of instabilities and rotation alteration in high beta KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Ko, W. H.; Bak, J. G.; Berkery, J. W.; Bialek, J. M.; Choi, M. J.; Hahn, S. H.; In, Y. K.; Jardin, S. C.; Jeon, Y. M.; Kim, J.; Kwak, J. G.; Lee, S. G.; Oh, Y. K.; Park, H. K.; Yoon, S. W.; Yun, G. S.

    2017-01-01

    H-mode plasma operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) device has been expanded to significantly surpass the ideal MHD no-wall beta limit. Plasmas with high normalized beta, βN, up to 4.3 have been achieved with reduced plasma internal inductance, li, to near 0.7, exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. Pulse lengths at maximum βN were extended to longer pulses by new, more rapid control. The stability of the observed m/n = 2/1 tearing mode that limited the achieved high βN is computed by the M3D-C1 code, and the effect of sheared toroidal rotation to tearing stability is examined. As a method to affect the mode stability in high βN plasmas, the non-resonant alteration of the rotation profile by non-axisymmetric magnetic fields has been used, enabling a study of the underlying neoclassical toroidal viscosity (NTV) physics and stability dependence on rotation. Non-axisymmetric field spectra were applied using in-vessel control coils (IVCCs) with varied n = 2 field configurations to alter the plasma toroidal rotation profile in high beta H-mode plasmas and to analyze their effects on the rotation. The rotation profile was significantly altered with rotation reduced by more than 60% without tearing activity or mode locking. To investigate the physical characteristics and scaling of the measured rotation braking by NTV, changes in the rotation profile are analytically examined in steady state. The expected NTV scaling with the square of the normalized applied field perturbation agrees with the measured profile change δB2.1-2.3. The NTV is also found to scale as Ti2.1-2.4, in general agreement with the low collisionality "1/ν" regime scaling of the NTV theory (TNTV-(1/ν) ∝ Ti2.5).

  7. Low-power decoupling at high spinning frequencies in high static fields.

    PubMed

    Weingarth, Markus; Bodenhausen, Geoffrey; Tekely, Piotr

    2009-08-01

    We demonstrate that heteronuclear decoupling using a Phase-Inverted Supercycled Sequence for Attenuation of Rotary ResOnance (PISSARRO) is very efficient at high spinning frequencies (nu(rot)=60kHz) and high magnetic fields (900MHz for protons at 21T) even with moderate radio-frequency decoupling amplitudes (nu(1)(I)=15kHz), despite the wide range of isotropic chemical shifts of the protons and the increased effect of their chemical shift anisotropy.

  8. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    SciTech Connect

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for the contribution of

  9. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  10. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  11. Mapping High-Frequency Waves in the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Viberg, H.; Khotyaintsev, Y. V.; Vaivads, A.; Andre, M.

    2012-12-01

    We study the occurrence of high frequency waves, between the electron cyclotron and plasma frequency, in a reconnection diffusion region in the Earth's magnetotail at a distance of about 19 RE from the Earth. Most of the wave activity is concentrated in the separatrix regions, with no significant activity observed in the inflow and outflow regions. Different types of waves are observed at the outer part of the separatrix region depending on the plasma characteristics in the inflow region. For the cold ~100 eV lobe plasma in the inflow we observe Langmuir waves which are generated by the bump-on-tail instability of a several keV electron beam propagating in the cold background plasma. For the hotter ~1 keV inflow plasma, which is similar to the plasmasheet population, electron cyclotron waves are observed in this region, most probably generated by low energy (several tens of eV) electron beams. Deeper into the separatrix region (closer to the current sheet), we observe mostly electrostatic solitary waves (ESWs) in association with two counter-streaming electron beams: low energy beam towards the X-line, and high energy beam away from the X-line. Observations of HF waves provide important information about electron dynamics in the diffusion region, and allow for precise mapping of kinetic boundaries.

  12. High-frequency ultrasonic arrays for ocular imaging

    NASA Astrophysics Data System (ADS)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  13. Optoacoustics for high-frequency ultrasonic imaging and manipulation

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew; Buma, Takashi

    2004-05-01

    Pulsed lasers can generate ultrasound through thermoelastic expansion of a thin optical absorber. By carefully designing the optical absorbing structure, efficient transduction is possible for a number of biomedical applications including high-frequency imaging, microfluidics, and sensing. The major key for efficient optoacoustic transduction in biomedical applications is to engineer a nearly perfect optical absorber possessing a large coefficient of thermal expansion with acoustic properties well matched to a water medium. We have obtained an optoacoustic efficiency increase of over 20 dB compared to conventional approaches using a thin, optically absorbing layer consisting of polydimethylsiloxane (PDMS) and carbon black spin coated onto a clear PDMS substrate. This structure has been extensively analyzed both experimentally and analytically and seems to provide opportunities for a wide range of optoacoustic devices. In this talk we show how PDMS-based optoacoustic transduction can be used for high-frequency imaging using longitudinal waves and acoustic tweezing using Lamb waves. The basic mechanism of optoacoustic transduction will be described, and specific devices will be presented.

