DOE Office of Scientific and Technical Information (OSTI.GOV)
Nojima, Y.; Terai, C.; Minota, S.
1985-01-01
Erythrocytes from 51 patients with systemic lupus erythematosus and 75 controls were tested for the capacity to bind aggregated human gamma-globulin labeled with radioiodine in the presence of complement. Both in patients and controls, a trimodal distribution of binding capacity was observed. Low (less than 9% of the added radioactivity), intermediate (9-17%), and high binding (more than 17%) were observed in 13, 58, and 29% in controls and in 49, 43 and 8% in lupus patients. The low binding capacity of erythrocytes persisted even after patients entered remission following steroid therapy. A genetic control of binding capacity was supported bymore » familial surveys. Prevalence of pathological proteinuria was significantly higher in patients with low binding capacity than those with intermediate or high binding capacity (16/25 vs 7/26, P less than 0.01). These results indicate that an impaired physiological disposal of immune complexes via the erythrocyte C3b receptor in lupus patients may contribute to the development of renal involvement.« less
In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate
Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver
2011-01-01
Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043
NASA Astrophysics Data System (ADS)
Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.
2016-12-01
Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and may influence their capacity to intensify food production to meet growing food demands.
Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.
Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K
2006-11-01
We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.
Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M
2008-01-01
Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.
Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
Intravenous iron-dextran: studies on unsaturated iron-binding capacity
Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet
1968-01-01
A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365
Characterization of [(3)H]harmane binding to rat whole brain membranes.
Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L
2003-12-01
This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.
Oxytocin and vasopressin: distinct receptors in myometrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, G.; Balestre, M.N.; Roberts, J.M.
1987-06-01
The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less
Histamine-binding capacities of different natural zeolites: a comparative study.
Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried
2018-06-07
Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.
Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.
2012-01-01
This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597
Bradley, A J; Stoddart, D M
1992-01-01
An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.
Comparative study of thiophilic functionalised matrices for polyclonal F(ab')2 purification.
Kumpalume, Peter; Slater, Nigel K H
2004-01-02
Thiophilic adsorbents have been developed using divinyl sulfone or epoxy activated Streamline quartz base matrix. Their capacity and selectivity for binding polyclonal F(ab')2 fragments generated by whole serum proteolysis was tested. Except for epoxy activated guanidine, all the adsorbents displayed high selectivity for F(ab')2 with dynamic binding capacities ranging from 3 to 10 mg/ml of adsorbent. Thiol immobilised ligands adsorbed more F(ab')2 and the recovery was equal to or more than that from amino immobilised ligands. All adsorbents showed good selectivity for IgG and the dynamic binding capacities were better than for F(ab')2.
Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer
Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.
2011-01-01
The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051
Effects of salts on protein-surface interactions: applications for column chromatography.
Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu
2007-07-01
Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.
Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.
Nielsen, A D; Borch, K; Westh, P
2000-06-15
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.
Potential Functional Byproducts from Guava Purée Processing.
Lim, Si Yi; Tham, Paik Yean; Lim, Hilary Yi Ler; Heng, Wooi Shin; Chang, Ying Ping
2018-05-10
The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study. To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them. © 2018 Institute of Food Technologists®.
Nsor-Atindana, John; Zhong, Fang; Mothibe, Kebitsamang Joseph
2012-10-01
Three dietary fiber (DF) powders; soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and total dietary fiber (TDF) were prepared from cocoa bean shells (CBS) by enzymatic treatment. These DFs were evaluated for their effects on glucose adsorption, glucose diffusion, starch hydrolysis, cholesterol binding, sodium cholate binding and oil binding capacities using in vitro model systems by simulating gastric intestinal conditions. The results showed that SDF generally exhibited significantly (p < 0.05) higher glucose adsorption capacity (GAC), α-amylase inhibition activity, cholesterol and sodium cholate binding capacity, but less significant (>0.05) glucose dialysis retardation index (GDRI) and oil binding capacity, when compared with IDF and TDF which both showed similar effects. Moreover, it was discovered that the three CBS dietary fiber powders contained intrinsic antioxidants (phenolic compounds). The study suggested that CBS could be an alternative cheap source of DF with additional benefits. Thus, CBS fibers could be incorporated as low calorie bulk ingredients in high-fiber diet to reduce calorie and cholesterol levels and control blood glucose level.
Hydrogen storage in engineered carbon nanospaces.
Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter
2009-05-20
It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.
Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L
2018-05-01
Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.
Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.
Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong
2014-12-01
Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M
1998-01-01
The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514
Large heat capacity change in a protein-monovalent cation interaction.
Guinto, E R; Di Cera, E
1996-07-09
Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.
[3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.
Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A
1987-04-01
We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-06
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-01
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
Panther, Jared G; Teasdale, Peter R; Bennett, William W; Welsh, David T; Zhao, Huijun
2011-07-18
Two adsorbents (Metsorb and ferrihydrite) used in binding layers with the diffusive gradients in a thin film technique were evaluated for the measurement of dissolved reactive phosphorous (DRP) in synthetic and natural waters. Possible interferences were investigated with Cl(-) (up to 1.35 mol L(-1)) and SO(4)(2-) (up to 0.056 mol L(-1)) having no affect on either DGT binding layer, and HCO(3)(-) (up to 5.7 mmol L(-1)) having no effect on Metsorb-DGT, over 4 days. However, HCO(3)(-) interfered with the ferrihydrite-DGT measurement at concentrations typical of many natural waters (≥0.7 mmol L(-1)) after a deployment period of 1-2 days. The capacity of the Metsorb binding phase for DGT response was ∼37,000 ng P, whereas the capacities of a low-mass (17.8 mg of adsorbent per DGT sampler) and high-mass (29.2mg of adsorbent per DGT sampler) ferrihydrite binding phase were substantially lower (∼15,000 ng P and ∼25,000 ng P, low-mass and high-mass, respectively). Increasing the capacity of the ferrihydrite adsorbent allowed the ferrihydrite-DGT to be utilized for up to 3 days before interference by HCO(3)(-) was observed. Seawater deployments demonstrated that even high-capacity ferrihydrite-DGT devices underestimated the DRP concentration by 37%, whereas Metsorb-DGT measurements were accurate. The Metsorb-DGT is superior to the ferrihydrite-DGT for determining DRP over deployment times greater than 1 day and in waters with ≥0.7 mmol L(-1) HCO(3)(-). Based on the experience obtained from this detailed validation process, the authors propose a number of key requirements that need to be considered when developing new DGT binding layers, with testing the performance over longer deployment times being critical. Copyright © 2011 Elsevier B.V. All rights reserved.
High voltage and high specific capacity dual intercalating electrode Li-ion batteries
NASA Technical Reports Server (NTRS)
Blanco, Mario (Inventor); West, William C. (Inventor)
2010-01-01
The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.
Comparison of the fibronectin-binding ability and antitumor efficacy of various mycobacteria.
Hudson, M A; Ritchey, J K; Catalona, W J; Brown, E J; Ratliff, T L
1990-07-01
Although the mechanism by which Bacillus Calmette-Guerin (BCG) exerts an antitumor effect on superficial bladder tumors is not fully understood, recent evidence has implicated binding of BCG organisms to fibronectin (FN) as requisite for this antitumor efficacy. Various substrains of BCG and other mycobacteria were tested in vitro for their relative capacities to bind both matrix and soluble FN. A substrain of Mycobacterium kansasii, designated the "high-binding strain," was found to bind FN more readily (P less than 0.05) in in vitro studies, when compared to commercially available substrains of BCG (Tice, Connaught, and Armand Frappier). The binding by the three commercial strains of BCG to FN in vitro appeared to be equivalent. The high-binding strain was further demonstrated to attach more readily in vivo to the acutely injured murine bladder (P less than 0.005) than the Armand Frappier substrain. Finally, using the MB49 murine bladder tumor model, an enhanced antitumor effect (P less than 0.05) was noted in mice treated with intravesical high-binding strain, in comparison to the Armand Frappier substrain, during five weekly treatments. It appears not only that the commercial substrains of BCG bind FN in an equivalent manner but also that the relative binding capacities of the substrains correlate directly with antitumor activity. A substrain of M. kansasii appears to have been identified which may prove more clinically effective than the currently available strains of BCG.
Adsorption of plasmid DNA on anion exchange chromatography media.
Tarmann, Christina; Jungbauer, Alois
2008-08-01
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.
Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.
Guo, Wenxin; Shu, Yang; Yang, Xiaoping
2016-06-01
Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.
Muller, François L L; Cuscov, Marco
2017-03-21
Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L 2 ]/[C org ], where L 2 was the second strongest copper-binding ligand, was 0.75 × 10 -4 when the reservoir residence time was 5 h but 0.34 × 10 -4 when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[C org ] = (0.80 ± 0.20) × 10 -2 . Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaghecke, R.
1983-02-01
Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
Price, Helen L; Teasdale, Peter R; Jolley, Dianne F
2013-11-25
This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ≈ As(V)>V(V) ≈ As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ≤ 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi
2016-11-15
AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.
High-capacity composite adsorbents for nucleic acids.
Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof
2011-08-05
Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well. Copyright © 2011 Elsevier B.V. All rights reserved.
The productive cellulase binding capacity of cellulosic substrates.
Karuna, Nardrapee; Jeoh, Tina
2017-03-01
Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong
2015-11-01
The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.
Wong, Ka-Hing; Cheung, Peter C K
2005-11-30
The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.
NASA Astrophysics Data System (ADS)
Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa
2015-02-01
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05955g
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Multimodal charge-induction chromatography for antibody purification.
Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing
2016-01-15
Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.
Zubair, Usman; Amici, Julia; Francia, Carlotta; McNulty, David; Bodoardo, Silvia; O'Dwyer, Colm
2018-06-11
In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Ti n O 2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Ti n O 2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g -1 at 0.1C and maintain a reversible capacity of 520 mAh g -1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen
2015-05-29
Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.
Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates
Amin, Sanjiv B.; Lamola, Angelo A.
2011-01-01
Neonatal jaundice (hyperbilirubinemia), extremely common in neonates, can be associated with neurotoxicity. A safe level of bilirubin has not been defined in either premature or term infants. Emerging evidence suggest that the level of unbound (or “free”) bilirubin has a better sensitivity and specificity than total serum bilirubin for bilirubin-induced neurotoxicity. Although recent studies suggest the usefulness of free bilirubin measurements in managing high-risk neonates including premature infants, there currently exists no widely available method to assay the serum free bilirubin concentration. To keep pace with the growing demand, in addition to reevaluation of old methods, several promising new methods are being developed for sensitive, accurate, and rapid measurement of free bilirubin and bilirubin binding capacity. These innovative methods need to be validated before adopting for clinical use. We provide an overview of some promising methods for free bilirubin and binding capacity measurements with the goal to enhance research in this area of active interest and apparent need. PMID:21641486
Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall
Thomas, Kieth J.; Rice, Charles V.
2014-01-01
Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444
Biological variability of transferrin saturation and unsaturated iron binding capacity
Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH
2007-01-01
Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429
Chuderski, Adam; Andrelczyk, Krzysztof
2015-02-01
Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex cognition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Amah-Tariah, F S; Ojeka, S O; Dapper, D V
2011-12-20
Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.
You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin
2014-08-08
Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao
2012-07-01
Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.
High affinity binding of 125I-neurotensin to dispersed cells from chicken liver and brain.
Mitra, S P; Carraway, R E
1997-01-01
Dispersed cells from chicken brain and liver were found to possess cell surface binding sites for 125I-neurotensin (125I-NT). Scatchard analyses indicated the presence of high affinity (K4, 25-80 pM) and low affinity (Kd, 250-450 pM) components in adult tissues. Binding capacity was reduced 25-40% by incubation with pertussis toxin. Ontogenetic studies indicated that NT receptor capacity increased approximately 20-fold from the embryonic stage to adult. Cross-linking of 125I-NT to intact cells labeled one major band (52 kDa, > or = 90%) and two minor bands (40 and 90 kDa, < or = 10%) which could represent distinct NT-receptors or one receptor partly degraded or cross-linked to G-protein(s). The binding of 125I-NT to dispersed cells was enhanced by reduction with dithoithreitol and suppressed by alkylation with N-ethyl-maleimide (NEM), maleimidocaproic acid (MCA) and p-chloromercuribenzenesulfonate (PCMBS). Since MCA and PCMBS do not permeate cells, this suggests that the sulfhydryl group(s) critical to binding are located within the NT receptor itself. Preincubation of cells with NT prior to treatment with NEM diminished its inhibitory effect, suggesting that the critical SH-group(s) were within the NT binding pocket or were protected by an allosteric effect. These results suggest that one or more of the nine cysteine residues in the NT receptor is involved in the NT binding reaction.
Evaluation of the mobile phone electromagnetic radiation on serum iron parameters in rats.
Çetkin, Murat; Demirel, Can; Kızılkan, Neşe; Aksoy, Nur; Erbağcı, Hülya
2017-03-01
Electromagnetic fields (EMF) created by mobile phones during communication have harmful effects on different organs. It was aimed to investigate the effects of an EMF created by a mobile phone on serum iron level, ferritin, unsaturated iron binding capacity and total iron binding capacity within a rat experiment model. A total of 32 male Wistar albino rats were randomly divided into the control, sham, mobile phone speech (2h/day) and stand by (12 h/day) groups. The speech and stand by groups were subjected to the EMF for a total of 10 weeks. No statistically significant difference was observed between the serum iron and ferritin values of the rats in the speech and stand by groups than the control and sham groups (p>0.05). The unsaturated iron binding capacity and total iron capacity values of the rats in the speech and stand by groups were significantly lower in comparison to the control group (p<0.01). It was found that exposure to EMF created by mobile phones affected unsaturated iron binding capacity and total iron binding capacity negatively.
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian
2016-10-02
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian
2016-01-01
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095
Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa
2015-02-21
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g(-1)), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.
Singh; Nilsson
1999-05-01
The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.
Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid
Levels, Johannes H. M.; Abraham, Philip R.; van Barreveld, Erik P.; Meijers, Joost C. M.; van Deventer, Sander J. H.
2003-01-01
Lipoteichoic acid (LTA), a major cell wall component of gram-positive bacteria, is an amphipathic anionic glycolipid with structural similarities to lipopolysaccharide (LPS) from gram-negative bacteria. LTA has been implicated as one of the primary immunostimulatory components that may trigger the systemic inflammatory response syndrome. Plasma lipoproteins have been shown to sequester LPS, which results in attenuation of the host response to infection, but little is known about the LTA binding characteristics of plasma lipid particles. In this study, we have examined the LTA binding capacities and association kinetics of the major lipoprotein classes under simulated physiological conditions in human whole blood (ex vivo) by using biologically active, fluorescently labeled LTA and high-performance gel permeation chromatography. The average distribution of an LTA preparation from Staphylococcus aureus in whole blood from 10 human volunteers revealed that >95% of the LTA was associated with total plasma lipoproteins in the following proportions: high-density lipoprotein (HDL), 68% ± 10%; low-density lipoprotein (LDL), 28% ± 8%; and very low density lipoprotein (VLDL), 4% ± 5%. The saturation capacity of lipoproteins for LTA was in excess of 150 μg/ml. The LTA distribution was temperature dependent, with an optimal binding between 22 and 37°C. The binding of LTA by lipoproteins was essentially complete within 10 min and was followed by a subsequent redistribution from HDL and VLDL to LDL. We conclude that HDL has the highest binding capacity for LTA and propose that the loading and redistribution of LTA among plasma lipoproteins is a specific process that closely resembles that previously described for LPS (J. H. M. Levels, P. R. Abraham, A. van den Ende, and S. J. H. van Deventer, Infect. Immun. 68:2821-2828, 2001). PMID:12761109
Clinical relevance of drug binding to plasma proteins
NASA Astrophysics Data System (ADS)
Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana
2014-12-01
Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.
Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja
2017-10-01
Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protein Binding Capacity of Different Forages Tannin
NASA Astrophysics Data System (ADS)
Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.
2018-02-01
Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.
Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah
2016-04-01
Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iron-binding antioxidant capacity is impaired in diabetes mellitus.
Van Campenhout, Ann; Van Campenhout, Christel; Lagrou, Albert R; Moorkens, Greta; De Block, Christophe; Manuel-y-Keenoy, Begoña
2006-05-15
Increased lipid peroxidation contributes to diabetic complications and redox-active iron is known to play an important role in catalyzing peroxidation reactions. We aimed to investigate if diabetes affects the capacity of plasma to protect against iron-driven lipid peroxidation and to identify underlying factors. Glycemic control, serum iron, proteins involved in iron homeostasis, plasma iron-binding antioxidant capacity in a liposomal model, and non-transferrin-bound iron were measured in 40 type 1 and 67 type 2 diabetic patients compared to 100 nondiabetic healthy control subjects. Iron-binding antioxidant capacity was significantly lower in the plasma of diabetic subjects (83 +/- 6 and 84 +/- 5% in type 1 and type 2 diabetes versus 88 +/- 6% in control subjects, p < 0.0005). The contribution of transferrin, ceruloplasmin, and albumin concentrations to the iron-binding antioxidant capacity was lost in diabetes (explaining only 4.2 and 6.3% of the variance in type 1 and type 2 diabetes versus 13.9% in control subjects). This observation could not be explained by differences in Tf glycation, lipid, or inflammatory status and was not associated with higher non-transferrin-bound iron levels. Iron-binding antioxidant capacity is decreased in diabetes mellitus.
Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.
Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C
2008-05-12
Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.
Neisser-Svae, A; Bailey, A; Gregori, L; Heger, A; Jordan, S; Behizad, M; Reichl, H; Römisch, J; Svae, T-E
2009-10-01
A new chromatographic step for the selective binding of abnormal prion protein (PrP(Sc)) was developed, and optimization for PrP(Sc) capture was achieved by binding to an affinity ligand attached to synthetic resin particles. This step was implemented into the manufacturing process of the solvent/detergent (S/D)-treated biopharmaceutical quality plasma Octaplas to further improve the safety margin in terms of risk for variant Creutzfeldt-Jakob disease (vCJD) transmission. Intermediates and Octaplas final container material, spiked with hamster brain-derived PrP(Sc)-containing fractions, were used for experiments to establish the feasibility of introducing this novel chromatography step. The binding capacity per millilitre of ligand gel was determined under the selected manufacturing conditions. In addition, the specificity of the ligand gel to bind PrP(Sc) from human sources was investigated. A validated Western blot test was used for the identification and quantification of PrP(Sc). A reduction factor of > or = 3.0 log(10) could be demonstrated by Western blotting, utilizing the relevant Octaplas matrix from manufacturing. In this particular cell-free plasma solution, the PrP(Sc) binding capacity of the selected gel was very high (> or = 6 log(10) ID(50)/ml, equivalent to roughly 10 log(10) ID(50)/column at manufacturing scale). The gel binds specifically PrP(Sc) from both animal (hamster and mouse) and human (sporadic and variant CJD) sources. This new single-use, disposable PrP(Sc)-harvesting gel ensures a very high capacity in terms of removing the pathogenic agent causing vCJD from the new generation OctaplasLG, in the event that prions can be found in plasma from donors incubating the disease and thereby contaminating the raw material plasma used for manufacturing.
Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.
2013-01-01
Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043
Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D
2013-01-01
Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.
Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huppertz, B.; Weyand, I.; Bauer, P.J.
1990-06-05
Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less
Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro
Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P
2004-01-01
Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect. PMID:15046641
Easy preparation of dietary fiber with the high water-holding capacity from food sources.
Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu
2005-03-01
Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.
Teepakorn, Chalore; Fiaty, Koffi; Charcosset, Catherine
2015-07-17
During the last 10 years, membrane chromatography (MC) has been increasingly reported for biomolecule purification at both small and large scales. Although, several axial and radial flow MC devices are commercialized, the effect of the device dimensions on the adsorption performance has not been fully investigated. In this study, axial and radial flow anion ion-exchange MC devices were used for bovine serum albumin (BSA) adsorption. For both axial and radial flow, three devices at different scales were compared, two having similar diameter and two similar bed height. The pressure drop and the flow distribution using acetone as a non-binding solute were measured, as well as BSA breakthrough curves at different flow rates and BSA loading concentrations. For all devices, it was observed that the flow rate had no effect on the breakthrough curve, which confirms the advantage of MC to be used at high flow rates. In addition, the BSA binding capacity increased with increasing BSA concentration, which suggests that it could be preferable to work with concentrated solutions rather than with very dilute solutions, when using buffer at high phosphate concentration. For both axial and radial flow, the bed height had a negative impact on the binding capacity, as the lowest binding capacities per membrane volume were obtained with the devices having the highest bed height. Radial flow MC has potential at large-scale applications, as a short bed thickness can be combined with a large inlet surface area. Copyright © 2015 Elsevier B.V. All rights reserved.
Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode
Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip
2017-01-01
Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g−1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g−1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g−1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material. PMID:28059110
Wang, Zhiyu; Dong, Yanfeng; Li, Hongjiang; Zhao, Zongbin; Wu, Hao Bin; Hao, Ce; Liu, Shaohong; Qiu, Jieshan; Lou, Xiong Wen David
2014-09-25
Lithium-sulphur batteries are one very appealing power source with high energy density. But their practical use is still hindered by several issues including short lifespan, low efficiency and safety concern from the lithium anode. Polysulphide dissolution and insulating nature of sulphur are generally considered responsible for the capacity degradation. However, the detachment of discharge products, that is, highly polar lithium sulphides, from nonpolar carbon matrix (for example, graphene) has been rarely studied as one critical factor. Here we report the strongly covalent stabilization of sulphur and its discharge products on amino-functionalized reduced graphene oxide that enables stable capacity retention of 80% for 350 cycles with high capacities and excellent high-rate response up to 4 C. The present study demonstrates a feasible and effective strategy to solve the long-term cycling difficulty for lithium-sulphur batteries and also helps to understand the capacity decay mechanism involved.
RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes
Singh, Guramrit; Ricci, Emiliano P.; Moore, Melissa J.
2013-01-01
Development of high-throughput approaches to map the RNA interaction sites of individual RNA binding proteins (RBPs) transcriptome-wide is rapidly transforming our understanding of post-transcriptional gene regulatory mechanisms. Here we describe a ribonucleoprotein (RNP) footprinting approach we recently developed for identifying occupancy sites of both individual RBPs and multi-subunit RNP complexes. RNA:protein immunoprecipitation in tandem (RIPiT) yields highly specific RNA footprints of cellular RNPs isolated via two sequential purifications; the resulting RNA footprints can then be identified by high-throughput sequencing (Seq). RIPiT-Seq is broadly applicable to all RBPs regardless of their RNA binding mode and thus provides a means to map the RNA binding sites of RBPs with poor inherent ultraviolet (UV) crosslinkability. Further, among current high-throughput approaches, RIPiT has the unique capacity to differentiate binding sites of RNPs with overlapping protein composition. It is therefore particularly suited for studying dynamic RNP assemblages whose composition evolves as gene expression proceeds. PMID:24096052
Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita
2002-02-11
This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.
Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi
2017-09-01
This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metal-functionalized silicene for efficient hydrogen storage.
Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev
2013-10-21
First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Peng, Jian
2017-01-01
Objective : The aim of this study was to investigate the effects of supplementation of dietary soluble fibers with high water-binding capacity (WBC) and swelling capacity (SC) on gastrointestinal tract mass, physicochemical properties of digesta, gastrointestinal mean retention time (MRT), body weight, and food intake in male rats. Methods : Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch plus guar gum (PWMS+GG), andPWMS plus xanthan gum (PWMS+XG) for three weeks. Results : WBC and SC of diets followed the order of PWMS+GG > KF > PWMS + XG > control. PWMS+GG and KF groups had a lower average daily food intake than the control group, but all the groups showed no difference in final body weightand the weight gain rate. The high WBC and SC of the PWMS+GG and KF groupsled to an increase of WBC and SC in the stomach digesta, and a gain of the cecal digesta weight, due to increased cecal moisture content. Conclusion : The inclusion of the novel fiber, PWMS+GG, in the diet of male rats appears to facilitate the modulation of WBC and SC of stomach digesta and the reduction of food intake.
NASA Astrophysics Data System (ADS)
Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin
2018-03-01
In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.
LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.
Clayton, R N; Shakespear, R A; Marshall, J C
1978-06-01
Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.
Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei
2011-09-20
Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less
Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan
2015-04-01
The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®
Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E
2007-04-01
The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.
Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana
2014-01-01
Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735
Liu, Yuanyue; Merinov, Boris V; Goddard, William A
2016-04-05
It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi
2014-05-27
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water
Chitpong, Nithinart; Husson, Scott M.
2016-01-01
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.
Chitpong, Nithinart; Husson, Scott M
2016-12-20
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.
Comparison of functional assays used in the clinical development of a placental malaria vaccine.
Pehrson, Caroline; Heno, Kristine K; Adams, Yvonne; Resende, Mafalda; Mathiesen, Line; Soegaard, Max; de Jongh, Willem A; Theander, Thor G; Salanti, Ali; Nielsen, Morten A
2017-01-23
Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koech, Phillip K.; Malhotra, Deepika; Heldebrant, David J.
2015-01-01
Climate change is partly attributed to global anthropogenic carbon dioxide (CO2) emission to the atmosphere. These environmental effects can be mitigated by CO2 capture, utilization and storage. Alkanolamine solvents, such as monoethanolamine (MEA), which bind CO2 as carbamates or bicarbonate salts are used for CO2 capture in niche applications. These solvents consist of approximately 30 wt% of MEA in water, exhibiting a low, CO2-rich viscosity, fast kinetics and favorable thermodynamics. However, these solvents have low CO2 capacity and high heat capacity of water, resulting in prohibitively high costs of thermal solvent regeneration. Effective capture of the enormous amounts of CO2more » produced by coal-fired plants requires a material with high CO2 capacity and low regeneration energy requirements. To this end, several water-lean transformational solvents systems have been developed in order to reduce these energy penalties. These technologies include nano-material organic hybrids (NOHMs), task-specific, protic and conventional ionic liquids, phase change solvents. As part of an ongoing program in our group, we have developed new water lean transformational solvents known as CO2 binding organic liquids (CO2BOLs) which have the potential to be energy efficient CO2 capture solvents. These solvents, also known as switchable ionic liquids meaning, are organic solvents that can reversibly transform from non- ionic to ionic form and back. The zwitterionic state in these liquids is formed when low polarity non-ionic alkanolguanidines or alkanolamidines react with CO2 or SO2 to form ionic liquids with high polarity. These polar ionic liquids can be thermally converted to the less polar non-ionic solvent by releasing CO2.« less
Binders and Hosts for High-Capacity Lithium-ion Battery Anodes
NASA Astrophysics Data System (ADS)
Dufficy, Martin Kyle
Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.
Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; el-Fakahany, E.E.
1985-06-01
The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less
Moreno-Sánchez, Rocío del Pilar; Maldonado, Jorge Higinio
2013-12-01
Departing from a theoretical methodology, we estimate empirically an index of adaptive capacity (IAC) of a fishing community to the establishment of marine protected areas (MPAs). We carried out household surveys, designed to obtain information for indicators and sub-indicators, and calculated the IAC. Moreover, we performed a sensitivity analysis to check for robustness of the results. Our findings show that, despite being located between two MPAs, the fishing community of Bazán in the Colombian Pacific is highly vulnerable and that the socioeconomic dimension of the IAC constitutes the most binding dimension for building adaptive capacity. Bazán is characterized by extreme poverty, high dependence on resources, and lack of basic public infrastructure. Notwithstanding, social capital and local awareness about ecological conditions may act as enhancers of adaptive capacity. The establishment of MPAs should consider the development of strategies to confer adaptive capacity to local communities highly dependent on resource extraction.
Metal binding stoichiometry and isotherm choice in biosorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiewer, S.; Wong, M.H.
1999-11-01
Seaweeds that possess a high metal binding capacity may be used as biosorbents for the removal of toxic heavy metals from wastewater. The binding of Cu and Ni by three brown algae (Sargassum, Colpomenia, Petalonia) and one green alga (Ulva) was investigated at pH 4.0 and pH 3.0. The greater binding strength of Cu is reflected in a binding constant that is about 10 times as high as that of Ni. The extent of metal binding followed the order Petalonia {approximately} Sargassum > Colpomenia > Ulva. This was caused by a decreasing number of binding sites and by much lowermore » metal binding constants for Ulva as compared to the brown algae. Three different stoichiometric assumptions are compared for describing the metal binding, which assume either that each metal ion M binds to one binding site B forming a BM complex or that a divalent metal ion M binds to two monovalent sites B forming BM{sub 0.5} or B{sub 2}M complexes, respectively. Stoichiometry plots are proposed as tools to discern the relevant binding stoichiometry. The pH effect in metal binding and the change in proton binding were well predicted for the B{sub 2}M or BM{sub 0.5} stoichiometries with the former being better for Cu and the latter preferable for Ni. Overall, the BM{sub 0.5} model is recommended because it avoids iterations.« less
2013-01-01
Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
NASA Astrophysics Data System (ADS)
Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William
The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.
Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right atrium assay
NASA Astrophysics Data System (ADS)
Fenu, Luca A.; Teisman, Ard; De Buck, Stefan S.; Sinha, Vikash K.; Gilissen, Ron A. H. J.; Nijsen, Marjoleen J. M. A.; Mackie, Claire E.; Sanderson, Wendy E.
2009-12-01
As chemists can easily produce large numbers of new potential drug candidates, there is growing demand for high capacity models that can help in driving the chemistry towards efficacious and safe candidates before progressing towards more complex models. Traditionally, the cardiovascular (CV) safety domain plays an important role in this process, as many preclinical CV biomarkers seem to have high prognostic value for the clinical outcome. Throughout the industry, traditional ion channel binding data are generated to drive the early selection process. Although this assay can generate data at high capacity, it has the disadvantage of producing high numbers of false negatives. Therefore, our company applies the isolated guinea pig right atrium (GPRA) assay early-on in discovery. This functional multi-channel/multi-receptor model seems much more predictive in identifying potential CV liabilities. Unfortunately however, its capacity is limited, and there is no room for full automation. We assessed the correlation between ion channel binding and the GPRA's Rate of Contraction (RC), Contractile Force (CF), and effective refractory frequency (ERF) measures assay using over six thousand different data points. Furthermore, the existing experimental knowledge base was used to develop a set of in silico classification models attempting to mimic the GPRA inhibitory activity. The Naïve Bayesian classifier was used to built several models, using the ion channel binding data or in silico computed properties and structural fingerprints as descriptors. The models were validated on an independent and diverse test set of 200 reference compounds. Performances were assessed on the bases of their overall accuracy, sensitivity and specificity in detecting both active and inactive molecules. Our data show that all in silico models are highly predictive of actual GPRA data, at a level equivalent or superior to the ion channel binding assays. Furthermore, the models were interpreted in terms of the descriptors used to highlight the undesirable areas in the explored chemical space, specifically regions of low polarity, high lipophilicity and high molecular weight. In conclusion, we developed a predictive in silico model of a complex physiological assay based on a large and high quality set of experimental data. This model allows high throughput in silico safety screening based on chemical structure within a given chemical space.