  14. Experimental laboratory system to generate high frequency test environments

    SciTech Connect

    Gregory, D.L.; Paez, T.L.

    1991-01-01

    This is an extension of two previous analytical studies to investigate a technique for generating high frequency, high amplitude vibration environments. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. These analytical studies predicted that test environments with an energy content exceeding 10 kHz could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 40 kHz. Results for sinusoidal shaker inputs tuned to create chaotic impact response are shown along with the responses due to random vibration shaker inputs. The experiments and results are discussed. 4 refs., 5 figs.

  15. High-frequency oscillations and mesial temporal lobe epilepsy.

    PubMed

    Lévesque, Maxime; Shiri, Zahra; Chen, Li-Yuan; Avoli, Massimo

    2017-01-20

    The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.

  16. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  17. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  18. Development oF High Frequency Electromagnetic Mapping (HFEM) technology

    NASA Astrophysics Data System (ADS)

    Jesch, R. L.

    1982-04-01

    High frequency electromagnetic mapping (HFEM) techniques were developed for evaluating rubblized oil shale in the cold retort state in the modified in situ process. This technology development is also applicable for using HFEM techniques for diagnosing, monitoring, controlling and evaluating modified in situ retorts after they are ignited. The baseline data work required to design a high temperature sample holder and experiments for determining the EM properties of oil shale samples at elevated temperatures (200 to 500 C) are described. A theoretical approach is given for modeling oil shale retorts for electromagnetic sensing techniques by a spheroid with an average dielectric constant along with numerical results. Finally, the measurement results are given for the spent and raw shale samples that were obtained from portions of the ten half score samples plus the results of the electromagnetic transmission measurements taken on oil shale samples.

  19. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  20. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  1. High-frequency health data and spline functions.

    PubMed

    Martín-Rodríguez, Gloria; Murillo-Fort, Carlos

    2005-03-30

    Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.

  2. High-frequency EPR study of crude oils

    NASA Astrophysics Data System (ADS)

    Volodin, M. A.; Mamin, G. V.; Izotov, V. V.; Orlinskii, S. B.

    2013-12-01

    Four different samples of crude oil were studied by means of high-frequency W-band (94 GHz) electron paramagnetic resonance (EPR) spectroscopy with the aim to develop new methods of crude oil quality control. High spectral resolution of W-band allowed to avoid an overlap of spectra contributors. The ratio K between the integral intensity of the low-field EPR component of the vanadyl complexes to that of free radical line was chosen as an attribute of each sample. Using the K-parameters and EPR spectra simulations the crude oil leaking between adjacent horizons is shown. Pulsed EPR experiments allowed detecting free radicals signals only. It is demonstrated that the extracted transverse relaxation time could be used as an additional parameter which characterizes the origin of the crude oil and nature of the oil paramagnetic centers.

  3. Testing the High Turbulence Level Breakdown of Low-Frequency Gyrokinetics Against High-Frequency Cyclokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Deng, Zhao

    2014-10-01

    Gyrokinetic simulations of L-mode near edge tokamak plasmas with the GYRO code underpredict both the transport and the turbulence levels by 5 to 10 fold, which suggest either some important mechanism is missing from current gyrokinetic codes like GYRO or the gyrokinetic approximation itself is breaking down. It is known that GYRO drift-kinetic simulations with gyro-averaging suppressed recover most of the missing transport. With these motivations, we developed a flux tube nonlinear cyclokinetic code rCYCLO with the parallel motion and variation suppressed. rCYCLO dynamically follows the high frequency ion gyro-phase motion (with no averaging) which is nonlinearly coupled into the low frequency drift-waves thereby interrupting and possibly suppressing the gyro-averaging. By comparison with the corresponding gyrokinetic simulations, we can test the conditions for the breakdown of gyrokinetics. rCYCLO nonlinearly couples ∇B driven ion temperature gradient (ITG) modes and collisional fluid electron drift modes to ion cyclotron (IC) modes. As required, rCYCLO cyclokinetic transport recovers gyrokinetics at high relative ion cyclotron frequency (Ω*) and low turbulence levels. However, because the IC modes are stable and act as a turbulence sink, we have found that at high turbulence levels and low-Ω* cyclokinetic transport is lower (not higher) than gyrokinetic transport. Work is in progress with unstable IC modes to explore the possibility of driving cyclokinetic transport higher than gyrokinetic transport. Supported by the CSC, NSFC No. 1126114032, No. 10975012 ITER-CN No. 2013GB112006 and the US DOE under DE-FG02-95ER54309.

  4. High Frequency Monitoring System of Groundwater Level in Sheliao

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chia, Y.; Chuang, P.

    2012-12-01

    Long-term groundwater monitoring had been executed since 1950s in Taiwan. In 1980s, with improving technology, various types of automatic reorders of groundwater level had become the most widely used equipment in groundwater monitoring. Among these devices, submersible pressure transducer is frequently selected to monitor groundwater level for its high frequency and high resolution. In this study, it is chosen to monitor groundwater level change in Sheliao well. On the other hand, factors which might influence the performance of recorded data were excluded in the early stage of establishment as well. And the final approach is to achieve a comprehensive understanding of the minor groundwater level change of Sheliao well, and specify its connection between precipitation, atmosphere, earth tide and earthquake. The Shelia well is located in central Taiwan, constructed in an unconfined aquifer, recorded hourly groundwater level change since 1997. We tried to establish a 1 Hz sampling rate pressure-sensing system in 2011 June. The groundwater level was monitored in a resolution of 2-mm. According to the records, several small-scale of fluctuations were observed and were all correlate well to the earthquakes. However, during the time that no earthquake occurred, some short-term fluctuations were still occurred, performed in a different pattern to those induced by earthquakes. After further investigation, those anomalous fluctuations of groundwater level were found corresponded to precipitation quite well. The fluctuations were observed under some specific condition, which involving different range of accumulated precipitation, rainfall intensity, and rainfall duration. The result implied groundwater level in Sheliao well changes with loading effect result from runoff on the ground surface and infiltration. And the earth tide lead to regularly change was also observed. We conclude that Sheliao can be characterized as a partial-confined aquifer with high frequency and high

  5. High-beta, steady-state hybrid scenario on DIII-D

    DOE PAGES

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less

  6. High-beta, steady-state hybrid scenario on DIII-D

    SciTech Connect

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.

  7. High-beta, steady-state hybrid scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.

    2016-01-01

    The potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor  ⩾1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to  ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A 0D physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an advanced tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.

  8. Hall effect and fine structures in magnetic reconnection with high plasma {beta}

    SciTech Connect

    Jin, S.P.; Yang, H.A.; Wang, X.G.

    2005-04-15

    Magnetic reconnection with various plasma {beta} (the ratio of plasma pressure to the magnetic pressure) is studied numerically using a 2.5 dimensional Hall magnetohydrodynamics (MHD) code developed from a multistep implicit scheme. The initial state of the Hall MHD simulation is an equilibrium Harris sheet with L{sub c}=0.5d{sub i} (where L{sub c} is the half-width of the equilibrium current layer and d{sub i} is the ion inertial length) and a zero guide field (i.e., B{sub y0}=0 at t=0). Driven by a constant boundary inflow a quasisteady fast reconnection occurs in the plasma with a low uniform resistivity. The out-of-plane magnetic field component B{sub y} is then spontaneously generated and its quadrupolar structure is shown around the X point. It is demonstrated by the comparing studies that the reconnection dynamics is controlled by the Hall effect and the effect of scalar electron pressure gradient is negligible in the generalized Ohm's law. It is also found that the openness of the magnetic separatrix angle and associated quadrupolar B{sub y} structure is enlarged as {beta} increases. When {beta}>2.0 fine structures of B{sub y} contours with reversed sign emerge. The numerical results indicate that the variations in electron velocity V{sub e} are greater than those in ion velocity V{sub i} and the decoupling of electron and ion occurs in larger scale lengths than d{sub i} as {beta} increases. Clearly, the reserve current, which is associated with the relative motion between electrons and ions, generates the fine structures of B{sub y} contours in the outflow region. Then the corresponding profile of B{sub y} component exhibits a static whistler wave signature. Enhanced wave activities observed during a Cluster crossing of the high-{beta} exterior cusp region [Y. Khotyaintsev, A. Vaivads, Y. Ogawa, B. Popielawska, M. Andre, S. Buchert, P. Decreau, B. Lavraud, and H. Reme, Ann. Geophys. 22, 2403 (2004)] might be related to the Hall effects of magnetic

  9. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-07-22

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  10. Limiter stabilization of high-beta external kink-tearing modes

    SciTech Connect

    Lee, J.K.; Ohyabu, N.

    1984-12-01

    The stabilizing effects of finite-width poloidal limiters, toroidal limiters, and general mushroom limiters are examined for high-beta finite resistivity tokamak plamas in free boundary. When the plasma pressure and resistivity are small, a poloidal limiter is effective in reducing the growth rate even with a small limiter size, while a toroidal limiter requires a large size for a comparable effect. As the plasma pressure or resistivity increases, a toroidal limiter becomes more effective in reducing the growth rate than a poloidal limiter of the same size. A small optimized mushroom limiter might have a stabilizing effect similar to a conducting shell.

  11. High-frequency homogenization for travelling waves in periodic media

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  12. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  13. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  14. Ion-scale spectral break of solar wind turbulence at high and low beta.

    PubMed

    Chen, C H K; Leung, L; Boldyrev, S; Maruca, B A; Bale, S D

    2014-11-28

    The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see text] and the perpendicular ion plasma beta is typically β⊥i∼1. To address this, several exceptional intervals with β⊥i≪1 and β⊥i≫1 were investigated, during which these scales were well separated. It was found that for β⊥i≪1 the break occurs at di and for β⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.