Sorption of Cr(III) and Cr(VI) to High and Low Pressure Synthetic Nano-Magnetite (Fe3O4)Particles
Parsons, Jason G.; Hernandez, Jeffrey; Gonzalez, Christina M.; Gardea-Torresdey, J. L.
2014-01-01
The binding of Cr(III) and Cr(VI) to synthetic nano-magnetie particles synthesized under open vessel conditions and a microwave assisted hydrothermal synthesis techniques was investigated. Batch studies showed that the binding of both the Cr(III) and Cr(VI) bound to the nano-materials in a pH dependent manner. The Cr(III) maximized at binding at pH 4 and 100% binding. Similarly, the Cr(VI) ions showed a maximum binding of 100% at pH 4. The data from the time dependency studies showed for the most part the majority of the binding occurred within the first 5 minutes of contact with the nanomaterial and remained constant thereafter. In addition, the effects of the possible interferences were investigated which showed some effects on the binding of both Cr(III) and Cr(VI). However, the interferences never completely eliminated the chromium binding. Isotherm studies conducted at room temperature showed the microwave synthesized nanomaterials had a binding capacity of 1208 ± 43.9 mg/g and 555 ± 10.5 mg/g for Cr(VI) and Cr(III), respectively. However, the microwave assisted synthesized nanomaterials had capacities of 1705 ± 14.5 and 555± 10.5 mg/g for Cr(VI) and Cr(III), respectively. XANES studies showed the Cr(VI) was reduced to Cr(III), and the Cr(III) remained as Cr(III). In addition, the XANES studies indicated that the chromium remained coordinated in an octahedral arrangement of oxygen atoms. PMID:25097452
Liu, Yating; Li, Yan; Wei, Yun
2014-12-01
Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt
2014-08-01
Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R
2015-05-01
Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter
2012-05-14
Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand, displayed high DNA binding efficiency and pH-sensitive release.
Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna
2010-07-09
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.
Fluorescence Immunofiltration Assay of Brucella Melitensis.
1995-01-01
second urease -labelled antibody directed against fluorescein. The assay system is useful for measuring protein, virus and bacteria in aqueous...binding site for the signal-generating urease -labelled antibody, it is a highly fluorescent molecule and has signal-generating capacity of its own
Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki
2012-03-30
To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization. Copyright © 2012 Elsevier Inc. All rights reserved.
Satitsuksanoa, P; Kennedy, M; Gilis, D; Le Mignon, M; Suratannon, N; Soh, W T; Wongpiyabovorn, J; Chatchatee, P; Vangveravong, M; Rerkpattanapipat, T; Sangasapaviliya, A; Piboonpocanun, S; Nony, E; Ruxrungtham, K; Jacquet, A
2016-10-01
The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid-binding activities, and its capacity to stimulate airway epithelium cells. Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid-binding assays, and in silico structural prediction. IgE-binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays, and in vitro airway epithelial cell activation assays. Protein modeling and biophysical analysis indicated that Der p 13 adopts a β-barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid-binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE-binding frequency (7%, n = 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB-, and MAPK-dependent signaling pathway. Although a minor allergen, Der p 13 may, through its lipid-binding capacity, play a role in the initiation of the HDM-allergic response through TLR2 activation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alavi, M Z; Richardson, M; Moore, S
1989-02-01
The effect of injury-induced alterations in the aortic neointimal proteoglycans on their binding with homologous serum lipoproteins was examined. Proteoglycans of the aortic intimal-medial tissues of rabbits that had undergone denudation with a balloon catheter 12 weeks earlier were isolated after homogenization of the tissues in 0.33 M sucrose, ultracentrifugation and subsequently by gel-exclusion chromatography. Lipoproteins from the plasma of healthy donors were prepared by sequential, ultracentrifugal floatation after density adjustment with KBr. To study the interactions, aliquots of electrophoretically pure very low-density lipoproteins (VLDL, d less than 1.006 g/ml), low-density lipoproteins (LDL, d = 1.019-1.063 g/ml), or high-density lipoproteins (HDL, d = 1.210 g/ml) were incubated with proteoglycans in the presence of Ca++ and Mg++ at 4 C. The amount of cholesterol found in the resulting pellet was measured as a marker of the binding capacity of the proteoglycans. Among lipoprotein fractions both VLDL and LDL showed strong binding with proteoglycans, whereas no appreciable binding was observed when incubation experiments were done with HDL. There were significant differences in the lipoprotein binding capacity of proteoglycan of control and injured animals, indicating that injury induced changes in proteoglycan composition exert profound influences on their ionic interactions.
Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90
Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas
2012-01-01
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030
Sulfated glycopeptide nanostructures for multipotent protein activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptidemore » nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com; Ikeda, Hiroko; Iefuji, Haruyuki
Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1)more » promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.« less
Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin
2007-12-01
Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.
Hong, Lian; Simon, John D.
2008-01-01
Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, P.R.; Gill, S.J.; Miller, K.I.
1989-02-21
Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported by a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were notmore » indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously. The analysis shows two types of binding sites in the ratio of 4:3.« less
Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...
Huang, Chih-Yang; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Chang, Yen-Lin; Chen, Tung-Sheng
2016-12-01
Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end-stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD-ALB) or healthy volunteers (N-ALB). From high-performance liquid chromatography spectra, we observed that one uremic solute binds to HD-ALB via the formation of disulfide bonds between HD-ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N-ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD-ALB. Our results suggest that protein-bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD-ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DockoMatic: automated peptide analog creation for high throughput virtual screening.
Jacob, Reed B; Bullock, Casey W; Andersen, Tim; McDougal, Owen M
2011-10-01
The purpose of this manuscript is threefold: (1) to describe an update to DockoMatic that allows the user to generate cyclic peptide analog structure files based on protein database (pdb) files, (2) to test the accuracy of the peptide analog structure generation utility, and (3) to evaluate the high throughput capacity of DockoMatic. The DockoMatic graphical user interface interfaces with the software program Treepack to create user defined peptide analogs. To validate this approach, DockoMatic produced cyclic peptide analogs were tested for three-dimensional structure consistency and binding affinity against four experimentally determined peptide structure files available in the Research Collaboratory for Structural Bioinformatics database. The peptides used to evaluate this new functionality were alpha-conotoxins ImI, PnIA, and their published analogs. Peptide analogs were generated by DockoMatic and tested for their ability to bind to X-ray crystal structure models of the acetylcholine binding protein originating from Aplysia californica. The results, consisting of more than 300 simulations, demonstrate that DockoMatic predicts the binding energy of peptide structures to within 3.5 kcal mol(-1), and the orientation of bound ligand compares to within 1.8 Å root mean square deviation for ligand structures as compared to experimental data. Evaluation of high throughput virtual screening capacity demonstrated that Dockomatic can collect, evaluate, and summarize the output of 10,000 AutoDock jobs in less than 2 hours of computational time, while 100,000 jobs requires approximately 15 hours and 1,000,000 jobs is estimated to take up to a week. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponec, M.; Weerheim, A.; Havekes, L.
The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less
Werle, E; Lenz, T; Strobel, G; Weicker, H
1988-07-01
The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off
Molecularly imprinted composite cryogel for albumin depletion from human serum.
Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil
2012-11-01
A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.
21 CFR 862.1415 - Iron-binding capacity test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron-binding capacity test system. 862.1415 Section 862.1415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana
2018-05-15
Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui
2016-03-01
Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manning, Lois R.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, James M.
2016-01-01
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. PMID:27965062
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C; Chait, Brian T; Manning, James M
2017-02-15
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.
2012-01-01
Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966
Colloidal silica films for high-capacity DNA arrays
NASA Astrophysics Data System (ADS)
Glazer, Marc Irving
The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is controlled by traditional adsorption (ka) and desorption (kd) coefficients, as well as morphology factors and transient binding interactions between the target and probes. The strength of the transient probe/target binding interactions are on the order of 5--7 DNA base pairs, which suggests the formation of nucleation or other metastable complexes, rather than fully-zippered duplexes.
Buczek, Pawel; Horvath, Martin P.
2009-01-01
In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188
Zhang, Zulei; Li, Lei
2018-06-01
We developed a facile approach to the construction of bio-recognition sites in silica nanoparticles for efficient separation of bovine hemoglobin based on amino-functionalized silica nanoparticles grafting by 3-aminopropyltriethoxylsilane providing hydrogen bonds with bovine hemoglobin through surface molecularly imprinting technology. The resulting amino-functionalized silica surface molecularly imprinted polymers were characterized using scanning electron microscope, transmission electronic microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Results showed that the as-synthesized imprinted polymers exhibited spherical morphology and favorable thermal stability. The binding adsorption experiments showed that the imprinted polymers can reach equilibrium within 1 h. The Langmuir isotherm and pseudo-second-order kinetic model fitted the adsorption data well. Meanwhile, the imprinted polymers possessed a maximum binding capacity up to 90.3 mg/g and highly selectivity for the recognition of bovine hemoglobin. Moreover, such high binding capacity and selectivity retained after eight cycles, indicating the good stability and reusability of the imprinted polymers. Finally, successful application in the selective recognition of bovine hemoglobin from a real bovine blood sample indicated that the imprinted polymers displayed great potentials in efficient purification and separation of target proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase
Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E
2012-01-01
Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804
A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders
Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba
2012-01-01
Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637
Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.
2013-01-01
Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081
Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P
2001-04-01
The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H]-oxotremorine-M binding preclude their utilisation for the prevention of acetylcholine catabolism in rat brain membranes, the latter being required to estimate the binding of acetylcholine to [3H]-oxotremorine-M-labelled muscarinic receptors. However, fasciculin-2, a potent peptide inhibitor of acetylcholinesterase (IC50 24 nM), did prevent catabolism of acetylcholine in rat brain membranes with an atypical inhibition isotherm of [3H]-oxotremorine-M binding, thus permitting an estimation of the "global affinity" of acetylcholine (Ki 85 nM) for [3H]-oxotremorine-M-labelled muscarinic receptors in rat brain.
Bead mediated separation of microparticles in droplets.
Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.
Bead mediated separation of microparticles in droplets
Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412
Equilibrium binding behavior of magnesium to wall teichoic acid.
Thomas, Kieth J; Rice, Charles V
2015-10-01
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.
Weak partitioning chromatography for anion exchange purification of monoclonal antibodies.
Kelley, Brian D; Tobler, Scott A; Brown, Paul; Coffman, Jonathan L; Godavarti, Ranga; Iskra, Timothy; Switzer, Mary; Vunnum, Suresh
2008-10-15
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. (c) 2008 Wiley Periodicals, Inc.
Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun
2005-04-30
Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.
Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins.
Jiang, Lingdong; Messing, Maria E; Ye, Lei
2017-03-15
In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g -1 ) and horseradish peroxidase (HRP) (26.8 mg g -1 ) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.
Joynt, Suzanne; Morillo, Victor; Leng, Fenfei
2009-01-01
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar. PMID:19450485
Non-B-DNA structures on the interferon-beta promoter?
Robbe, K; Bonnefoy, E
1998-01-01
The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.
LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.
Marshall, J C; Shakespear, R A; Odell, W D
1976-11-01
Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.
Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp, Samuel I.
2017-01-01
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with very different polysaccharide binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signaling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than expected. These super-bioactive nanostructures may enable many therapies in the horizon involving proteins. PMID:28650443
High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.
Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias
2014-12-01
The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.
Garcia, Sandra; Sardar, Saima; Maldonado, Stephanie; Garcia, Velia; Tamez, C.; Parsons, J. G.
2014-01-01
The removal of arsenic(III) and arsenic(V) from an aqueous solution through adsorption on to Fe3O4, MnFe2O4, 50% Mn substituted Fe3O4, 75% Mn substituted Fe3O4, and Mn3O4 nanomaterials was investigated. Characterization of the nanomaterials using XRD showed only pure phases for Mn3O4, MnFe2O4, and Fe3O4. The 50% and 75% substituted nanomaterials were found to be mixtures of Mn3O4 and Fe3O4. From batch studies the optimum binding pH of arsenic(III) and arsenic(V) to the nanomaterials was determined to be pH 3. The binding capacity for As(III) and As(VI) to the various nanomaterials was determined using Isotherm studies. The binding capacity of Fe3O4 was determined to be 17.1 mg/g for arsenic(III) and 7.0 mg/g for arsenic(V). The substitution of 25% Mn into the Fe3O4 lattice showed a slight increase in the binding capacity for As(III) and As(VI) to 23.8 mg/g and 7.9 mg/g, respectively. The 50% substituted showed the maximum binding capacity of 41.5 mg/g and 13.9 mg/g for arsenic(III) and arsenic(V). The 75% Mn substituted Fe3O4 capacities were 16.7 mg/g for arsenic(III) and 8.2 mg/g for arsenic(V). The binding capacity of the Mn3O4 was determined to be 13.5 mg/g for arsenic(III) and 7.5 mg/g for arsenic(V). In addition, interference studies on the effects of SO2−4, PO3−4, Cl−, and NO−3 investigated. All the interferences had very minimal effects on the As(III) and As(V) binding never fell below 20% even in the presence of 1000 ppm interfering ions. PMID:25097269
Wang, Xuemei; Huang, Pengfei; Ma, Xiaomin; Wang, Huan; Lu, Xiaoquan; Du, Xinzhen
2017-05-01
Novel magnetic mesoporous molecularly imprinted polymers (MMIPs) with core-shell structure were prepared by simple surface molecular imprinting polymerization using tetrabromobisphenol-S (TBBPS) as the template. The MMIPs-TBBPS were characterized by fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption transmission, and vibrating sample magnetometry. The resultant MMIPs-TBBPS were successfully applied magnetic solid-phase extraction (MSPE) coupled with HPLC determination of TBBPS in spiked real water samples with recoveries of 77.8-88.9%. The adsorption experiments showed that the binding capacity of MMIPs-TBBPS to TBBPS and six structural analogs were significantly higher than that of the magnetic nonimprinted polymers (MNIPs). Meanwhile, the MMIPs-TBBPS possessed rapid binding affinity, excellent magnetic response, specific selectivity and high adsorption capacity toward TBBPS with a maximum adsorption capacity of 1626.8µgg -1 . The analytical results indicate that the MMIPs-TBBPS are promising materials for selective separation and fast enrichment of TBBPS from complicated enviromental samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.
Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A
2015-01-01
Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.
Enhanced binding by dextran-grafting to Protein A affinity chromatographic media.
Zhao, Lan; Zhu, Kai; Huang, Yongdong; Li, Qiang; Li, Xiunan; Zhang, Rongyue; Su, Zhiguo; Wang, Qibao; Ma, Guanghui
2017-04-01
Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A
2016-01-01
Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.
Binding and Utilization of Human Transferrin by Prevotella nigrescens
Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis
1999-01-01
To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061
Gosseries, Olivia; Yu, Qing; LaRocque, Joshua J; Starrett, Michael J; Rose, Nathan S; Cowan, Nelson; Postle, Bradley R
2018-05-02
Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems. SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention. Copyright © 2018 the authors 0270-6474/18/384357-10$15.00/0.
Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R
1992-04-01
Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.
Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana
2017-01-01
Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.
Osińska-Jaroszuk, Monika; Błachowicz, Adriana; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna
2014-01-01
A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS. PMID:25114920
2014-01-01
Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578
Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference
Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F
2015-01-01
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...
2016-10-17
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A
2017-04-01
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ding, Shichao; Li, Zhiling; Cheng, Yuan; Du, Chunbao; Gao, Junfeng; Zhang, Yong-Wei; Zhang, Nan; Li, Zhaotong; Chang, Ninghui; Hu, Xiaoling
2018-06-21
In order to facilitate the broad applications of molecular recognition materials in biomedical areas, it is critical to enhance their adsorption capacity while maintaining their excellent recognition performance. In this work, we designed and synthesized well-defined peptide-imprinted mesoporous silica (PIMS) for specific recognition of an immunostimulating hexapeptide from human casein (IHHC) by using amphiphilic ionic liquid as the surfactant to anchor IHHC via a combination of one step sol-gel method and docking oriented imprinting approach. Thereinto, theoretical calculation was employed to reveal the multiple binding interactions and dual-template configuration between amphiphilic ionic liquid and IHHC. The fabricated PIMS was characterized and an in-depth analysis of specific recognition mechanism was conducted. Results revealed that both adsorption and recognition capabilities of PIMS far exceeded that of the NIMS's. More significantly, the PIMS exhibited a superior binding capacity (60.5 mg g-1), which could increase 18.9% than the previous work. The corresponding imprinting factor and selectivity coefficient could reach up to 4.51 and 3.30, respectively. The PIMS also possessed lickety-split kinetic binding for IHHC, which the equilibrium time was only 10 min. All of these merits were due to the high surface area and the synergistic effect of multiple interactions (including hydrogen bonding, π-π stacking, ion-ion electrostatic interactions and van der Waals interactions, etc.) between PIMS and IHHC in imprinted sites. The present work suggests the potential application of PIMS for large-scale and high-effective separation of IHHC, which may lead to their broad applications in drug/gene deliver, biosensors, catalyst and so on. © 2018 IOP Publishing Ltd.
Hirst, Timothy R; Fraser, Sylvia; Soriani, Marco; Aman, A Tholib; de, Haan Lolke; Hearn, Arron; Merritt, Ethan
2002-02-01
Cholera toxin and E. coli heat-labile enterotoxin are structurally homologous proteins comprised of an enzymatically active A-subunit and five B-subunits that bind with high affinity to GM1-ganglioside receptors found on the surface of mammalian cells. The B-subunits have long been thought of simply as trafficking vehicles that trigger entry and subsequent delivery of the 'toxic' A-subunit into cells. Indeed, such is the capacity of the B-subunits to enter cells, that they have been developed as generic carriers for attachment and delivery of a variety of peptides into mammalian cells. However, the B-subunits also appear to possess discrete 'signalling functions', that induce both transcription factor and cell activation. These are thought to be directly responsible for the potent immunomodulatory properties of the B-subunits, and have resulted in their use as adjuvants and as agents to suppress inflammatory immune disorders. The relationship between the signalling properties of the B-subunits and their capacity to act as trafficking vehicles has remained unclear. In an effort to understand the structural requirements for these two functions, a set of mutant B-subunits, with amino acid substitutions at position His-57, have been generated and studied. Importantly, such mutant B-subunits retain an ability to bind with high affinity to GM1 and to traffic into cells, but have entirely lost their capacity to activate immune cell populations. Thus, while binding via GM1 appears to be sufficient to trigger cellular uptake it is not sufficient to activate signal transduction. The His-57 region is therefore speculated to be actively engaged in triggering signalling events, possibly via cognate interaction with other cell surface molecules.
Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin
2015-05-01
Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Increased thyrotropin binding in hyperfunctioning thyroid nodules.
Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M
1987-08-01
The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.
Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.
Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang
2011-11-01
Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.
Choices of capture chromatography technology in antibody manufacturing processes.
DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie
2017-11-15
The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
Reducing peanut allergens by high pressure combined with polyphenol oxidase
NASA Astrophysics Data System (ADS)
Chung, Si-Yin; Houska, Milan; Reed, Shawndrika
2013-12-01
Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens. Since high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts containing caffeic acid were treated with each of the following: (1) HP; (2) HP+PPO; (3) PPO; and (4) none. HP was conducted at 300 and 500 MPa, each for 3 and 10 min, 37 °C. After treatment, SDS-PAGE was performed and allergenic capacity (IgE binding) was determined colorimetrically in inhibition enzyme-linked immunosorbent assay and Western blots, using a pooled plasma from peanut-allergic patients. Data showed that HP alone had no effect on major peanut allergens. However, HP at 500 MPa combined with PPO (HP500/PPO) induced a higher (approximately twofold) reduction of major peanut allergens and IgE binding than PPO alone or HP300/PPO. There was no difference between treatment times. We concluded that HP500/PPO at 3-min enhanced a twofold reduction of the allergenic capacity of peanut extracts, as compared to PPO itself.
Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.
2017-01-01
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554
Zheng, Heshan; Guo, Wanqian; Li, Shuo; Chen, Yidi; Wu, Qinglian; Feng, Xiaochi; Yin, Renli; Ho, Shih-Hsin; Ren, Nanqi; Chang, Jo-Shu
2017-11-01
Biochars derived from three microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Coelastrum sp. Pte-15) were evaluated for their capacity to adsorb p-nitrophenols (PNP) using raw microalgal biomass and powdered activated carbon (PAC) as the control. The results show that BC-Cha-01 (biochar from Chlorella sp. Cha-01) exhibited a high PNP adsorption capacity of 204.8mgg -1 , which is 250% and 140% higher than that of its raw biomass and PAC, respectively. The adsorption kinetics and equilibrium are well described with pseudo-second-order equation and Freundlich model, respectively. BC-Cha-01 was found to contain higher polarity moieties with more O-containing functional groups than PAC and other microalgae-derived biochars. The strong polarity of binding sites on BC-Cha-01 may be responsible for its superior adsorption capacity. The biochars from Chlorella sp. Cha-01 seem to have the potential to serve as a highly efficient PNP adsorbent for wastewater treatment or emergency water pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hanski, E; Caparon, M
1992-07-01
Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.
Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.
Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges
2009-08-01
Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.
Characterization of large-pore polymeric supports for use in perfusion biochromatography.
Whitney, D; McCoy, M; Gordon, N; Afeyan, N
1998-05-22
Perfusion chromatography is uniquely characterized by the flow of a portion of the column eluent directly through the resin in the packed bed. The benefits of this phenomenon and some of the properties of perfusive resins have been described before, and can be summarized as enhanced mass transport to interior binding sites. Here we extend the understanding of this phenomenon by comparing resins with different pore size distributions. Resins are chosen to give approximately the same specific pore volumes (as shown in the characterization section) but the varying contribution of large pores is used to control the amount of liquid flowing through the beads. POROS R1 has the largest contribution of throughpores, and therefore the greatest intraparticle flow. POROS R2 has a lower contribution of throughpores, and a higher surface area coming from a greater population of diffusive pores, but still shows significant mass transport enhancements relative to a purely diffusive control. Oligo R3 is dominated by a high population of diffusive pores, and is used comparatively as a non-perfusive resin. Although the pore size distribution can be engineered to control mass transport rates, the resulting surface area is not the only means by which binding capacity can be controlled. Surface coatings are employed to increase binding capacity without fundamentally altering the mass transport properties. Models are used to describe the amount of flow transecting the beads, and comparisons of coated resins to uncoated (polystyrene) resins leads to the conclusion that these coatings do not obstruct the throughpore structures. This is an important conclusion since the binding capacity of the coated product, in some cases, is shown to be over 10-fold higher than the precursor polystyrene scaffold (i.e., POROS R1 or POROS R2).
Kitzmüller, C; Wallner, M; Deifl, S; Mutschlechner, S; Walterskirchen, C; Zlabinger, G J; Ferreira, F; Bohle, B
2012-11-01
BM4 is a novel genetically engineered variant of the major birch pollen allergen Bet v 1 that lacks the typical Bet v 1-like fold and displays negligible IgE-binding but strong T cell-activating capacity. The aim of this study was to elucidate possible differences between BM4 and Bet v 1 in internalization, antigen processing, and presentation. Proliferative responses to BM4 and Bet v 1 of peripheral blood mononuclear cells and Bet v 1-specific T-cell clones were compared. Fluorescently labeled BM4 and Bet v 1 were used to study surface binding, endocytosis, and intracellular degradation by monocyte-derived DC (mdDC). Both proteins were digested by endolysosomal extracts of mdDC. BM4- and Bet v 1-pulsed mdDC were employed to assess the kinetics of activation of Bet v 1-specific T-cell clones and the polarization of naïve T cells. BM4 displayed a significantly stronger T cell-activating capacity than Bet v 1. Furthermore, BM4 showed increased surface binding and internalization as well as faster endolysosomal degradation compared with Bet v 1. BM4-pulsed mdDC induced enhanced proliferative responses at earlier time-points in Bet v 1-specific T-cell clones and promoted less IL-5 production in T cells than Bet v 1-pulsed mdDC. The loss of the Bet v 1-fold changes the protein's interaction with the human immune system at the level of antigen-presenting cells resulting in altered T-cell responses. By combining low IgE-binding with strong and modulating T cell-activating capacity, BM4 represents a highly interesting candidate for specific immunotherapy of birch pollen allergy. © 2012 John Wiley & Sons A/S.
Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.; Manthiram, Arumugam
2015-01-01
Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved. PMID:26182892
Eder, M; Lütz-Meindl, U
2008-08-01
Pectins are the major matrix polysaccharides of plant cell walls and are important for controlling growth, wall porosity and regulation of the ionic environment in plant cells. Pectic epitopes recognized by the monoclonal antibodies JIM5, JIM7 and 2F4 could be localized in the primary wall during development of the green alga Micrasterias. As the degree of pectin esterification determines the calcium-binding capacity and thus the physical properties of the cell wall, chemical and enzymatic in situ de-esterification was performed. This resulted in displacement of epitopes recognized by JIM5, JIM7 and 2F4, respectively, in changes in the intensity of the antibody labelling as visualized in CLSM. In addition, calcium-binding capacities of cell walls and components of the secretory apparatus were determined in transmission electron microscopy by electron energy loss spectroscopy and electron spectroscopic imaging. These analyses revealed that pectic polysaccharides are transported to the cell wall in a de-esterified form. At the primary wall, pectins get methyl-esterified at the inner side, thus allowing flexibility of the wall. At the outer side of the wall they become again de-esterified and bind high amounts of calcium which leads to cell wall stiffening. Mucilage vesicles possess the highest calcium-binding capacity of all structures observed in Micrasterias, indicating that the pectic polysaccharides of mucilage are secreted in a de-esterified, compact form. When mucilage is excreted through the cell wall, it loses its ability to bind calcium. The esterification of pectins involved is obviously required for swelling of mucilage by water uptake, which generates the motive force for orientation of this unicellular organism in respect to light. Incubation of Micrasterias in pectin methylesterase (PME), which de-esterifies pectic polymers in higher plants, resulted in growth inhibition, cell shape malformation and primary wall thickening. A PME-like enzyme could be found in Micrasterias by PME activity assays.
Kaufman, Rhett C; Herald, Thomas J; Bean, Scott R; Wilson, Jeff D; Tuinstra, Mitch R
2013-03-30
Tannins are large polyphenolic polymers and are known to bind proteins, limiting their digestibility, but are also excellent antioxidants. Numerous studies investigating the functional properties of sorghum tannin have been conducted by comparing grain samples from different sorghum lines without considering the other intrinsic characteristics of the grain. The purpose of this study was to remove the confounding intrinsic factors present in the endosperm so the effect of the tannins could be evaluated utilizing a unique decortication/reconstitution procedure. The tannin content of the 14 cultivars tested ranged from 2.3 to 67.2 catechin equivalents. The bran fractions were studied for their impact on protein binding and antioxidant capacity. Protein digestibility by pepsin ranged from 8% to 58% at the highest tannin level addition. Protein binding ranged from 3.11 to 16.33 g blue bovine serum albumin kg⁻¹ bran. Antioxidant capacity ranged from 81.33 to 1122.54 µmol Trolox equivalents g⁻¹ bran. High-performance size-exclusion chromatography detailed molecular size distributions of the tannin polymers and relationship to tannin functionality. The tannin content and composition play a significant role in determining tannin functionality. These differences will allow for selections of high-tannin sorghums with consideration of the biological activities of the tannins. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J
2009-01-01
Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.
Biochemical separations by continuous-bed chromatography.
Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A
1998-08-07
Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.
Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, W.K.
The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less
Zhang, Wei Yun; Zhang, Wenhua; Liu, Zhiyuan; Li, Cong; Zhu, Zhi; Yang, Chaoyong James
2012-01-03
We have developed a novel method for efficiently screening affinity ligands (aptamers) from a complex single-stranded DNA (ssDNA) library by employing single-molecule emulsion polymerase chain reaction (PCR) based on the agarose droplet microfluidic technology. In a typical systematic evolution of ligands by exponential enrichment (SELEX) process, the enriched library is sequenced first, and tens to hundreds of aptamer candidates are analyzed via a bioinformatic approach. Possible candidates are then chemically synthesized, and their binding affinities are measured individually. Such a process is time-consuming, labor-intensive, inefficient, and expensive. To address these problems, we have developed a highly efficient single-molecule approach for aptamer screening using our agarose droplet microfluidic technology. Statistically diluted ssDNA of the pre-enriched library evolved through conventional SELEX against cancer biomarker Shp2 protein was encapsulated into individual uniform agarose droplets for droplet PCR to generate clonal agarose beads. The binding capacity of amplified ssDNA from each clonal bead was then screened via high-throughput fluorescence cytometry. DNA clones with high binding capacity and low K(d) were chosen as the aptamer and can be directly used for downstream biomedical applications. We have identified an ssDNA aptamer that selectively recognizes Shp2 with a K(d) of 24.9 nM. Compared to a conventional sequencing-chemical synthesis-screening work flow, our approach avoids large-scale DNA sequencing and expensive, time-consuming DNA synthesis of large populations of DNA candidates. The agarose droplet microfluidic approach is thus highly efficient and cost-effective for molecular evolution approaches and will find wide application in molecular evolution technologies, including mRNA display, phage display, and so on. © 2011 American Chemical Society
Self-supporting hydrogel stamps for the microcontact printing of proteins.