  15. Ion-scale spectral break of solar wind turbulence at high and low beta

    PubMed Central

    Chen, C H K; Leung, L; Boldyrev, S; Maruca, B A; Bale, S D

    2014-01-01

    The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since and the perpendicular ion plasma beta is typically β⊥i∼1. To address this, several exceptional intervals with β⊥i≪1 and β⊥i≫1 were investigated, during which these scales were well separated. It was found that for β⊥i≪1 the break occurs at di and for β⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets. PMID:26074642

  16. Ion-scale spectral break of solar wind turbulence at high and low beta

    SciTech Connect

    Chen, C. H. K.; Leung, L.; Boldyrev, S.; Maruca, B. A.; Bale, S. D.

    2014-11-25

    Here, the power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since dii/ √ β⊥i and the perpendicular ion plasma beta is typically β⊥i~1. To address this, several exceptional intervals with β⊥i<<1 and β⊥i>>1 were investigated, during which these scales were well separated. It was found that for β⊥i<<1 the break occurs at di and for β⊥i>>1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.

  17. Ion-scale spectral break of solar wind turbulence at high and low beta

    DOE PAGES

    Chen, C. H. K.; Leung, L.; Boldyrev, S.; ...

    2014-11-25

    Here, the power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since di=ρi/ √ β⊥i and the perpendicular ion plasma beta is typically β⊥i~1. To address this, several exceptional intervals with β⊥i<<1 and β⊥i>>1 were investigated, during which these scales were well separated. Itmore » was found that for β⊥i<<1 the break occurs at di and for β⊥i>>1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.« less

  18. Study of high-beta pressure-driven modes in PDX

    SciTech Connect

    McGuire, K.; Bell, M.; Bitter, M.

    1982-10-01

    A new pressure driven instability has been observed in PDX neutral beam heated discharges. It occurs for <BETA/sub T/>q greater than or equal to 0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20 to 40% of the beam heating power may be lost. The instability occurs in repetitive oscillatory bursts of < 1 msec duration at 1 to 6 msec intervals. It has been dubbed the fishbone instability from its characteristic signature on the Mirnov coils. From the soft x-ray detector array, it is identified as an m = 1 mode; the Mirnov coil signals are synchronous with it but indicate m greater than or equal to 2. The oscillation frequency within a fishbone burst is approx. 10 kHz, but precursors at 50 to 150 kHz are sometimes observed. Much higher frequency osciallations, up to approx. 500 MHz, have been observed as well.

  19. Localization of finite frequency inertial Alfvén wave and turbulent spectrum in low beta plasmas

    NASA Astrophysics Data System (ADS)

    Rinawa, M. L.; Sharma, R. P.; Modi, K. V.

    2015-05-01

    In the present paper, we have investigated nonlinear interaction of inertial Alfvén wave with ion acoustic wave, for low β-plasma ( β≪ m e / m i ) where β is the thermal to magnetic pressure ratio. We have developed the dynamical equation of inertial Alfvén wave by considering the finite frequency as well as finite ion temperature correction. The dynamical equation of ion acoustic wave, propagating at an angle with respect to the background magnetic field, in the presence of ponderomotive nonlinearity due to inertial Alfvén wave is also derived. Numerical simulation has been carried out to study the effect of nonlinear coupling between these waves which results in the formation of localized structures and turbulent spectrum, applicable to auroral region. The result reveals that the localized structures become complex and intense in nature (quasi-steady state). Further, we have studied the turbulent spectrum which follows spectral index (˜ k -4.46) at smaller scales. Relevance of the obtained results has been shown with the observations reported by various spacecrafts like Hawkeye and HEOS-2 (Highly Eccentric Orbiting Satellite-2).

  20. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  1. Compact microwave cavity for high performance rubidium frequency standards

    NASA Astrophysics Data System (ADS)

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K.

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE011-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10-13 τ-1/2. The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  2. Compact microwave cavity for high performance rubidium frequency standards.

    PubMed

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE(011)-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10(-13) τ(-1/2). The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  3. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  4. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  5. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  6. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  7. High-frequency modes of a magnetic antivortex

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Riley, Grant; Haldar, Arabinda; Buchanan, Kristen

    2015-03-01

    Magnetic vortices have attracted considerable attention in recent years not only because of their interesting physical properties but also due to their potential for applications. The magnetic antivortex (AV), the topological counterpart of the magnetic vortex, possesses similarly rich dynamics and its spin configuration may prove advantageous for spin-wave-based devices, however, it has not been studied as intensely. Recent experiments show that AV's will form naturally at the intersections of patterned pound-key-like nanostructures that are magnetically soft. Here we present micromagnetic simulations of the dynamics of AV's in these structures. The simulations show that pound-key-like structures made of 30-nm thick Permalloy exhibit a complex dynamic profile that includes a number of discrete high-frequency modes (>1 GHz). Spatial maps of the dynamic modes that were constructed using Fourier analysis of the simulation results show modes that are in similar in character to the radial and azimuthal modes observed for magnetic vortices but the spin dynamics also differ from those of a vortex due to the presence of the elongated nanowires in the pound-key-like structure. The frequencies of the observed modes tend to decrease with increasing sample size, however, the general features of the modes remains relatively unaffected by the structure size. The simulations will be compared to Brillouin Light Scattering (BLS) experimental results. This work was supported by the US DOE-BES Award #ER 46854.