Coq, Naïs; van Bommel, Ties; Hikmet, Rifat A; Stapert, Hendrik R; Dittmer, Wendy U
2007-04-24
In this work we explore a new hydrogel stamp material obtained from polymerizing 2-hydroxyethyl acrylate and poly(ethylene glycol) diacrylate in the presence of water for the microcontact printing of proteins directly on gold substrates and by covalent coupling to self-assembled monolayers of alkanethiols. At high cross-link density, the hydrogel is rigid, hydrophilic, and with a high buffer holding capacity to enable the unsupported printing of protein patterns homogeneously and reproducibly, with micrometer-range precision. The stamps were used to print antibodies to human parathyroid hormone, which were shown using immunoassay tests to retain their biological function with binding capacities comparable to those of solution-adsorbed antibodies.
A streptavidin linker layer that functions after drying.
Xia, Nan; Shumaker-Parry, Jennifer S; Zareie, M Hadi; Campbell, Charles T; Castner, David G
2004-04-27
The ability of streptavidin (SA) to simultaneously bind four biotins is often used in linker layers, where a biotinylated molecule is linked to a biotin-functionalized surface via SA. For biosensor and array applications, it is desirable that the SA linker layer be stable to drying and rehydration. In this study it was observed that a significant decrease in binding capacity of a SA layer occurred when that layer was dried. For this study a SA linker layer was constructed by binding SA to a biotin-containing alkylthiolate monolayer (BAT/OEG) self-assembled onto gold. Its stability after drying was investigated using surface plasmon resonance (SPR). Approximately a quarter of the SA layer was removed from the BAT/OEG surface upon drying and rehydration, suggesting disruption of SA-biotin binding when dry. This resulted in the dried SA layer losing approximately 40% of its biotinylated ferritin (BF) binding capacity. Coating the layer with trehalose before drying was found to inhibit the loss of SA from the BAT/OEG surface. SPR showed that the trehalose-protected SA linker layer retained approximately 91% of its original BF binding capacity after drying and rehydration. Atomic force microscopy, which was used to image individual surface-bound SA and BF molecules, qualitatively confirmed these observations.
Lead-binding capacity of calcium pectates with different molecular weight.
Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri
2017-04-01
Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.
Vasilatos-Younken, R; Gray, K S; Bacon, W L; Nestor, K E; Long, D W; Rosenberger, J L
1990-07-01
The post-hatch ontogeny of hepatic GH binding and its relationship to GH plasma profile characteristics in male and female turkeys of slow- (RBC-2) and fast-growing (F; selected from RBC-2) genetic lines were determined. Specific binding of 125I-labelled recombinant chicken GH to crude hepatic membrane preparations (100,000 g pellet) was determined at 2, 4, 8, 14 and 24 weeks of age for both total (occupied plus free; 4 mol MgCl2/l pretreatment) and free (without MgCl2 pretreatment) binding sites. Characteristics of the plasma GH profile were measured at each age by serial blood sampling through indwelling jugular vein catheters. When specific binding to either free or total sites was expressed on a whole organ basis (i.e. hepatic GH-binding capacity/bird), binding increased dramatically (P less than 0.0001) with increasing age over both lines and sexes. Total binding capacity (free plus occupied sites) per bird was greater for females than for males at 24 weeks of age (P less than 0.04), as birds reached sexual maturity, but did not differ between fast- and slow-growing lines at any age. Available binding capacity (free sites) per bird was greater for the faster growing F than RBC-2 line at the older ages when body size was most divergent (14 and 24 weeks of age; P less than 0.01, P less than 0.06 respectively), but did not differ between sexes. Correlation analysis at individual ages revealed a progressive change in the nature of the relationship between hepatic GH binding, plasma GH and somatic growth.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, R. A.; Sharp, J. G.; Bendall, J. R.
1961-11-01
The immediate effects of 5-Mrad ionizing radiation on beef and pork longissimus dorsi muscles were an increase in pH, a decrease in water-holding capacity, in increment in gel-volume for a given pH rise, and in soluble protein, and increased resistance to low- and high-speed homogenization. The indications of cross-binding induced by irradiation were supported by studies of isolated myofibrils from rabbit psoas muscle. Irradiation markedly reduced the syneresis (18 deg , mu = 0.04) and the swelling (0 deg , mu = 0.25) induced by ATP and, to a lesser extent, over-all fibrillar ATP-ase activity (the initial fast phase beingmore » depressed more than the slower second phase of the reaction). On storage (at -20 deg +37 deg pH and water-binding capacity increased generally with increase of temperature. Changes in pH occurred earlier with pork and to a greater extent than with beef. In sterile beef longissimus dorsi (irradiated or unirradiated) there was a decrease in soluble protein during storage for 60-90 days at 37- (indicating denaturation) and lncreases in TCA-soluble nitrogen and tyrosine (indicating proteolysis, which was more marked in unirradiated samples). The absence of soluble hydroxyproline and the presence of clearly marked cross- striations indicated that the autolysis must have involved sarcoplasmic and not fibrillar or connective tissue protein.« less
Serotonin and dopamine transporter binding in children with autism determined by SPECT.
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T
2008-08-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.
Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Peter; Gillespie, Andrew; Stalla, David
The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less
Sun, Han-wen; Qiao, Feng-xia; Liu, Guang-yu
2006-11-17
Theophylline imprinted monolithic columns were designed and prepared for rapid separation of a homologous series of xanthine derivatives, caffeine, and theophylline by an in situ thermal-initiated copolymerization technique. Caffeine and theophylline were fully separated both under isocratic and gradient elutions on this kind of monolithic molecularly imprinted polymers (MIP) column. The broad peak showed in isocratic elution could be improved in gradient elution. Some chromatographic conditions such as mobile phase composition, flow rate, and the temperature on the retention times were investigated. Hydrogen bonding interaction and hydrophobic interaction played an important role in the retention and separation. The binding capacity was evaluated by static adsorption and Scatchard analysis, which showed that the dissociation constant (KD) and the maximum binding capacity (Qmax) were 1.50 mol/L, and 236 micromol/g for high affinity binding site, and 7.97 mol/L and 785 micromol/g for lower affinity binding site, respectively. Thermodynamic data (DeltaDeltaH and DeltaDeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled separation. The morphological characteristics of monolithic MIP were investigated by scanning electron microscope, which showed that both mesopores and macropores were formed in the monolith. The present monolithic MIP column was successfully applied for the quantitative determination of caffeine and theophylline in different kinds of green tea.
Binding and Inhibition in Working Memory: Individual and Age Differences in Short-Term Recognition
ERIC Educational Resources Information Center
Oberauer, Klaus
2005-01-01
Two studies investigated the relationship between working memory capacity (WMC), adult age, and the resolution of conflict between familiarity and recollection in short-term recognition tasks. Experiment 1 showed a specific deficit of young adults with low WMC in rejecting intrusion probes (i.e., highly familiar probes) in a modified Sternberg…
Cao, Shan; Liu, Bing; Cheng, Baozhen; Lu, Fuping; Wang, Yanping; Li, Yu
2017-01-05
The eco-friendly combination tanning process has been developed to reduce chromium in existing researches, which is based on zinc tanning agents. This can be considered as a less-chrome substitute for current tanning process. To gain deeper understanding of the binding mechanisms of zinc-collagen interaction, which are affected by tanning pH, experiments have been carried out. Analysis in this paper reveals how chemical bonds from the collagen's main function groups combine with zinc. XPS and NIR data was analyzed for further understanding of where the zinc binding sites lie on collagen fibers at different pH. The results indicate that high pH is helpful to amino-binding sites while low pH promotes carboxyl-binding sites on collagen fibers. Furthermore, from the effect of Zinc-chrome combination tanning, we can see that the new method reduces the chromium dosage in tanning process compared to the conventional chrome tanning method. Copyright © 2016 Elsevier B.V. All rights reserved.
Bao, Huan; Duong, Franck
2013-08-16
The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIA(Glc) are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIA(Glc) binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIA(Glc) does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.
Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.
Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu
2017-09-01
Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.
Rezvani, Azita; Jahanshahi, Mohsen; Najafpour, Ghasem D
2014-02-28
Agarose-nickel (Ag-Ni) composite matrix was evaluated for its use in expanded bed adsorption (EBA). Bovine serum albumin (BSA) and lysozyme were used as model proteins in batch and column adsorption studies. Accordingly, Reactive Green 19 (RG19) dye-ligand was covalently immobilized onto the support matrix to prepare affinity adsorbent for protein adsorption. Results were then compared with data obtained from Streamline commercial matrix. In batch experiments RG19 derivatives of Ag-Ni (RG19-Ag-Ni) exhibited high adsorption rate; and also a higher binding capacity of BSA (31.4mg/ml adsorbent) was observed for Ag-Ni compared to the commercial adsorbent. More than 70% of the adsorption capacity was achieved within 30min which is a reasonable contact time for EBA operations. The equilibrium adsorption data well agreed with Langmuir isotherm model. The expanded bed adsorption studies showed a reasonable breakthrough behavior at high flow rates and a higher dynamic binding capacity (DBC) was obtained for novel matrix in compare to streamline at the same fluid velocity. DBC at 10% breakthrough reached 66% of the saturated adsorption capacity at the high flow velocity of 450cm/h which indicates the favorable column efficiency. Additionally, two different Ag-Ni size fractions (75-150 and 150-300μm) were examined to investigate the expanded bed performance dependency on the adsorbent particle size with respect to the hydrodynamic stability and adsorption properties using lysozyme as model protein. Interestingly, the small ones showed less axial dispersion coefficient (<1.0×10(-5)m(2)/s) which resulted in higher bed stability in high fluid viscosities. Overall, the adsorption experiments results demonstrated that small size fraction of Ag-Ni matrices acts more effectively for expanded bed adsorption of bio-molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecularly imprinted composite cryogels for hemoglobin depletion from human blood.
Baydemir, Gözde; Andaç, Müge; Perçin, Işιk; Derazshamshir, Ali; Denizli, Adil
2014-09-01
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity. Copyright © 2014 John Wiley & Sons, Ltd.
Seet, Bruce T; Berry, Donna M; Maltzman, Jonathan S; Shabason, Jacob; Raina, Monica; Koretzky, Gary A; McGlade, C Jane; Pawson, Tony
2007-02-07
The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.
Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A
2009-09-01
A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.
Du, Yushen; Zhang, Tian-Hao; Dai, Lei; Zheng, Xiaojuan; Gorin, Aleksandr M; Oishi, John; Wu, Ting-Ting; Yoshizawa, Janice M; Li, Xinmin; Yang, Otto O; Martinez-Maza, Otoniel; Detels, Roger; Sun, Ren
2017-11-28
Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8 + cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. Copyright © 2017 Du et al.
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, S.K.
1987-01-01
Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located inmore » the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.« less
Studies on the fate of flocoumafen in the Japanese quail (Coturnix coturnix japonica).
Huckle, K R; Warburton, P A; Forbes, S; Logan, C J
1989-01-01
1. 14C-Flocoumafen, administered to Japanese quail as a single oral or i.p. dose, was rapidly and extensively eliminated in excreta; most was eliminated within 24 h. Extensive metabolism of the rodenticide was seen, with at least 8 metabolites detected; unchanged flocoumafen comprised 9% dose. The elimination kinetics and metabolic profiles were qualitatively similar after oral and i.p. dosing. 2. The major metabolites (60% dose) were labile to beta-glucuronidase, liberating aglycones with identical chromatographic mobilities to those of the unchanged flocoumafen isomers. 3. Radioactivity was retained mostly in the liver; largely as unchanged flocoumafen associated with the mitochondrial and microsomal fractions. Elimination of radioactivity from most tissues was biphasic with an initially rapid depletion (5 days) followed by a slow terminal elimination phase. The elimination half life from liver was greater than 100 days. 4. Livers of quail receiving extended dietary exposure to flocoumafen at 5, 15 and 50 ppm had concentrations of flocoumafen (1.0 nmol/g) that were independent of dose, indicating a capacity-limited binding site. These hepatic concentrations were similar to those after a single oral dose and were also similar to those in rats. The data indicate the presence in quail liver of a saturable high affinity flocoumafin binding site with similar characteristics and capacity to that in the rat. 5. The selective toxicity of flocoumafen to rats (highly toxic) and quail (moderately toxic) appears to arise from differences in metabolism rather than from anticoagulant binding in the liver. When hepatic binding sites of rats are saturated anticoagulant action becomes lethal, whereas quail are able to survive and extensively metabolize the compound.
Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins
Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.
2017-01-01
Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052
Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.
Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A
1987-02-01
Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.
Cullen, Sean P; Liu, Xiaosong; Mandel, Ian C; Himpsel, Franz J; Gopalan, Padma
2008-02-05
The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no temperature dependence indicating a significant change in conformation.
Pang, Quan; Kundu, Dipan; Cuisinier, Marine; Nazar, L F
2014-08-26
The lithium-sulphur battery relies on the reversible conversion between sulphur and Li2S and is highly appealing for energy storage owing to its low cost and high energy density. Porous carbons are typically used as sulfur hosts, but they do not adsorb the hydrophilic polysulphide intermediates or adhere well to Li2S, resulting in pronounced capacity fading. Here we report a different strategy based on an inherently polar, high surface area metallic oxide cathode host and show that it mitigates polysulphide dissolution by forming an excellent interface with Li2S. Complementary physical and electrochemical probes demonstrate strong polysulphide/Li2S binding with this 'sulphiphilic' host and provide experimental evidence for surface-mediated redox chemistry. In a lithium-sulphur cell, Ti4O7/S cathodes provide a discharge capacity of 1,070 mAh g(-1) at intermediate rates and a doubling in capacity retention with respect to a typical conductive carbon electrode, at practical sulphur mass fractions up to 70 wt%. Stable cycling performance is demonstrated at high rates over 500 cycles.
Serradeil-Le Gal, C; Raufaste, D; Marty, E; Garcia, C; Maffrand, J P; Le Fur, G
1994-02-28
The new potent and selective nonpeptide vasopressin V1a antagonist, SR 49059, was tritiated and used for the characterization of rat and human liver AVP V1a receptors. Binding of [3H] SR 49059 was time-dependent, reversible and saturable. A single class of high affinity binding sites was identified with Kd values of 0.63 +/- 0.13 and 2.95 +/- 0.64 nM, in rat and human liver membranes, respectively. The maximal binding capacity (Bmax) was about 7 times higher in rat than in human liver preparations. The relative potencies of several AVP/oxytocin agonists or antagonists to inhibit [3H] SR 49059 binding confirmed that this ligand labeled a homogeneous population of sites with the expected AVP V1a profile. Furthermore, [3H] SR 49059 or unlabeled SR 49059 displayed only slight species differences between rat and human V1a receptors, whereas OPC-21268, another nonpeptide V1a antagonist, exhibited a high species-related potency with more than 500 fold higher affinity for rat than for human liver V1a receptors. Thus, [3H] SR 49059 is the first nonpeptide AVP V1a ligand reported having highly specific activity, stability, specificity and affinity. This makes it a suitable probe for labeling AVP V1a receptors in rat and also in human tissues.
Drug Design Relating Amebicides to Inhibition of Protein Synthesis.
1977-09-01
A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct
Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo
2012-11-01
In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.
The influence of different techniques in characterizing human antibodies to cow's milk proteins
McCaffery, T. D.; Kraft, S. C.; Rothberg, R. M.
1972-01-01
Sera from 760 subjects with and without inflammatory bowel disease (IBD) were studied selectively using both primary and secondary antibody assay techniques and different cow's milk antigens. Techniques which demonstrate antibody–antigen binding revealed that the incidence, amount and immunoglobulin class of detectable antibody to bovine serum albumin (BSA) were not significantly different among IBD and control subjects. Only 13 of the 138 sera with the most anti-BSA by primary binding techniques had the capacity to precipitate spontaneously either BSA or antigens in raw (RSM) and pasteurized (PSM) skimmed milk. In passive haemagglutination studies, 41% of these 138 sera had the capacity to agglutinate BSA-coated erythrocytes, while the respective figures for RSM and PSM were 56% and 77%. Only in studies employing the passive haemagglutination of RSM-coated erythrocytes were high titres found more frequently in sera from patients with IBD than in sera from control subjects. Taken as a whole, this study fails to provide evidence for the pathogenetic significance of milk antibodies in IBD. PMID:4625158
Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan
2013-07-24
Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alba, Martha P.; Suarez, Carlos F.; Universidad del Rosario, Bogotá D. C.
Fully-protective, long-lasting, immunological (FPLLI) memory against Plasmodium falciparum malaria regarding immune protection-inducing protein structures (IMPIPS) vaccinated into monkeys previously challenged and re-challenged 60 days later with a lethal Aotus monkey-adapted P. falciparum strain was found to be associated with preferential high binding capacity to HLA-DRβ1* allelic molecules of the major histocompatibility class II (MHC-II), rather than HLA-DRβ3*, β4*, β5* alleles. Complete PPII{sub L} 3D structure, a longer distance (26.5 Å ± 1.5 Å) between residues perfectly fitting into HLA-DRβ1*PBR pockets 1 and 9, a gauche{sup −} rotamer orientation in p8 TCR-contacting polar residue and a larger volume of polar p2 residues was also found. Thismore » data, in association with previously-described p3 and p7 apolar residues having gauche{sup +} orientation to form a perfect MHC-II-peptide-TCR complex, determines the stereo-electronic and topochemical characteristics associated with FPLLI immunological memory. - Highlights: • Stereo-electronic and topochemical rules associated with FPLLI immunological memory. • Presence of very high long-lasting antibody titres against Plasmodium falciparum Spz. • Protective memory induction associated with a binding capacity to HLA-DRβ1*. • gauche{sup −} rotamer orientation in p8 polar residue is related to is related to immunological memory.« less
Yantasee, Wassana; Warner, Cynthia L; Sangvanich, Thanapon; Addleman, R Shane; Carter, Timothy G; Wiacek, Robert J; Fryxell, Glen E; Timchalk, Charles; Warner, Marvin G
2007-07-15
We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) are an effective sorbent material for toxic soft metals such as Hg, Ag, Pb, Cd, and Tl, which effectively bind to the DMSA ligands and for As, which binds to the iron oxide lattices. The nanoparticles are highly dispersible and stable in solutions, have a large surface area (114 m2/g), and have a high functional group content (1.8 mmol thiols/g). They are attracted to a magnetic field and can be separated from solution within a minute with a 1.2 T magnet. The chemical affinity, capacity, kinetics, and stability of the magnetic nanoparticles were compared to those of conventional resin based sorbents (GT-73), activated carbon, and nanoporous silica (SAMMS) of similar surface chemistries in river water, groundwater, seawater, and human blood and plasma. DMSA-Fe3O4 had a capacity of 227 mg of Hg/g, a 30-fold larger value than GT-73. The nanoparticles removed 99 wt% of 1 mg/L Pb within a minute, while it took over 10 and 120 min for Chelex-100 and GT-73 to remove 96% of Pb.
Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A
2018-05-16
A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10 glycate was likely due to greater steric hindrance (or a physical barrier) at the surface of the protein. In summary, our results demonstrate that glycating WPI with DX via Maillard reaction can potentially be used to decrease the allergenicity of whey protein. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa
2009-04-22
Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.
A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.
Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue
2018-05-23
Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.
Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption.
DeCoste, Jared B; Denny, Michael S; Peterson, Gregory W; Mahle, John J; Cohen, Seth M
2016-04-21
Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology.
Transient chloride binding as a contributory factor to corneal stromal swelling in the ox.
Hodson, S; Kaila, D; Hammond, S; Rebello, G; al-Omari, Y
1992-01-01
1. Investigations were made of the cation exchange capacity of fresh isolated ox corneal stroma (Q, units: mequiv fixed stromal charge/kg stromal fluid) at pH 7.4 over a variety of stomal hydrations (H, units: kg stromal fluid/kg dry tissue) both above and below the physiological hydration of 3.2, whilst the stromas were immersed in a variety of sodium chloride solutions (range 5-1000 mM). 2. At any particular salt concentration, the product QH (dry tissue exchange capacity, units: mequiv/kg dry tissue) appeared constant, over all the hydrations investigated. 3. Dry tissue exchange capacity (QH) varied, however, when the bathing salt concentration was altered. It varied between 55 mequiv/kg dry tissue (e.g. Q = 17 mequiv at H = 3.2) in 5 mM-NaCl to 240 mequiv/kg dry tissue (e.g. Q = 75 mequiv/l at H = 3.2) in 1000 mM-NaCl. 4. The variation of stromal exchange capacity in NaCl solutions of different concentrations was similar when detected by three independent procedures: stromal gel pressure measurements, intrastromal sodium ion distributions, and intrastromal electrical potentials. 5. Intrastromal chloride ion distributions were anomalous. Total chloride (measured by radio-isotopes) was consistently higher than that predicted by Donnan theory. 6. The data were consistent with Elliott's hypothesis that a fraction of intrastromal chloride ions bind to the corneal stromal matrix and in so doing contribute to the fixed negative charge of the stroma. 7. Our observations may be explained by a model of the cation exchange capacity of ox cornea which has two types of components. On is (at constant pH) invariant, and has a dry tissue exchange capacity of about 50 mequiv/kg dry tissue, and is probably generated by the sulphonic and carboxylic acid groups of the glycosaminoglycans. The other is explained by supposing it to consist of a chloride binding ligand which exhibits first order binding, is half occupied at ambient chloride concentrations of 300 mM, and has a total capacity of 240 mequiv/kg dry tissue. 8. Partial stromal extraction with 4 M-guanidine HCl indicated that the chloride binding ligand is not associated with the collagen molecules in the corneal stromal fibrils. 9. It is suggested that such a stromal chloride ion binding ligand would help to stabilize the hydration and transparency of the living cornea when it is exposed to environments of varying tonicity (such as in river or sea bathing). PMID:1432722
Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.
Tan, Xin; Tahini, Hassan A; Smith, Sean C
2017-06-14
Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.
M13 bacteriophage-activated superparamagnetic beads for affinity separation.
Muzard, Julien; Platt, Mark; Lee, Gil U
2012-08-06
The growth of the biopharmaceutical industry has created a demand for new technologies for the purification of genetically engineered proteins.The efficiency of large-scale, high-gradient magnetic fishing could be improved if magnetic particles offering higher binding capacity and magnetization were available. This article describes several strategies for synthesizing microbeads that are composed of a M13 bacteriophage layer assembled on a superparamagnetic core. Chemical cross-linking of the pVIII proteins to a carboxyl-functionalized bead produces highly responsive superparamagnetic particles (SPM) with a side-on oriented, adherent virus monolayer. Also, the genetic manipulation of the pIII proteins with a His(6) peptide sequence allows reversible assembly of the bacteriophage on a nitrilotriacetic-acid-functionalized core in an end-on configuration. These phage-magnetic particles are successfully used to separate antibodies from high-protein concentration solutions in a single step with a >90% purity. The dense magnetic core of these particles makes them five times more responsive to magnetic fields than commercial materials composed of polymer-(iron oxide) composites and a monolayer of phage could produce a 1000 fold higher antibody binding capacity. These new bionanomaterials appear to be well-suited to large-scale high-gradient magnetic fishing separation and promise to be cost effective as a result of the self-assembling and self-replicating properties of genetically engineered M13 bacteriophage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.
2011-01-01
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009
An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants
Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin
2015-01-01
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. PMID:25649435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatelain, P.; Beaufort, P.; Meysmans, L.
1991-01-01
SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less
Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd
2018-04-20
Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is considered as a strategy for selectivity enhancement in affinity chromatography with macromolecular ligands. Copyright © 2018 Elsevier B.V. All rights reserved.
Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.
Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo
2015-08-01
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Amorim, Irina; Freitas, Daniela P; Magalhães, Ana; Faria, Fátima; Lopes, Célia; Faustino, Augusto M; Smet, Annemieke; Haesebrouck, Freddy; Reis, Celso A; Gärtner, Fátima
2014-08-01
The gastric mucosa of dogs is often colonized by non-Helicobacter pylori helicobacters (NHPH), while H. pylori is the predominant gastric Helicobacter species in humans. The colonization of the human gastric mucosa by H. pylori is highly dependent on the recognition of host glycan receptors. Our goal was to define the canine gastric mucosa glycophenotype and to evaluate the capacity of different gastric Helicobacter species to adhere to the canine gastric mucosa. The glycosylation profile in body and antral compartments of the canine gastric mucosa, with focus on the expression of histo-blood group antigens was evaluated. The in vitro binding capacity of FITC-labeled H. pylori and NHPH to the canine gastric mucosa was assessed in cases representative of the canine glycosylation pattern. The canine gastric mucosa lacks expression of type 1 Lewis antigens and presents a broad expression of type 2 structures and A antigen, both in the surface and glandular epithelium. Regarding the canine antral mucosa, H. heilmannii s.s. presented the highest adhesion score whereas in the body region the SabA-positive H. pylori strain was the strain that adhered more. The canine gastric mucosa showed a glycosylation profile different from the human gastric mucosa suggesting that alternative glycan receptors may be involved in Helicobacter spp. binding. Helicobacter pylori and NHPH strains differ in their ability to adhere to canine gastric mucosa. Among the NHPH, H. heilmannii s.s. presented the highest adhesion capacity in agreement with its reported colonization of the canine stomach. © 2014 John Wiley & Sons Ltd.
Fish protein hydrolysates: application in deep-fried food and food safety analysis.
He, Shan; Franco, Christopher; Zhang, Wei
2015-01-01
Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®
Characterization of the increased binding of acetaldehyde to red blood cells in alcoholics.
Hernández-Muñoz, R; Baraona, E; Blacksberg, I; Lieber, C S
1989-10-01
Using equilibrium dialysis, we found that acetaldehyde, at the levels commonly occurring after ethanol ingestion, did not bind detectably to plasma proteins, but there was significant binding to red blood cells, more in alcoholics than in nonalcoholics. The binding to red blood cells was inhibited by pyridoxal phosphate and N-ethylmaleimide, suggesting adduction to amino and thiol groups. Binding kinetics were consistent with at least two sites. The one with the highest affinity for acetaldehyde corresponded to hemoglobin. Its affinity and Bmax were not changed in alcoholics, but these binding sites accounted for only 44% of the sites available in the red blood cells of alcoholics and 80% of those in controls. Moreover, this binding was not inhibited by N-ethylmaleimide. There was no detectable binding to red cell ghosts. Nonprotein binding was then assessed by changes in NADH produced by the addition of protein-free fractions of the cells to an alcohol dehydrogenase system in equilibrium; this revealed a second binder of lower affinity, larger capacity and with sensitivity to both inhibitors. This binding (possibly due to thiazolidine formation with cysteine) was enhanced in alcoholics, whose red blood cell cysteine content was doubled. Levels of red blood cell cysteine and acetaldehyde remained high for 2 weeks after withdrawal. Because of the prolonged persistence after withdrawal, these changes may provide new markers of alcoholism.
Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G
2011-05-01
The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruol, D.J.; Wolfe, K.A.
1990-08-28
RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition wasmore » significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.« less
Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy
NASA Astrophysics Data System (ADS)
Wang, T.; Liu, J.; Ge, K.; Fang, M.
2014-12-01
Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer optimization. Chemical reaction kinetics could be enhanced by stronger binding energy or higher temperature. However, the total kinetics can only be significantly improved by chemical reaction enhancement if the physical diffusion is fast enough.
Landi, S; Held, H R
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily.The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives.We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol.
Landi, S.; Held, H. R.
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily. The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives. We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol. ImagesFIG. 2 PMID:5294923
Lee, Kelly A; Tell, Lisa A; Mohr, F Charles
2012-12-01
Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jinlian; Guo, Yanhua; Zhang, Yun
A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%,more » 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.« less
Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi
2016-06-01
Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bolivar, Juan M; Nidetzky, Bernd
2012-07-03
Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.
Controlled Immobilization Strategies to Probe Short Hyaluronan-Protein Interactions
NASA Astrophysics Data System (ADS)
Minsky, Burcu Baykal; Antoni, Christiane H.; Boehm, Heike
2016-02-01
Well-controlled grafting of small hyaluronan oligosaccharides (sHA) enables novel approaches to investigate biological processes such as angiogenesis, immune reactions and cancer metastasis. We develop two strategies for covalent attachment of sHA, a fast high-density adsorption and a two-layer system that allows tuning the density and mode of immobilization. We monitored the sHA adlayer formation and subsequent macromolecular interactions by label-free quartz crystal microbalance with dissipation (QCM-D). The modified surfaces are inert to unspecific protein adsorption, and yet retain the specific binding capacity of sHA. Thus they are an ideal tool to study the interactions of hyaluronan-binding proteins and short hyaluronan molecules as demonstrated by the specific recognition of LYVE-1 and aggrecan. Both hyaladherins recognize sHA and the binding is independent to the presence of the reducing end.
Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria
2013-01-01
Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313
Petrou, Panagiota S; Chatzichristidi, Margarita; Douvas, Antonios M; Argitis, Panagiotis; Misiakos, Konstantinos; Kakabakos, Sotirios E
2007-04-15
The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures
NASA Technical Reports Server (NTRS)
Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)
2002-01-01
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.
In Vitro Determination of the Allergenic Potential of Egg White in Processed Meat
Hildebrandt, Sabine; Schütte, Larsen; Stoyanov, Stefan; Hammer, Günther; Steinhart, Hans; Paschke, Angelika
2010-01-01
Hen's egg white has been reported as a causative agent of allergic reactions, with ovalbumin, conalbumin, ovomucoid, and lysozyme being the major allergens. However, little is known about the effects of processing with heat and high pressure on the allergenicity of egg white proteins as ingredients in meat. For this purpose, the allergenic characteristics of such treated preparations were studied. The IgE-binding capacity was analyzed by EAST inhibition in raw and processed meat preparations using sera from patients with hen's egg specific IgE. Increasing heat treatment as well as the application of high pressure decreased IgE binding, which is a measure of allergenic potential. The combined application of heat (70°C) and high pressure had synergistic effects in reducing the allergenic potential nearly twice as the sum of the single treatments conducted separately. PMID:20948881
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Binding of environmental carcinogens to asbestos and mineral fibres.