  8. Digital avionics susceptibility to high energy radio frequency fields

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1988-01-01

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  9. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  10. Fault-zone attenuation of high-frequency seismic waves

    NASA Astrophysics Data System (ADS)

    Blakeslee, Sam; Malin, Peter; Alvarez, Marcos

    1989-11-01

    We have developed a technique to measure seismic attenuation within an active fault-zone at seismogenic depths. Utilizing a pair of stations and pairs of earthquakes, spectral ratios are performed to isolate attenuation produced by wave-propagation within the fault-zone. This empirical approach eliminates common source, propagation, instrument and near-surface site effects. The technique was applied to a cluster of 19 earthquakes recorded by a pair of downhole instruments located within the San Andreas fault-zone, at Parkfield California. Over the 1-40 Hz bandwidth used in this analysis, amplitudes are found to decrease exponentially with frequency. Furthermore, the fault-zone propagation distance correlates with the severity of attenuation. Assuming a constant Q attenuation operator, the S-wave quality factor within the fault-zone at a depth of 5-6 kilometers is 31 (+7,-5). If fault-zones are low-Q environments, then near-source attenuation of high-frequency seismic waves may help to explain phenomenon such as fmax. Fault-zone Q may prove to be a valuable indicator of the mechanical behavior and rheology of fault-zones. Specific asperities can be monitored for precursory changes associated with the evolving stress-field within the fault-zone. The spatial and temporal resolution of the technique is fundamentally limited by the uncertainty in earthquake location and the interval time between earthquakes.

  11. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  12. Why high-frequency pulse tubes can be tipped

    SciTech Connect

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  13. High-frequency stimulation of excitable cells and networks.

    PubMed

    Weinberg, Seth H

    2013-01-01

    High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse. Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate, increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the influence of HF stimulation on neural networks.

  14. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  15. Formation of High-Beta Plasma and Stable Confinement of Toroidal Electron Plasma in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, Haruhiko

    2010-11-01

    The Ring Trap 1 (RT-1) device is a laboratory magnetosphere generated by a levitated superconducting magnet. The goals of RT-1 are to realize stable formation of ultra high-beta plasma suitable for burning advanced fusion fuels, and confinement of toroidal non-neutral plasmas including antimatter particles. RT- 1 has produced high-beta plasma in the magnetospheric configuration. The effects of coil levitation and geomagnetic field compensation [Y. Yano et al., Plasma Fusion Res. 4, 039] resulted drastic improvements of the plasma properties, and a maximum local beta value exceeded 70%. Because plasma is generated by electron cyclotron resonance heating (ECH) in the present experiment, the plasma pressure is mainly due to hot electrons, whose bremsstrahlung was observed with an x-ray CCD camera. The pressure profiles have rather steep gradient near the superconducting coil in the strong field region. The decay rates of magnetic probe and interferometer signals have different time constants, suggesting multiple temperature components. The energy confinement time estimated from the input RF power and stored magnetic energy is on the order of 1s, which is comparable to the decay time constant of the density of hot electron component. Pure electron plasma experiments are also conducted in RT-1. Radial profiles of electrostatic potential and electron density showed that the plasma rigidly rotates in the toroidal direction in the stable confinement phase. Long time confinement of toroidal non- neutral plasma for more than 300s and inward particle diffusion to strong field regions, caused by the activation of the diocotron (Kelvin-Helmholtz) instability, have been realized [Z. Yoshida et al., Phys. Rev. Lett. 104, 235004].

  16. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning.

    PubMed

    Engebretsen, Kristin M; Kaczmarek, Kathleen M; Morgan, Jenifer; Holger, Joel S

    2011-04-01

    INTRODUCTION. High-dose insulin therapy, along with glucose supplementation, has emerged as an effective treatment for severe beta-blocker and calcium channel-blocker poisoning. We review the experimental data and clinical experience that suggests high-dose insulin is superior to conventional therapies for these poisonings. PRESENTATION AND GENERAL MANAGEMENT. Hypotension, bradycardia, decreased systemic vascular resistance (SVR), and cardiogenic shock are characteristic features of beta-blocker and calcium-channel blocker poisoning. Initial treatment is primarily supportive and includes saline fluid resuscitation which is essential to correct vasodilation and low cardiac filling pressures. Conventional therapies such as atropine, glucagon and calcium often fail to improve hemodynamic status in severely poisoned patients. Catecholamines can increase blood pressure and heart rate, but they also increase SVR which may result in decreases in cardiac output and perfusion of vascular beds. The increased myocardial oxygen demand that results from catecholamines and vasopressors may be deleterious in the setting of hypotension and decreased coronary perfusion. METHODS. The Medline, Embase, Toxnet, and Google Scholar databases were searched for the years 1975-2010 using the terms: high-dose insulin, hyperinsulinemia-euglycemia, beta-blocker, calcium-channel blocker, toxicology, poisoning, antidote, toxin-induced cardiovascular shock, and overdose. In addition, a manual search of the Abstracts of the North American Congress of Clinical Toxicology and the Congress of the European Association of Poisons Centres and Clinical Toxicologists published in Clinical Toxicology for the years 1996-2010 was undertaken. These searches identified 485 articles of which 72 were considered relevant. MECHANISMS OF HIGH-DOSE INSULIN BENEFIT. There are three main mechanisms of benefit: increased inotropy, increased intracellular glucose transport, and vascular dilatation. EFFICACY OF HIGH

  17. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  18. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Yangwei; Xu, Xin; Liu, Chengze

    2015-09-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.