Harvey, G; Pagé, M; Dumas, L
1984-01-01
A rapid method has been developed for measuring the binding capacity of asbestos and other mineral fibres for environmental carcinogens. Benzo(alpha)pyrene (B(alpha)P), nitrosonornicotine (NNN), and N-acetyl-2-aminofluorene (NAAF) were assayed in the presence of Canadian grade 4T30 chrysotile, chrysotile A, amosite, crocidolite, glass microfibres, glasswool, attapulgite, and titanium dioxide. Chrysotile binds significantly more carcinogens than the other mineral fibres. This binding assay is reproducible with coefficients of variation of less than 8% and 6% respectively for inter and intra assay. The influence of pH was also studied, and there is good correlation between the carcinogen binding and the charge of the tested mineral fibres. The in vitro cytotoxicity on macrophage like cell line P388D1 and the haemolytic activity of various mineral fibres were also measured; a good correlation was found between the binding capacity and the cytotoxicity of tested mineral fibres on P388D1 cells. These results give some explanations for the reported synergism between exposure to asbestos and the smoking habits of workers. PMID:6331497
Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.
Wang, Kun; Arntfield, Susan D
2014-08-15
Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hemdane, S; Langenaeken, N A; Jacobs, P J; Verspreet, J; Delcour, J A; Courtin, C M
2018-07-01
This study investigates the effect of the physical presence and water binding of wheat bran during bread making, and the possible mechanisms behind this effect. Regular bran, pericarp-enriched bran and synthetic bran-like particles with different water binding capacities and particle sizes were used. Incorporation of regular and pericarp-enriched bran in dough (15% dm) led to a lower oven rise than the control dough. Bread volumes decreased with 11% and 30%, respectively. Dough with synthetic bran, having a low water binding capacity, displayed a near to normal leavening and oven rise and resulted in a bread volume decrease of only 5% compared to the control. Particle size reduction of regular bran and synthetic bran to an average size of 200 µm did not affect final bread quality. Results indicate that water binding by bran affects bread quality the most, whereas steric hindrance by physical presence of bran particles is less determinative. Copyright © 2018 Elsevier Ltd. All rights reserved.
Positive lithiation potential on functionalized Graphene sheets
NASA Astrophysics Data System (ADS)
Chouhan, Rajiv Kumar; Raghani, Pushpa
2015-03-01
Designing lithium batteries with high capacities is major challenge in the field of energy storage. As an alternative to the conventional graphitic anode with a capacity of ~372 mAhg-1 , we look at the adsorption of lithium on 2D graphene oxide (GO) sheets. We have included van-der-waal's interaction in our calculation and compared with literature showing its importance in Li binding on Graphene sheets. In comparison to the negative lithiation potential in prestine graphene sheets, we were able to get positive lithiation potential by introducing functional groups such as epoxy(-O-) and hydroxyl(-OH) on graphene. Also the non-stoichiometic nature of GO provides better potential to increase the lithiation potential in compare to the defects induced graphene 2D sheet. Dramatic charge redistribution within the sheet due to presence of highly electronegative oxygen plays an important role in increasing the capacity. Financial support from Research Corporation's Cottrell College Science award and National Science Foundation's CAREER award (DMR-1255584). Computational facilities provided by HPC center of Idaho National Laboratory.
Li, Ya; Fu, Qiang; Liu, Meng; Jiao, Yuan-Yuan; Du, Wei; Yu, Chong; Liu, Jing; Chang, Chun; Lu, Jian
2012-01-01
In order to prepare a high capacity packing material for solid-phase extraction with specific recognition ability of trace ractopamine in biological samples, uniformly-sized, molecularly imprinted polymers (MIPs) were prepared by a multi-step swelling and polymerization method using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and toluene as a porogen respectively. Scanning electron microscope and specific surface area were employed to identify the characteristics of MIPs. Ultraviolet spectroscopy, Fourier transform infrared spectroscopy, Scatchard analysis and kinetic study were performed to interpret the specific recognition ability and the binding process of MIPs. The results showed that, compared with other reports, MIPs synthetized in this study showed high adsorption capacity besides specific recognition ability. The adsorption capacity of MIPs was 0.063 mmol/g at 1 mmol/L ractopamine concentration with the distribution coefficient 1.70. The resulting MIPs could be used as solid-phase extraction materials for separation and enrichment of trace ractopamine in biological samples. PMID:29403774
Structural and immunologic characterization of bovine, horse, and rabbit serum albumins
Majorek, Karolina A.; Porebski, Przemyslaw J.; Dayal, Arjun; Zimmerman, Matthew D.; Jablonska, Kamila; Stewart, Alan J.; Chruszcz, Maksymilian; Minor, Wladek
2012-01-01
Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) serums. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. PMID:22677715
Eymard, B; Aimé, C; Cottin, C; Morel, E; Goldstein, G; Bach, J F; Berrih-Aknin, S
1992-10-01
We investigated in a rat myotube assay the combined effect of 26 myasthenic (MG) patient sera and a thymic peptide, thymopoietin (Tpo) which had previously been shown to bind Torpedo and human AChR and to compete with alpha-bungarotoxin (alpha-Bgt) binding. Cultures were first exposed to Tpo alone for 3 h (0.3, 7.5, 15 nM), then MG sera (5% final dilution) were added for an additional 18 h. Reduction in the amount of 125I-alpha-Bgt binding sites in the presence of various concentrations of Tpo were similar with control sera and in all the patients with low or undetectable anti-AChR Ab (11 cases). In cultures exposed to Tpo and sera with high anti-AChR Ab titre (15 cases), Tpo and anti-AChR Ab have an additive capacity to reduce the number of alpha-Bgt binding sites. The results are compatible with the hypothesis that anti-AChR Ab and Tpo could impair neuromuscular transmission by complementary mechanisms.
Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui
2013-10-01
Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-31
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Claveria-Gimeno, Rafael; Lanuza, Pilar M.; Morales-Chueca, Ignacio; Jorge-Torres, Olga C.; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-01
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities. PMID:28139759
NASA Astrophysics Data System (ADS)
Jeena, M. T.; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung
2016-04-01
The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%.The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01559j
Calcagnoli, Federica; de Boer, Sietse F; Beiderbeck, Daniela I; Althaus, Monika; Koolhaas, Jaap M; Neumann, Inga D
2014-03-15
We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inverse relationship between aggressiveness and tonic endogenous OXT signaling properties. Aim of the present study was to verify the hypothesis that variations in OXT expression and/or OXT receptor (OXTR) binding in selected brain regions are associated with different levels or forms of aggression. To this end, male resident wild-type Groningen rats that repeatedly contested and dominated intruder conspecifics were categorized as being low aggressive, highly aggressive or excessively aggressive. Their brains were subsequently collected and quantified for OXT mRNA expression and OXTR binding levels. Our results showed that OXT mRNA expression in the hypothalamic paraventricular nucleus (PVN), but not in the supraoptic nucleus (SON), negatively correlates with the level of offensiveness. In particular, the excessively aggressive group showed a significantly lower OXT mRNA expression in the PVN as compared to both low and highly aggressive groups. Further, the excessively aggressive animals showed the highest OXTR binding in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). These findings demonstrate that male rats with excessively high levels and abnormal forms of aggressive behavior have diminished OXT transcription and enhanced OXTR binding capacities in specific nodes of the social behavioral brain circuitry. Copyright © 2014 Elsevier B.V. All rights reserved.
Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit
2004-01-01
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773
Antonelo, D S; Lancaster, N A; Melnichenko, S; Muegge, C R; Schoonmaker, J P
2017-10-01
Three experiments were conducted to determine the effect of increasing concentrations of a smectite clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of feedlot cattle. In Exp. 1, 72 Angus × Simmental steers were blocked by BW (395 ± 9.9 kg) and randomly allotted to 3 treatments (4 pens/treatment and 6 steers/pen) to determine the effects of increasing amounts of clay (0, 1, or 2%) on performance. The clay was top-dressed on an 80% concentrate diet at a rate of 0, 113, or 226 g/steer daily to achieve the 0, 1, and 2% treatments, respectively. Steers were slaughtered at a target BW of 606 kg. In Exp. 2, 6 steers (596 ± 22.2 kg initial BW) were randomly allotted to the same 3 treatments in a replicated 3 × 3 Latin square design (21-d periods) to determine the effects of increasing amounts of clay on ruminal pH, VFA, and nutrient digestibility. In Exp. 3, 150 mg of clay was incubated in 10 mL of rumen fluid with 3 incremental concentrations (6 replicates per concentration) of aflatoxin B (AFB) or ergotamine tartate (ET) to determine binding capacity. During the first 33-d period, there was a quadratic effect of clay on ADG ( < 0.01) and G:F ( < 0.01), increasing from 0 to 1% clay and then decreasing from 1 to 2% clay. However, during the second 30-d period, clay linearly decreased ADG and G:F ( ≤ 0.03) and overall ADG, DMI, and G:F were not impacted ( ≥ 0.46). Clay linearly decreased marbling score ( = 0.05). Hepatic enzyme activity did not differ among treatments on d 0 or at slaughter ( ≥ 0.15). Clay linearly decreased ruminal lactate and propionate, linearly increased formate and the acetate:propionate ratio ( ≤ 0.04), and tended ( = 0.07) to linearly increase butyrate. Clay tended to linearly increase ( = 0.06) OM and CP apparent digestibility. Ruminal pH, urine pH, and other digestibility measures did not differ among treatments ( ≥ 0.15). Clay was able to effectively bind AFB and ET at concentrations above the normal physiological range (52 and 520 μg/mL), but proportional adsorption was decreased to 35.5 and 91.1% at 5,200 μg/mL ( < 0.01) for AFB and ET, respectively. In conclusion, clay effectively binds ruminal toxins, decreases ruminal lactate, and improves performance only during adaptation to a high-concentrate feedlot diet.
Skog, Johan; Mei, Ya-Fang; Wadell, Göran
2002-06-01
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
Sun, Jia-an; Kong, De-zhi; Zhen, Ya-qin; Li, Qing; Zhang, Wei; Zhang, Jiang-hua; Yin, Zhi-wei; Ren, Lei-ming
2013-01-01
Aim: (±)Doxazosin is a long-lasting inhibitor of α1-adrenoceptors that is widely used to treat benign prostatic hyperplasia and lower urinary tract symptoms. In this study we investigated the stereoselective binding of doxazosin enantiomers to the plasma proteins of rats, dogs and humans in vitro. Methods: Human, dog and rat plasma were prepared. Equilibrium dialysis was used to determine the plasma protein binding of each enantiomer in vitro. Chiral HPLC with fluorescence detection was used to measure the drug concentrations on each side of the dialysis membrane bag. Results: Both the enantiomers were highly bound to the plasma proteins of rats, dogs and humans [(−)doxazosin: 89.4%–94.3%; (+)doxazosin: 90.9%–95.4%]. (+)Doxazosin exhibited significantly higher protein binding capacities than (−)doxazosin in all the three species, and the difference in the bound concentration (Cb) between the two enantiomers was enhanced as their concentrations were increased. Although the percentage of the plasma protein binding in the dog plasma was significantly lower than that in the human plasma at 400 and 800 ng/mL, the corrected percentage of plasma protein binding was dog>human>rat. Conclusion: (−)Doxazosin and (+)doxazosin show stereoselective plasma protein binding with a significant species difference among rats, dogs and humans. PMID:24241343
Molecular mechanisms of immunosuppression by cyclosporins.
Zenke, G; Baumann, G; Wenger, R; Hiestand, P; Quesniaux, V; Andersen, E; Schreier, M H
1993-06-23
Despite the successful clinical application of the immunosuppressive drug cyclosporin A (CsA, Sandimmun), its precise mechanism of action in the process of T cell activation remains elusive. CsA binds to the high-affinity cytosolic receptor cyclophilin whose peptidyl-prolyl cis-trans isomerase activity is inhibited upon binding. The linkage of this effect with the inhibition of the T cell receptor-mediated signal transduction pathway, which leads to a suppression of lymphokine gene transcription, is still unclear. We analyzed the relationship between cyclophilin-binding and immunosuppressive activity (e.g., effect on IL-2 transcription) of cyclosporin derivatives in vitro. The results show that binding to cyclophilin is required, but not sufficient for immunosuppression. Cyclosporin analogues which completely lack immunosuppressive activity but fully retained their cyclophilin-binding capacity antagonize the immunosuppressive activity of CsA. These derivatives inhibit the isomerase activity of cyclophilin, which clearly demonstrates that inhibition of the cyclophilin isomerase activity does not lead to immunosuppression. In analogy to the other immunosuppressants of microbial origin, FK-506 and rapamycin, a specific structure of the "effector" domain of CsA, which is unrelated to the cyclophilin-binding domain, determines the biological activity. In the nucleus, CsA interferes with the DNA-binding of inducible transcription factors to their respective DNA motifs within lymphokine promoters by affecting intracellular translocation of transcription factor subunits.
An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials
Zhai, Quan -Guo; Bu, Xianhui; Mao, Chengyu; ...
2016-12-07
Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. Asmore » a result, the high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol –1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.« less
Tough, D F; Feng, X; Chow, D A
1995-01-01
Selective outgrowth of v-H-ras-infected 10T1/2 cells based on the cointroduction of a gene for resistance to geneticin (G418), yielded cells which exhibited an increased capacity to bind polyclonal serum natural antibody (NAb). This demonstrated an NAb-susceptible phase of tumor development which would be a basic requirement for NAb-mediated surveillance of tumors. The ras-oncogene dependence of the high-NAb-binding phenotype provided a model for assessing NAb resistance against ras transformants in vivo and for a comparative analysis of phenotypic and genetic alterations contributing to the progression of ras transformants. Variants were developed through in vitro and in vivo models of tumor progression. T24-H-ras and v-H-ras transformants were isolated in vitro through more rigorous growth conditions, focus formation in the presence of untransformed cells with no selecting drug. These clones expressed p21ras but exhibited little or no increase in NAb binding. Variants recovered following growth from intravenous or threshold subcutaneous (s.c.) inocula of high-NAb-binding ras transformants in syngeneic C3H/HeN mice exhibited decreases in NAb binding but no uniform change in p21ras. Concurring inverse correlations between NAb binding and s.c. tumorigenicity were exhibited by the T24-H-ras transformant clones, the ras transformants grown in vivo, and the v-H-ras-transformed clones isolated in the presence versus the absence of untransformed cells. This consistent inverse correlation, together with the reduced NAb binding of the ras transformants grown in vivo, provides strong evidence that NAb participates in the defense against ras-transformed cells in vivo. The lack of any direct correlation between p21ras expression and the reduction in NAb binding or the increase in tumorigenicity of cells generated through progression in vivo suggested the regulatory action of additional genes. Hybridization studies between high- and low-NAb-binding clones implicated the activation of an additional oncogene and inactivation of an antioncogene in the down-regulation of the ras-induced increases in NAb binding associated with tumor progression.
Alite, Christian; Humphrey, Suzanne; Donderis, Jordi; Maiques, Elisa; Ciges-Tomas, J Rafael; Penadés, José R; Marina, Alberto
2017-09-11
The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.
Kobayashi, Y M; Alseikhan, B A; Jones, L R
2000-06-09
Triadin is an integral membrane protein of the junctional sarcoplasmic reticulum that binds to the high capacity Ca(2+)-binding protein calsequestrin and anchors it to the ryanodine receptor. The lumenal domain of triadin contains multiple repeats of alternating lysine and glutamic acid residues, which have been defined as KEKE motifs and have been proposed to promote protein associations. Here we identified the specific residues of triadin responsible for binding to calsequestrin by mutational analysis of triadin 1, the major cardiac isoform. A series of deletional fusion proteins of triadin 1 was generated, and by using metabolically labeled calsequestrin in filter-overlay assays, the calsequestrin-binding domain of triadin 1 was localized to a single KEKE motif comprised of 25 amino acids. Alanine mutagenesis within this motif demonstrated that the critical amino acids of triadin binding to calsequestrin are the even-numbered residues Lys(210), Lys(212), Glu(214), Lys(216), Gly(218), Gln(220), Lys(222), and Lys(224). Replacement of the odd-numbered residues within this motif by alanine had no effect on calsequestrin binding to triadin. The results suggest a model in which residues 210-224 of triadin form a beta-strand, with the even-numbered residues in the strand interacting with charged residues of calsequestrin, stabilizing a "polar zipper" that links the two proteins together. This small, highly charged beta-strand of triadin may tether calsequestrin to the junctional face membrane, allowing calsequestrin to sequester Ca(2+) in the vicinity of the ryanodine receptor during Ca(2+) uptake and Ca(2+) release.
Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui
2016-01-01
Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi
2015-01-01
Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez, Sebastián Ezequiel; Gándola, Yamila; Carlucci, Adriana Mónica; González, Lorena
2015-03-01
Phosphatidylcholine-sodium cholate (SC)-based nanoparticles were designed, characterized, and evaluated as plausible oligonucleotides delivery systems. For this purpose, formulation of the systems was optimized to obtain low cytotoxic vehicles with high siRNA-loading capacity and acceptable transfection ability. Mixtures of soybean phosphatidylcholine (SPC) and SC were prepared at different molar ratios with 2 % w/v total concentration; distilled water and two different buffers were used as dispersion medium. Nanoparticles below 150 nm were observed showing spherical shape which turned smaller in diameter as the SC molar proportion increased, accounting for small unilamellar vesicles when low proportions of SC were present in the formulation, but clear mixed micellar solutions at higher SC percentages. Macroscopic characteristics along with physico-chemical parameters values supported the presence of these types of structures. SYBR green displacement assays demonstrated an important oligonucleotide binding that increased as bile salt relative content got higher. Within the same molar ratio, nanoparticles showed the following binding efficiency order: pH 7.4 > pH 5.0 > distilled water. siRNA-loading capacity assays confirmed the higher siRNA binding by the mixed micelles containing higher SC proportion; moreover, the complexes formed were smaller as the SC:SPC ratio increased. Considering cytotoxicity and siRNA-loading capacity, 1:2 and 1:4 SPC:SC formulations were selected for further biological assays. Nanoparticles prepared in any of the three media were able to induce dsRNA uptake and efficiently transfect RNA for gene silencing, for the compositions prepared in buffer pH 5.0 being the most versatile.
Tsang-A-Sjoe, M W P; Bultink, I E M; Korswagen, L A; van der Horst, A; Rensink, I; de Boer, M; Hamann, D; Voskuyl, A E; Wouters, D
2017-12-01
Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls. Gene copy number (GCN) variation, silencing CT-insertion, and the retroviral HERV-K(C4) insertion) were analyzed with multiplex ligation-dependent probe amplification. Increased susceptibility to SLE was found for low GCN (≪2) of C4A. Serositis was the only clinical manifestation associated with low C4A GCN. One additional novel silencing mutation in the C4A gene was found by Sanger sequencing. This mutation causes a premature stop codon in exon 11. Protein concentrations of C4 isoforms C4A and C4B were determined with ELISA and were significantly lower in SLE patients compared to healthy controls. To study C4 isotypes on a functional level, a new C4 assay was developed, which distinguishes C4A from C4B by its binding capacity to amino or hydroxyl groups, respectively. This assay showed high correlation with ELISA and detected crossing over of Rodgers and Chido antigens in 3.2% (8/244) of individuals. The binding capacity of available C4 to its substrates was unaffected in SLE. Our study provides, for the first time, a complete overview of C4 in SLE from genetic variation to binding capacity using a novel test. As this test detects crossing over of Rodgers and Chido antigens, it will allow for more accurate measurement of C4 in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Lin-Ling; Tao, Shi-Peng; Dong, Xiao-Yan; Sun, Yan
2013-08-30
To explore the details of protein uptake to polymer-grafted ion exchangers, Sepharose FF was modified with poly(ethylenimine) (PEI) to prepare anion exchanger of 10 different ionic capacities (ICs, 100-1220mmol/L). Adsorption equilibria and kinetics of bovine serum albumin (BSA) were then studied. It is found that ionic capacity, i.e., the coupling density of PEI, had significant effect on both adsorption capacity (qm) and effective protein diffusivity (De). With increasing ionic capacity, the qm value increased rapidly at IC<260mmol/L and then increased slowly till reaching a plateau at IC=600mmol/L. In the IC range of 100-600mmol/L, however, the De values kept at a low level (De/D0<0.07); it first decreased from 0.05±0.01 at IC=100mmol/L to 0.01±0.01 at IC=260mmol/L and then increased to 0.06±0.01 at IC=600mmol/L. Thereafter, sharp increases of the qm and De values [36% (from 201 to 273mg/mL) and 670% (from 0.06±0.01 to 0.49±0.04), respectively] were observed in the narrow range of IC from 600 to 740mmol/L. Finally, at IC>740mmol/L, the qm value decreased significantly while the De value increased moderately with increasing the IC. The results indicate that PEI chains played an important role in protein adsorption and transport. In brief, there was a critical IC (cIC) or PEI chain density, above which protein adsorption and transport behaviors changed drastically. The cIC was identified to be about 600mmol/L. Estimation of PEI grafting-layer thickness suggests that PEI chains formed an extended three-dimensional grafting-layer at IC>cIC, which provided high flexibility as well as accessibility of the chains for protein binding. Therefore, at IC>cIC, the adjacent PEI chains became close and flexible enough, leading to facilitated transport of adsorbed protein molecules by the interactions of neighboring chains mediated by the bound molecules. It is regarded as "chain delivery" effect. At the same time, improved accessibility of binding sites led the significant increase of binding capacity. The decrease of qm value at IC>740mmol/L is considered due to the decrease of effective porosity. The research has thus provided new insight into protein adsorption and transport in polymer-grafted ion-exchange media. Copyright © 2013 Elsevier B.V. All rights reserved.
Increased (/sup 125/I)trypsin-binding in serum from cystic fibrosis patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, K.L.; Frates, R.C. Jr.; Sheikholislam, B.M.
1982-01-01
The capacities of normal and cystic fibrosis (CF) sera to bind to exogenous human (/sup 125/I)trypsin were compared. Sera from eight older CF patients bound significantly more exogenous human (/sup 125/I)trypsin than did sera from eight normal subjects (p less than 0.001). Disregarding the increased trypsin-binding (TB) of CF sera, serum immunoreactive trypsinogen (SIRT) levels were not detectable in these eight older CF patients. However, when SIRT levels were corrected for TB, four CF patients had normal SIRT concentrations and four had low but detectable SIRT levels. As compared to five normal newborns' sera, serum from a newborn with CFmore » had normal TB and the SIRT levels were very high. In conclusion, increased TB in CF serum lowers results of SIRT assays. Therefore, unless SIRT levels are corrected for TB, results obtained from currently available SIRT kits may be invalid.« less
NASA Astrophysics Data System (ADS)
Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamoto, M.; Nakano, R.; Iwasaki, M.
The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate thatmore » the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.« less
2011-10-30
stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low- cost high-capacity celiulosic...NOVEL ENZYMATIC CARBOHYDRATE-TO-HYDROGEN TECHNOLOGY BY ENZYME ENGINEERING Grant/Contract Number: FA9550-08-1-0145 Program Manager: Dr. Walt...bbtransformation (SyPaB) is the implementation of complicated biochemical reactions by in vitro assembly of enzyme and coenzymes. Different from in vivo
Wiest, S A; Steinberg, M I
1999-08-01
2-(2-Benzofuranyl)-2-imidazoline (BFI) is a highly selective ligand for imidazoline-type 2 (I2) binding sites that are known to be associated with monoamine oxidase (MAO). Recently we demonstrated a potentiation of 3H-BFI binding in human but not in rat brain by the nonselective MAO inhibitor tranylcypromine. In the present studies, we evaluated the effect of tranylcypromine on the binding of 3H-BFI to human platelet inner membranes. Membranes were incubated with 3H-BFI at 22 degrees C in 50 mM Tris, 1.5 mM EDTA, pH 7.5. Saturation experiments with 3H-BFI (0.5-80 nM) were analyzed using non-linear curve fitting. Addition of tranylcypromine (0.1 mM) increased the number of 3H-BFI binding sites (Bmax=0.35+/-0.06 vs. 1.87+/-0.15 pmol/mg protein for vehicle and tranylcypromine, respectively) and increased 3H-BFI affinity slightly (KD =16.0+/-4.1 vs. 6.5+/-0.3 nM for vehicle and tranylcypromine, respectively). In competitive binding experiments using the less selective I2 ligand, 3H-idazoxan, tranylcypromine only weakly inhibited binding. Preincubation of platelet membranes with tranylcypromine (1 nM-10 microM) enhanced the Bmax of 3H-BFI binding in a concentration-dependent manner peaking at 1 microM (13 x control) and returning to near baseline at 100 microM. 3H-BFI binding was displaced monophasically (in order of decreasing potency) by BFI > or = 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) > or = cirazoline >idazoxan >(1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline (RX821002)= moxonidine. Amiloride, clorgyline, guanabenz and clonidine displayed biphasic curves with nanomolar high affinity components. Tranylcypromine altered the competition curves for all ligands (except BFI) by increasing the affinities for clonidine and RX821002 and decreasing affinities for BU224, cirazoline, guanabenz, idazoxan, clorgyline, moxonidine, and amiloride. Thus, in human platelets tranylcypromine exposes a high capacity 3H-BFI binding site distinct from previously described I2 sites that retains high affintiy for BFI but not other I2 ligands. Our results suggest that 3H-BFI and 3H-idazoxan may not be considered as interchangeable probes for the I2 binding site.
Nanofiber adsorbents for high productivity downstream processing.
Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G
2013-04-01
Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Copyright © 2012 Wiley Periodicals, Inc.
Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J
2005-04-05
ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.
Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A
2007-10-31
We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.
Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho
2015-01-01
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346
Müller, C E; Maurinsh, J; Sauer, R
2000-01-01
The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.
Seenithurai, Sonai; Chai, Jeng-Da
2016-01-01
Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3–8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acenes, the binding energies of H2 molecules on Li-adsorbed acenes are in the ideal binding energy range (about 20 to 40 kJ/mol per H2). Besides, the H2 gravimetric storage capacities of Li-adsorbed acenes are in the range of 9.9 to 10.7 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li-adsorbed acenes can be high-capacity hydrogen storage materials for reversible hydrogen uptake and release at ambient conditions. PMID:27609626
Effect of chain length on binding of fatty acids to Pluronics in microemulsions.
James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O
2008-03-15
We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.
NASA Astrophysics Data System (ADS)
Mohajeri, Afshan; Shahsavar, Azin
2018-07-01
Nitrogen/sulfur dual doped carbon materials have attracted a great deal of interest due to their fascinating applications in lithium ion batteries, hydrogen storage, and oxygen reduction reactions. Here, the hydrogen storage capacity of NS dual-doped graphyne (GYNS) decorated with Li or Na is theoretically explored. The NS-codoping leads to greater charge transfer and stronger binding between the alkali metal and graphyne surface giving rise to enhanced hydrogen storage capacity. We showed that the NS-codoping increases the hydrogen storage capacities of Li-decorated and Na-decorated GY by almost 30% and 60%, respectively. At high NS concentration, the hydrogen uptake capacities can reach to 8.98 wt% and 9.34 wt% for double-side Li- decorated GYNS and Na-decorated GYNS. Moreover, the average adsorption energies per H2 are -0.27 eV for 2Li/GYNS(33.3%) and -0.26 eV for 2Na/GYNS(33.3%) which lie in desirable range for practical applications at ambient conditions.
Yalegama, L L W C; Nedra Karunaratne, D; Sivakanesan, Ramiah; Jayasekara, Chitrangani
2013-11-01
The coconut kernel residues obtained after extraction of coconut milk (MR) and virgin coconut oil (VOR) were analysed for their potential as dietary fibres. VOR was defatted and treated chemically using three solvent systems to isolate coconut cell wall polysaccharides (CCWP). Nutritional composition of VOR, MR and CCWPs indicated that crude fibre, neutral detergent fibre, acid detergent fibre and hemicelluloses contents were higher in CCWPs than in VOR and MR. MR contained a notably higher content of fat than VOR and CCWPs. The oil holding capacity, water holding capacity and swelling capacity were also higher in CCWPs than in VOR and MR. All the isolates and MR and VOR had high metal binding capacities. The CCWPs when compared with commercially available fibre isolates, indicated improved dietary fibre properties. These results show that chemical treatment of coconut kernel by-products can enhance the performance of dietary fibre to yield a better product. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Fiber in the diet--certainties and speculation].
Peters, P; Peters, K M
1988-06-01
This report defines dietary fibre and summarizes its effects on dental, gastrointestinal and metabolic diseases. A higher intake of dietary fibre is important in prophylaxis of caries, paradentosis, constipation, diverticulosis, colon cancer, diabetes and hypercholesteraemia. An ideal preparation must have the following abilities: It should be coarse, hard and swallowable and without cariogenic sugars in order to prevent dental diseases. It should be a mixture of several kinds of fibre getting water binding capacity and bile acid binding capacity. Mechanical crushing and heatening of fibre are to be avoided. The preparation should not contain phytic acid.
de Souza, Tatiana de Arruda Campos Brasil; Graça-de Souza, Viviane Krominski; Lancheros, César Armando Contreras; Monteiro-Góes, Viviane; Krieger, Marco Aurélio; Goldenberg, Samuel; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie
2011-03-01
In trypanosomatids, Ca²+-binding proteins can affect parasite growth, differentiation and invasion. Due to their importance for parasite maintenance, they become an attractive target for drug discovery and design. Phytomonas serpens 15T is a non-human pathogenic trypanosomatid that expresses important protein homologs of human pathogenic trypanosomatids. In this study, the coding sequence of calmodulin, a Ca²+-binding protein, of P. serpens 15T was cloned and characterized. The encoded polypeptide (CaMP) displayed high amino acid identity to homolog protein of Trypanosoma cruzi and four helix-loop-helix motifs were found. CaMP sequence analysis showed 20 amino acid substitutions compared to its mammalian counterparts. This gene is located on a chromosomal band with estimated size of 1,300 kb and two transcripts were detected by Northern blot analysis. A polyclonal antiserum raised against the recombinant protein recognized a polypeptide with an estimated size of 17 kDa in log-phase promastigote extracts. The recombinant CaMP retains its Ca²+-binding capacity.