  19. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  20. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  1. Influence of pore roughness on high-frequency permeability

    NASA Astrophysics Data System (ADS)

    Cortis, Andrea; Smeulders, David M. J.; Guermond, Jean Luc; Lafarge, Denis

    2003-06-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev. Lett. 61, 1591 (1988)] and Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)]. For wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension proposed by Achdou and Avellaneda [Phys. Fluids A 4, 2561 (1992)]. The dependency of the nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations for various apex angles in two-dimensional channels confirmed this theoretical dependency, which is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found that the contribution of the singularities does not alter the parameters of the classical theory by Johnson et al..

  2. Diffusion coefficient in hydrogel under high-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Akira; Tanaka, Kei; Kumata, Tatsuya; Watanabe, Yoshiaki; Miyata, Shogo; Furukawa, Katsuko; Ushida, Takashi

    2007-03-01

    Modulating hydrogel properties by external stimuli can be applied for drug delivery system. For example, ultrasound can enhance drug release from hydrogel by the mechanism which is not fully understood. We measured diffusion coefficient in hydrogel under high-frequency ultrasound to understand mass transport property. To estimate diffusion coefficient, FRAP (fluorescence recovery after photobleaching) technique was applied with time-lapse fluorescence microscopy and we analyzed fluorescence recovery after photobleaching of FITC-dextran (4˜40 kDa) which was fully fused in agarose gel (1˜3 %). As a result, diffusion coefficient was altered when agarose gel was sonicated by 1MHz ultrasound with 400kPa (peak-peak). We discussed several possible underlying mechanisms such as cavitation, heat and phase transition with extended experimental data.

  3. High-frequency characterization and modeling of single metallic nanowires

    NASA Astrophysics Data System (ADS)

    Hsu, Chuan-Lun; Ardila, Gustavo; Benech, Philippe

    2013-07-01

    The transmission line characteristics of an individual aluminum metallic nanowire up to 100 GHz are presented in this paper. We have built a reliable framework for characterizing such nanowires using a specially designed coplanar waveguide platform. We systematically estimate the pad parasitics, contact impedance and transmission line parameters based on an equivalent circuit model and cascade-based de-embedding theory. This is the first time that such external parasitic elements have been successfully removed from a nanoscale transmission line. The extracted frequency-dependent electrical responses show good signal levels and a high degree of reproducibility. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  4. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    PubMed Central

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  5. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  6. High frequency of horizontal gene transfer in the oceans.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth; Delaney, Jennifer; Ruhnau, Fabian; Ritchie, Kim B; Paul, John H

    2010-10-01

    Oceanic bacteria perform many environmental functions, including biogeochemical cycling of many elements, metabolizing of greenhouse gases, functioning in oceanic food webs (microbial loop), and producing valuable natural products and viruses. We demonstrate that the widespread capability of marine bacteria to participate in horizontal gene transfer (HGT) in coastal and oceanic environments may be the result of gene transfer agents (GTAs), viral-like particles produced by α-Proteobacteria. We documented GTA-mediated gene transfer frequencies a thousand to a hundred million times higher than prior estimates of HGT in the oceans, with as high as 47% of the culturable natural microbial community confirmed as gene recipients. These findings suggest a plausible mechanism by which marine bacteria acquire novel traits, thus ensuring resilience in the face of environmental change.

  7. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  8. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  9. High-speed high-resolution heterodyne interferometer using a laser with low beat frequency.

    PubMed

    Diao, Xiaofei; Hu, Pengcheng; Xue, Zi; Kang, Yanhui

    2016-01-01

    A high-speed high-resolution heterodyne interferometer using a laser with low beat frequency is developed. The interferometer has two spatially separated parallel beams with different frequencies. Two interference signals with opposite Doppler shift are optically generated by the interferometric optics. The measurement electronics uses two identical phasemeters for the two opposite interference signals. The two interference signals are selectively used according to the speed of the target, which makes sure that the Doppler shift of the selected signal is always positive, so that the measurable speed is no longer limited by the beat frequency of the laser source. Experimental results show that the measurement resolution is 0.62 nm. The measurable speed can exceed the restriction determined by the beat frequency. Compared with a commercial interferometer, the displacement difference is less than 40 nm in a travel range of 900 mm.