Kazzazi, Arefeh; Bresser, Dominic; Birrozzi, Agnese; von Zamory, Jan; Hekmatfar, Maral; Passerini, Stefano
2018-05-23
Even though electrochemically inactive, the binding agent in lithium-ion electrodes substantially contributes to the performance metrics such as the achievable capacity, rate capability, and cycling stability. Herein, we present an in-depth comparative analysis of three different aqueous binding agents, allowing for the replacement of the toxic N-methyl-2-pyrrolidone as the processing solvent, for high-energy Li 1.2 Ni 0.16 Mn 0.56 Co 0.08 O 2 (Li-rich NMC or LR-NMC) as a potential next-generation cathode material. The impact of the binding agents, sodium carboxymethyl cellulose, sodium alginate, and commercial TRD202A (TRD), and the related chemical reactions occurring during the electrode coating process on the electrode morphology and cycling performance is investigated. In particular, the role of phosphoric acid in avoiding the aluminum current collector corrosion and stabilizing the LR-NMC/electrolyte interface as well as its chemical interaction with the binder is investigated, providing an explanation for the observed differences in the electrochemical performance.
NASA Astrophysics Data System (ADS)
Pernet-Coudrier, Benoît; Companys, Encarnació; Galceran, Josep; Morey, Margalida; Mouchel, Jean-Marie; Puy, Jaume; Ruiz, Núria; Varrault, Gilles
2011-07-01
Dissolved organic matter (DOM) from the treated effluent of a wastewater treatment plant and from the river Seine under high human pressure has been separated into three fractions: hydrophobic (containing humic and fulvic substances), transphilic and hydrophilic using a two column array of XAD-8 and XAD-4 resins. The acid base properties and the binding characteristics with respect to Pb ions (using the new electroanalytical technique AGNES, Absence of Gradients and Nernstian Equilibrium Stripping) have been studied and fitted to NICA (Non-Ideal Competitive Isotherm). We evaluated the binding potential of each DOM fraction in order to better predict the speciation of Pb and, later, its bioavailability in the river. The total binding capacity of the different fractions to Pb, as well as the total titratable charge, reaches its maximum value at the most hydrophilic fraction from the treated effluent. Specific properties of the distribution of the complexing sites within each DOM fraction have been exposed by plotting the conditional affinity spectrum (CAS). The addition of these distributions, weighted according to the respective abundance of each organic fraction, allows for a full description of the Pb binding properties of the whole DOM of a sampling site. Despite its weak aromaticity, the hydrophilic fraction from the wastewater treatment plant effluent exhibits a high lead binding affinity, so that at typical environmental pH and free Pb levels (0.1 μg L -1), Pb is mainly bound to the most hydrophilic fraction of the treated effluent (49% of bound Pb at pH 7). This feature may greatly enhance the transport of Pb and highlights that Pb speciation should also consider other fractions apart from humic and/or fulvic acids when studying surface waters under high human pressure.
Chatterjee, Nabamita; Nagarajan, Shantha
2006-08-01
The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.
Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.
Kis, Mariann; Sipka, Gábor; Maróti, Péter
2017-05-01
Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca 2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H + ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10 5 ) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM) -1 and 1 (mM) -1 , respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.
Bilirubin Binding Capacity in the Preterm Neonate
Amin, Sanjiv B
2016-01-01
SYNOPSIS Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205
Cross-reactivity and epitope analysis of Pru a 1, the major cherry allergen.
Scheurer, S; Son, D Y; Boehm, M; Karamloo, F; Franke, S; Hoffmann, A; Haustein, D; Vieths, S
1999-02-01
A high percentage of birch pollen allergic patients experiences food hypersensivity after ingestion of fresh fruits and vegetables. The cross-reactivity of the major allergens of sweet cherry (Pru a 1), apple (Mal d 1), pear (Pyr c 1), celery tuber (Api g 1) and carrot (Dau c 1) is due to structural similarities which are reflected by high amino acid sequence identities with Bet v 1a, the major birch pollen allergen. Apart from a strong cross-reactivity to Bet v 1a, IgE inhibition experiments with Mal d 1, Pru a 1 and Api g 1 demonstrated the presence of common and different epitopes among the tested food allergens. Secondary structure prediction of all investigated allergens indicated the presence of almost identical structural elements. In particular, the 'P-loop' region is a common domain of the pollen related food allergens and of pathogenesis related proteins. To identify the IgE binding epitopes, five overlapping recombinant Pru a 1 fragments representing the entire amino acid sequence with lengths of approximately 60-120 residues were investigated. Weak IgE binding capacity was measured exclusively with Pru a IF4 (1-120) by immunoblotting, whereas none of the fragments showed allergenicity in the rat basophil leukaemia cell mediator release assay. Site-directed mutagenesis experiments with Pru a 1 revealed that amino acid S112 is critical for IgE binding of almost all patients sera tested. This reduced IgE binding was also observed with a single point mutant of Bet v 1a (S112P) and thus indicated serine 112 as an essential residue for preserving the structure of a cross-reactive IgE epitope. Moreover, two Pru a 1 mutants with an altered 'P-loop' region, showed a lowered IgE binding capacity for IgE from a subgroup of allergic patients. The investigation of essential features for preserving cross-reactive IgE-epitopes provides the structural basis for understanding the clinically observed cross-allergenicity between pollen and fruits. Moreover, non-anaphylactic allergen fragments or variants derived from the IgE-inducing pollen allergens may serve as useful tools for a new strategy of specific immunotherapy.
Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W
2014-07-18
This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus)
Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank
2018-01-01
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals. PMID:29529033
Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus).
Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank; Boutin, Jean A
2018-01-01
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.
Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, V.; Slaga, T.J.
1982-01-01
The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore,more » cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.« less
Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems.
Koç, İlker; Baydemir, Gözde; Bayram, Engin; Yavuz, Handan; Denizli, Adil
2011-09-15
The selective removal of 17β-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles. Copyright © 2011 Elsevier B.V. All rights reserved.
Al-Kuraishy, Hayder M; Al-Gareeb, Ali I
2017-01-01
Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC ( P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia.
Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong
2016-01-01
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393
Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming
2013-06-25
Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.
Zhao, Yangyang; Dong, Xiaoyan; Yu, Linling; Liu, Yang; Sun, Yan
2018-05-18
Previously, we have studied protein adsorption and chromatographic behaviors on poly(ethylenimine) (PEI)-grafted Sepharose FF anion-exchange resins, and found that protein uptake rates increased greatly when PEI grafting density reached over a critical ionic capacity (cIC) due to the occurrence of the "chain delivery" effect. Moreover, by partial charge neutralization of starting resin FF-PEI-L740 (IC = 740 mmol/L, larger than the cIC) with sodium acetate to FF-PEI-R440, it exhibited a three-fold increase in uptake rate over FF-PEI-L740. In this work, to take the advantages of PEI and extend the applications of the PEI-grafted resins in cation-exchange chromatography, a series of cation exchangers of five different ICs were developed. First, the charged of FF-PEI-L740 was reversed from positive to negative by reaction with excess succinic anhydride, which created a cation-exchanger with an IC of 970 mmol/L (FF-FEI-C970). FF-PEI-C970 was further modified with ethanolamine for partial charge neutralizations, leading to the preparation of four charge-reduced cation exchangers with IC values (in mmol/L) of 780, 630, 560 and 430, which were denoted as FF-PEI-CR780, -CR630 -CR560 and -CR430, respectively. Protein adsorption and chromatographic behaviors were investigated using lysozyme (Lys) as the model protein. It was found that, the resins of high and moderate IC values (IC ≥ 560 mmol/L) afforded adsorption capacities up to over 230 mg/mL. Besides, the uptake rate, represented by the effective pore diffusivity (D e/ D 0 ), exhibited significant increase from 0.067 (FF-PEI-C970 and FF-PEI-CR780) to 0.343 (FF-PEI-CR630 and FF-PEI-CR560) and then to 1.035 (FF-PEI-CR430) with decreasing IC. It was considered that decreasing IC led to the decreased protein binding sites (binding strength), which encouraged the occurrence of the "chain delivery" effect. Moreover, the resins of high and moderate IC values, particularly, the resins of moderate IC values (FF-PEI-CR630 and FF-PEI-CR560), presented both high adsorption capacities and uptake kinetics at 0-100 mmol/L NaCl. Besides, dynamic binding capacity achieved 150 mg/mL for the resins of moderate IC values at 0 mmol/L NaCl concentration, and afforded >110 mg/mL for the resin of high IC values at 0-100 mmol/L NaCl concentration. The results proved the excellent IEC performance of the PEI-derived cation exchangers. Copyright © 2018 Elsevier B.V. All rights reserved.
Stair, Jacqueline L; Holcombe, James A
2007-03-01
The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.
CO₂ Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues.
Bermúdez, José M; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael
2013-10-18
Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO₂ adsorption properties, with interestingly high gas selectivities for CO₂ (α > 200 at a gas composition of 15% CO₂/85% N₂, 273K, 1 bar) and capacities (>2 mmol·g -1 at 273 K). Both CO₂ isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO₂ which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.
Absence of C-type natriuretic peptide receptors in hamster glomeruli.
Luk, J K; Wong, E F; Wong, N L
1994-01-01
The distribution of atrial natriuretic peptide receptor B (ANPR-B) varies between tissues and species. The aim of this study is to determine whether ANPR-B is present in the hamster glomeruli. In vitro C-type natriuretic peptide (CNP)- and atrial natriuretic factor (ANF)-stimulated cGMP accumulation studies were performed in hamster glomeruli. Elevated cGMP accumulations were observed upon ANF addition. No cGMP response was seen with CNP. Competitive receptor-binding experiments were performed with 125I-CNP and 125I-ANF against their respective cold peptides in hamster glomeruli. Although no CNP binding was detected, positive ANF binding was found and two types of ANF receptor were demonstrated. The affinity (Kdl) and maximum binding capacity (Bmaxl) of the high-affinity ANF receptor were 0.014 +/- 0.001 nM and 60.4 +/- 10.2 fmol/mg protein, respectively. Those of the low-affinity receptor (Kd2 and Bmax2) were 45.7 +/- 6.2 nM and 28.3 +/- 6.3 pmol/mg protein, respectively. Similarly, saturation binding experiments also failed to show any CNP receptor binding in hamster glomeruli. This finding suggests that ANPR-B is not present in hamster glomeruli and CNP is not a direct physiological regulator of hamster renal function.
Hutchens, T W; Allen, M H; Li, C M; Yip, T T
1992-09-07
The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John
1986-07-01
The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.
Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E
2008-09-01
Binding of cadmium (Cd) to metallothionein (MT) and non-MT proteins with low contents of cysteine has been observed in terrestrial arthropods. We recently isolated a Cd-binding protein with no cysteine that was induced in Cd-exposed larvae of the beetle Tenebrio molitor. In this study we have examined the molecular distribution of Cd within extracts of different tissues and compartments of Cd-exposed T. molitor larvae. A Cd-peak consistent with the low cysteine Cd-binding protein was induced within the gut content where it could be detected after 4-8 days of exposure. Examination of gut wall tissue revealed no increase in Cd-binding capacity, indicating that no accumulation of MTs was taking place in this tissue. Incorporation of Cd in the gut wall tissue stabilized after 8 days of Cd-exposure at a rather low level compared to the other organs. There was a statistical trend towards Cd being incorporated in the gut content in a manner that was disproportionally high compared to the amount of Cd in the gut wall tissue. The possible role of the low cysteine Cd-binding protein in reducing the uptake of Cd in the tissues is discussed.
Bilirubin Binding Capacity in the Preterm Neonate.
Amin, Sanjiv B
2016-06-01
Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yanli; Chen, Quan; Xian, Mo; Nian, Rui; Xu, Fei
2018-06-01
In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.
Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol
2017-09-01
High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide. Copyright © 2017 Elsevier B.V. All rights reserved.
Cai, Xixi; Lin, Jiaping; Wang, Shaoyun
2016-01-01
Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002
Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga
2015-07-01
The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p < 0.05). Fermentation showed no effect on the calcium-binding capacity of the samples (p > 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p < 0.05). Digested goat milk and kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.
1985-10-01
A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, G.; Descatoire, V.; Beaune, P.
Incubation of rat liver microsomes with (3H)methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalenmore » (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B).« less
DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.
García-Vilchis, David; Aranda-Anzaldo, Armando
2017-12-01
Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi
1971-01-01
The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758
Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng
2016-09-01
A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.
Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo
2014-08-08
Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers. Copyright © 2014 Elsevier B.V. All rights reserved.
Studies on the interactions between purified bovine caseins and alkaline-earth-metalions
Dickson, I. R.; Perkins, D. J.
1971-01-01
1. Alkaline-earth-metal cations at low concentrations form soluble complexes with bovine caseins. The relative order of binding capacities is: Mg2+>Ca2+>Ba2+>Sr2+. 2. The cations interact with both free ionized carboxyl groups of aspartic acid and glutamic acid and with monoester phosphate groups covalently bound to serine and threonine; at low concentrations of the cations interactions are predominantly with the phosphate groups. 3. The order of binding capacities for purified components of the casein complex is: αs1-casein>β-casein>κ-casein. PMID:5166590
Specific receptors for epidermal growth factor in rat intestinal microvillus membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.F.
Epidermal growth factor (EGF) is present in high concentrations in milk, salivary, and pancreaticobiliary secretions. EGF, delivered to the intestinal lumen by these fluids, appears to influence intestinal proliferation. Because EGF exerts its mitogenic effect through binding to specific membrane-bound receptors, binding studies of {sup 125}I-labeled EGF to purified microvillus membrane (MVM) preparations fetal, newborn, and adult rat small intestine were performed. Using the membrane filter technique, binding of {sup 125}I-EGF to adult MVM was specific, saturable, and reversible. Adult and fetal MVM binding was rapid and reached a plateau after 30 min at both 20 and 37{degree}C. No bindingmore » was detected at 4{degree}C. Specific binding increased linearly from 0 to 75 {mu}g MVM protein. Scatchard analysis revealed a single class of receptors in fetal and adult MVM with an association constant of 1.0 {+-} 0.35 {times} 10{sup 9} and 2.3 {+-} 1.6 {times} 10{sup 9} M{sup {minus}1}, respectively. Binding capacity was 435.0 {+-} 89 and 97.7 {+-} 41.3 fmol {sup 125}I-EGF bound/mg MVM protein for fetal and adult MVM, respectively. Newborn MVM binding was negligible. After binding, cross-linking utilizing disuccinimidyl suberate, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography revealed a 170-kDa receptor. These data demonstrate specific receptors for EGF on MVM of rat small intestine and, thus, suggest a mechanism for the intraluminal regulation of enterocyte proliferation by EGF.« less
Hui, Chang-Ye; Guo, Yan; Yang, Xue-Qin; Zhang, Wen; Huang, Xian-Qing
2018-05-01
To improve the Pb 2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb 2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb 2+ -sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb 2+ biosorption than that found in PbrR-displayed cells. Specific Pb 2+ binding via PbBD was the same as Pb 2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn 2+ and Cd 2+ . Since surface-engineered E. coli cells with PbBD increased the Pb 2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.
Zhu, Xiaoyi; Yang, Xianfeng; Lv, Chunxiao; Guo, Shaojun; Li, Jianjiang; Zheng, Zhanfeng; Zhu, Huaiyong; Yang, Dongjiang
2016-07-27
To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials.
Sovová, Helena; Nobre, Beatriz P.; Palavra, António
2016-01-01
Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546
Nanofiber adsorbents for high productivity continuous downstream processing.
Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G
2015-11-10
An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to demonstrate the productivity of nanofiber adsorbents through rapid bind-elute cycle times of 7s which resulted in a 15-fold increase in productivity compared with packed bed resins. Reproducible performance of BSA purification was demonstrated using a 2-component protein solution of BSA and cytochrome c. The SMB system exploits the advantageous convective mass transfer properties of nanofiber adsorbents to provide productivities much greater than those achievable with conventional chromatography media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Assessment of the pollution and ecological risk of lead and cadmium in soils.
Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka
2018-03-27
The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.
Ratzinger, Franz; Haslacher, Helmuth; Perkmann, Thomas; Schmetterer, Klaus G; Poeppl, Wolfgang; Mitteregger, Dieter; Dorffner, Georg; Burgmann, Heinz
2015-08-01
Neutropaenic patients are at a high risk of contracting severe infections. In particular, in these patients, parameters with a high negative predictive value are desirable for excluding infection or bacteraemia. This study evaluated sepsis biomarkers in neutropaenic patients suffering from systemic inflammatory response syndrome (SIRS). Further, the predictive capacities of evaluated biomarkers in neutropaenic SIRS patients were compared to non-neutropaenic SIRS patients. In this prospective observational cohort study, patients with clinically suspected sepsis were screened. The predictive capacities of procalcitonin (PCT), C-reactive protein and lipopolysaccharide-binding protein (LBP) in neutropaenic SIRS patients were evaluated in terms of their potential to identify infection or bacteraemia and were compared to results for non-neutropaenic SIRS patients. To select an appropriate control cohort, propensity score matching was applied, balancing confounding factors between neutropaenic and non-neutropaenic SIRS patients. Of 3370 prospectively screened patients with suspected infection, 51 patients suffered from neutropaenic SIRS. For the identification of infection, none of the assessed biomarkers presented a clinically relevant discriminatory potency. Lipopolysaccharide-binding protein and PCT demonstrated discriminatory capacity to discriminate between nonbacteraemic and bacteraemic SIRS in patients with neutropaenia [receiver-operating characteristics-area under the curves (ROC-AUCs): 0.860, 0.818]. In neutropaenic SIRS patients, LBP had a significantly better ROC-AUC than in a comparable non-neutropaenic patient cohort for identifying bacteraemia (P = 0.01). In neutropaenic SIRS patients, none of the evaluated biomarkers was able to adequately identify infection. LBP and PCT presented a good performance in identifying bacteraemia. Therefore, these markers could be used for screening purposes to increase the pretest probability of blood culture analysis. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
Sousa, A; Almeida, A M; Černigoj, U; Sousa, F; Queiroz, J A
2014-08-15
Preparation of high quantities of supercoiled plasmid DNA of pharmaceutical grade purity is a research area where intensive investigation is being performed. From this standpoint, several downstream methods have been proposed, among them the monolithic chromatographic strategies owing to excellent mass transfer properties of monolithic supports and their high binding capacity for large biomolecules. The present study explores the physicochemical properties of histamine ligand in a supercoiled plasmid DNA purification process from an Escherichia coli clarified lysate, where the emphasis is given to the elution strategy that allows higher selectivity and efficient removal of other impurities besides the open circular isoform. The combination of high NaCl concentration and acidic pH allowed the elimination of 89% of RNA during the preparative loading of the lysate sample. The results of the purification strategy with ascending sodium chloride gradient revealed that 97% of supercoiled plasmid DNA was recovered with a purity degree of 99%. In addition, using a combined purification strategy with ascending sodium chloride (capture step) and then descending ammonium sulfate (polishing step) gradient, it was achieved a lower supercoiled plasmid DNA recovery yield of 79% with a purity degree of 92%, although the dynamic binding capacity under these conditions was higher than in the previous strategy. A significant reduction of host contents, such as proteins, RNA and genomic DNA, was obtained in both purification strategies. Accordingly, histamine is a useful and versatile ligand that allows the desirable supercoiled plasmid purification with high yield and purity level. Copyright © 2014. Published by Elsevier B.V.
Lill, J-O; Salovius-Laurén, S; Harju, L; Rajander, J; Saarela, K-E; Lindroos, A; Heselius, S-J
2012-01-01
Particle-induced X-ray emission and particle-induced gamma-ray emission spectrometry were successfully applied in a study of the elemental composition of decomposing filamentous algae. Fresh brown (Pilayella littoralis) and green (Cladophora glomerata) algal materials were placed in cages at 4m depth in a water column of 8m in the Archipelago Sea, northern Baltic Sea. Every second week decaying algae were sampled from the cages to allow measurements of changes in the elemental compositions. In the study of the elemental losses the concentrations were compensated for the mass reduction. The results show that sulphur, chlorine and partly potassium were lost during decomposition of P. littoralis and C. glomerata. Most of the other elements studied were recovered in the remaining algal mass. Special attention was paid to sorption and desorption of elements, including metal binding capacity, in the decaying algal materials. The affinity order of different cations to the two algal species was established by calculation of conditional distribution coefficients, D'(M). For instance for P. littoralis the following series of binding strength (affinity) of cations were obtained: Al>Ti>Fe > Mn>Ni, Cu>Ba, Cr, Zn>Rb>K, Sr>Pb>Ca>Na>Mg. Notably is that the binding strength of strontium was more than 10 times higher for P. littoralis than for C. glomerata. Due to their high binding capacity and good affinity and selectivity for heavy metal ions these algae have great potential as biological sorbents. Large variations in elemental content during decomposition complicate the use of algae for environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu
2008-06-05
A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.
Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng; ...
2017-08-19
Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng
Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less
Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M
1991-05-15
A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)
Melanin-Based Coatings as Lead-Binding Agents
Sono, Karin; Lye, Diane; Moore, Christine A.; Boyd, W. Christopher; Gorlin, Thomas A.; Belitsky, Jason M.
2012-01-01
Interactions between metal ions and different forms of melanin play significant roles in melanin biochemistry. The binding properties of natural melanin and related synthetic materials can be exploited for nonbiological applications, potentially including water purification. A method for investigating metal ion-melanin interactions on solid support is described, with lead as the initial target. 2.5 cm discs of the hydrophobic polymer PVDF were coated with synthetic eumelanin from the tyrosinase-catalyzed polymerization of L-dopa, and with melanin extracted from human hair. Lead (Pb2+) binding was quantified by atomic absorption spectroscopy (flame mode), and the data was well fit by the Langmuir model. Langmuir affinities ranged from 3.4 · 103 to 2.2 · 104 M−1. At the maximum capacity observed, the synthetic eumelanin coating bound ~9% of its mass in lead. Binding of copper (Cu2+), zinc (Zn2+), and cadmium (Cd2+) to the synthetic-eumelanin-coated discs was also investigated. Under the conditions tested, the Langmuir affinities for Zn2+, Cd2+, and Cu2+ were 35%, 53%, and 77%, respectively, of the Langmuir affinity for Pb2+. The synthetic-eumelanin-coated discs have a slightly higher capacity for Cu2+ on a per mole basis than for Pb2+, and lower capacities for Cd2+ and Zn2+. The system described can be used to address biological questions and potentially be applied toward melanin-based water purification. PMID:22611345
Bing, Tiejun; Zhang, Suzhen; Liu, Xiaojuan; Liang, Zhibin; Shao, Peng; Zhang, Song; Qiao, Wentao; Tan, Juan
2016-06-30
Bovine foamy virus (BFV) encodes the transactivator BTas, which enhances viral gene transcription by binding to the long terminal repeat promoter and the internal promoter. In this study, we investigated the different replication capacities of two similar BFV full-length DNA clones, pBS-BFV-Y and pBS-BFV-B. Here, functional analysis of several chimeric clones revealed a major role for the C-terminal region of the viral genome in causing this difference. Furthermore, BTas-B, which is located in this C-terminal region, exhibited a 20-fold higher transactivation activity than BTas-Y. Sequence alignment showed that these two sequences differ only at amino acid 108, with BTas-B containing N108 and BTas-Y containing D108 at this position. Results of mutagenesis studies demonstrated that residue N108 is important for BTas binding to viral promoters. In addition, the N108D mutation in pBS-BFV-B reduced the viral replication capacity by about 1.5-fold. Our results suggest that residue N108 is important for BTas binding to BFV promoters and has a major role in BFV replication. These findings not only advances our understanding of the transactivation mechanism of BTas, but they also highlight the importance of certain sequence polymorphisms in modulating the replication capacity of isolated BFV clones.
Characterization of product capture resin during microbial cultivations.
Frykman, Scott; Tsuruta, Hiroko; Galazzo, Jorge; Licari, Peter
2006-06-01
Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25-50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daud, A.I.; Bumpus, F.M.; Husain, A.
Ovarian angiotensin I (Ang I)-converting enzyme (ACE), estimated by the specific binding of the ACE inhibitor (125I)iodo-MK-351A, is localized on multiple ovarian structures, including follicular granulosa cells, corpora lutea, terminal epithelium, and ovarian blood vessels, but total ovarian ACE does not display a cyclic pattern of variation during the rat estrous cycle. We have previously shown that ACE is localized on the granulosa cell layer of a subpopulation of rat ovarian follicles. Our present study shows that ovarian granulosa cells contain high affinity (binding site affinity (Kd), approximately 90 pM) and low capacity (binding site density (Bmax), approximately 12 fmol/2.5more » X 10(5) cells) (125I)iodo-MK-351A-binding sites and convert (125I)iodo-Ang I to (125I)iodo-Ang II (greater than 85% of this conversion was inhibited by the ACE inhibitor captopril). Throughout the rat estrous cycle, 94-100% of developing follicles and 89-96% of atretic follicles contained high levels of ACE; however, ACE was either not observed or its levels were very low in preovulatory follicles. These findings indicate the presence of high levels of biologically active ACE on the surface of granulosa cells and suggest a potential role for follicular ACE in early stages of follicular maturation and atresia. Although ACE is known to process a variety of peptides found within the ovary, and these peptides may have opposing effects on follicular maturation, we attempted to define the cumulative effect of ACE inhibition on follicular maturation.« less
Denny, Jr., Michael S.; Peterson, Gregory W.; Mahle, John J.
2016-01-01
Metal–organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology. PMID:28660045
Iron deficiency anaemia in Nigerian infants.
Akinkugbe, F M; Ette, S I; Durowoju, T A
1999-01-01
Hematological parameters and the iron status of 50 randomly selected infants who were attending the research infant welfare clinic of the Institute of Child Health, Ibadan (ICHI), for routine immunization were studied. Investigations included estimations of packed cell volume (PCV), haemoglobin (Hb), serum iron (Fe), unsaturated iron-binding capacity (UIBC) and total iron-binding Capacity (TIBC). Forty percent of the infants had PCVs below 0.32, 48% had Hbs below 10 g/dl and 27% had mean corpuscular volume (MVC) less that 70fl. Thirty-seven percent of the children had serum Fe below 3.58 mmol/l, but only 4% had UIBC above 320 mmol/l. Fifty-two percent had Transferin Saturation Index (TSI) below 10%. Eighteen percent had MCV below 70fl associated with TSI below 10% and 67% of these had Hbs below 10 g/dl. The prevalence of iron deficiency anaemia in infants as shown in this study is very high. The ill effects of iron deficiency in childhood have been well documented. It is suggested that screening for anaemia should be offered at 9 months as part of a Child Survival Programme and that infants found to be anaemic should be treated. However, for cost-effectiveness and taking into consideration the high prevalence rate of iron deficiency in this age group, it might be preferable to give iron and weekly prophylactic antimalarias routinely to infants aged 9 to 15 months in lieu of screening.
The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep.
Georgieff, M K; Widness, J A; Mills, M M; Stonestreet, B S
1989-11-01
Newborn infants of poorly controlled insulin-dependent diabetic mothers demonstrate a redistribution of iron from serum and tissue stores into red blood cells. These changes may be due to increases in iron utilization during augmented Hb synthesis, which compensates for chronic intrauterine hypoxemia induced by prolonged fetal hyperinsulinemia. We tested this hypothesis by measuring plasma iron, total iron-binding capacity, percent iron-binding capacity saturation (total iron-binding capacity saturation), Hb concentration, total red cell Hb, and total red cell iron in the arterial blood of 11 chronically instrumented fetal sheep after 7-12 d of infusion with 15 U/day of insulin (n = 5) or placebo (n = 6). The insulin-infused fetal sheep had higher mean +/- SD plasma insulin concentrations (448 +/- 507 versus 11 +/- 8 mU/L; p less than 0.001) and lower arterial oxygen saturations (38 +/- 7 versus 54 +/- 9%; p less than 0.02). The insulin-infused group had a lower mean plasma iron concentration (20.8 +/- 10.9 versus 42.1 +/- 14.7 microM/L; p less than 0.02) and total iron-binding capacity saturation (36 +/- 20 versus 64 +/- 22%; p less than 0.02) and a higher total red cell Hb (45.4 +/- 8.7 versus 32.6 +/- 8.8 g; p less than 0.02) and total red cell iron content (154 +/- 29 versus 111 +/- 29 mg; p less than 0.02) when compared with the placebo group. Seven to 12 d of intrauterine hyperinsulinemia decreases serum iron and increases total red cell iron, most likely by stimulating increased Hb synthesis in response to low arterial oxygen saturation.(ABSTRACT TRUNCATED AT 250 WORDS)
Prostatic origin of a zinc binding high molecular weight protein complex in human seminal plasma.
Siciliano, L; De Stefano, C; Petroni, M F; Vivacqua, A; Rago, V; Carpino, A
2000-03-01
The profile of the zinc ligand high molecular weight proteins was investigated in the seminal plasma of 55 normozoospermic subjects by size exclusion high performance liquid chromatography (HPLC). The proteins were recovered from Sephadex G-75 gel filtration of seminal plasma in three zinc-containing fractions which were then submitted to HPLC analysis. The results were, that in all the samples, the protein profiles showed two peaks with apparent molecular weight of approximately 660 and approximately 250 kDa. Dialysis experiments revealed that both approximately 660 and approximately 250 kDa proteins were able to uptake zinc against gradient indicating their zinc binding capacity. The HPLC analysis of the whole seminal plasma evidenced only the approximately 660 kDa protein complex as a single well quantifying peak, furthermore a positive correlation between its peak area and the seminal zinc values (P < 0.001) was observed. This suggested a prostatic origin of the approximately 660 kDa protein complex which was then confirmed by the seminal plasma HPLC analysis of a subject with agenesis of the Wolffian ducts. Finally the study demonstrated the presence of two zinc binding proteins, approximately 660 and approximately 250 kDa respectively, in human seminal plasma and the prostatic origin of the approximately 660 kDa.
Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K
1994-04-01
A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.
Avian Nanostructured Tissues as Models for New Defensive Coatings and Photonic Crystal Fibers
2012-03-31
promiscuous binding capacity of chitin , the chemical backbone of the arthropod cuticle (Kumar 2000). This polysaccharide binds many proteins and other...properties. The greater refractive index contrast between light and dark layers afforded by chitin may allow Arthropoda to attain brighter and more 71
The Thermal Stabilization of Vaccines Against Agents of Bioterrorism
2005-09-01
to determine (1) whether rPA in the formulation buffer in the absence of excipients binds to Alhydrogel®and (2) the binding capacity . The aluminum...botulinum toxin (Allergan), A ricin vaccine (DOR Biopharma ) and a vaccine against Norwalk virus (Ligocyte) were also initiated and are in various
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087
Tait, Tara N; McGeer, James C; Smith, D Scott
2018-01-01
Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.
Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar
2012-06-01
Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0 μg L(-1)) of 3,640 L could be treated by 1 g of MIP with an estimated cost of US $1.5. The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.
Wilbiks, Jonathan M P; Dyson, Benjamin J
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus.
Wilbiks, Jonathan M. P.; Dyson, Benjamin J.
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus. PMID:27977790
Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio
2016-01-01
Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621
Sex Differences in Serotonin 1 Receptor Binding in Rat Brain
NASA Astrophysics Data System (ADS)
Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.
1983-10-01
Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.
Sebokova, E; Garg, M L; Wierzbicki, A; Thomson, A B; Clandinin, M T
1990-06-01
Experiments were conducted to assess whether changing dietary fat composition altered phospholipid composition of rat testicular plasma membranes in a manner that altered receptor-mediated action of luteinizing hormone (LH)/human chorionic gonadotropin (hCG). Weanling rats were fed diets that provided high or low cholesterol intakes and that were enriched with linseed oil, fish oil or beef tallow for 4 wk. Feeding diets high in (n-3) fatty acids decreased plasma and testicular plasma membrane 20:4(n-6) content. A marked reduction of the 22:5(n-6) content and an increase in the 22:6(n-3) content of testicular plasma membrane was found only in animals fed fish oil. A decrease in binding capacity of the gonadotropin (LH/hCG) receptor in the plasma membrane, with no change in receptor affinity, was observed for animals fed either linseed oil or fish oil diets. Dietary treatments that raised plasma membrane cholesterol content and the cholesterol to phospholipid ratio in the membrane were associated with increased binding capacity of the gonadotropin receptor. Feeding diets high in 18:3(n-3) vs. those high in fish oil altered receptor-mediated adenylate cyclase activity in a manner that depended on the level of dietary cholesterol. Feeding diets high in cholesterol or fish oil increased basal and LH-stimulated testosterone synthesis relative to that in animals fed the low cholesterol diet containing linseed oil. It is concluded that changing the fat composition of the diet alters the phospholipid composition of rat testicular plasma membranes and that this change in composition influences membrane-mediated unmasking of gonadotropin receptor-mediated action in testicular tissue.
TLX controls angiogenesis through interaction with the von Hippel-Lindau protein.
Zeng, Zhao-Jun; Johansson, Erik; Hayashi, Amiko; Chavali, Pavithra L; Akrap, Nina; Yoshida, Takeshi; Kohno, Kimitoshi; Izumi, Hiroto; Funa, Keiko
2012-06-15
TLX is known as the orphan nuclear receptor indispensable for maintaining neural stem cells in adult neurogenesis. We report here that neuroblastoma cell lines express high levels of TLX, which further increase in hypoxia to enhance the angiogenic capacity of these cells. The proangiogenetic activity of TLX appears to be induced by its direct binding to the von Hippel-Lindau protein (pVHL), which stabilizes TLX. In turn, TLX competes with hydroxylated hypoxia-inducible factor (HIF-α) for binding to pVHL, which contributes to the stabilization of HIF-2α in neuroblastoma during normoxia. Upon hypoxia, TLX increases in the nucleus where it binds in close proximity of the HIF-response element on the VEGF-promoter chromatin, and, together with HIF-2α, recruits RNA polymerase II to induce VEGF expression. Conversely, depletion of TLX by shRNA decreases the expression of HIF-2α and VEGF as well as the growth-promoting and colony-forming capacity of the neuroblastoma cell lines IMR-32 and SH-SY5Y. On the contrary, silencing HIF-2α will slightly increase TLX, suggesting that TLX acts to maintain a hypoxic environment when HIF-2α is decreasing. Our results demonstrate TLX to play a key role in controlling angiogenesis by regulating HIF-2α. TLX and pVHL might counterbalance each other in important fate decisions such as self-renewal and differentiation, as well as angiogenesis and anti-angiogenesis.
TLX controls angiogenesis through interaction with the von Hippel-Lindau protein
Zeng, Zhao-jun; Johansson, Erik; Hayashi, Amiko; Chavali, Pavithra L.; Akrap, Nina; Yoshida, Takeshi; Kohno, Kimitoshi; Izumi, Hiroto; Funa, Keiko
2012-01-01
Summary TLX is known as the orphan nuclear receptor indispensable for maintaining neural stem cells in adult neurogenesis. We report here that neuroblastoma cell lines express high levels of TLX, which further increase in hypoxia to enhance the angiogenic capacity of these cells. The proangiogenetic activity of TLX appears to be induced by its direct binding to the von Hippel-Lindau protein (pVHL), which stabilizes TLX. In turn, TLX competes with hydroxylated hypoxia-inducible factor (HIF-α) for binding to pVHL, which contributes to the stabilization of HIF-2α in neuroblastoma during normoxia. Upon hypoxia, TLX increases in the nucleus where it binds in close proximity of the HIF-response element on the VEGF-promoter chromatin, and, together with HIF-2α, recruits RNA polymerase II to induce VEGF expression. Conversely, depletion of TLX by shRNA decreases the expression of HIF-2α and VEGF as well as the growth-promoting and colony-forming capacity of the neuroblastoma cell lines IMR-32 and SH-SY5Y. On the contrary, silencing HIF-2α will slightly increase TLX, suggesting that TLX acts to maintain a hypoxic environment when HIF-2α is decreasing. Our results demonstrate TLX to play a key role in controlling angiogenesis by regulating HIF-2α. TLX and pVHL might counterbalance each other in important fate decisions such as self-renewal and differentiation, as well as angiogenesis and anti-angiogenesis. PMID:23213445
Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.
2017-01-01
INTRODUCTION: Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. PATIENTS AND METHODS: This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. RESULTS: In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC (P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. CONCLUSION: This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia. PMID:28316434
Su, Xiao; Bromberg, Lev; Martis, Vladimir; Simeon, Fritz; Huq, Ashfia; Hatton, T Alan
2017-03-29
Postsynthetic functionalization of magnesium 2,5-dihydroxyterephthalate (Mg-MOF-74) with tetraethylenepentamine (TEPA) resulted in improved CO 2 adsorption performance under dry and humid conditions. XPS, elemental analysis, and neutron powder diffraction studies indicated that TEPA was incorporated throughout the MOF particle, although it coordinated preferentially with the unsaturated metal sites located in the immediate proximity to the surface. Neutron and X-ray powder diffraction analyses showed that the MOF structure was preserved after amine incorporation, with slight changes in the lattice parameters. The adsorption capacity of the functionalized amino-Mg-MOF-74 (TEPA-MOF) for CO 2 was as high as 26.9 wt % versus 23.4 wt % for the original MOF due to the extra binding sites provided by the multiunit amines. The degree of functionalization with the amines was found to be important in enhancing CO 2 adsorption, as the optimal surface coverage improved performance and stability under both pure CO 2 and CO 2 /H 2 O coadsorption, and with partially saturated surface coverage, optimal CO 2 capacity could be achieved under both wet and dry conditions by a synergistic binding of CO 2 to the amines as well as metal centers.
Madritsch, Christoph; Gadermaier, Elisabeth; Roder, Uwe W.; Lupinek, Christian; Valenta, Rudolf; Flicker, Sabine
2015-01-01
The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ~25–30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen–allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1–derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens’ C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients’ polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen. PMID:25637023
Koenig, Patrick; Lee, Chingwei V.; Walters, Benjamin T.; Janakiraman, Vasantharajan; Stinson, Jeremy; Patapoff, Thomas W.; Fuh, Germaine
2017-01-01
Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo. PMID:28057863
No evidence for a local renin-angiotensin system in liver mitochondria
Astin, Ronan; Bentham, Robert; Djafarzadeh, Siamak; Horscroft, James A.; Kuc, Rhoda E.; Leung, Po Sing; Skipworth, James R. A.; Vicencio, Jose M.; Davenport, Anthony P.; Murray, Andrew J.; Takala, Jukka; Jakob, Stephan M.; Montgomery, Hugh; Szabadkai, Gyorgy
2013-01-01
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets. PMID:23959064
Milgrom, Y M; Ehler, L L; Boyer, P D
1990-11-05
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Misaki; Kim, Ju Yaen; Kume, Satoshi
In spite of a number of studies to characterize ferredoxin (Fd):ferredoxin NADP{sup +} reductase (FNR) interactions at limited conditions, detailed energetic investigation on how these proteins interact under near physiological conditions and its linkage to FNR activity are still lacking. We herein performed systematic Fd:FNR binding thermodynamics using isothermal titration calorimetry (ITC) at distinct pH (6.0 and 8.0), NaCl concentrations (0–200 mM), and temperatures (19–28 °C) for mimicking physiological conditions in chloroplasts. Energetically unfavorable endothermic enthalpy changes were accompanied by Fd:FNR complexation at all conditions. This energetic cost was compensated by favorable entropy changes, balanced by conformational and hydrational entropy. Increases inmore » the NaCl concentration and pH weakened interprotein affinity due to the less contribution of favorable entropy change regardless of energetic gains from enthalpy changes, suggesting that entropy drove complexation and modulated affinity. Effects of temperature on binding thermodynamics were much smaller than those of pH and NaCl. NaCl concentration and pH-dependent enthalpy and heat capacity changes provided clues for distinct binding modes. Moreover, decreases in the enthalpy level in the Hammond's postulate-based energy landscape implicated kinetic advantages for FNR activity. All these energetic interplays were comprehensively demonstrated by the driving force plot with the enthalpy-entropy compensation which may serve as an energetic buffer against outer stresses. We propose that high affinity at pH 6.0 may be beneficial for protection from proteolysis of Fd and FNR in rest states, and moderate affinity at pH 8.0 and proper NaCl concentrations with smaller endothermic enthalpy changes may contribute to increase FNR activity. - Highlights: • Energetics of Fd:FNR binding were examined by considering physiological conditions. • NaCl and pH affect energetically Fd:FNR binding with minimal effects of temperature. • Enthalpy and heat capacity may modulate binding kinetics and modes for FNR activity. • Entropy drives complexation by overcoming unfavorable enthalpy and tunes affinity. • Driving force plot reveals condition-dependent energetic interplays for complexation.« less
Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong
2016-06-01
Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holewinski, Adam; Sakwa-Novak, Miles A.; Jones, Christopher W.
2015-08-26
Composites of poly(ethylenimine) (PEI) and mesoporous silica are effective, reversible adsorbents for CO 2, both from flue gas and in direct air-capture applications. The morphology of the PEI within the silica can strongly impact the overall carbon capture efficiency and rate of saturation. Here, we directly probe the spatial distribution of the supported polymer through small-angle neutron scattering (SANS). Combined with textural characterization from physisorption analysis, the data indicate that PEI first forms a thin conformal coating on the pore walls, but all additional polymer aggregates into plug(s) that grow along the pore axis. This model is consistent with observedmore » trends in amine-efficiency (CO 2/N binding ratio) and pore size distributions, and points to a trade-off between achieving high chemical accessibility of the amine binding sites, which are inaccessible when they strongly interact with the silica, and high accessibility for mass transport, which can be hampered by diffusion through PEI plugs. In conclusion, we illustrate this design principle by demonstrating higher CO 2 capacity and uptake rate for PEI supported in a hydrophobically modified silica, which exhibits repulsive interactions with the PEI, freeing up binding sites.« less
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang
2017-10-01
The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.
Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida
2014-09-01
DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues
Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael
2013-01-01
Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352
A calorimetric investigation of the interaction of the lac repressor with inducer.
Donnér, J; Caruthers, M H; Gill, S J
1982-12-25
A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.
Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahri-Joutei, A.; Pointis, G.
1988-01-01
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-coursemore » effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.« less
Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-01-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740
Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-03-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
Expression, subcellular localization and regulation of sigma receptor in retinal Müller cells
Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P.; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B.
2013-01-01
Purpose Sigma receptors (σR) are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. σR1 is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity and regulation of σR1 in retinal Müller cells. Methods Primary mouse Müller cells (1°MC) were analyzed by RT-PCR, immunoblotting and immunocytochemistry for the expression of σR1 and data were compared to the rat Müller cell line, rMC-1 and rat ganglion cell line, RGC-5. Confocal microscopy was used to determine the subcellular σR1 location in 1°MC. Membranes prepared from these cells were used for binding assays using [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various σR1 ligands to compete with σR1 binding and the effects of nitric oxide (NO) and reactive oxygen species (ROS) donors on binding were examined. Results σR1 is expressed in 1°MC and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in 1°MCs, rMC-1 and RGC-5 cells, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells and the binding was similarly robust in 1°MC. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of σR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased σR1 binding activity. Conclusions Müller cells express σR1 and demonstrate robust σR1 binding activity, which is inhibited by σR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind σR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy. PMID:17122151
Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells.
Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B
2006-12-01
Sigma receptors (sigmaRs) are nonopioid, nonphencyclidine binding sites with robust neuroprotective properties. Type 1 sigmaR1 (sigmaR1) is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity, and regulation of sigmaR1 in retinal Müller cells. Primary mouse Müller cells (MCs) were analyzed by RT-PCR, immunoblotting, and immunocytochemistry for the expression of sigmaR1, and data were compared with those of the rat Müller cell line (rMC-1) and the rat ganglion cell line (RGC-5). Confocal microscopy was used to determine the subcellular sigmaR1 location in primary mouse MCs. Membranes prepared from these cells were used for binding assays with [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various sigmaR1 ligands to compete with sigmaR1 binding, and the effects of donated nitric oxide (NO) and reactive oxygen species (ROS) on binding were examined. sigmaR1 is expressed in primary mouse MCs and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in primary mouse MCs, rMC-1, and RGC-5, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells, and the binding was similarly robust in primary mouse MCs. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of sigmaR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased sigmaR1 binding activity. MCs express sigmaR1 and demonstrate robust sigmaR1 binding activity, which is inhibited by sigmaR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind sigmaR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy.
Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A
2014-10-31
Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.
Rapid incremental methods for the determination of serum iron and iron-binding capacity
Beale, R. N.; Bostrom, J. O.; Taylor, R. F.
1961-01-01
Rapid methods depending on differential absorptiometry are described for the determination of the transferrin iron content and the latent iron-binding capacity of blood serum. Each determination requires as little as 0·5 ml. serum. The methods are well adapted for routine use in the `average' laboratory. Three or four sera may be completely analysed in 30 minutes. All operations are carried out in the cells or tubes used for the colorimetric measurements, no precipitation or heating being employed at any stage. Critical investigations of the reliability of the methods are attempted and ranges of normal values are included. PMID:13866116
Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.
Lima, Denis U; Loh, Watson; Buckeridge, Marcos S
2004-05-01
Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity. Copyright 2004 Elsevier SAS
Highly-Selective and Reversible O₂ Binding in Cr₃(1,3,5-benzenetricarboxylate)₂
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Leslie J; Dinca, Mircea; Yano, Junko
2010-06-16
Reaction of Cr(CO)₆ with trimesic acid in DMF affords the metal–organic framework Cr₃(BTC)₂∙nDMF (BTC 3- = 1,3,5-benzenetricarboxylate), which is isostructural to Cu₃(BTC)₂∙3H₂O. Exchanging DMF for methanol and heating at 160 °C under dynamic vacuum for 48 h results in the desolvated framework Cr₃(BTC)₂. Nitrogen gas adsorption measurements performed at 77 K revealed a type I isotherm, indicating BET and Langmuir surface areas of 1810 and 2040 m²/g, respectively. At 298 K, the O₂ adsorption isotherm for Cr₃(BTC)₂ rises steeply to a capacity of 11 wt % at 2 mbar, while the corresponding N₂ adsorption isotherm displays very little uptake, graduallymore » rising to a capacity of 0.58 wt % at 1 bar. Accordingly, the material displays an unprecedented O₂/N₂ selectivity factor of 22. Deoxygenation of the sample could be accomplished by heating at 50 °C under vacuum for 48 h, leading to a gradually diminishing uptake capacity over the course of 15 consecutive adsorption/desorption cycles. Infrared and X-ray absorption spectra suggest formation of an O₂ adduct with partial charge transfer from the Cr II centers exposed on the surface of the framework. Neutron powder diffraction data confirm this mechanism of O₂ binding and indicate a lengthening of the Cr–Cr distance within the paddle-wheel units of the framework from 2.06(2) to 2.8(1) Å.« less
The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim.
Desbien, Anthony L; Kappler, John W; Marrack, Philippa
2009-04-07
Current knowledge suggests that the balance between life and death within a cell can be controlled by the stable engagement of Bcl-2-related proapoptotic proteins such as Bak, Bax, and Bim by survival proteins such as Bcl-2. BHRF1 is a prosurvival molecule from Epstein-Barr virus that has a high degree of homology to Bcl-2. To understand how BHRF1 blocks apoptosis, BHRF1 and mutants of BHRF1 were expressed in primary cells and an IL-2-dependent T cell line. BHRF1 bound the Executioner Bak and, when cells were cultured without cytokines, BHRF1 associated with Bim. A point mutation that lost the ability to bind Bak retained its ability to bind Bim and to protect cells. This result demonstrated that it was the capacity of BHRF1 to bind Bim, not Bak, that provided protection. Interestingly, the amount of Bim bound by BHRF1 was minimal when compared with the amount of Bim induced by apoptosis. Thus, BHRF1 does not act by simply absorbing the excess Bim produced while cells prepare for death. Rather, BHRF1 may act either by binding preferentially the most lethal form of Bim or by acting catalytically on Bim to block apoptosis.
Carrageenans as a new source of drugs with metal binding properties.
Khotimchenko, Yuri S; Khozhaenko, Elena V; Khotimchenko, Maxim Y; Kolenchenko, Elena A; Kovalev, Valeri V
2010-04-01
Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y(3+) or Pb(2+) ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that kappa-, iota-, and lambda-carrageenans are favorable sorbents. The largest amount of Y(3+) and Pb(2+) ions are bound by iota-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties.
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...
2015-07-13
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J
2010-02-15
Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
Functional somatostatin receptors on a rat pancreatic acinar cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.
1988-07-01
Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less
Expression of melatonin receptors in arteries involved in thermoregulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M.
Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. Themore » binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.« less
Lee, Kelly A; Goetting, Valerie S; Tell, Lisa A
2015-10-01
Changes in inflammatory marker concentrations or activity can be used to monitor health and disease condition of domestic animals but have not been applied with the same frequency to wildlife. We measured concentrations or activity of six inflammatory markers (ceruloplasmin, haptoglobin, mannan-binding lectin-dependent complement [MBL/complement], unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC), and plasma iron) in apparently healthy and sick or injured Red-tailed Hawks (Buteo jamaicensis). Haptoglobin and ceruloplasmin activities were consistently elevated in sick or injured hawks (2.1 and 2.5 times higher, respectively), and plasma iron concentrations decreased (0.46 times lower), relative to those of healthy birds. There were no differences between healthy and unhealthy hawks in TIBC and UIBC concentrations or MBL/complement activity. Therefore, haptoglobin, ceruloplasmin, and plasma iron would be useful inclusions in a panel of inflammatory markers for monitoring health in raptors.
Platelets Toll-like receptor-4 in Crohns disease.
Schmid, Werner; Novacek, Gottfried; Vogelsang, Harald; Papay, Pavol; Primas, Christian; Eser, Alexander; Panzer, Simon
2017-02-01
Platelets are activated in Crohn's disease (CD) and interplay with leukocytes. Engagement of Toll-like receptor-4 (TLR-4), which is expressed in human platelets, may be involved in crosstalks between platelets and leukocytes leading to their mutual activation for host defense. Human neutrophil peptides (HNPs), lipoprotein binding peptides, and sCD14 were determined by enzyme-linked immunosorbent assays in 42 patients with active CD, in 43 patients with CD in remission, and in 30 healthy individuals. Neutrophil-platelet aggregates and binding of the TLR-4 monoclonal antibody to platelets were determined by flow cytometry. Levels of HNPs were higher in patients with CD than in controls (P = 0.0003 vs. active CD and P = 0.01 vs. CD in remission). Likewise, neutrophils with adhering platelets were higher in patients with active CD than in controls (P = 0.004). Binding of the TLR-4 antibody in patients with active CD was similar to that in controls, while patients in remission had significantly higher binding capacities (P = 0.59 and P = 0.003). Incubation of plasma from patients with active disease or patients in remission with platelets from healthy controls confirmed lower binding of the TLR-4 antibody in the presence of plasma from active diseased patients compared to controls (P = 0.039), possibly due to high levels of lipopolysaccharides, as suggested by high levels of sCD14 and lipoprotein binding protein. Our study indicates involvement of platelet TLR-4 in enhancing the secretion of antimicrobial peptides from neutrophils. While platelet aggregation can be due to a variety of mechanisms in inflammatory disease, the mutual activation of platelets and neutrophils may augment host defense. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.
Characterization of Clostridium botulinum Type B Neurotoxin Associated with Infant Botulism in Japan
Kozaki, Shunji; Kamata, Yoichi; Nishiki, Tei-ichi; Kakinuma, Hiroaki; Maruyama, Hiromi; Takahashi, Hiroaki; Karasawa, Tadahiro; Yamakawa, Kiyotaka; Nakamura, Shinichi
1998-01-01
The neurotoxin of strain 111 (111/NT) associated with type B infant botulism showed antigenic and biological properties different from that (Okra/NT) produced by a food-borne botulism-related strain, Okra. The specific toxicity of 111/NT was found to be about 10 times lower than that of Okra/NT. The monoclonal antibodies recognizing the light chain cross-reacted with both neurotoxins, whereas most of the antibodies recognizing the carboxyl-terminal half of the heavy chain of Okra/NT did not react to 111/NT. Binding experiments with rat brain synaptosomes revealed that 125I-labeled 111/NT bound to a single binding site with a dissociation constant (Kd) of 2.5 nM; the value was rather lower than that (0.42 nM) of 125I-Okra/NT for the high-affinity binding site. In the lipid vesicles reconstituted with ganglioside GT1b, 125I-Okra/NT interacted with the amino-terminal domain of synaptotagmin 1 (Stg1N) or synaptotagmin 2 (Stg2N), fused with the maltose-binding protein, in the same manner as the respective full-length synaptotagmins, and the Kd values accorded with those of the low- and high-affinity binding sites in synaptosomes. However, 125I-111/NT only exhibited a low capacity for binding to the lipid vesicles containing Stg2N, but not Stg1N, in the presence of ganglioside GT1b. Moreover, synaptobrevin-2, an intracellular target protein, was digested to the same extent by the light chains of both neurotoxins in a concentration-dependent manner. These findings indicate that the 111/NT molecule possesses the receptor-recognition site structurally different from Okra/NT, probably causing a decreased specific toxicity. PMID:9746583
Flow Cytometric Determination of Panton-Valentine Leucocidin S Component Binding
Gauduchon, Valérie; Werner, Sandra; Prévost, Gilles; Monteil, Henri; Colin, Didier A.
2001-01-01
The binding of the S component (LukS-PV) from the bicomponent staphylococcal Panton-Valentine leucocidin to human polymorphonuclear neutrophils (PMNs) and monocytes was determined using flow cytometry and a single-cysteine substitution mutant of LukS-PV. The mutant was engineered by replacing a glycine at position 10 with a cysteine and was labeled with a fluorescein moiety. The biological activity of the mutant was identical to that of the native protein. It has been shown that LukS-PV has a high affinity for PMNs (Kd = 0.07 ± 0.02 nM, n = 5) and monocytes (Kd = 0.020 ± 0.003 nM, n = 3) with maximal binding capacities of 197,000 and 80,000 LukS-PV molecules per cell, respectively. The nonspecifically bound molecules of LukS-PV do not form pores in the presence of the F component (LukF-PV) of leucocidin. LukS-PV and HlgC share the same receptor on PMNs, but the S components of other staphylococcal leukotoxins, HlgA, LukE, and LukM, do not compete with LukS-PV for its receptor. Extracellular Ca2+ at physiological concentrations (1 to 2 nM) has only a slight influence on the LukS-PV binding, in contrast to its complete inhibition by Zn2+. The down-regulation by phorbol 12-myristate 13-acetate (PMA) of the binding of LukS-PV was blocked by staurosporine, suggesting that the regulatory effect of PMA depends on protein kinase C activation. The labeled mutant form of LukS-PV has proved very useful for detailed binding studies of circulating white cells by flow cytometry. LukS-PV possesses a high specific affinity for a unique receptor on PMNs and monocytes. PMID:11254598
Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities
Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839
Development of gastrointestinal surface. VIII. Lectin identification of carbohydrate differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, K.Y.; Bresson, J.L.; Walker, W.A.
Binding of microvillus membranes (MVM) from newborn and adult rats by concanavalin A (Con A), Ulex europaeus (UEA I), Dolichos bifluorus (DBA), and Triticum vulgaris (WGA) was examined to determine the availability of carbohydrate-containing sites for these lectins on the intestinal surface during development. Consistent patterns of differences in the reaction of MVM with these lectins were found. Con A and UEA had much higher reactivities to MVM of adult than newborn rats. /sup 125/I-labeled-UEA gel overlay experiments revealed the abundance of UEA-binding sites in MVM of adult rat in contrast to the two binding sites in MVM of amore » newborn rat. DBA bound only to MVM of the adults, and very few binding sites were found in immature MVM. In contrast to these lectins, WGA binding was much higher in MVM of the newborns and decreased with maturation. Additional experiments on the age dependence of UEA and DBA reactivities revealed that the most striking changes occur in animals from 2 to 2 wk of age. In MVM from 2-wk-old rats, there were only 13.9% and < 0.2% of the adult binding capacities for UEA and DBA, respectively. By the time the animals were 4 wk old, the binding capacity for UEA had attained close to the level of the adults, whereas for DBA it reached 71.3% of the adult value. These results provide definite evidence of changes in the intestinal surface during perinatal development.« less
Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong
2016-11-01
Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng
2013-01-01
We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767
Endocrine changes of Paralichthys olivaceus after oral administration with exogenous growth hormone
NASA Astrophysics Data System (ADS)
Liu, Zong-Zhu; Xu, De-Wu; Wang, Yong; Xu, Yong-Li; Zhang, Pei-Jun
2000-12-01
Recombinant salmon growth hormone contained in yeast was given for 5 months to flounder in its diet. Both free and total specific binding sites for the growth hormone were examined in liver membranes of control and treated fish. The association constants of both free and total specific binding sites were of the same order (1 nM-1), and no significant difference was found between any two groups in the capacity of their free binding sites. The capacity of total binding sites in the liver of treated fish increased significantly compared with that of control. Insulin-like growth factor I (IGF-I) levels in the plasma of treated fish increased by 22.61% (P<0.05), compared with that of control. While the T4 levels in plasma did not increase significantly (from 1.35±0.91 ng/ml to 2.29±1.13 ng/ml), T3 levels were elevated significantly (from 1.78±1.14 ng/ml to 4.87±1.22 ng/ml, P<0.01), as compared with that of control.
Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.
Cressman, William J; Beckett, Dorothy
2016-01-19
Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.
Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.
Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K
1999-01-01
Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.
Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza
2015-09-01
Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Young, Anne B.; Snyder, Solomon H.
1974-01-01
The ability of a series of anions to inhibit [3H]strychnine binding to spinal cord synaptic membranes correlates closely with their neurophysiologic capacity to reverse inhibitory postsynaptic potentials in the mammalian spinal cord. Seven neurophysiologically active anions are also effective inhibitors of [3H]strychnine binding with mean effective doses ranging from 160 to 620 mM. Seven other anions that are ineffective neurophysiologically also fail to alter strychnine binding. Chloride inhibits strychnine binding in a noncompetitive fashion. Hill plots of the displacement of [3H]strychnine by chloride give coefficients of 2.3-2.7. The inhibition of strychnine binding by these anions suggests that strychnine binding is closely associated with the ionic conductance mechanism for chloride in the glycine receptor. PMID:4372600
Binding of corroded ions to human saliva.
Mueller, H J
1985-05-01
Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...
2016-02-07
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Oki, Tomomi; Suzuki, Mayumi; Nishioka, Yasuhiko; Yasuda, Akio; Umegaki, Keizo; Yamada, Shizuo
2005-04-01
We examined the effects of saw palmetto extract (SPE) on the rat micturition reflex and on autonomic receptors in the lower urinary tract. The effect of SPE was examined on cystometrograms of anesthetized rats induced by intravesical infusion of saline or 0.1% acetic acid. SHR/NDmc-cp (cp/cp) rats received repeat oral administration of SPE and nighttime urodynamic function was determined. The autonomic receptor binding activity of SPE in the rat bladder and prostate was examined by radioligand binding assay. Intraduodenal administration of SPE (60 mg/kg) in anesthetized rat cystometry caused a significant increase in the micturition interval, micturition volume and bladder capacity during intravesical saline infusion. Also, similar administration of SPE at doses of 12 and 20 mg/kg significantly reversed the shortened micturition interval as well as the decreased micturition volume and bladder capacity due to 0.1% acetic acid infusion in a dose dependent manner. In conscious SHR/NDmc-cp (cp/cp) rats repeat oral administration of SPE (6 mg/kg daily) constantly increased the micturition interval and concomitantly decreased voiding frequency. SPE inhibited specific binding of [H]NMS ([N-methyl-H]scopolamine methyl chloride) (bladder) and [H]prazosin (prostate) with IC50 values of 46.1 and 183 microg/ml, respectively. SPE significantly alleviates urodynamic symptoms in hyperactive rat bladders by increasing bladder capacity and subsequently prolonging the micturition interval. Our data may support the clinical efficacy of SPE for the treatment of lower urinary tract symptoms.