  10. Significance of borderline hemoglobin A2 values in an Italian population with a high prevalence of beta-thalassemia.

    PubMed

    Giambona, Antonino; Passarello, Cristina; Vinciguerra, Margherita; Li Muli, Rita; Teresi, Pietro; Anzà, Maurizio; Ruggeri, Gaetano; Renda, Disma; Maggio, Aurelio

    2008-09-01

    We report a retrospective analysis carried out on 23,485 subjects submitted to a screening program from 2000 to 2006. Of these subjects, 3,934 had borderline HbA(2) values from 3.1 to 3.9%; 410 samples, analyzed previously using PCR methods and sequencing because all of these were partners of a carrier of classical beta-thalassemia, were selected for statistical analysis. Of 410 subjects, 94 (22.9%) were positive for a molecular defect in the beta-, delta- or alpha-globin genes. The most prevalent molecular defects were beta IVS1 nt 6 (HBB c.92+6T C), co-inheritance of severe beta thalassemia and delta mutations, beta-promoter mutations and triplication of alpha genes were detected; alpha-thalassemia and Hb-variants were also evident. Borderline HbA(2) is not a rare event in a population with a high prevalence of beta-thalassemia carriers. These data support the necessity to investigate these cases at a molecular level, particularly if the partner is a carrier of beta-thalassemia.

  11. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  12. High-frequency dynamics of hybrid oxide Josephson heterostructures

    NASA Astrophysics Data System (ADS)

    Komissinskiy, P.; Ovsyannikov, G. A.; Constantinian, K. Y.; Kislinski, Y. V.; Borisenko, I. V.; Soloviev, I. I.; Kornev, V. K.; Goldobin, E.; Winkler, D.

    2008-07-01

    We summarize our results on Josephson heterostructures Nb/Au/YBa2Cu3Ox that combine conventional (S) and oxide high- Tc superconductors with a dominant d -wave symmetry of the superconducting order parameter (D). The heterostructures were fabricated on (001) and (1 1 20) YBa2Cu3Ox films grown by pulsed laser deposition. The structural and surface studies of the (1 1 20) YBa2Cu3Ox thin films reveal nanofaceted surface structure with two facet domain orientations, which are attributed as (001) and (110)-oriented surfaces of YBa2Cu3Ox and result in S/D(001) and S/D(110) nanojunctions formed on the facets. Electrophysical properties of the Nb/Au/YBa2Cu3Ox heterostructures are investigated by the electrical and magnetic measurements at low temperatures and analyzed within the faceting scenario. The superconducting current-phase relation (CPR) of the heterostructures with finite first and second harmonics is derived from the Shapiro steps, which appear in the I-V curves of the heterostructures irradiated at frequencies up to 100 GHz. The experimental positions and amplitudes of the Shapiro steps are explained within the modified resistive Josephson junction model, where the second harmonic of the CPR and capacitance of the Josephson junctions are taken into account. We experimentally observe a crossover from a lumped to a distributed Josephson junction limit for the size of the heterostructures smaller than Josephson penetration depth. The effect is attributed to the variations of the harmonics of the superconducting CPR across the heterojunction, which may give rise to splintered vortices of magnetic flux quantum. Our investigations of parameters and phenomena that are specific for superconductors having d -wave symmetry of the superconducting order parameter may be of importance for applications such as high-frequency detectors and novel elements of a possible quantum computer.

  13. The effect of beta-alanine supplementation on isokinetic force and cycling performance in highly trained cyclists.

    PubMed

    Howe, Samuel T; Bellinger, Phillip M; Driller, Matthew W; Shing, Cecilia M; Fell, James W

    2013-12-01

    Beta-alanine may benefit short-duration, high-intensity exercise performance. The aim of this randomized double-blind placebo-controlled study was to examine the effects of beta-alanine supplementation on aspects of muscular performance in highly trained cyclists. Sixteen highly trained cyclists (mean ± SD; age = 24 ± 7 yr; mass = 70 ± 7 kg; VO2max = 67 ± 4 ml · kg(-1) · min(-1)) supplemented with either beta-alanine (n = 8, 65 mg · kg - 1BM) or a placebo (n = 8; dextrose monohydrate) over 4 weeks. Pre- and postsupplementation cyclists performed a 4-minute maximal cycling test to measure average power and 30 reciprocal maximal isokinetic knee contractions at a fixed angular velocity of 180° · sec(-1) to measure average power/repetition, total work done (TWD), and fatigue index (%). Blood pH, lactate (La-) and bicarbonate (HCO3-) concentrations were measured pre- and postisokinetic testing at baseline and following the supplementation period. Beta-alanine supplementation was 44% likely to increase average power output during the 4-minute cycling time trial when compared with the placebo, although this was not statistically significant (p = .25). Isokinetic average power/repetition was significantly increased post beta-alanine supplementation compared with placebo (beta-alanine: 6.8 ± 9.9 W, placebo: -4.3 ± 9.5 W, p = .04, 85% likely benefit), while fatigue index was significantly reduced (p = .03, 95% likely benefit). TWD was 89% likely to be improved following beta-alanine supplementation; however, this was not statistically significant (p = .09). There were no significant differences in blood pH, lactate, and HCO3- between groups (p > .05). Four weeks of beta-alanine supplementation resulted in worthwhile changes in time-trial performance and short-duration muscular force production in highly trained cyclists.