Meller, E
1982-01-01
Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5-1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P less than 0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5-50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (Bmax) or dissociation constant (Kd). A significant (P less than 0.001) correlation of receptor binding activity and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.
Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis
2017-01-01
The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.
Aboalroub, Adam A.; Bachman, Ashleigh B.; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J.
2017-01-01
The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle. PMID:28486510
Factors influencing the antifolate activity of synthetic tea-derived catechins.
Sáez-Ayala, Magalí; Fernández-Pérez, María Piedad; Chazarra, Soledad; Mchedlishvili, Nani; Tárraga-Tomás, Alberto; Rodríguez-López, José Neptuno
2013-07-16
Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR), has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.
Ingersoll, Christopher G.; Kunz, James L.; Hughes, Jamie P.; Wang, Ning; Ireland, D. Scott; Mount, David R.; Hockett, J. Russell; Valenti, Ted W
2015-01-01
The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; <0.1%, low binding capacity for contaminants]) and a second dilution series was prepared using control sediment from West Bearskin Lake, Minnesota, USA (high TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.
Dall'Osto, Luca; Lico, Chiara; Alric, Jean; Giuliano, Giovanni; Havaux, Michel; Bassi, Roberto
2006-01-01
Background Lutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising. Results We have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress. Conclusion Lutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins. PMID:17192177
In vitro utilization of ferromagnetic nanoparticles in hemodialysis therapy
NASA Astrophysics Data System (ADS)
Stamopoulos, D.; Benaki, D.; Bouziotis, P.; Zirogiannis, P. N.
2007-12-01
The in vitro utilization of biocompatible ferromagnetic nanoparticles (BFNs) in hemodialysis (HD), routinely used today for the treatment of end stage renal disease (ESRD), is introduced in this work. The proposed strategy is termed magnetically assisted hemodialysis (MAHD) and it aims to become a more efficient development of conventional HD. The method is based on the production of biocompatible ferromagnetic nanoparticles-targeted binding substances conjugates (BFNs-TBSs Cs) constructed of BFNs and specifically designed TBSs that should have high affinity and binding capacity for target toxic substances (TTSs) which must be removed from the ESRD patient subjected to HD. Antibodies or even specific proteins could serve as the TBS of the desired BFNs-TBSs Cs. The BFNs-TBSs Cs should be administered to the patient timely prior to the MAHD session so as to bind with the desired TTSs during their free circulation in the vascular network. Eventually, the complete BFNs-TBSs-TTSs structure can be selectively removed during the MAHD session by means of an external inhomogeneous magnetic field that is applied either at the dialyzer or at other collection point(s) along the blood circulation line of the dialysis machine. The advantages of MAHD over conventional HD regarding the patient's comfort and overall health status are discussed in detail among practical issues. To examine this proposition we employed Fe3O4 and bovine serum albumin (BSA) as the BFN and the TBS constituents respectively, since they are both highly biocompatible. By means of x-ray diffraction, atomic force microscopy, circular dichroism spectropolarimetry, UV-vis spectrophotometry, SQUID magnetometry, and nuclear magnetic resonance we evaluated (i) the structural/morphological characteristics, (ii) the magnetic retraction efficiency, and most importantly (iii) the toxin binding affinity and capacity of both bare Fe3O4 BFNs and Fe3O4-BSA Cs by performing in vitro experiments on specific TTSs. Homocysteine and p-cresol were chosen as representative TTSs and were investigated in great detail. The results obtained prove the in vitro applicability of the proposed MAHD method.
Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.
2014-01-01
Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551
Evidence that Distinct States of the Integrin α6β1 Interact with Laminin and an ADAM
Chen, M.S.; Almeida, E.A.C.; Huovila, A.-P.J.; Takahashi, Y.; Shaw, L.M.; Mercurio, A.M.; White, J.M.
1999-01-01
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2). PMID:9971748
MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A
2012-01-01
Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B(Q,Q'), relating a state Q to a reference state Q'. We used atomic scale molecular dynamics in the NVT ensemble and computed averages over 1-5 ns. We found that the probability of the OOE phase separating into a layer on the surface of the CNP compared to being retained randomly in an OOO + OOE mix were approximately equal. However, we found that it was probable that the EEO component of an OOO + EEO mix would phase separate and coat the surface of the CNP. These results suggest a mechanism whereby many-component oils undergo phase separation on a nanoscale so as to create a transition oil region between the surface of the CNP and the bulk major oil component (OOO in the case considered here) so as to create the appropriate oil binding capacity for the use to which it is put.
Modification of hydroxyapatite with ion-selective complexants: 1-hydroxyethane-1,1-diphosphonic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Yasmine; Lyczko, Nathalie; Nzihou, Ange
Hydroxyapatite (HAP) was modified with 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and its effect on divalent metal ion binding was determined. HAP was synthesized from calcium hydroxide and phosphoric acid. After calcination, it was modified with HEDP, and the influence of time and temperature on the modification was investigated. HEDP incorporation increased as its initial solution concentration increased from 0.01 to 0.50 M. Unmodified and modified HAP were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area analysis. Ca/P ratios, acid capacities, and phosphorus elemental analyses gave the effect of modification on compositionmore » and surface characteristics. A high reaction temperature produced new phosphonate bands at 993, 1082, and 1144 cm –1 that indicated the presence of HEDP. HAP modification at a high temperature–long reaction time had the highest HEDP loading and gave the sharpest XRD peaks. The emergence of new HAP–HEDP strands was observed in SEM images for treated samples while EDS showed high phosphorus contents in these strands. Modified HAP had a high acid capacity from the additional P–OH groups in HEDP. The P(O)OH groups maintain their ability to bind metal ions within the HAP matrix: contacting the modified HAP with 10–4 N nitrate solutions of five transition metal ions gives an affinity sequence of Pb(II) > Cd(II) > Zn(II) > Ni(II) > Cu(II). Here, this result is comparable to that of commercially available di(2-ethylhexyl)phosphoric acid, a common solvent extractant, and the trend is consistent with the Misono softness parameter of metal ion polarizabilities.« less
Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.
Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT1A) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT1A receptors. In addition, [35S]guanosine 5′-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants. PMID:22880045
Modification of hydroxyapatite with ion-selective complexants: 1-hydroxyethane-1,1-diphosphonic acid
Daniels, Yasmine; Lyczko, Nathalie; Nzihou, Ange; ...
2014-12-29
Hydroxyapatite (HAP) was modified with 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and its effect on divalent metal ion binding was determined. HAP was synthesized from calcium hydroxide and phosphoric acid. After calcination, it was modified with HEDP, and the influence of time and temperature on the modification was investigated. HEDP incorporation increased as its initial solution concentration increased from 0.01 to 0.50 M. Unmodified and modified HAP were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area analysis. Ca/P ratios, acid capacities, and phosphorus elemental analyses gave the effect of modification on compositionmore » and surface characteristics. A high reaction temperature produced new phosphonate bands at 993, 1082, and 1144 cm –1 that indicated the presence of HEDP. HAP modification at a high temperature–long reaction time had the highest HEDP loading and gave the sharpest XRD peaks. The emergence of new HAP–HEDP strands was observed in SEM images for treated samples while EDS showed high phosphorus contents in these strands. Modified HAP had a high acid capacity from the additional P–OH groups in HEDP. The P(O)OH groups maintain their ability to bind metal ions within the HAP matrix: contacting the modified HAP with 10–4 N nitrate solutions of five transition metal ions gives an affinity sequence of Pb(II) > Cd(II) > Zn(II) > Ni(II) > Cu(II). Here, this result is comparable to that of commercially available di(2-ethylhexyl)phosphoric acid, a common solvent extractant, and the trend is consistent with the Misono softness parameter of metal ion polarizabilities.« less
Kumar, Ashok; Bansal, Vibha; Andersson, Jonatan; Roychoudhury, Pradip K; Mattiasson, Bo
2006-01-20
A new type of supermacroporous, monolithic, cryogel affinity adsorbent was developed, allowing the specific capture of urokinase from conditioned media of human fibrosarcoma cell line HT1080. The affinity adsorbent was designed with the objective of using it as a capture column in an integrated perfusion/protein separation bioreactor setup. A comparative study between the utility of this novel cryogel based matrix and the conventional Sepharose based affinity matrix for the continuous capture of urokinase in an integrated bioreactor system was performed. Cu(II)-ion was coupled to epoxy activated polyacrylamide cryogel and Sepharose using iminodiacetic acid (IDA) as the chelating ligand. About 27-fold purification of urokinase from the conditioned culture media was achieved with Cu(II)-IDA-polyacrylamide cryogel column giving specific activity of about 814 Plough units (PU)/mg protein and enzyme yields of about 80%. High yields (95%) were obtained with Cu(II)-IDA-Sepharose column by virtue of its high binding capacity. However, the adsorbent showed lower selectivity as compared to cryogel matrix giving specific activity of 161 PU/mg protein and purification factor of 5.3. The high porosity, selectivity and reasonably good binding capacity of Cu(II)-IDA-polyacrylamide cryogel column make it a promising option for use as a protein capture column in integrated perfusion/separation processes. The urokinase peak pool from Cu(II)-IDA-polyacrylamide cryogel column could be further resolved into separate fractions for high and low molecular weight forms of urokinase by gel filtration chromatography on Sephacryl S-200. The selectivity of the cryogel based IMAC matrix for urokinase was found to be higher as compared to that of Cu(II)-IDA-Sepharose column.
Zhu, Linzhao; Zhao, Zhiyong; Zhang, Xiongzhi; Zhang, Haijun; Liang, Feng; Liu, Simin
2018-04-18
Amantadine (AMA) and its derivatives are illicit veterinary drugs that are hard to detect at very low concentrations. Developing a fast, simple and highly sensitive method for the detection of AMA is highly in demand. Here, we designed an anthracyclic compound (ABAM) that binds to a cucurbit[7]uril (CB[7]) host with a high association constant of up to 8.7 × 10⁸ M −1 . The host-guest complex was then used as a fluorescent probe for the detection of AMA. Competition by AMA for occupying the cavity of CB[7] allows ABAM to release from the CB[7]-ABAM complex, causing significant fluorescence quenching of ABAM (indicator displacement assay, IDA). The linear range of the method is from 0.000188 to 0.375 μg/mL, and the detection limit can be as low as 6.5 × 10 −5 μg/mL (0.35 nM). Most importantly, due to the high binding affinity between CB[7] and ABAM, this fluorescence host-guest system shows great anti-interference capacity. Thus, we are able to accurately determine the concentration of AMA in various samples, including pharmaceutical formulations.
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less
Frøsig, Christian; Pehmøller, Christian; Birk, Jesper B; Richter, Erik A; Wojtaszewski, Jørgen F P
2010-11-15
TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all-out cycle exercise lasting either 30 s, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (∼70-230%, P < 0.005), with the greatest response observed after 20 min of cycling. Interestingly, capacity of TBC1D1 to bind 14-3-3 protein showed a similar pattern of regulation, increasing 60-250% (P < 0.001). Furthermore, recombinant 5AMP-activated protein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus muscle (EDL) from whole body α1 or α2 AMPK knock-out and wild-type mice were stimulated to contract in vitro. In wild-type and α1 knock-out mice, contractions resulted in a similar ∼100% increase (P < 0.001) in Ser237 phosphorylation. Interestingly, muscle of α2 knock-out mice were characterized by reduced protein content of TBC1D1 (∼50%, P < 0.001) as well as in basal and contraction-stimulated (∼60%, P < 0.001) Ser237 phosphorylation, even after correction for the reduced TBC1D1 protein content. This study shows that TBC1D1 is Ser237 phosphorylated and 14-3-3 protein binding capacity is increased in response to exercise in human skeletal muscle. Furthermore, we show that the catalytic α2 AMPK subunit is the main (but probably not the only) donor of AMPK activity regulating TBC1D1 Ser237 phosphorylation in mouse EDL muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong
2011-09-16
The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. Inmore » addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.« less
Chiu, Hsin-Yi; Deng, Wen; Engelke, Hanna; Helma, Jonas; Leonhardt, Heinrich; Bein, Thomas
2016-01-01
Chromobodies have recently drawn great attention as bioimaging nanotools. They offer high antigen binding specificity and affinity comparable to conventional antibodies, but much smaller size and higher stability. Chromobodies can be used in live cell imaging for specific spatio-temporal visualization of cellular processes. To date, functional application of chromobodies requires lengthy genetic manipulation of the target cell. Here, we develop multifunctional large-pore mesoporous silica nanoparticles (MSNs) as nanocarriers to directly transport chromobodies into living cells for antigen-visualization in real time. The multifunctional large-pore MSNs feature high loading capacity for chromobodies, and are efficiently taken up by cells. By functionalizing the internal MSN surface with nitrilotriacetic acid-metal ion complexes, we can control the release of His6-tagged chromobodies from MSNs in acidified endosomes and observe successful chromobody-antigen binding in the cytosol. Hence, by combining the two nanotools, chromobodies and MSNs, we establish a new powerful approach for chromobody applications in living cells. PMID:27173765
Lithium-decorated oxidized graphyne for hydrogen storage by first principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zeyu; Wang, Lang; Cheng, Julong
2014-11-07
The geometric stability and hydrogen storage capacity of Li decorated oxidized γ-graphyne are studied based on the first-principles calculations. It is found that oxygen atoms trend to bond with acetylenic carbons and form C=O double bonds on both sides of graphyne. The binding energy of single Li atom on oxidized graphyne is 3.29 eV, owning to the strong interaction between Li atom and O atom. Meanwhile, the dispersion of Li is stable even under a relatively high density. One attached Li atom can at least adsorb six hydrogen molecules around. Benefitting from the porous structure of graphyne and the high attachedmore » Li density, a maximum hydrogen storage density 12.03 wt. % is achieved with four Li atoms in graphyne cell. The corresponding average binding energy is 0.24 eV/H{sub 2}, which is suitable for reversible storage. These results indicate that Li decorated graphyne can serve as a promising hydrogen storage material.« less
Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.
Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana
2015-12-01
The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Guillaume, Yves Claude; Lethier, Lydie; André, Claire
2016-11-15
TRAIL is a member of the TNF family of cytokines which induces apoptosis of cancer cells via its binding to its cognate receptors, DR5 a high affinity site and DR4 a site of low affinity. Our working group has recently demonstrated that nanovectorization of TRAIL with single wall carbon nanotubes (abbreviated NPT) enhanced TRAIL affinity to the high affinity site DR5 and increased pro apoptotic potential in different human tumor cell lines. In this paper, the DR4 low affinity site was immobilized on a chromatographic support and the effect of temperature on a wide temperature range 1°C-50°C was studied to calculate the thermodynamic parameters of the binding of TRAIL and NPT to DR4 and DR5 receptors. For the first time the heat capacity changes for the different binding processes were determined. At a physiological pH (7.4) the heat capacity changes for the binding of NPT to DR4 and DR5 were respectively equal to -0.91kJ/molK and -0.28kJ/molK and those obtained for the binding of TRAIL to DR4 and DR5 were respectively equal to -1.54kJ/molK and -1.05kJ/molK. By the use of differential scanning calorimetry (DSC), a phase transition (∼12°C for DR5, ∼4°C for DR4) between a disordered (low temperature) and an ordered (high temperature) solid like state visualized in the receptor structure confirmed the temperature dependence of binding affinity enthalpy ΔH for soluble TRAIL and its nanovectorized form to its cognate receptors. In the low temperature domain, the positive ΔH values contribute non-favourably to the free energy of binding, TRAIL and NPT described similar affinities for DR4 and DR5. For the high temperature domain, negative ΔH values indicated that van der Waals interactions and hydrogen bonding are engaged favourably at the ligand - receptor interface. Above 30°C, their rank-ordered affinities were thus strongly different in the sequence: TRAIL DR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Jeffrey R.
The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing amore » high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H 2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H 2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H 2 adsorption measurements, to provide a comprehensive picture of H 2 adsorption at all relevant pressures. A rigorous understanding of experimental findings was further achieved via first-principles electronic structure calculations, which also supported synthetic efforts through predictions of additional novel frameworks with promising properties for vehicular H 2 storage. The results of the computational efforts also helped to elucidate the fundamental principles governing the interaction of H 2 with the frameworks, and in particular with exposed metal sites in the pores of these materials. Significant accomplishments from this project include the discovery of a metal-organic framework with a high H 2 binding enthalpy and volumetric capacity at 25 °C and 100 bar, which surpasses the metrics of any other known metal-organic framework. Additionally this material was designed to be extremely cost effective compared to most comparable adsorbents, which is imperative for eventual real-world applications. Progress toward synthesizing new frameworks containing multiple open coordination sites is also discussed, and appears to be the most promising future direction for hydrogen storage in these porous materials.« less
NASA Astrophysics Data System (ADS)
Eberbeck, Dietmar; Wiekhorst, Frank; Steinhoff, Uwe; Schwarz, Kay Oliver; Kummrow, Andreas; Kammel, Martin; Neukammer, Jörg; Trahms, Lutz
2009-05-01
The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL -1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.
Staphylococcal surface display of metal-binding polyhistidyl peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuelson, P.; Wernerus, H.; Svedberg, M.
2000-03-01
Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications formore » such recombinant staphylococci as biosorbents are discussed.« less
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; ...
2017-08-03
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
Saadaoui, Asma; Sanglar, Corinne; Medimagh, Raouf; Bonhomme, Anne; Baudot, Robert; Chatti, Saber; Marque, Sylvain; Prim, Damien; Zina, Mongia Saïd; Casabianca, Herve
2017-04-01
New biosourced chiral cross-linkers were reported for the first time in the synthesis of methyltestosterone (MT) chiral molecularly imprinted polymers (cMIPs). Isosorbide and isomannide, known as 1,4:3,6-dianhydrohexitols, were selected as starting diols. The cMIPs were synthesized following a noncovalent approach via thermal radical polymerization and monitored by Raman spectroscopy. These cross-linkers were fully characterized by 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. The cross-polarization magic angle spinning 13 C NMR, Fourier transform infrared spectroscopy, scanning electron microscopy, and specific surface areas following the Brunauer-Emmett-Teller (BET) method were used to characterize the cMIPs. The effect of stereochemistry of cross-linkers on the reactivity of polymerization, morphology, and adsorption-recognition properties of the MIP was evaluated. The results showed that the cMIP exhibited an obvious improvement in terms of rebinding capacity for MT as compared with the nonimprinted polymer (NIP). The highest binding capacity was observed for cMIP-Is (27.298 mg g -1 ) for high concentrations (500 mg L -1 ). However, the isomannide homologue cMIP-Im showed higher recovery-up to 65% and capacity for low concentrations (15 mg L -1 ). The experimental data were properly fitted by the Freundlich adsorption isothermal model. Copyright © 2016 John Wiley & Sons, Ltd.
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon
Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth
1999-01-01
Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255
Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂.
Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A; Tsivion, Ehud; Dougherty, Timothy P; Bloch, Eric D; Head-Gordon, Martin; Smit, Berend; Long, Jeffrey R; Brown, Craig M
2015-08-26
A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.
Stability of local secondary structure determines selectivity of viral RNA chaperones.
Bravo, Jack P K; Borodavka, Alexander; Barth, Anders; Calabrese, Antonio N; Mojzes, Peter; Cockburn, Joseph J B; Lamb, Don C; Tuma, Roman
2018-05-18
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
NASA Astrophysics Data System (ADS)
Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.
2018-05-01
Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Shayeganfar, Farzaneh; Shahsavari, Rouzbeh
2016-12-20
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
Potential of goat probiotic to bind mutagens.
Apás, Ana Lidia; González, Silvia Nelina; Arena, Mario Eduardo
2014-08-01
The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim
2016-07-01
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient sulfur host based on NiCo2O4 hollow microtubes for advanced Li-S batteries
NASA Astrophysics Data System (ADS)
Iqbal, Azhar; Ali Ghazi, Zahid; Muqsit Khattak, Abdul; Ahmad, Aziz
2017-12-01
High energy density and cost effectiveness make lithium-sulfur battery a promising candidate for next-generation electrochemical energy storage technology. Here, we have synthesized a highly efficient sulfur host namely NiCo2O4 hollow microtubes/sulfur composite (NiCo2O4/S). The hollow interior cavity providing structural integrity while sufficient self-functionalized surfaces of NiCo2O4 chemically bind polysulfides to prevent their dissolution in the organic electrolyte. When used in lithium-sulfur batteries, the synthesized NiCo2O4/S cathode delivers high specific capacity (1274 mAh g-1 at 0.2 C), long cycling performance at 0.5 C, and good rate capability at high current rates.
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Shayani Rad, Maryam; Khameneh, Bahman; Sabeti, Zahra; Mohajeri, Seyed Ahmad; Fazly Bazzaz, Bibi Sedigheh
2016-10-01
In the present work, the effect of monomer composition on silver nanoparticles' (SNPs) binding capacity of hydrogels was investigated and their antibacterial efficacy was evaluated. Three series of poly-hydroxyethyl methacrylate (HEMA) hydrogels were prepared using methacrylic acid (MAA), methacrylamide (MAAM), and 4-vinylpyridine (4VP) as co-monomers, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. SNPs binding capacity of hydrogels was evaluated in different concentrations (2, 10, and 20 ppm). In vitro antibacterial activity of SNP-loaded hydrogels was studied against Pseudomonas aeruginosa (P. aeruginosa) isolated from patients' eyes. Then, inhibitory effect of hydrogels in biofilm formation was evaluated in the presence of Staphylococcus epidermidis (S. epidermidis) (DSMZ 3270). Our data indicated that poly(HEMA-co-MAA-co-EGDMA) had superior binding affinity for SNPs in comparison with other hydrogels. All SNP-loaded hydrogels demonstrated excellent antimicrobial effects at all times against P. aeruginosa and S. epidermidis after soaking in 10 and 20 ppm SNP suspensions. Scanning electron microscope (SEM) images revealed excellent inhibitory effect of SNPs against biofilm formation on the surface of the hydrogels. This study indicated the effect of monomer compositions in SNP loading capacity of poly(HEMA) hydrogels and antibacterial efficacy of SNP-loaded hydrogels against P. aeruginosa and S. epidermidis, but further in vivo evaluation is necessary.
Arginine homopeptides for plasmid DNA purification using monolithic supports.
Cardoso, Sara; Sousa, Ângela; Queiroz, João A; Azzoni, Adriano R; Sousa, Fani
2018-06-15
Purification of plasmid DNA targeting therapeutic applications still presents many challenges, namely on supports and specific ligand development. Monolithic supports have emerged as interesting approaches for purifying pDNA due to its excellent mass transfer properties and higher binding capacity values. Moreover, arginine ligands were already described to establish specific and preferential interactions with pDNA. Additionally, some studies revealed the ability of arginine based cationic peptides to condense plasmid DNA, which increased lengthening can result in strongest interactions with higher binding capacities for chromatographic purposes of large molecules such as pDNA. In this work, arginine homopeptides were immobilized in monolithic supports and their performance was evaluated and compared with a single arginine monolithic column regarding supercoiled (sc) plasmid DNA purification. Specific interactions of arginine based peptides with several nucleic acids present in a clarified Escherichia coli lysate sample showed potential for the sc pDNA purification. Effectively, the immobilization of the arginine homopeptides became more functional compared with the single arginine amino acid, showing higher binding capacities, which was also reflected in the intensity of the interactions. The combination of structural versatilities of monoliths with the specificity of arginine peptides raised as a promising strategy for sc pDNA purification. Copyright © 2018 Elsevier B.V. All rights reserved.
Lou, Xiaowei; Yang, Qiuli; Sun, Yangying; Pan, Daodong; Cao, Jinxuan
2017-09-01
In order to investigate the influence of non-thermal effects of microwaves on the flavour of fish and meat products, the G-actin of grass carp in ice baths was exposed to different microwave powers (0, 100, 300 or 500 W); the surface hydrophobicity, sulfhydryl contents, secondary structures and adsorption capacity of G-actin to ketones were determined. As microwave power increased from 0 to 300 W, the surface hydrophobicity, total and reactive sulfhydryls increased; α-helix, β-sheet and random coil fractions turned into β-turn fractions. As microwave power increased from 300 to 500 W, however, hydrophobicity and sulfhydryl contents decreased; β-turn and random coil fractions turned into α-helix and β-sheet fractions. The tendencies of adsorbed capacity of ketones were similar to hydrophobicity and sulfhydryl contents. The increased adsorbing of ketones could be attributed to the unfolding of secondary structures by revealing new binding sites, including thiol groups and hydrophobic binding sites. The decreased binding capacity was related to the refolding and aggregation of protein. The results suggested that microwave powers had obvious effects on the flavour retention and proteins structures in muscle foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zhao, Yangyang; Dong, Xiaoyan; Yu, Linling; Sun, Yan
2016-01-04
The adsorption and elution behaviors of bovine serum albumin (BSA) on poly(ethylenimine) (PEI)-grafted Sepharose FF resins were recently studied and a critical ionic capacity (cIC; 600 mmol/L) was found, above which the uptake rate increased drastically due to the occurrence of significant "chain delivery" effect. Moreover, above the cIC value, higher salt concentrations were required for protein elution due to the high charge density of the resins. In this work, we have reduced the charge density on the PEI chains of a PEI-grafted resin by neutralization of the amine groups with sodium acetate. PEI-modified resin with IC of 740 mmol/L (FF-PEI-L740, IC>cIC) was chosen as the starting material, and three resins with residual IC values of 660, 560 and 440 mmol/L (FF-PEI-R440) were obtained. The adsorption and chromatographic behaviors of these resins for BSA were investigated. It was found that, with IC decreasing from 740 to 440 mmol/L, the adsorption capacity kept almost unchanged; the effective protein diffusivity (De) also showed negligible variations as IC decreased from 740 to 560 mmol/L (De/D0=0.38 ± 0.04). However, it was interesting to observe a three-fold increase of the De value for FF-PEI-R440 (De/D0=1.23 ± 0.08). It is considered that the occurrence of the drastic uptake rate increase in FF-PEI-R440 was attributed to the decreased available binding sites for protein molecule, which led to the decrease of binding strength, thus facilitated the happenings of "chain delivery" effect of bound proteins. Besides, a study on the effect of ionic strength clarified that the lower the IC value, the higher the sensitivity of protein binding to salt concentration due to the easily screened electrostatic interactions at low surface charge densities. The ionic strength at the elution peak also decreased with decreasing IC in accordance with the salt sensitivity order. Column breakthrough studies demonstrated that the dynamic adsorption capacity of FF-PEI-R440 was much higher than the other three resins at flow rates higher than 30 cm/h because of its high uptake rate. The findings in this work provided new insights into the effects of the interactions between proteins and grafted polymers on adsorption equilibria and uptake kinetics, which would help the selection and design of suitable media for high-performance protein chromatography. Copyright © 2015. Published by Elsevier B.V.
Assessment of the nickel-albumin binding assay for diagnosis of acute coronary syndrome.
da Silva, Sandra Huber; Pereira, Renata da Silva; Hausen, Bruna dos Santos; Signor, Cristiane; Gomes, Patrícia; de Campos, Marli Matiko Anraku; Moresco, Rafael Noal
2011-03-01
Myocardial ischemia may alter the metal binding capacity of circulating serum albumin. Thus, the aim of this study was to describe an automated method to measure ischemia-induced alterations in the binding capacity of serum albumin for exogenous nickel, and to evaluate the diagnostic characteristics of this assay for the assessment of acute coronary syndrome (ACS) in patients presenting to the emergency room (ER) with acute chest pain. We assessed the concentrations of cardiac troponin I (cTnI), serum albumin, ischemia-modified albumin (IMA) measured by the cobalt-albumin binding assay (CABA), and by an automated nickel-albumin binding assay (NABA) in the following groups: ACS (n=63) and non-ischemic chest pain (NICP, n=26). Biochemical markers were determined in blood samples obtained from patients within 3 h of ER admission. cTnI, CABA and NABA concentrations were higher in ACS group in comparison to the NICP group. A significant correlation between NABA and CABA was observed (r=0.5387, p<0.001). Areas under the curve for CABA and NABA were 0.7289 and 0.7582, respectively. Both CABA and NABA have the ability to discriminate patients with ACS. However, NABA has a slightly higher ability to discriminate ACS compared with CABA. Patients with ACS have reduced nickel binding to human serum albumin, and NABA may have an important role as an early marker of myocardial ischemia, particularly in patients presenting to the ER with acute chest pain.
Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi
2014-03-01
(2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.
1988-05-01
Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for (3H)melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-(125I)iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-(125I)Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-(125I)iodomelatonin is rapid,more » stable, saturable, and reversible. Saturation studies demonstrated that 2-(125I)iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-(125I)iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive).« less
Inflammatory responses to the occupational inhalation of metal fume.
Palmer, K T; McNeill Love, R M C; McNeill-Love, R; Poole, J R; Coggon, D; Frew, A J; Linaker, C H; Shute, J K
2006-02-01
Occupational exposure to metal fume promotes a reversible increase in the risk of pneumonia, but by mechanisms which are unclear. To investigate, the current authors measured various markers of host defence function in welders and nonwelders. Induced sputum and venous blood samples were collected from 27 welders with regular long-term exposure to ferrous metal fume and 31 unexposed matched controls. In sputum, the present authors measured cell counts, the soluble and cellular iron concentration, and levels of interleukin-8, tumour necrosis factor-alpha, myeloperoxidase, matrix metalloproteinase-9, immunoglobulin (Ig)A, alpha(2)-macroglobulin and unsaturated iron-binding capacity. Blood samples were assayed for evidence of neutrophil activation and pneumococcal IgG antibodies. Welders had significantly higher iron levels and a substantially lower unsaturated iron-binding capacity in their sputum, but, despite a high iron challenge, there was a noteworthy absence of an inflammatory response. Only blood counts of eosinophils and basophils were significantly related to the extent of welding. Weak nonsignificant trends were observed for several other measures, consistent with low-grade priming of neutrophils. In conclusion, these data suggest that chronic exposure to metal fume blunts responsiveness to inhaled particulate matter. However, the mechanism behind the lack of detectable local inflammatory response requires further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebokova, E.; Wierzbicki, A.; Clandinin, M.T.
1988-10-01
The effect of prolactin (PRL) and human chorionic gonadotropin (hCG) administration for 7 days on the composition and function of rat testicular plasma membrane was investigated. Refractory state in Leydig cells desensitized by hCG decreased the binding capacity for {sup 125}I-labeled hCG and also luteinizing hormone (LH)-induced adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) and testosterone production. In testicular membranes of hCG-treated animals, a depletion of cholesterol and an increase in total phospholipid content was observed after gonadotropin injection, thereby decreasing the cholesterol-to-phospholipid ratio. Injection of high doses of PRL had no effect on the binding capacity or affinity of the LH-hCG receptormore » but decreased the response of Leydig cells to LH in terms of cAMP and testosterone synthesis. PRL also increased total and esterified cholesterol and decreased free cholesterol and membrane phospholipid content. The fatty acid composition of testicular lipids was significantly and selectively influenced by both hormonal treatments. These observations suggest that metabolism of cholesterol and long-chain polyunsaturated fatty acids in testicular tissue is affected by chorionic gonadotropin and PRL and may provide the mechanism for regulating steroidogenic functions.« less
2017-01-01
Waterborne viruses can exhibit resistance to common water disinfectants, yet the mechanisms that allow them to tolerate disinfection are poorly understood. Here, we generated echovirus 11 (E11) with resistance to chlorine dioxide (ClO2) by experimental evolution, and we assessed the associated genotypic and phenotypic traits. ClO2 resistance emerged after E11 populations were repeatedly reduced (either by ClO2-exposure or by dilution) and then regrown in cell culture. The resistance was linked to an improved capacity of E11 to bind to its host cells, which was further attributed to two potential causes: first, the resistant E11 populations possessed mutations that caused amino acid substitutions from ClO2-labile to ClO2-stable residues in the viral proteins, which likely increased the chemical stability of the capsid toward ClO2. Second, resistant E11 mutants exhibited the capacity to utilize alternative cell receptors for host binding. Interestingly, the emergence of ClO2 resistance resulted in an enhanced replicative fitness compared to the less resistant starting population. Overall this study contributes to a better understanding of the mechanism underlying disinfection resistance in waterborne viruses, and processes that drive resistance development. PMID:28837336
Mechanisms and evolution of hypoxia tolerance in fish
Mandic, Milica; Todgham, Anne E.; Richards, Jeffrey G.
2008-01-01
The ability of an organism to acquire O2 from its environment is key to survival and can play an important role in dictating a species' ecological distribution. This study is the first, to our knowledge, to show a tight, phylogenetically independent correlation between hypoxia tolerance, traits involved in dictating O2 extraction capacity and the distribution of a group of closely related fish species, sculpins from the family Cottidae, along the nearshore marine environment. Sculpins with higher hypoxia tolerance, measured as low critical O2 tensions (Pcrit), inhabit the O2 variable intertidal zones, while species with lower hypoxia tolerance inhabit the more O2 stable subtidal zone or freshwater. Hypoxia tolerance is phylogenetically independently associated with an enhanced O2 extraction capacity, with three principal components accounting for 75 per cent of the variation in Pcrit: routine O2 consumption rate; mass-specific gill surface area; and whole blood haemoglobin (Hb)–O2-binding affinity (P50). Variation in whole blood Hb–O2 P50 is strongly correlated with the intrinsic O2-binding properties of the purified Hb while the differences in the concentration of the allosteric Hb modulators, ATP and GTP, provide a Hb system with substantial plasticity for survival in a highly O2 variable environment. PMID:18996831
Identification and characterization of B-cell epitopes in the DBL4ε domain of VAR2CSA.
Ditlev, Sisse B; Nielsen, Morten A; Resende, Mafalda; Agerbæk, Mette Ø; Pinto, Vera V; Andersen, Pernille H; Magistrado, Pamela; Lusingu, John; Dahlbäck, Madeleine; Theander, Thor G; Salanti, Ali
2012-01-01
Malaria during pregnancy in Plasmodium falciparum endemic regions is a major cause of mortality and severe morbidity. VAR2CSA is the parasite ligand responsible for sequestration of Plasmodium falciparum infected erythrocytes to the receptor chondroitin sulfate A (CSA) in the placenta and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4ε domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4ε peptide-array to identify epitopes targeted by DBL4ε-specific antibodies that inhibit CSA-binding of infected erythrocytes. We identified three regions of overlapping peptides which were highly antigenic. One peptide region distinguished itself particularly by showing a clear difference in the binding profile of highly parasite blocking IgG compared to the IgG with low capacity to inhibit parasite adhesion to CSA. This region was further characterized and together these results suggest that even though antibodies against the synthetic peptides which cover this region did not recognize native protein, the results using the mutant domain suggest that this linear epitope might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4ε domain.
Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.
Zhong, Yiren; Yin, Lichang; He, Peng; Liu, Wen; Wu, Zishan; Wang, Hailiang
2018-01-31
Chemistry at the cathode/electrolyte interface plays an important role for lithium-sulfur batteries in which stable cycling of the sulfur cathode requires confinement of the lithium polysulfide intermediates and their fast electrochemical conversion on the electrode surface. While many materials have been found to be effective for confining polysulfides, the underlying chemical interactions remain poorly understood. We report a new and general lithium polysulfide-binding mechanism enabled by surface oxidation layers of transition-metal phosphide and chalcogenide materials. We for the first time find that CoP nanoparticles strongly adsorb polysulfides because their natural oxidation (forming Co-O-P-like species) activates the surface Co sites for binding polysulfides via strong Co-S bonding. With a surface oxidation layer capable of confining polysulfides and an inner core suitable for conducting electrons, the CoP nanoparticles are thus a desirable candidate for stabilizing and improving the performance of sulfur cathodes in lithium-sulfur batteries. We demonstrate that sulfur electrodes that hold a high mass loading of 7 mg cm -2 and a high areal capacity of 5.6 mAh cm -2 can be stably cycled for 200 cycles. We further reveal that this new surface oxidation-induced polysulfide-binding scheme applies to a series of transition-metal phosphide and chalcogenide materials and can explain their stabilizing effects for lithium-sulfur batteries.
Antioxidant mechanism of milk mineral-high-affinity iron binding.
Allen, K; Cornforth, D
2007-01-01
Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P < 0.05) than the other compounds, and was much less soluble (P < 0.05) than either STPP or CPM. Mineral localization showed an even distribution of calcium, phosphorus, oxygen, and iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.
1986-01-01
Transient elevations in murine secondary palatal adenosine 3',5'-monophosphate (cAMP) levels occur during palate ontogeny. Since palatal processes exposed to dibutyryl cAMP differentiate precociously, increases in palatal cAMP levels are of interest. Prostaglandin E/sub 2/ (PGE/sub 2/), which is synthesized by murine embryonic palate mesenchyme cells (MEPM), regulates cAMP levels in adult tissues via specific membrane bound receptors coupled to adenylate cyclase. Therefore, a PGE/sub 2/ receptor-adenylate cyclase systems was proposed in the developing murine secondary palate. Utilizing a radioligand binding assay, it was determined that murine palatal tissue on day 13 of gestation contained PGE/sub 2/ receptors that were saturable,more » of high affinity and low capacity. Specific (/sup 3/H)-PGE/sub 2/ binding was reversible by 30 min. The order of prostanoid binding affinity at specific PGE/sub 2/ binding sites was E/sub 2/ > F/sub 2//sub ..cap alpha../ > A/sub 2/ > E/sub 1/ = D/sub 2/ indicating specificity of the receptor for PGE/sub 2/. The ability of MEPM cells to respond to PGE/sub 2/ with dose-dependent accumulations of intracellular cAMP demonstrated the functional nature of these binding sites. Analysis of palatal PGE/sub 2/ receptor characteristics on days 12 and 14 of palate development indicated temporal alterations in receptor affinity and density during palate ontogeny.« less
Artells, Ester; Palacios, Oscar; Capdevila, Mercè; Atrian, Sílvia
2014-03-01
Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders caused by insoluble Cu-peptide aggregates, as it triggers a Zn-Cu swap that may counteract the deleterious presence of copper in neural tissues. The literature data on MT3 coordination come from studies either on apo-MT3 reconstitution or the reaction of Zn-MT3 with Cu(2+) , an ion that is hardly present inside cells. To ascertain the MT3 metal-binding features in a scenario closer to the reductive cell cytoplasm, a study of the recombinant Zn(2+) , Cd(2+) and Cu(+) complexes of MT3, βMT3, and αMT3, as well as the in vitro Zn(2+) -Cd(2+) and Zn(2+) -Cu(+) replacement processes, is presented here. We conclude that MT3 has a Cu-thionein character that is stronger than that of the MT1 and MT2 isoforms - also present in the mammalian brain - which is mainly contributed by its β domain. In contrast, the α domain retains a high capacity to bind Zn(2+) ions, and, consequently, the entire MT3 peptide shows a peculiar dual ability to handle both metal ions. The nature of the formed Cu(+) -MT3 complexes oscillates from heterometallic Cu6 Zn4 -MT3 to homometallic Cu10 -MT3 major species, in a narrow Cu concentration range. Therefore, the entire MT3 peptide shows a high capacity to bind Cu(+) , provided that this occurs in a nonoxidative milieux. This reflects a peculiar property of this MT isoform, which accurately senses different Cu contents in the environment in which it is synthesized. © 2014 FEBS.
Influence of processing on the allergenic properties of pistachio nut assessed in vitro.
Noorbakhsh, Reihaneh; Mortazavi, Seyed Ali; Sankian, Mojtaba; Shahidi, Fakhri; Maleki, Soheila J; Nasiraii, Leila Roozbeh; Falak, Reza; Sima, Hamid Reza; Varasteh, AbdolReza
2010-09-22
Pistachio (Pistacia vera) is a tree nut that has been reported to cause IgE-mediated allergic reactions. This study was undertaken to investigate the distinctions between different cultivars of pistachio nut and the influence of different processing on the IgE-binding capacity of whole pistachio protein extracts. The influence of different processes on allergenicity was investigated using competitive inhibition ELISA and Western blotting assays. The Western blotting results of extracts from pistachio cultivars showed no marked difference among them. The IgE-binding capacity was significantly lower for the protein extract prepared from steam-roasted than from raw and dry-roasted pistachio nuts. The results of sensory evaluation analysis and hedonic rating proved no significant differences in color, taste, flavor, and overall quality of raw, roasted, and steam-roasted pistachio nut treatments. The most significant finding of the present study was the successful reduction of IgE-binding by pistachio extracts using steam-roast processing without any significant changes in sensory quality of product.
Sorption of lead onto two gram-negative marine bacteria in seawater
Harvey, Ronald W.; Leckie, James O.
1985-01-01
Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.
Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat.
Nakagawa, S; Kawashima, Y; Hirose, A; Kozuka, H
1994-01-01
Regulation of the hepatic level of fatty-acid-binding protein (FABP) by hormones and p-chlorophenoxyisobutyric acid (clofibric acid) was studied. The hepatic level of FABP, measured as the oleic acid-binding capacity of the cytosolic FABP fraction, was decreased in streptozotocin-diabetic rats. The level of FABP was markedly increased in adrenalectomized rats, and the elevation was prevented by the administration of dexamethasone. Hypothyroidism decreased the level of FABP and hyperthyroidism increased it. A high correlation between the incorporation of [14C]oleic acid in vivo into hepatic triacylglycerol and the level of FABP was found for normal, diabetic and adrenalectomized rats. The level of FABP was increased by administration of clofibric acid to rats in any altered hormonal states, as was microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, a peroxisome-proliferator-responsive parameter. These results suggest that the hepatic level of FABP is under regulation by multiple hormones and that clofibric acid induces FABP and 1-acyl-GPC acyltransferase by a mechanism which may be distinct from that by which hormones regulate the level of FABP. PMID:8110197
Du, Jian; Zhang, Xiu; Li, Xuezhi; Zhao, Jian; Liu, Guodong; Gao, Baoyu; Qu, Yinbo
2018-06-19
Commercial cellulase preparations for lignocellulose bioconversion are mainly produced by the fungus Trichoderma reesei. The maximum cellulose conversion of T. reesei cellulase mixture was 15%-20% higher than that of Penicillium oxalicum in the hydrolysis of corncob residue and Avicel. Nevertheless, both preparations hydrolyzed more than 92% of cellulose in NaOH-mercerized Avicel. When added to Avicel hydrolysis residue that was less reactive to P. oxalicum cellulases, cellobiohydrolase I (CBH I) from T. reesei resulted in a higher cellulose conversion than its homologous proteins from P. oxalicum and Aspergillus niger at the same protein loadings. Further domain exchange experiment attributed the high hydrolytic efficiency of T. reesei CBH I to its inter-domain linker and cellulose-binding domain. The results in part explained the superior performance of T. reesei cellulases on the degradation of native crystalline cellulose, and highlighted the important role of cellulose-binding region in determining the degree of hydrolysis by cellulases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.
Zhou, Tongchang; Kamra, Tripta; Ye, Lei
2018-03-01
Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water. Copyright © 2017 John Wiley & Sons, Ltd.
Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol
Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona; Javanainen, Matti; Kulig, Waldemar; Müller, Daniel J; Rog, Tomasz; Vattulainen, Ilpo
2016-01-01
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001 PMID:27897972
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation
NASA Astrophysics Data System (ADS)
Scharfman, Helen E.; Schwartzkroin, Philip A.
1989-10-01
Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.
Tan, Xin; Tahini, Hassan A; Smith, Sean C
2016-12-07
Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.
Plasma sex-steroid binding protein in a seasonally breeding reptile, Alligator mississippiensis.
Ho, S M; Lance, V; Megaloudis, M
1987-01-01
The properties of a sex-steroid binding protein (SSBP) in the plasma of the American alligator, Alligator mississippiensis, were partially characterized. Alligator SSBP has a sedimentation coefficient of 4S in a 5-20% sucrose gradient. It binds to estradiol-17 beta (E2) and testosterone (T) with limited capacities and moderate affinities (association constant for [3H]E2 is 4.70 +/- 0.09 X 10(8) M-1 and for [3H]T is 1.05 +/- 0.07 X 10(8) M-1, mean +/- SEM of six determinations). Plasma SSBP level, as measured by plasma [3H]E2 binding capacity, varies from 30 to 140 nmol per liter plasma (nM) and was found to be dependent on the gender, sexual maturity, and reproductive state of the animal. Distinct annual fluctuations in plasma SSBP level were observed in female alligators. In adult females, plasma SSBP levels were high (122 +/- 6 nM) in the fall during the nonbreeding season and low (30-60 nM) in spring and early summer during the breeding season. A minimum (33 +/- 6 nM) was reached in mid-June coinciding with the time of oviposition and rapid decline in circulating estrogen levels. This decline in adult female plasma SSBP levels during the breeding season was not observed in immature females. On the contrary, plasma SSBP levels in immature females increased from 81 +/- 14 nM in April to 134 +/- 9 nM in June. Plasma SSBP levels in male alligators showed little changes throughout the entire breeding season; they remained within the range of 80-100 nM from March to June. We believe that seasonal fluctuations in plasma SSBP levels constitute part of the mechanism involved in the regulation of free steroid delivered to target organs in female alligators and that such a mechanism does not exist in male animals.
Gameiro, Armanda; Braams, Simona; Rauen, Thomas; Grewer, Christof
2011-06-08
Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Barlow, Samantha L.; Metcalfe, Julian; Righton, David A.
2017-01-01
ABSTRACT Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. PMID:28148818
Barlow, Samantha L; Metcalfe, Julian; Righton, David A; Berenbrink, Michael
2017-02-01
Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O 2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O 2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O 2 saturation difference, Sa-v O 2 , another major determinant of circulatory O 2 supply rate. The results showed statistically indistinguishable red blood cell O 2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O 2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O 2 binding (Bohr and Root effects). Modelling of Sa-v O 2 at physiological pH, temperature and O 2 partial pressures revealed a substantial capacity for increases in Sa-v O 2 to meet rising tissue O 2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa-v O 2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O 2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O 2 supply to tissue demand. © 2017. Published by The Company of Biologists Ltd.
Lukschal, Anna; Wallmann, Julia; Bublin, Merima; Hofstetter, Gerlinde; Mothes-Luksch, Nadine; Breiteneder, Heimo; Pali-Schöll, Isabella; Jensen-Jarolim, Erika
2016-03-01
In the celery-mugwort-birch-spice syndrome, a significant proportion of IgE is directed against high molecular weight (HMW) glycoproteins, including the celery allergen Api g 5. BIP3, a monoclonal antibody originally raised against birch pollen, recognizes HMW allergens in birch and mugwort pollens, celery, and Apiaceae spices. Our aim was to generate mimotopes using BIP3 for immunization against the HMW allergens relevant in the celery-mugwort-birch-spice cross reactivity syndrome. Mimotopes were selected from a random-peptide display library by BIP3 and applied in IgE inhibition assays. The 3 phage clones with the highest inhibitory capacity were chosen for immunization of BALB/c mice. Mouse immune sera were tested for IgG binding to blotted birch pollen extract and used for inhibiting patients' IgE binding. Furthermore, sera were tested for binding to Api g 5, to horseradish peroxidase (HRP) as a second glycoprotein, or to non-glycosylated control allergen Phl p 5 in ELISA, and the specific Api g 5-specific IgG titers were determined. Three rounds of biopanning resulted in phage clones exhibiting 7 different sequences including 1 dominant, 1-6-cyclo-CHKLRCDKAIA. Three phage clones had the capacity to inhibit human IgE binding and induced IgG to the HMW antigen when used for immunizing BALB/c mice. The induced BIP3-mimotope IgG reached titers of 1:500 specifically to Api g 5, but hardly reacted to glycoprotein HRP, revealing a minor role of carbohydrates in their epitope. The mimotopes characterized in this study mimic the epitope of BIP3 relevant for Api g 5, one of the cross-reactive HMW allergens relevant in the celery-mugwort-birch-spice syndrome. BIP3 mimotopes may be used in the future for hyposensitization in this clinical syndrome by virtue of good and specific immunogenicity.
Behavior of adsorbed Poly-A onto sodium montmorillonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx
2015-07-23
The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.
Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan
2011-10-01
Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.
On the limited recognition of inorganic surfaces by short peptides compared with antibodies.
Artzy-Schnirman, Arbel; Abu-Shah, Enas; Dishon, Matan; Soifer, Hadas; Sivan, Yotam; Reiter, Yoram; Benhar, Itai; Sivan, Uri
2014-06-01
The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Identification and characterization of a Fc receptor activity on the Toxoplasma gondii tachyzoite.
Vercammen, M; el Bouhdidi, A; Ben Messaoud, A; de Meuter, F; Bazin, H; Dubremetz, J F; Carlier, Y
1998-01-01
The Immunoglobulin (Ig) binding capacity of Toxoplasma gondii tachyzoites was investigated using fluorescence flow-cytometry analysis. Polyclonal mouse, human and rat immunoglobulins without specific anti-Toxoplasma activity bound to parasites in a concentration-dependent manner, saturating them at circulating serum concentrations. The immunoglobulin class and subclass specificity of binding was investigated using irrelevant monoclonal antibodies. IgM, IgA and IgG reacted with the parasite membrane. The attachment of mouse IgM to the parasite surface was hampered by mouse IgG1, IgG2a, IgG2b and IgG3. The binding of mouse IgG was proportionally reduced with increasing concentrations of mouse monoclonal IgM. The binding of murine immunoglobulin was diminished when in presence of human IgG. Purified Fc- but not Fab portions of immunoglobulins, fixed to parasites. Using labelled calibrated beads, the Ig binding capacity of parasites was estimated to be 6900 +/- 500 sites per tachyzoite. The Kd of the T. gondii Fc Receptor (FcR) activity was determined at 1.4 +/- 0.1 microM (mean +/- SEM). Such FcR activity was reduced by phospholipase C, trypsin and pronase treatment of the parasites. These data show a low affinity FcR activity on T. gondii tachyzoites which recognizes Ig of different species and isotypes and is likely supported by a glycosyl-phosphatidylinositol (GPI)-anchored surface protein of the parasite.
Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf
2017-03-15
Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.
Switching on RNA Silencing Suppressor Activity by Restoring Argonaute Binding to a Viral Protein
Szabó, Edit Z.; Manczinger, Máté; Göblös, Anikó; Kemény, Lajos
2012-01-01
We found that Sweet potato feathery mottle virus (SPFMV) P1, a close homologue of Sweet potato mild mottle virus P1, did not have any silencing suppressor activity. Remodeling the Argonaute (AGO) binding domain of SPFMV P1 by the introduction of two additional WG/GW motifs converted it to a silencing suppressor with AGO binding capacity. To our knowledge, this is the first instance of the transformation of a viral protein of unknown function to a functional silencing suppressor. PMID:22623784
ERIC Educational Resources Information Center
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
A combined experimental, individual-differences, and thought-sampling study tested the predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g., Oberauer, Suss, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We assessed 288 subjects' WMC and their performance and mind-wandering rates…
Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S
1997-03-01
The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.
Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich
2014-12-01
The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.
Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liban, Tyler J.; Medina, Edgar M.; Tripathi, Sarvind
The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD–CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences formore » different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein–E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.« less
Blayney, Michelle J; Whitney, Spencer M; Beck, Jennifer L
2011-09-01
Ribulose bisphosphate carboxylase/oxygenase (Rubisco) is the protein that is responsible for the fixation of carbon dioxide in photosynthesis. Inhibitory sugar phosphate molecules, which can include its substrate ribulose-1,5-bisphosphate (RuBP), can bind to Rubisco catalytic sites and inhibit catalysis. These are removed by interaction with Rubisco activase (RA) via an ATP hydrolytic reaction. Here we show the first nanoESI mass spectra of the hexadecameric Rubisco and of RA from a higher plant (tobacco). The spectra of recombinant, purified RA revealed polydispersity in its oligomeric forms (up to hexamer) and that ADP was bound. ADP was removed by dialysis against a high ionic strength solution and nucleotide binding experiments showed that ADP bound more tightly to RA than AMP-PNP (a non-hydrolysable ATP analog). There was evidence that there may be two nucleotide binding sites per RA monomer. The oligomerization capacity of mutant and wild-type tobacco RA up to hexamers is analogous to the subunit stoichiometry for other AAA+ enzymes. This suggests assembly of RA into hexamers is likely the most active conformation for removing inhibitory sugar phosphate molecules from Rubisco to enable its catalytic competency. Stoichiometric binding of RuBP or carboxyarabinitol bisphosphate (CABP) to each of the eight catalytic sites of Rubisco was observed.
Genetic variation of natural antibodies in milk of Dutch Holstein-Friesian cows.
Ploegaert, T C W; Wijga, S; Tijhaar, E; van der Poel, J J; Lam, T J G M; Savelkoul, H F J; Parmentier, H K; van Arendonk, J A M
2010-11-01
Defense mechanisms of dairy cows against diseases partly rest on their naturally present disease resistance capacity. Natural antibodies (NAb) form a soluble part of the innate immune system, being defined as antibodies circulating in animals without prior intentional antigenic stimulation. Genetic selection on NAb titers in milk, therefore, might improve disease resistance. We estimated genetic parameters of NAb titers binding lipopolysaccharide, lipoteichoic acid (LTA), peptidoglycan, and keyhole limpet hemocyanin, and titers of the NAb isotypes IgG1, IgM, and IgA binding LTA in milk of Dutch Holstein-Friesian heifers. Natural antibody titers were measured in 1 milk sample from each of 1,939 Holstein-Friesian heifers and used for estimating genetic parameters of NAb titers. The data show that phenotypic variation exists among heifers in NAb titers binding lipopolysaccharide, LTA, peptidoglycan, and keyhole limpet hemocyanin, and the NAb isotypes IgG1, IgM, and IgA binding LTA in milk. High genetic correlations among NAb (ranging from 0.45 to 0.99) indicated a common genetic basis for the levels of different NAb in bovine milk. Intra-herd heritability estimates for NAb ranged from 0.10 to 0.53. The results indicated that NAb levels have potential for genetic selection. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Weisinger, J R; Contreras, N E; Cajias, J; Bellorin-Font, E; Amair, P; Guitierrez, L; Sylva, V; Paz-Martínez, V
1988-01-01
Insulin resistance in uremia has been attributed to impaired hormone-receptor binding or to postbinding defects. Oral glucose tolerance tests, insulin binding, and in vitro glycolytic activity were studied in purified red blood cells from normal control subjects (C) and from uremic patients belonging to three groups: nondialyzed (U), on chronic hemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD). Glucose intolerance and hyperinsulinemia were demonstrated in all groups of patients. Maximal specific binding of 125I-insulin to erythrocytes, kinetically derived receptor numbers per cell, and affinity constants for insulin binding did not differ between control and patient groups. No correlation was found between the degree of glucose intolerance and insulin binding parameters. Basal lactate production by erythrocytes incubated in vitro was significantly higher in U and HD patients than in C, whereas CAPD patients did not differ from C in this respect. Addition of 1 mM dibutyryl-cAMP and 0.5 mM isobutyl-methyl-xanthine during incubation of erythrocytes caused an increase in the rate of lactate production that was similar in magnitude in the U, HD and C groups, whereas cells from CAPD subjects showed a significantly larger absolute response to these compounds after 1 h of incubation. There was no evidence of impairment of glycolytic capacity in red blood cells from uremic patients. In addition, no correlation was found between the degree of glucose intolerance and basal or stimulated lactate production by erythrocytes. Our results obtained in human erythrocytes suggest that the insulin resistance observed in uremia does not involve a defect in hormone binding or in the intracellular capacity to utilize glucose through glycolysis.
Xu, Huacheng; Guan, Dong-Xing; Zou, Li; Lin, Hui; Guo, Laodong
2018-08-01
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV-Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bile acid binding capacity has been related to cholesterol-lowering potential of foods and food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of can...
Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla
2002-01-01
Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...
Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.
2006-01-01
Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808
Dynamic New World: Refining Our View of Protein Structure, Function and Evolution
Mannige, Ranjan V.
2014-01-01
Proteins are crucial to the functioning of all lifeforms. Traditional understanding posits that a single protein occupies a single structure (“fold”), which performs a single function. This view is radically challenged with the recognition that high structural dynamism—the capacity to be extra “floppy”—is more prevalent in functional proteins than previously assumed. As reviewed here, this dynamic take on proteins affects our understanding of protein “structure”, function, and evolution, and even gives us a glimpse into protein origination. Specifically, this review will discuss historical developments concerning protein structure, and important new relationships between dynamism and aspects of protein sequence, structure, binding modes, binding promiscuity, evolvability, and origination. Along the way, suggestions will be provided for how key parts of textbook definitions—that so far have excluded membership to intrinsically disordered proteins (IDPs)—could be modified to accommodate our more dynamic understanding of proteins. PMID:28250374
Purification and partial characterization of PfHRP-II protein of Plasmodium falciparum.
Ghimire, Prakash; Samantaray, J C; Mirdha, B R; Patra, A K; Panda, A K
2003-12-01
The human malarial parasite Plasmodium falciparum secretes various intra-and extra-cellular proteins during its asexual life cycle in human RBC. Histidine rich protein-II (HRP-II) is one of the most prominent proteins, found to be secreted by P. falciparum throughout the asexual cycle with the peak during mature schizont stage of the parasite development in human IRBC. The high histidine content (35% of the total amino acids in protein) of this protein suggested the potential to bind divalent metal ions. We have demonstrated by metal chelate chromatography, an extraordinary capacity of HRP-II to bind nickel ions (Ni++) and employed this characteristic to purify the extra-cellular HRP-II protein secreted by P. falciparum from culture supernatant. The identity of the purified protein was verified by the relative molecular weight on SDS-PAGE, by reacting with polyclonal antibodies directed against it using Western blot technique.
Synthesis, optimization, and characterization of molecularly imprinted nanoparticles
NASA Astrophysics Data System (ADS)
Rostamizadeh, Kobra; Abdollahi, Hamid; Parsajoo, Cobra
2013-04-01
Nanoparticles of molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization method. Glucose was used as a template molecule. The impact of different process parameters on the preparation of nanoparticles was investigated in order to reach the maximum binding capacity of MIPs. Experimental data based on uniform design were analyzed using artificial neural network to find the optimal condition. The results showed that the binding ability of nanoparticles of MIPs prepared under optimum condition was much higher than that of the corresponding non-imprinted nanoparticles (NIPs). The findings also demonstrated high glucose selectivity of imprinted nanoparticles. The results exhibited that the particle size for MIP nanoparticles was about 557.6 nm, and the Brunauer-Emmett-Teller analysis also confirmed that the particle pores were mesopores and macropores around 40 nm and possessed higher volume, surface area, and uniform size compared to the corresponding NIPs.
Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake
Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung
2015-01-01
High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland. PMID:25740624
Elegheert, Jonathan; Brigé, Ann; Van Beeumen, Jozef; Savvides, Savvas N
2017-10-01
Shewanella oneidensis, a Gram-negative γ-proteobacterium with an extensive redox capacity, possesses four old yellow enzyme (OYE) homologs. Of these, Shewanella yellow enzyme 4 (SYE4) is implicated in resistance to oxidative stress. Here, we present a series of high-resolution crystal structures for SYE4 in the oxidized and reduced states, and in complex with phenolic ligands and the nitro-aromatic explosive picric acid. The structures unmask new features, including the identification of a binding platform for long-chain hydrophobic molecules. Furthermore, we present the first structural observation of a hydride-Meisenheimer complex of picric acid with a flavoenzyme. Overall, our study exposes the binding promiscuity of SYE4 toward a variety of electrophilic substrates and is consistent with a general detoxification function for SYE4. © 2017 Federation of European Biochemical Societies.
Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.
Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung
2015-03-05
High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.
Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard
2001-01-01
Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432
Gentle, fast and effective crystal soaking by acoustic dispensing
Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Pearce, Nicholas M.; von Delft, Frank
2017-01-01
The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts. PMID:28291760
Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.
Silva, M V; Pasternack, L B; Kearns, D R
1997-12-15
Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.
2009-12-01
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH,more » but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.« less