  14. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  15. (-)(125I)-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    SciTech Connect

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-(125I)-iodopindolol ((-)-(125I)-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-(125I)-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)(125IPin was saturable with time and concentration. Using 13 pM (-)-(125I)IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21/sup 0/C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-(125I)-IPin was 95% of total binding. Scatchard analysis of (-)-(125I)-I)Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-(125I)-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-(125I)-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors.

  16. Non-inductive current drive and transport in high beta(N) plasmas in JET

    SciTech Connect

    Voitsekhovitch, I; Alper, B.; Budny, R. V.; Buratti, P.; Challis, C D; Ferron, J.R.; Giroud, C.; Laborde, L.; Luce, T.C.; McCune, D.; Menard, J.; Murakami, Masanori; Park, Jin Myung

    2009-01-01

    A route to stationary MHD stable operation at high beta(N) has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total beta(N) approximate to 3.3 and stationary (during high power phase) beta(N) approximate to 3 have been achieved by applying the feedback control of beta(N) with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a +/- 22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E x B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  17. AXEL-a high pressure xenon gas TPC for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Nakamura, Kiseki; Ichikawa, Atsuko K.; Nakaya, Tsuyoshi; Minamino, Akihiro; Ban, Sei; Yanagita, Saori; Tanaka, Shunsuke; Hirose, Masanori; Sekiya, Hiroyuki; Ueshima, Kota; Miuchi, Kentaro

    2017-02-01

    To search for neutrinoless double beta decay, we have started developing a high pressure xenon gas time projection chamber as the AXEL (A Xenon ElectroLuminescence detector) project since 2014. We proposed a new scheme to measure energy deposit using electroluminescence lights to achieve high energy resolution, large mass and strong background rejection power. Important performances of compositions of our new readout scheme are shown: electric field simulation, VUV sensitivity of MPPC in high pressure gaseous xenon, response of MPPC for large amount of photons. To demonstrate as a whole system, we constructed a small prototype detector using 64 MPPCs filled with 4 bar xenon gas. Result of measurement with a 57Co gamma-ray source are shown.

  18. Tokamak disruption alarm based on a neural network model of the high- beta limit

    NASA Astrophysics Data System (ADS)

    Wroblewski, D.; Jahns, G. L.; Leuer, J. A.

    1997-06-01

    An artificial neural network, combining signals from a large number of plasma diagnostics, was used to estimate the high- beta disruption boundary in the DIII-D tokamak. It is shown that inclusion of many diagnostic measurements results in a much more accurate prediction of the disruption boundary than that provided by the traditional Troyon limit. A trained neural network constitutes a non-linear, non-parametric model of the disruption boundary. Through the analysis of the input-output sensitivities, the relative statistical significance of various diagnostic measurements (plasma parameters) for the determination of the disruption boundary is directly assessed and the number of diagnostics used by the neural network model is reduced to the necessary minimum. The neural network is trained to map the disruption boundary throughout most of the discharge. As a result, it can predict the high- beta disruption boundary on a time-scale of the order of 100 ms (much longer than the precursor growth time), which makes this approach ideally suitable for real time application in a disruption avoidance scheme. Owing to the relative simplicity of the required computations, the neural network is easily implemented in a real time system. A prototype of the neural network disruption alarm was installed within the DIII-D digital plasma control system, and its real time operation, with a typical time resolution of 10 ms, was demonstrated

  19. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  20. Analysis of high frequency geostationary ocean colour data using DINEOF

    NASA Astrophysics Data System (ADS)

    Alvera-Azcárate, Aida; Vanhellemont, Quinten; Ruddick, Kevin; Barth, Alexander; Beckers, Jean-Marie

    2015-06-01

    DINEOF (Data Interpolating Empirical Orthogonal Functions), a technique to reconstruct missing data, is applied to turbidity data obtained through the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation 2. The aim of this work is to assess if the tidal variability of the southern North Sea in 2008 can be accurately reproduced in the reconstructed dataset. Such high frequency data have not previously been analysed with DINEOF and present new challenges, like a strong tidal signal and long night-time gaps. An outlier detection approach that exploits the high temporal resolution (15 min) of the SEVIRI dataset is developed. After removal of outliers, the turbidity dataset is reconstructed with DINEOF. In situ Smartbuoy data are used to assess the accuracy of the reconstruction. Then, a series of tidal cycles are examined at various positions over the southern North Sea. These examples demonstrate the capability of DINEOF to reproduce tidal variability in the reconstructed dataset, and show the high temporal and spatial variability of turbidity in the southern North Sea. An analysis of the main harmonic constituents (annual cycle, daily cycle, M2 and S2 tidal components) is performed, to assess the contribution of each of these modes to the total variability of turbidity. The variability not explained by the harmonic fit, due to the natural processes and satellite processing errors as noise, is also assessed.